Tcl Library Source Code

Changes On Branch numtheory
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch numtheory Excluding Merge-Ins

This is equivalent to a diff from 475a79542b to e958f2695b

2016-02-04
05:14
Tcllib 1.18 Release check-in: c272ee3410 user: aku tags: trunk, release, tcllib-1-18
2016-02-03
03:32
Pulling in the new "practcl" module from the odie branch check-in: f1eeaf6396 user: hypnotoad tags: skip-and-hop
03:31
Pulling changes from trunk check-in: 9b42a58ed5 user: hypnotoad tags: odie
2016-01-24
13:18
Merged with trunk. Tweaked manpage metadata. Leaf check-in: e958f2695b user: lars_h tags: numtheory
2016-01-23
22:53
Merged bugfix on trunk. Updated docs. check-in: 4268dab54f user: aku tags: tcllib-1-18-rc
2016-01-22
19:54
Small bugfix mentioned in email to tcllib-devel today. Also lifts some manpage cleanup to .dtx source. check-in: 475a79542b user: lars_h tags: trunk
2016-01-02
00:54
Fixed ticket 2886893. check-in: 6db639dcd1 user: schlenk tags: trunk
2015-07-17
21:39
Implemented reduction modulo N and exponentiation modulo N, in a manner that is performant for very large numbers (as one would encounter in e.g. cryptographic applications). Have not yet updated the isprime operation to take advantage of that. check-in: 586bc884c7 user: lars_h tags: numtheory

Changes to modules/math/numtheory.dtx.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
% 
% \iffalse
% 
%<*pkg>
%% Copyright (c) 2010 by Lars Hellstrom.  All rights reserved.
%% See the file "license.terms" for information on usage and redistribution
%% of this file, and for a DISCLAIMER OF ALL WARRANTIES.
%</pkg>
%<*driver>
\documentclass{tclldoc}
\usepackage{amsmath,amsfonts}
\usepackage{url}
\newcommand{\Tcl}{\Tcllogo}
\begin{document}
\DocInput{numtheory.dtx}
\end{document}
%</driver>
% \fi
% 
% \title{Number theory package}
% \author{Lars Hellstr\"om}
% \date{30 May 2010}
% \maketitle
% 
% \begin{abstract}
%   This package provides a command to test whether an integer is a 
%   prime, but may in time come to house also other number-theoretic 
%   operations.
% \end{abstract}
% 
% \tableofcontents
% 
% \section*{Preliminaries}
% 
% \begin{tcl}
%<*pkg>
package require Tcl 8.5
% \end{tcl}
% \Tcl~8.4 is seriously broken with respect to arithmetic overflow, 
% so we require 8.5. There are (as yet) no explicit 8.5-isms in the 
% code, however.
% \begin{tcl}
package provide math::numtheory 1.0
namespace eval ::math::numtheory {
   namespace export isprime
}
%</pkg>
% \end{tcl}
% \setnamespace{math::numtheory}
% 




|





|














|
|
|











|
<

|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
% 
% \iffalse
% 
%<*pkg>
%% Copyright (c) 2010, 2015 by Lars Hellstrom.  All rights reserved.
%% See the file "license.terms" for information on usage and redistribution
%% of this file, and for a DISCLAIMER OF ALL WARRANTIES.
%</pkg>
%<*driver>
\documentclass{tclldoc}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{url}
\newcommand{\Tcl}{\Tcllogo}
\begin{document}
\DocInput{numtheory.dtx}
\end{document}
%</driver>
% \fi
% 
% \title{Number theory package}
% \author{Lars Hellstr\"om}
% \date{30 May 2010}
% \maketitle
% 
% \begin{abstract}
%   This package provides operations related to the number theory 
%   branch of mathematics, notably a command to test whether an integer 
%   is a prime.
% \end{abstract}
% 
% \tableofcontents
% 
% \section*{Preliminaries}
% 
% \begin{tcl}
%<*pkg>
package require Tcl 8.5
% \end{tcl}
% \Tcl~8.4 is seriously broken with respect to arithmetic overflow, 
% so we require 8.5.

% \begin{tcl}
package provide math::numtheory 1.1
namespace eval ::math::numtheory {
   namespace export isprime
}
%</pkg>
% \end{tcl}
% \setnamespace{math::numtheory}
% 
59
60
61
62
63
64
65
66



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































84
85
86
87
88
89
90
testing {useLocal numtheory.tcl math::numtheory}
%</test>
% \end{tcl}
% 
% And the same is true for the manpage.
% \begin{tcl}
%<*man>
[manpage_begin math::numtheory n 1.0]



[copyright "2010 Lars Hellstr\u00F6m\ 
  <Lars dot Hellstrom at residenset dot net>"]
[moddesc   {Tcl Math Library}]
[titledesc {Number Theory}]
[category  Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt 1.0]]

[description]
[para]
This package is for collecting various number-theoretic operations, 
though at the moment it only provides that of testing whether an 
integer is a prime.

[list_begin definitions]
%</man>
% \end{tcl}


























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































% 
% 
% \section{Primes}
% 
% The first (and so far only) operation provided is |isprime|, which 
% tests if an integer is a prime.
% \begin{tcl}







|
>
>
>






|










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
testing {useLocal numtheory.tcl math::numtheory}
%</test>
% \end{tcl}
% 
% And the same is true for the manpage.
% \begin{tcl}
%<*man>
[manpage_begin math::numtheory n 1.1]
[keywords {modular exponentiation}]
[keywords {number theory}]
[keywords prime]
[copyright "2010 Lars Hellstr\u00F6m\ 
  <Lars dot Hellstrom at residenset dot net>"]
[moddesc   {Tcl Math Library}]
[titledesc {Number Theory}]
[category  Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt 1.1]]

[description]
[para]
This package is for collecting various number-theoretic operations, 
though at the moment it only provides that of testing whether an 
integer is a prime.

[list_begin definitions]
%</man>
% \end{tcl}
% 
% 
% \section{Modular arithmetic}
% 
% Many number-theoretic algorithms make use of arithmetic modulo some 
% (possibly quite large) integer $N$, so there is a point in having 
% efficient implementations of this available. \Tcl\ actually comes 
% with C implementations of much of the following, as part of the 
% tommath library it uses for integer arithmetic, but unfortunately 
% those are not (currently) exposed on the \Tcl\ level.
% 
% 
% \subsection{Barrett reduction}
% 
% The basic operation for modular arithmetic is computing the 
% remainder, i.e., |expr|'s |%| operation. Unfortunately, that is 
% quite often not as fast as one would like it to be.
% 
% The main catch is that while libtommath implements Karabatsura 
% multiplication of integers to achieve an asymptotic complexity of 
% $O(n^{1.585})$ (where $n$ is the bit-size of the inputs to the 
% multiplication operation), it (currently) only implements a 
% traditional $O(n^2)$ algorithm for integer division, so |/| and |%| 
% (at the C level, there is a single function which calculates both) 
% can be orders of magnitude slower than |*|. There is however also 
% more generally the catch that even though division asymptotically 
% has the same theoretical complexity as multiplication, the constant 
% factor associated with division is several times larger than that 
% of multiplication.
% 
% Barrett reduction is an algorithm for computing the remainder which 
% avoids the division (instead doing just two multiplications), but 
% which requires certain auxiliary constants $M$ and $s$ in addition 
% to the actual denominator $N$. Computing these is feasible if the 
% same denominator $N$ is going to be used in several remainder 
% computations, and as it turns out, that is frequently the case.
% 
% \begin{proc}{Barrett_mod}
%   The basic idea for Barrett reduction is one that may be familiar 
%   from non-integer arithmetic, namely to replace a division $a/N$ 
%   by a multiplication $a \cdot \frac{1}{N}$; by precomputing the 
%   inverse $\frac{1}{N}$, the division can be avoided (or at least 
%   only carried out once). There is of course the slight complication 
%   that \Tcl\ cannot naively represent non-integers such as $1/N$ 
%   with the necessary precision, so we'll express that as a 
%   fixed-point number instead. This leads to the formula
%   \begin{equation}
%     a - \left\lfloor a \cdot \frac{M}{2^s} \right\rfloor \cdot N
%     =
%     \texttt{\$a - ((\$a * \$M) >> \$s) * \$N}
%     \quad
%     \text{where \(M 2^{-s} \approx 1/N\)}
%   \end{equation}
%   for computing the remainder $a \bmod N$. That $M 2^{-s}$ is not 
%   exactly $N^{-1}$ does however leave some room for rounding errors 
%   that would cause the computed quotient $a/N$ to be slightly off. 
%   This is countered in a correction step after the main calculation, 
%   and by having $N^{-1}$ rounded upwards it can be ensured that 
%   incorrect remainders always end up negative, which is easy to 
%   test for. Hence we arrive at the following procedure.
%   \begin{tcl}
%<*pkg>
proc ::math::numtheory::Barrett_mod {N invN shift a} {
   set r [expr {$a - (($a * $invN) >> $shift) * $N}]
   if {$r<0} then {incr r $N}
   return $r
}
%   \end{tcl}
%   The reason for picking this sequence of arguments is that it is 
%   natural to package Barrett reduction modulo $N$ as a command 
%   prefix that takes the $a$ operand as its extra argument, so that 
%   it could be called like
%   \begin{quote}
%     |{*}$modcmd $a|
%   \end{quote}
% \end{proc}
% 
% \begin{proc}{Barrett_parameters}
%   For computing the extra parameters, there is a procedure with 
%   call syntax
%   \begin{quote}
%     |Barrett_parameters| \word{$N$}
%   \end{quote}
%   where $N$ is a positive integer. The return value is a list
%   \begin{quote}
%     \word{$N$} \word{$M$} \word{$s$}
%   \end{quote}
%   where the elements satisfy \(s \geqslant 2 \log_2 N\) and 
%   \(MN \geqslant 2^s > (M -\nobreak 1) N\), i.e., $M$ is 
%   $\lceil 2^s/N \rceil$ as needed for |Barrett_mod|.
%   
%   In \Tcl, the most convenient way of computing an approximate 
%   $2$-logarithm (i.e., bitsize) of a large integer is to |format| 
%   said integer in hexadecimal: take the string length of the number 
%   times the number of bits per digit. This won't be a tight bound, 
%   but the overhead is not in the leading term of the complexity.
%   To do an integer division rounded upwards, one can swap the sign 
%   of the numerator, divide, and then swap the sign again.
%   \begin{tcl}
proc ::math::numtheory::Barrett_parameters {N} {
   set s [expr {8*[string length [format %llx $N]]}]
   set M [expr {-( (-1 << $s) / $N)}]
   return [list $N $M $s]
}
%</pkg>
%   \end{tcl}
%   An alternative approach here, if one \emph{really} wants to avoid 
%   big integer division, would be to use a Newton--Raphson iteration 
%   for computing $M$, but that should (if implemented) really be 
%   exposed publicly as a utility operation in its own right.
% \end{proc}
% 
% The main limitation of Barrett reduction is that the finite 
% precision of $M 2^{-s}$ as an approximation of $N^{-1}$ means $a M 
% 2^{-s}$ slowly but surely deviates from $a/N$ as \(a \to \infty\). 
% The correction step of adding $N$ to the remainder $r$ is 
% equivalent to adjusting the quotient to counter this, but it cannot 
% adjust the quotient by more than $1$. However, Barrett reduction is 
% provably correct for all $a$ up to \(2^s \geqslant N^2\), which is the 
% range of arguments that one encounters in implementing multiplication 
% modulo $N$. To see this, let \(0 \leqslant a < 2^s\) be arbitrary. Let 
% \(\delta = M2^{-s} - 1/N\) and \(\varepsilon = aM/2^s - \bigl\lfloor 
% aM/2^s \bigr\rfloor\). Then the pre-adjustment computed remainder is
% \begin{multline*}
%   r 
%   =
%   a - \left\lfloor \frac{a M}{2^s} \right\rfloor N 
%   =
%   a - \left( \frac{a M}{2^s} - \varepsilon \right) N
%   = \\ =
%   a - a \frac{M}{2^s} N + \varepsilon N
%   =
%   a - a \left( \frac{1}{N} + \delta \right) N + \varepsilon N
%   =
%   (-a \delta + \varepsilon) N
%   \text{.}
% \end{multline*}
% By definition \(0 \leqslant \varepsilon < 1\). For $\delta$, one 
% finds
% \begin{equation*}
%   \delta
%   =
%   \frac{M}{2^s} - \frac{1}{N}
%   =
%   \frac{MN - 2^s}{2^s N}
%   <
%   \frac{MN - (M-1)N}{2^s N}
%   =
%   \frac{1}{2^s}
% \end{equation*}
% and hence \(1 > a\delta \geqslant 0\). This implies \(-1 < -a\delta 
% + \varepsilon < 1\) and thus \(-N < r < N\), ensuring that the 
% result of |Barrett_mod| is nonnegative and less than $N$ for \(a < 
% N^2\).
% 
% \begin{proc}{make_modulo}
%   Packaging it all up, the primary user interface is an ensemble 
%   |make_modulo| that can be asked to do the preparation work for 
%   us.
%   \begin{tcl}
%<*man>
[call [cmd math::numtheory::make_modulo] [arg subcmd] [arg N]]
  The [cmd make_modulo] command precomputes some data that are useful 
  for quickly computing remainders modulo [arg N], which must be a 
  positive integer. The format of the return value depends on the 
  [arg subcmd]. This kind of preparation is primarily of interest if 
  one needs to compute many remainders modulo the same [arg N], but 
  that turns out to be quite common.
  
  The [arg subcmd]s are:
  [list_begin commands]
  [cmd_def prefix]
    Returns a [emph {command prefix}] that expects one extra argument 
    [arg x]. 
    [example_begin]{*}[arg modprefix] [arg x][example_end]
    This argument [arg x] is an integer which should be nonnegative 
    and less than [arg N]**2. The result of that call will be the
    remainder of [arg x] divided by [arg N].
  [cmd_def mulprefix]
    Returns a command prefix that expects two extra arguments 
    [arg x] and [arg y]. 
    [example_begin]{*}[arg mulmodprefix] [arg x] [arg y][example_end]
    These arguments are integers whose product should be nonnegative 
    and less than [arg N]**2 (typically, [arg x] and [arg y] are both 
    less than [arg N]), and the result of that call will be the 
    remainder of [arg x]*[arg y] divided by [arg N].
  [cmd_def Barrett-parameters]
    Returns a list of three integers [arg N], [arg M], and [arg s] 
    that are what one needs in order to perform Barrett reduction 
    ([uri {http://en.wikipedia.org/wiki/Barrett_reduction}]). [arg N] 
    is the argument. The shift amount [arg s] satisfies 2**([arg s]/2) 
    > [arg N]. The scaled reciprocal [arg M] satisfies 
    [arg M]*[arg N] >= 2**[arg s] > ([arg M]-1)*[arg N].
  [list_end]
  
%</man>
%   \end{tcl}
%   Creating the ensemble is pretty straightforward. An explicit 
%   |-map| is used to adjust the command names.
%   \begin{tcl}
%<*pkg>
namespace eval ::math::numtheory {
   namespace ensemble create -command make_modulo -map {
      Barrett-parameters  Barrett_parameters
      prefix              {Make_modulo_prefix 0}
      mulprefix           {Make_modulo_prefix 1}
   }
}
%   \end{tcl}
% \end{proc}
% 
% \begin{proc}{Barrett_mulmod}
%   Obviously a command prefix that multiplies two arguments ends up 
%   being implemented using a different command prefix than that 
%   which does not, so |Barrett_mod| gets an obvious sibling.
%   \begin{tcl}
proc ::math::numtheory::Barrett_mulmod {N invN shift x y} {
   set a [expr {$x*$y}]
   set r [expr {$a - (($a * $invN) >> $shift) * $N}]
   if {$r<0} then {incr r $N}
   return $r
}
%   \end{tcl}
%   The reason for not using one command and having it check its 
%   number of arguments is purely for speed: this is something that 
%   is done in various inner loops, so we really don't want it to 
%   deal with variable syntax.
% \end{proc}
% 
% \begin{proc}{Plain_mod}
% \begin{proc}{Plain_mulmod}
%   The reason that there is an option to get multiplication integrated 
%   with the modulo operation is also speed, but under a slightly 
%   different line of reasoning. Barrett reduction is useful for large 
%   $N$ where |expr|'s built-in |%| grows comparatively slow, but for 
%   smaller $N$ (which would still seem very large to a human having to 
%   calculate with it) the overhead of evaluating more \Tcl\ commands 
%   is the dominant factor. Hence a quite competitive alternative would 
%   be to just do the obvious |expr| call, and in that case it is nice 
%   to do two operations in one |expr|.
%   \begin{tcl}
proc ::math::numtheory::Plain_mod {N a} {expr {$a % $N}}
proc ::math::numtheory::Plain_mulmod {N x y} {expr {$x*$y % $N}}
%</pkg>
%   \end{tcl}
% \end{proc}\end{proc}
% 
% So which implementation should one choose for which $N$? Only 
% |time| can tell, so we'll have to do a bit of experimentation.
% \begin{tcl}
%<*experiment>
% \end{tcl}
% First, we need a selection of integers of varying sizes. Easy 
% enough to build as strings, but let's do some bitlogic afterwards 
% to reduce the risk of easy proportions (and incidentally ensure 
% that they have a numeric internal representation). Adding the 
% |llength| is to ensure that the numbers do not all have the same 
% parity.
% \begin{tcl}
set numL {}
set digits 1
set last 12345
while {[llength $numL] < 1000} {
   set new 1$digits
   lappend numL [expr {$new ^ $last + [llength $numL]}]
   set last $new
   set d [expr {[llength $numL] % 10}]
   set digits $d$digits$d
}
% \end{tcl}
% 
% Then some kind of test procedure. This takes $a$ and $N$ as 
% arguments, computes $a \bmod N$ using both approaches, and returns 
% the list of the two |time| messages.
% \begin{tcl}
proc time_both_modulo {a N} {
   set P [math::numtheory::Barrett_parameters $N]
   list [
      time {math::numtheory::Plain_mod $N $a} 50
   ] [
      time {math::numtheory::Barrett_mod {*}$P $a} 20
   ]
}
% \end{tcl} 
% Finally run that on a suitable selection of the |numL| list.
% \begin{tcl}
set resL {}
while {[llength $resL] < 500} {
   lappend resL [
      time_both_modulo\
        [lindex $numL [expr {round(1.93*[llength $resL]+1)}]]\
        [lindex $numL [llength $resL]]
   ]
}
% \end{tcl}
% The results are \dots\ a bit weird. But to make it easier to see 
% the big picture, here's a routine that reduces the comparison 
% between two timing values to a single digit: |Plain_mod| is faster 
% for 0--4, |Barrett_mod| is faster for 5--9. The $1.2$ means each 
% increment on this scale corresponds to another $20$\% difference in 
% speed.
% \begin{tcl}
set over ""
foreach pair $resL {
   scan [lindex $pair 0] %f plain
   scan [lindex $pair 1] %f b
   set l [expr {round(log($plain/$b)/log(1.2)+4.5)}]
   set m [expr {max(min($l,9),0)}]
   append over $m
}
%</experiment>
% \end{tcl} 
% The good news is that from position $90$ and up, |Barrett_mod| is 
% consistently faster. |[lindex $numL 90]| has $602$ bits, but let's 
% pick $625$ as a nice round switchover point.
% 
% The somewhat surprising result, from looking at |[join $resL \n]|, 
% is that whereas the timing results for |Barrett_mod| are well 
% concentrated along a nice curve, the timing results for |Plain_mod| 
% are not: they have seemingly random jumps up and down, which do not 
% seem to be due to noise in the |time|ing as such. Presumably they 
% are rather due to the actual numbers used---dependent upon the 
% extent to which the code follows one branch or another in the main 
% loop of \textbf{mp\_div}---but this would require a more extensive 
% experiment (testing several numerators and denominators of each 
% size) to examine.
% 
% The bad news can be had by changing the constant |1.93| above to 
% for example |1.5| or |1.1|: in those cases |Barrett_mod| would not 
% emerge as superior. The reason for this can be discovered through a 
% more thorough complexity analysis of libtommath's division operation. 
% While it is true that said implementation's time complexity is 
% asymptotically quadratic, it would be more accurate to describe it 
% as being $O(DQ)$, where \(D = \lceil \log_2 N \rceil$ is the size of 
% the denominator and $Q$ is the size of the quotient. For numerator 
% and denominator of roughly equal size, the size $Q$ of the quotient 
% becomes effectively bounded (i.e., $O(1)$), and the overall |%| 
% operation effectively linear(!) in the input size. As long as \(Q = 
% o(D^{-1+\log_2 3}) = o(D^{0.585})\), the multiplications in 
% |Barrett_mod| are asymptotically \emph{slower} than the naive 
% remainder operation in |Plain_mod|! Asymptotically that would only 
% allow the numerator's size to grow as $D + O(D^{0.585})$, which is 
% a lot less than the $2D$ required for arbitrary \(a < N^2\), and 
% it only differs in lower order terms from the size $D$ of $N$ 
% itself, but $O(D^{0.585})$ doesn't grow \emph{that} much slower 
% than $D$, so for practical input sizes a numerator $a$ of the same 
% order as, say, $N^{1.5}$ might be just as efficiently reduced by 
% |Plain_mod| as it might by |Barrett_mod|.
% 
% It's probably most fair to include a remark hinting at this in the 
% manpage, where we're still in the scope of the 
% |math::numtheory::make_modulo| item.
% 
% \begin{tcl}
%<*man>
  Note that the [arg modprefix] computed is tuned for applications 
  where the number to be reduced modulo [arg N] is uniformly 
  distributed in the interval from 0 (inclusive) to [arg N]**2. In 
  applications where the number comes from a much smaller interval, 
  the choice of algorithm for the [arg modprefix] may be suboptimal, 
  but many number-theoretical and cryptographic algorithms end up 
  exercising the full range.
  
%</man>
% \end{tcl} 
% 
% \begin{proc}{Make_modulo_prefix}
%   To finish the implementation, we need only the command that 
%   actually constructs the prefixes. This has the call syntax
%   \begin{quote}
%     |Make_modulo_prefix| \word{mul-prefix?} \word{$N$}
%   \end{quote}
%   where \word{mul-prefix} is |1| if a mulmod prefix is sought, and 
%   |0| if a mod prefix is sought.
%   
%   The implementation is to first call |Barrett_parameters|, since 
%   these includes the bitsize of $N$ (or rather: twice that bitsize) 
%   we need to choose between plain and Barrett reduction. That means 
%   we'll sometimes perform an unnecessary division, but only in a 
%   context where we expect to perform several more anyway.
%   \begin{tcl}
%<*pkg>
proc ::math::numtheory::Make_modulo_prefix {mulQ N} {
   set P [Barrett_parameters $N]
%   \end{tcl}
%   The switchover at $625$ bits becomes a bound of $1250$ for the 
%   $s$ parameter.
%   \begin{tcl}
   if {[lindex $P 2] >= 1250} then {
      return [linsert $P 0 [
         namespace which [lindex {Barrett_mod Barrett_mulmod} $mulQ]
      ]]
   } else {
      return [list [
         namespace which [lindex {Plain_mod Plain_mulmod} $mulQ]
      ] $N]
   }
}
%</pkg>
%   \end{tcl}
% \end{proc}
% 
% In the following test, the fun thing about $10^{643}$ is that it is 
% only slightly smaller than \(2^{2136} \approx 1.00016 \cdot 10^{643}\). 
% Picking a power of $10$ as the modulus makes it trivial to predict 
% what the remainder should be for a number constructed as a sequence of 
% digits. In the first case, the quotient estimate is $1$ (correct) 
% and the remainder is correct on the first try, but in the second 
% case the quotient estimate is $11$ (correct integer quotient is 
% $10$), so the first try remainder is $-1$.
% \begin{tcl}
%<*test>
test Barrett-1.1 "1e643" -body {
   set mod [math::numtheory::make_modulo prefix 1[string repeat 0 643]]
   list [
      {*}$mod 1[string repeat 0 642]9
   ] [
      {*}$mod 10[string repeat 9 643]
   ]
} -result [list 9 [string repeat 9 643]]
%</test>
% \end{tcl}
% 
% 
% 
% \subsection{Power modulo}
% 
% The power-modulo, or \texttt{powm}, operation is that defined by
% \begin{equation*}
%   \mathrm{powm}(a,b,N) = a^b \bmod N
%   \text{.}
% \end{equation*}
% The RSA public key cryptosystem established it as a workhorse in 
% modern cryptography, but it is also a useful tool in several 
% number-theoretical algorithms. Common to both domains is that all 
% three arguments may be several thousand bits large, so reducing the 
% work required to compute it is well worth the effort.
% 
% First, it should perhaps be remarked that computing 
% $\mathrm{powm}(a,b,N)$ does not require computing the integer $a^b$ 
% (which is a good thing, since it for quite moderate $a$ and $b$ could 
% easily overflow available memory). By doing all multiplications 
% modulo $N$, the space complexity of the calculation can remain 
% linear.
% 
% Second, it would be unfeasible to compute power modulo using the 
% simple recursion
% \begin{equation*}
%   \mathrm{powm}(a,b,N) = \begin{cases}
%     a \bmod N & \text{if \(b = 1\),}\\
%     \bigl( \mathrm{powm}(a,b-1,N) \cdot a \bigr) \bmod N
%       & \text{if \(b > 1\)}
%   \end{cases}
% \end{equation*}
% since we usually couldn't afford to have a loop iterated $b$ times 
% (it makes the time complexity exponential) no matter how small the 
% loop body was. Instead one preferably uses some variation on the 
% \emph{exponentiation by squaring} algorithm, a recursion 
% corresponding to which is
% \begin{equation*}
%   \mathrm{powm}(a,b,N) = \begin{cases}
%     a \bmod N & \text{if \(b = 1\),}\\
%     \bigl( \mathrm{powm}(a,b-1,N) \cdot a \bigr) \bmod N
%       & \text{if \(b > 1\) is odd,} \\
%     \mathrm{powm}(a,b/2,N)^2 \bmod N
%       & \text{if \(b > 1\) is even.}
%   \end{cases}
% \end{equation*}
% For $b$ having bit-size $n$, in the sense that \(2^n \leqslant b < 
% 2^{n+1}\), that recursion will take the third branch $n$ times and 
% the second branch at most $n$ times, so at most $2n$ mulmod 
% operations suffice for computing $\mathrm{powm}(a,b,N)$. This 
% places $\mathrm{powm}(a,b,N)$ solidly in the realm of things that 
% can be computed in polynomial time. Conversely, it is not too hard 
% to see that if $\mathrm{powm}$ is implemented using mulmod as 
% underlying operation then it will require at least $n$ 
% multiplications to get up to the $b$th power of $a$, so 
% exponentiation by squaring is within a factor $2$ of the optimal 
% algorithm. But with some planning it is in fact possible to get 
% said factor quite close to $1$, so that extra preparation is well 
% worth it.
% 
% An improvement upon the basic exponentiation by squaring algorithm 
% is what might be called the \emph{fixed window} algorithm; in the 
% particular case that the window width is $3$~bits, this algorithm 
% can be straightforwardly understood as a trick based on writing the 
% exponent in octal (base~$8$). The idea is that instead of for each 
% bit in the exponent doing one modular squaring possibly followed 
% by one modular multiplication, one does 
% \emph{three} modular squarings in sequence (equivalent to raising 
% to the eight power) possibly followed by one modular 
% multiplication; instead of possibly doing the general modular 
% multiplication for every bit of the exponent, one only does it for 
% every third bit, thereby reducing the expected number of times one 
% needs to do it. For example, if \(b = 125 = 1 \cdot 8^2 + 7 \cdot 8^1 
% + 5 \cdot 8^0 = 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^0\), then instead of 
% computing
% \[
%   a^b \equiv 
%   (((((a^2 \cdot a)^2 \cdot a)^2 \cdot a)^2 \cdot a)^2)^2 \cdot a
%   \pmod{N}
% \]
% one computes
% \[
%   a^b \equiv (a^8 \cdot a^7)^8 \cdot a^5 \pmod{N}
% \]
% with only $2$ general multiplications rather than $5$ general 
% multiplications. The catch is of course that whereas $a$ as factor 
% was simply given, the factors $a^7$ and $a^5$ above are not, so 
% they would need to be computed as well, at a cost of some 
% additional multiplications. But in an exponent large enough that 
% each octal digit tends to occur several times, that additional cost 
% is lower than what is gained by doing fewer multiplications in the 
% main calculation of $a^b \bmod N$. Since determining the point of 
% break even for the $3$ bit fixed window algorithm is instructive, 
% we might as well take the time to do so.
% 
% It is reasonable to assume that the binary digits of $b$, after the 
% initial $1$ of place value $2^n$, are random, independent, and 
% uniformly distributed. This means the probability is $\frac{1}{2}$ 
% that basic exponentiation by squaring will need to do a modular 
% multiplication at any given bit, so the expected number of modular 
% multiplications for an $n$-bit exponent is $\frac{1}{2}n$. With 
% fixed windows $3$ bits wide, the probability is $\frac{1}{8}$ that 
% all bits are $0$ so that we can skip the multiplication, therefore 
% the probability is $\frac{7}{8}$ that it is needed, and we expect 
% $\frac{7}{8}$ multiplications per $3$ bits, or $\frac{7}{24}$ 
% multiplications per bit. The expected number of modular 
% multiplications for an $n$-bit exponent is thus $\frac{7}{24}n$ 
% (close to half of \(\frac{1}{2}n = \frac{12}{24}n\)!), but it 
% requires an extra $6$ multiplications to 
% precompute the powers $a^2$ through $a^7$. Thus the point of break 
% even is where \(\frac{1}{2}n = \frac{7}{24}n + 6\), i.e., \(n = 
% \frac{24}{5} \cdot 6 = 28.8\); in average, a mere ten octal digits 
% suffice. But it is possible to do even better. For a general 
% $k$-bit window, one expects to need $(1 -\nobreak 2^{-k}) \big/ k$ 
% multiplications per bit and needs to precompute $2^k - 2$ powers of 
% $a$, so the break even for the $k+1$ bit window over the $k$ bit 
% window happens where
% \begin{multline*}
%   (1 - 2^{-k}) \frac{n}{k} + 2^k - 2 =
%   (1 - 2^{-k-1}) \frac{n}{k+1} + 2^{k+1} - 2
%   \quad\Longleftrightarrow \\
%   \left( \frac{1 - 2^{-k}}{k} - \frac{1 - 2^{-k-1}}{k+1} \right) n 
%   = 2^k
%   \quad\Longleftrightarrow\\
%   \frac{ k+1 - (k+1)2^{-k} - k + k2^{-k-1} }{ k(k+1) } n = 2^k
%   \quad\Longleftrightarrow\\
%   n = 
%   \frac{ k(k+1) 2^k}{ 1 - (k+2)2^{-k-1} }
%   \approx k(k+1) 2^k
%   \text{,}
% \end{multline*}
% whence $4$-bit windows start to dominate over $3$-bit when \(n \approx 
% 140\), and $5$-bit windows start to dominate over $4$-bit when 
% \(n \approx 394\). None the less it is possible to do even better by 
% using \emph{sliding} windows.
% 
% Sliding windows, like fixed windows, use a single modular 
% multiplication to deal with some group of $k$ bits in the exponent, 
% but it is not determined beforehand which bit positions will form a 
% group. Instead, a group always begins with a bit that is $1$, 
% because if the next bit to process is $0$ then you can always 
% square the partial result and move on to the next bit. Knowing that 
% you're at a $1$ bit gives you a better chance of covering 
% additional $1$ bits in the same modular multiplication than you 
% would have if you started at an arbitrary bit. This also means that 
% you asymptotically only need to precompute half as many powers of 
% $a$ as you would with fixed windows, since for sliding windows you 
% only multiply by $a^i$ for \(2^{k-1} \leqslant i < 2^k\) because it 
% is given that the leading bit in any group is a~$1$. If done 
% without preprocessing, sliding window exponentiation by squaring 
% proceeds as follows:
% \begin{itemize}
%   \item
%     If the current bit in the exponent is a~$0$, then square the 
%     partial result and move one bit to the right.
%   \item
%     If the current bit in the exponent is a~$1$, then square the 
%     partial result $k$ times. Move $k$ bits to the right, and 
%     collect the bits you pass to form the number $i$ (which 
%     satisfies \(2^{k-1} \leqslant i < 2^k\)). Multiply the partial 
%     result by $a^i$, which you get from a precomputed table.
% \end{itemize}
% In the end, it may happen that a $k$-bit window would extend past 
% the end of the exponent, so at that point it may become necessary 
% to fall back to basic exponentiation by squaring, but only for a 
% sequence of less than $k$ bits.
% 
% \begin{proc}{Sliding_window_powm}
%   The actual bit operations needed to observe the exponent $b$ 
%   through a $k$-bit sliding window are kind of awkward in \Tcl, but 
%   on the other hand many applications will use the same exponent 
%   $b$ for several different bases $a$. Hence it makes sense to have 
%   one procedure that performs a sliding window decomposition of an 
%   exponent $b$, and another procedure that applies said 
%   decomposition to compute $\mathrm{powm}(a,b,N)$ for some 
%   arbitrary~$a$. This procedure is the latter; it is not expected 
%   that users will manually construct calls to it.
%   
%   The call syntax is
%   \begin{quote}
%     |Sliding_window_powm| \word{$k$} \word{$i_0$} \word{$i_m$-list} 
%     \word{tail bit list} \word{mulmod-prefix} \word{$a$}
%   \end{quote}
%   where $k$ is the window size (a positive integer), the three 
%   arguments \word{$i_0$}, \word{$i_m$-list}, and \word{tail bit 
%   list} encode the exponent $b$, \word{mulmod-prefix} is a command 
%   prefix that performs multiplication modulo $N$, and finally $a$ 
%   is the base of the exponentiation. It is presumed that $a$ is 
%   appropriate for the \word{mulmod-prefix} (e.g.~that \(0 \leqslant 
%   a < N\), if the \word{mulmod-prefix} is |Barrett_mulmod| and you 
%   absolutely require the result to be reduced modulo $N$).
%   
%   The various $i_m$ numbers are integers in the range from $-1$ to 
%   $2^{k-1}-1$, inclusive. The value $-1$ signals a step where the 
%   current bit in the exponent was $0$. A nonnegative value signals 
%   a step where it is $1$, and $i_m$ is then the numerical value of 
%   the $k-1$ bits following that $1$ bit. $i_0$ is the $i_m$ number 
%   for the window beginning at the most significant bit of the 
%   exponent; unlike the others, it cannot be $-1$. The \word{tail 
%   bit list} is the list of the final up to $k-1$ bits of the 
%   exponent, that would not fit in an additional $k$-bit window; its 
%   elements are either $0$ or $1$. Both the \word{$i_m$-list} and 
%   the \word{tail bit list} are in order of falling bit significance.
%   
%   \begin{tcl}
%<*pkg>
proc ::math::numtheory::Sliding_window_powm {k i0 iL tL mulmod a} {
%   \end{tcl}
%   The first order of business is to precompute a table of the 
%   numbers \(a^{i+2^{k-1}} \bmod N\) for \(0 \leqslant i < 
%   2^{k-1}\). This first involves computing $a^{2^r}$ for \(1 
%   \leqslant r \leqslant k-1\).
%   \begin{tcl}
   set apow $a
   for {set r 1} {$r < $k} {incr r} {
      set apow [{*}$mulmod $apow $apow]
   }
   set aL [list $apow]
   set r [expr {1 << ($k-1)}]
   while {[llength $aL] < $r} {
      set apow [{*}$mulmod $apow $a]
      lappend aL $apow
   }
%   \end{tcl}
%   That taken care of, we can move on to the main sliding window 
%   calculations.
%   \begin{tcl}
   set res [lindex $aL $i0]
   foreach i $iL {
      if {$i < 0} then {
         set res [{*}$mulmod $res $res]
      } else {
         for {set r 0} {$r < $k} {incr r} {
            set res [{*}$mulmod $res $res]
         }
         set res [{*}$mulmod $res [lindex $aL $i]]
      }
   }
%   \end{tcl}
%   And finally finish off with the tail bits.
%   \begin{tcl}
   foreach i $tL {
      set res [{*}$mulmod $res $res]
      if {$i} then {
         set res [{*}$mulmod $res $a]
      }
   }
   return $res
}
%   \end{tcl}
%   
%   This procedure has certain restrictions, insomuch as that the 
%   smallest exponent $b$ that can used with window size $k$ is 
%   $2^{k-1}$; it corresponds to having \(i_0 = 0\), the $i_m$-list 
%   empty, and the tail bit list also empty. However, the bitsizes at 
%   which a window width $k$ becomes optimal grows much faster 
%   than~$k$, so that is a minor concern. Also, by taking \(k=1\), 
%   \(i_0 = 0\), and the $i_m$-list to be empty, it is possible to 
%   emulate any basic exponentiation by squaring without wasting 
%   modular multiplications.
% \end{proc}
% 
% \begin{proc}{Sliding_window_cover}
%   The companion operation of computing an \word{$i_m$-list} and 
%   \word{tail bit list} for a particular exponent is provided by the 
%   call
%   \begin{quote}
%     |Sliding_window_cover| \word{$k$} \word{bitlist}
%   \end{quote}
%   where $k$ is the window size and \word{bitlist} is the list of 
%   bits in the exponent, ordered from most to least significant; a 
%   command for constructing that list for an exponent $b$ would be
%\begin{verbatim}
%   split [string trimleft [
%      string map {0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111}\
%        [format %llo $b]
%   ] 0] ""
%\end{verbatim}
%   The return value from |Sliding_window_cover| is a list with the 
%   structure
%   \begin{quote}
%     \word{cost} |{| \word{$i_0$} \meta{$i_m$-list} |}| 
%     \word{tail bit list}
%   \end{quote}
%   where the \word{cost} is the number of modular multiplications 
%   (not including the $n$ squarings, but including the calculations 
%   for precomputing low powers of the base) that these data would 
%   have |Sliding_window_powm| do. Note that $i_0$ is in this result 
%   not separated from the list of $i_m$.
%   
%   The main implementation is like a little automaton reading the 
%   \word{bitlist} element by element, and intermittently generating 
%   output as it goes. The main internal control state is the 
%   |collect| variable, which says how many bits of the current 
%   window that still remain to be processed; when this is $0$, the 
%   next bit may start a new window. After seeing the last bit of a 
%   window, the corresponding $i_m$ value gets appended to |imL|, and 
%   the |i| variable is where that $i_m$ value gets constructed (as a 
%   number). The bits of the current window are also being collected 
%   in the |tail| variable; if the \word{bitlist} ends before the 
%   window does then the |tail| will be exactly the needed \word{tail 
%   bit list}. (It should be observed that |tail| includes the first 
%   bit of a window, whereas |i| does not.)
%   \begin{tcl}
proc ::math::numtheory::Sliding_window_cover {k bitlist} {
   if {$k>=2} then {
      set km1 [expr {$k-1}]
      set cost [expr {(1 << $km1) - 2}]
%   \end{tcl}
%   That initial value for |cost| is essentially the cost for the 
%   part of |Sliding_window_powm| that comes before the |foreach| 
%   over the \word{$i_m$-list}, but the fine details need explaining. 
%   First, the squarings in the initial |for| loop are not included, 
%   because each of these replace one of the $n$ basic squarings of 
%   the result |res|. Second, the |aL| list has $2^{k-1}$ elements, 
%   but the first of these is not computed in the |while| loop, which 
%   accounts for $-1$ above. The other $-1$ is because the cost 
%   estimates below treat $i_0$ the same as the other $i_m$ numbers, 
%   whereas in |Sliding_window_powm| there is no multiplication for 
%   $i_0$, so a total adjustment of $-2$ is called for.
%   \begin{tcl}
      set imL {}
      set collect 0
      foreach bit $bitlist {
         if {$collect>0} then {
            set i [expr {($i<<1) | $bit}]
            if {[incr collect -1]} then {
               lappend tail $bit
            } else {
               lappend imL $i
               incr cost
            }
         } elseif {$bit} then {
            set tail [list $bit]
            set i 0
            set collect $km1
         } else {
            lappend imL -1
         }
      }
   } else {
%   \end{tcl}
%   It turns out the above will not work right for \(k=1\), since 
%   in that case |collect| is always zero. So to be on the safe side, 
%   just throw everything in the |tail| in that case.
%   \begin{tcl}
      set imL [list 0]
      set tail [lrange $bitlist 1 end]
      set cost 0
      set collect 1
   }
   if {$collect} then {
      foreach bit $tail {incr cost $bit}
   } else {
      set tail {}
   }
   return [list $cost $imL $tail]
}
%   \end{tcl}
%   Deliberately left out from this procedure is the matter of how to 
%   choose the window width $k$.
% \end{proc}
% 
% Deriving the optimal window width for a given bitsize $n$ is not as 
% straightforward for sliding windows as it is for fixed windows, 
% because in this case the sequence of steps taken through the 
% bitstream of the exponent is itself the result of a stochastic 
% process. In particular, it is by no means given that the $j$th bit 
% (counting the most significant as the $0$th) will be the first bit 
% in any sliding window; chances are rather that it will fall 
% somewhere in the interior of a window, and thus have no effect on 
% the sequence of steps that are taken. This complicates the 
% definition (and consequently the derivation) of expected costs 
% quite a bit.
% 
% One way to quantify things is to let $p_n$ be the probability that 
% bit $n$ is the stream will be inspected as possibly the first one 
% in a window, and let $C_n$ (the cost) be the expected number of 
% general modular multiplications performed up to that point, i.e., 
% the expected number of length $k$ steps taken to get there. Since 
% the most significant bit by definition is a~$1$, the process always 
% starts with a step of length $k$, and thus \(p_1 = p_2 = \dotsb = 
% p_{k-1} = 0\) but \(p_k = 1\). After that \(p_{k+1} = \frac{1}{2}\), 
% \(p_{k+2} = \frac{1}{4}\), and so on to \(p_{2k-1} = 2^{-(k-1)}\), 
% but \(p_{2k} = \frac{1}{2} + 2^{-k}\) since one gets there either 
% by seeing bit $k$ be $1$ or bits $k$ through $2k-1$ all be $0$. The 
% general recursion is that
% \begin{equation} \label{Eq:RecursionProbability}
%   p_n = \tfrac{1}{2} p_{n-1} + \tfrac{1}{2} p_{n-k}
%   \qquad\text{for \(n > k\)}
% \end{equation}
% because one can arrive at bit $n$ either by having seen $0$ at bit 
% $n-1$ or by having seen $1$ at bit $n-k$, and in either of those 
% positions the probability is $\tfrac{1}{2}$ of seeing the bit value 
% that leads directly to bit $n$. The two events are furthermore 
% disjoint (while it is possible to first visit bit $n-k$ and later 
% bit $n-1$, this can only happen if one saw $0$ at bit $n-k$), so it 
% is correct to simply add the probabilities. The corresponding 
% recursion for the cost is
% \begin{equation} \label{Eq:RecursionCost}
%   C_n = \frac{
%     \tfrac{1}{2}p_{n-1}C_{n-1} + \tfrac{1}{2}p_{n-k}(C_{n-k}+1)
%   }{p_n}
% \end{equation}
% since $C_n$ is a conditioned expectation value; this recursion is 
% effectively a weighted average of the expected costs at the 
% previous step, with a $+1$ in one branch for the extra cost 
% incurred there.
% 
% Beginning with the probabilities, it may be observed that 
% \eqref{Eq:RecursionProbability} is a linear recursion with constant 
% coefficients, so finding a closed form for it is actually feasible. 
% Putting the recursion on vector form, one gets
% \begin{equation}
%   \begin{pmatrix}
%     p_n \\ p_{n-1} \\ p_{n-2} \\ \vdots \\ p_{n-k+1}
%   \end{pmatrix} =
%   \begin{pmatrix}
%     \tfrac{1}{2} & 0 & \dots & 0 & \tfrac{1}{2} \\
%     1 & 0 & \dots & 0 & 0 \\
%     0 & 1 & \dots & 0 & 0 \\
%     \vdots & \vdots & \ddots & \vdots & \vdots \\
%     0 & 0 & \dots & 1 & 0
%   \end{pmatrix}
%   \begin{pmatrix}
%     p_{n-1} \\ p_{n-2} \\ \vdots \\ p_{n-k+1} \\ p_{n-k}
%   \end{pmatrix}
%   \text{.}
% \end{equation}
% Letting $T$ be that $k \times k$ matrix, one would thus have \(p_n 
% = \mathbf{e}_1^\top T^{n-k} \mathbf{e}_1\), where $\mathbf{e}_1$ is 
% the first vector in the standard basis of $\mathbb{R}^k$. While 
% this technically is a closed form formula for $p_n$, its usefulness 
% lies more in being convenient to analyse than in being a formula 
% used to directly compute $p_n$ (even though exponentiation by 
% squaring is a valid algorithm also for matrix multiplication, and 
% thus could be utilised to compute any particular $p_n$ in polynomial 
% time). In particular, high powers of a matrix are dominated by the 
% largest eigenvalue of that matrix. For $T$, the characteristic 
% polynomial \(\det (\lambda I -\nobreak T) = \lambda^k - 
% \tfrac{1}{2} \lambda^{k-1} - \tfrac{1}{2}\), which has the obvious 
% zero \(\lambda = 1\); indeed, it is immediate that \(T \mathbf{1} = 
% \mathbf{1}\) where \(\mathbf{1} = \sum_{j=1}^k \mathbf{e}_j\) is  
% the all-ones vector, and thus \(\lambda = 1\) is an obvious 
% eigenvalue (of multiplicity $1$ with eigenvector $\mathbf{1}$) of $T$. 
% There are furthermore no eigenvalues (solutions $\lambda$ to
% \(2\lambda^k = \lambda^{k-1} + 1\)) with \(\lvert\lambda\rvert > 1\) 
% since that would lead to the contradiction \(2\lvert\lambda\rvert^k = 
% \lvert 2\lambda^k\rvert = \lvert \lambda^{k-1} +\nobreak 1 \rvert 
% \leqslant \lvert\lambda^{k-1}\rvert + \lvert 1\rvert = 
% \lvert\lambda\rvert^{k-1} + 1 < \lvert\lambda\rvert^k + 1^k <
% 2 \lvert\lambda\rvert^k\), and the only solution if 
% \(\lvert\lambda\rvert = 1\) is to make \(\lambda^k = \lambda^{k-1} 
% = 1\), i.e., \(\lambda = 1\). This means \(\lambda = 1\) is the 
% unique largest eigenvalue of $T$, having eigenvector $\mathbf{1}$, 
% and thus \(T^n \mathbf{e}_1 \rightarrow p \mathbf{1}\) as 
% \(n \rightarrow \infty\), for some constant $p$; asymptotically, 
% \(p_n \rightarrow p\), meaning all positions are essentially of 
% equal probability for sufficiently large $n$.
% 
% Knowing that, it is actually not necessary to determine the 
% limiting probability $p$, since constant probabilities cancel in 
% \eqref{Eq:RecursionCost}:
% \begin{equation} \label{Eq2:RecursionCost}
%   C_n \approx \frac{
%     \tfrac{1}{2}pC_{n-1} + \tfrac{1}{2}p(C_{n-k}+1)
%   }{p} =
%   \tfrac{1}{2}C_{n-1} + \tfrac{1}{2}C_{n-k} + \tfrac{1}{2}
%   \text{.}
% \end{equation}
% On the other hand, determining $p$ is rather easy. The transpose 
% $T^\top$ has the same eigenvalues as $T$, but in general different 
% eigenvectors, and in particular \(\mathbf{u} = \mathbf{1} + 
% \mathbf{e}_1\) is an eigenvector since  \(T^\top \mathbf{u} = 
% \mathbf{u}\), or putting it differently \(\mathbf{u}^\top T = 
% \mathbf{u}^\top\). Hence
% \begin{multline*}
%   2 =
%   \mathbf{u}^\top \mathbf{e}_1 =
%   \mathbf{u}^\top T \mathbf{e}_1 =
%   \mathbf{u}^\top T^{n-k} \mathbf{e}_1 =
%   \mathbf{u}^\top \sum_{r=1}^k p_{n-(r-1)} \mathbf{e}_r \rightarrow
%   \mathbf{u}^\top p \mathbf{1} =
%   (k+1) p
% \end{multline*}
% and thus \(p = 2\big/ (k +\nobreak 1)\). This should really not 
% come as a surprise, as it is easily calculated that the expected 
% length of a step is \(\frac{1}{2} + \frac{1}{2}k = (k +\nobreak 1) 
% / 2\) bits.
% 
% The analysis would however not be complete without also considering 
% how long it takes for the probability $p_n$ to exhibit this 
% limiting behaviour, since $k$ is in practice going to grow with 
% $n$, thus lengthening the natural scale of the probability 
% variations; without knowing the speeds at which things grow, it is 
% impossible to tell whether the limiting behaviour is at all 
% relevant! The bad news are that the bitsize required for variation 
% decay grows considerably faster than the basic window size $k$, but 
% the good news is that the bitsize for break even grows much faster 
% still, so the limiting behaviour should dominate what happens at 
% break even.
% 
% In more detail, the characteristic polynomial \(\lambda^k - 
% \tfrac{1}{2}\lambda^{k-1} - \tfrac{1}{2}\) has no factor common 
% with its derivative \(k\lambda^{k-1} - \tfrac{k-1}{2}\lambda^{k-2} 
% = (k\lambda -\nobreak \tfrac{k-1}{2}) \lambda^{k-2}\), hence all 
% its zeroes have multiplicity $1$, and thus the matrix $T$ is 
% diagonalisable. It follows that \(p_n = \sum_{j=1}^k \alpha_j 
% \lambda_j^n\) where \(\lambda_1,\dotsc,\lambda_k \in \mathbb{C}\) 
% are the eigenvalues of $T$ and \(\alpha_1,\dotsc,\alpha_k \in 
% \mathbb{C}\) are some constants. Ordering the eigenvalues so that 
% \(\lvert\lambda_1\rvert \geqslant \lvert\lambda_2\rvert \geqslant 
% \dotsb \geqslant \lvert\lambda_k\rvert\), we know from the above 
% that \(\lambda_1=1\) and \(\alpha_1 = p = 2/(k +\nobreak 1)\), so 
% the rate of convergence \(p_n \to p\) depends essentially on the 
% second largest eigenvalue $\lambda_2$. (Since the complex 
% eigenvalues all occur in conjugate pairs, it is actually the case 
% that \(\lvert\lambda_2\rvert = \lvert\lambda_3\rvert\), but we may 
% without loss of generality let $\lambda_2$ be that eigenvalue with 
% positive imaginary part. This turns out to uniquely identify 
% $\lambda_2$.) It is immediate from the triangle inequality that 
% \(\lvert p_n -\nobreak p \rvert = \mathrm{O}\bigl( 
% \lvert\lambda_2\rvert^n \bigr)\) as \(n \to \infty\), and 
% straightforward to show that it is also $\Omega\bigl( 
% \lvert\lambda_2\rvert^n \bigr)$, so essentially the lower end of 
% the range of $n$ values for which \(\lvert p_n -\nobreak p \rvert < 
% \varepsilon\) grows as $\ln\varepsilon \big/ 
% \ln \lvert\lambda_2\rvert$; in particular the exact choice of 
% tolerance \(\varepsilon > 0\) is of minor importance, since it only 
% contributes a constant factor to the asymptotics of the 
% convergence. What matters most is how close $\lvert\lambda_2\rvert$ 
% gets to $1$.
% 
% Through the ansatz \(\lambda = r (\cos \theta +\nobreak 
% i\sin\theta)\) in the characteristic equation \((2\lambda -\nobreak 
% 1) \lambda^{k-1} = 1\) one may derive \(\lvert 2r\cos\theta 
% -\nobreak 1 +\nobreak 2ir\sin\theta \rvert r^{k-1} = 1\), or 
% equivalently
% \begin{equation} \label{Eq:EigenvalueCurve}
%   1 = 
%   r^{k-1} \sqrt{ (2r\cos\theta - 1)^2 + 4r^2 \sin^2 \theta } =
%   r^{k-1} \sqrt{ 4r^2 + 1 - 4 r \cos\theta }
%   \text{.}
% \end{equation}
% The monotonicity of both $r^{k-1}$ and $4r^2 + 1 - 4r\cos\theta$ 
% for \(r \geqslant \max\{\tfrac{1}{2}\cos\theta,0\}\) show that this 
% equation has a unique solution $r$ for every $\theta$, meaning $r$ 
% can be viewed as a function of $\theta$, and thus all eigenvalues 
% lie on a simple polar curve in the complex plane. As 
% \(k\to\infty\) that curve approaches the unit circle, with the 
% greatest distance (at \(\theta=\pi\)) shrinking roughly as 
% $\mathrm{O}(k^{-1})$ due to the factor $r^{k-1}$, but of greater 
% importance for the asymptotic behaviour of $\lvert\lambda_2\rvert$ 
% is actually the change in 
% argument $\theta$, as the curve for every $k$ touches the unit 
% circle at \(\theta = 0\). Considering instead the argument side of 
% the characteristic equation, one arrives at
% \[
%   \arg (2\lambda - 1) + (k-1)\arg\lambda \equiv 0 \pmod{2\pi}
%   \text{,}
% \]
% and since $\lambda_2$ has the smallest positive argument, it 
% follows that \(\arg (2\lambda_2 -\nobreak 1) + (k -\nobreak 1) 
% \arg\lambda_2 = 2\pi\). The first term of that equation is awkward 
% to express exactly, but easy enough to put bounds on: there is a 
% triangle in the complex plane with vertices at $0$, $2\lambda_2$, 
% and $2\lambda_2-1$. Since \(\lvert 2\lambda_2 -\nobreak 1 \rvert = 
% \lvert\lambda_2\rvert^{-(k-1)} > 1\), it follows that the side from 
% $0$ to $2\lambda_2-1$ is longer than the side from $2\lambda_2-1$ 
% to $2\lambda_2$, and consequently the angle at $2\lambda_2$ (being 
% $\arg\lambda_2$ by parallel lines) is larger than the angle at $0$ 
% (which is $\arg(2\lambda_2 -\nobreak 1) - \arg\lambda_2$). Hence 
% \(2\arg\lambda_2 > \arg(2\lambda_2 -\nobreak 1) > \arg\lambda_2\) 
% and \((k +\nobreak 1)\arg\lambda_2 > 2\pi > k \arg\lambda_2\). It 
% follows that \(\arg\lambda_2 = \Theta(k^{-1})\) as \(k \to 
% \infty\). Hence \(1 - \cos\arg\lambda_2 = \Theta(k^{-2})\), and 
% writing \(1-x = \lvert\lambda_2\rvert\), \eqref{Eq:EigenvalueCurve} 
% becomes
% \begin{align*}
%   1 ={}&
%   (1 - x)^{k-1} 
%     \sqrt{ 4(1-x)^2 + 1 - 4(1-x)\bigl(1 - \Theta(k^{-2}) \bigr) }
%   = \\ ={}&
%   (1 - x)^{k-1} 
%     \sqrt{ 1 - 4x + 4x^2 + \Theta(k^{-2}) }
%   = \\ ={}&
%   (1 - x)^{k-1} 
%     (1-2x)\Bigl( 1 + \tfrac{1}{(1-2x)^2}\Theta(k^{-2}) \Bigr)^{1/2}
%   = \\ ={}&
%   \bigl( 1 - (k-1)x + o(x^2) \bigr)  (1-2x) 
%     \bigl( 1 +  \Theta(k^{-2}) \bigr)
%   =
%   1 - (k+1)x + \Theta(k^{-2})
%   \text{,}
% \end{align*}
% whence \(x = \Theta(k^{-3})\), implying \(\ln \lvert\lambda_2\rvert 
% = \Theta(k^{-3})\), and thus the $n$ required to 
% make \(\lvert p_n -\nobreak p \rvert < \varepsilon\) grows as 
% $\Theta(k^3)$. This is however much smaller than the point of break 
% even, which rather grows like $\Theta(k^2 2^k)$, so equal bit 
% probabilities is a valid approximation for estimating that.
% 
% The cost recursion~\eqref{Eq2:RecursionCost} is not homogeneous, 
% but can be made such through the ansatz \(C_n = \beta n + D_n\), 
% where \(D_n = \tfrac{1}{2} D_{n-1} + \tfrac{1}{2} D_{n-k}\); it 
% then follows that \(\beta n = \tfrac{1}{2}\beta (n -\nobreak 1) + 
% \tfrac{1}{2}\beta (n -\nobreak k) + \tfrac{1}{2}\) for all $n$, or 
% from the constant terms alone that \(0 = -\tfrac{1}{2}\beta 
% -\tfrac{1}{2}k\beta + \tfrac{1}{2}\), making \(\beta = 1 \big/ (k 
% +\nobreak 1)\). Moreover, since the recursion for $D_n$ is the same 
% as that for $p_n$, it follows from the above analysis of the 
% eigenstructure of the transfer matrix $T$ that the sequence 
% $\{D_n\}_{n=0}^\infty$ is bounded, meaning that asymptotically the 
% marginal cost for a width $k$ sliding window is $\beta$ modular 
% multiplications per bit. The cost estimate (including startup 
% precomputations) for bitsize $n$ with sliding window size $k$ is 
% thus
% \begin{equation}
%   \frac{n}{k+1} + 2^{k-1} - 1
%   \text{,}
% \end{equation}
% which compared to the fixed window algorithm has the marginal cost 
% of a window one size larger, and a startup cost almost that 
% for a window one size smaller! Window size $k$ gains an advantage 
% to window size $k-1$ where
% \[
%   \frac{n}{k+1} + 2^{k-1} - 1 =
%   \frac{n}{k} + 2^{k-2} - 1
%   \quad\Longleftrightarrow\quad
%   2^{k-2} = \frac{n}{k(k+1)} 
%   \text{,}
% \]
% making \(n = \Theta(k^2 2^k) > \Theta(k^3)\), as claimed.
% 
% \begin{proc}{make_powm}
%   This command constructs a command prefix with the syntax
%   \begin{quote}
%     \meta{prefix} \word{a}
%   \end{quote}
%   which computes $\mathrm{powm}(a,b,N)$. The call syntax for 
%   |make_powm| itself is
%   \begin{quote}
%     |make_powm| \word{exponent} \word{mod-style} \word{mod-data}
%   \end{quote}
%   where \word{exponent} is the exponent $b$. The \word{mod-style} 
%   is either |mulprefix| or |modulo|. In the |modulo| case, the 
%   \word{mod-data} is the modulo number $N$. In the |mulprefix| 
%   case, it is a command prefix computing multiplication of two 
%   factors (as one might construct using |make_modulo mulprefix|). 
%   In the |mulprefix| case, it is technically not required that the 
%   multiplication is modulo $N$, or even that the base $a$ is a 
%   number; as long as the given prefix performs some kind of 
%   associative multiplication, the returned prefix raises to the 
%   power $b$ in the corresponding sense.
%   
%   \begin{tcl}
proc ::math::numtheory::make_powm {b style data} {
   if {$b < 1} then {
      return -code error "Exponent must be positive"
   }
   switch $style {
      modulo {
         set mulmod [make_modulo mulprefix $data]
      }
      mulprefix {
         set mulmod $data
      }
      default {
         return -code error\
           {Modulo style must be "modulo" or "mulprefix"}
      }
   }
%   \end{tcl}
%   The first order of business is to compute the bitlist of the 
%   exponent. This also gives the bitsize $n$, as the list length 
%   minus one.
%   \begin{tcl}
   set bitlist [split [string trimleft [
      string map {0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111}\
        [format %llo $b]
   ] 0] ""]
%   \end{tcl}
%   The next step is to compute the appropriate window width $k$. By 
%   the above that should be the largest integer solution to 
%   \(k (k +\nobreak 1) 2^{k-2} \leqslant n\), and that happens to 
%   be \(k=1\) for \(n < 6\). Hence special-casing that might be 
%   appropriate for such ``small'' exponents.
%   \begin{tcl}
   if {[llength $bitlist] < 7} then {
      return [list [namespace which Sliding_window_powm]\
        1 0 {} [lrange $bitlist 1 end] $mulmod]
   }
%   \end{tcl}
%   Above that, one may observe that the left hand side of the 
%   inequality is increasing in $k$, so one might alternatively 
%   choose to solve \(f(x) = \ln n\) for
%   \[
%     f(x) = 
%     \ln x + \ln (x +\nobreak 1) + \ln 2^{x-2} = 
%     \ln x + \ln (x+1) + (x-2)\ln 2 
%     \text{.}
%   \]
%   An exact solution here is hardly called for, since only the 
%   integer part of $x$ is relevant. Since in addition $f$ is nearly 
%   linear, a solution that seems good enough is to start with \(x_0 = 
%   2 + \ln n / \ln 2\) as initial guess and then perform one 
%   Newton--Raphson step to adjust it.
%   \begin{tcl}
   set x [expr {log([llength $bitlist]-1)/log(2) + 2}]
   set x [expr {$x - 
      (log($x) + log($x+1)) / (1/$x + 1/($x+1) + log(2))
   }]
%   \end{tcl}
%   where the numerator \(f(x) - \ln n\) could be simplified since 
%   the remaining terms are equal for the chosen initial guess $x_0$. 
%   This results in the following guesses:
%   \begin{center}
%     \begin{tabular}{ r@{--}r c}
%       \multicolumn{2}{c}{$n$ range} & $\lfloor x_1 \rfloor$ \\
%       11&40 & 2 \\
%       41&124 & 3 \\
%       125&353 & 4 \\
%       354&945 & 5
%     \end{tabular}
%   \end{center}
%   
%   In practice, what determines the optimal window width for a 
%   particular exponent may however be how well the windows manage to 
%   cover the bitlist rather than the expected cost per bit. 
%   Therefore this procedure computes coverings for two adjacent 
%   window sizes and chooses that which has the lowest cost. This is 
%   not guaranteed to be optimal---\(k=1\) is always optimal for an 
%   exponent that is a power of $2$---but it should at least reduce 
%   unfortunate resonances between bitpattern and window width.
%   \begin{tcl}
   set k [expr {int($x)}]
   set down [Sliding_window_cover $k $bitlist]
   incr k
   set up [Sliding_window_cover $k $bitlist]
   if {[lindex $down 0] < [lindex $up 0]} then {
      incr k -1
   } else {
      set down $up
   }
   return [list [namespace which Sliding_window_powm]\
     $k [lindex $down 1 0] [lrange [lindex $down 1] 1 end]\
     [lindex $down 2] $mulmod]
}
%</pkg>
%   \end{tcl}
% \end{proc}
% 
% \begin{proc}{powm}
%   In practice, many users may prefer to use a command that ``just 
%   computes the \texttt{powm},'' without caring about whether some 
%   arguments are mostly constant.
%   \begin{tcl}
%<*man>
[call [cmd math::numtheory::powm] [arg a] [arg b] [arg N]]
  The [cmd powm] command performs a modular exponentiation, i.e., it 
  modulo [arg N] raises [arg a] to the power [arg b]. The arguments 
  must all be integers and satisfy [arg N],[arg b]>=1. It is 
  furthermore preferred that 0<=[arg a]<[arg N]; if it is not, then 
  the result may sometimes fail to be so bounded, even though it will 
  still be congruent to [arg a]**[arg b] modulo [arg N].
  [para]
  
  This command is optimised for the case of large [arg b] and 
  [arg N]; appropriate algorithms will be chosen also for small 
  argument values, but the overhead for [emph {making the choice}] 
  could then be nonnegligible. If the same values for [arg b] and 
  [arg N] are to be used several times, then the overhead can be 
  reduced considerably by instead using the [cmd make_powm] command 
  to construct a command prefix which has those values hardwired. 
  ([cmd powm] is in fact a convenience wrapper around 
  [cmd make_powm].)
  
%</man>
%   \end{tcl}
%   `Convenience wrapper' it is: first compute the command prefix, 
%   then apply it to the base $a$.
%   \begin{tcl}
%<*pkg>
proc ::math::numtheory::powm {a b N} {{*}[make_powm $b modulo $N] $a}
%</pkg>
%   \end{tcl}
% \end{proc}
% 
% The description of |make_powm| should come next. It is probably 
% best to make the |modulo| and |mulprefix| cases two separate 
% prototype |call|s.
% \begin{tcl}
%<*man>
[call [cmd math::numtheory::make_powm] [arg exponent] [method modulo] [arg modulus]]
  This command returns a command prefix, which expects an integer 
  base [arg a] as its only additional argument. That command prefix 
  computes [arg a] raised to the power [arg exponent] modulo the 
  [arg modulus], using a "sliding window" variant of the 
  exponentiation by squaring algorithm. The [arg exponent] and 
  [arg modulus] must both be positive, and the implementation is 
  designed to be performant when these numbers are very large. The 
  returned command prefix has several large pieces of data embedded 
  into it, that [cmd make_powm] derives from the [arg exponent] and 
  [arg modulus], but no related data are cached outside of the command 
  prefix itself.
  [para]
  
  For example, the definition of [cmd powm] as a convenience call to 
  [cmd make_powm] is
[example {
   proc ::math::numtheory::powm {a b N} {
      {*}[make_powm $b modulo $N] $a
   }
}]
[call [cmd math::numtheory::make_powm] [arg exponent] [method mulprefix] [arg prefix]]
  This command returns a command prefix, which implements raising its 
  argument to the power [arg exponent], through multiplying various 
  smaller powers of that argument with each other. The [arg prefix] 
  argument is the command prefix called upon to actually perform 
  those multiplications; it should have the call syntax
[example_begin]
  {*}[arg prefix] [arg x] [arg y]
[example_end]
  and return the product of [arg x] and [arg y]. If [arg powprefix] 
  similarly is the return value of [cmd make_powm], then it has the 
  call syntax
[example_begin]
  {*}[arg powprefix] [arg a]
[example_end]
  and returns [arg a] raised to the power [arg exponent].
  [para]
  
  The [method modulo] form of [cmd make_powm] is a shorthand that 
  calls [cmd make_modulo] to compute the multiplication prefix. The 
  longer [method mulprefix] form is useful in two cases. First, if 
  the caller anyway has that multiplication prefix at hand, it would 
  be unnecessary for [cmd make_powm] to compute it again. Second, the 
  reduction of exponentiation to a select sequence of multiplications 
  is not something that only makes sense in modular arithmetic; as 
  long as the [arg prefix] implements some associative binary 
  operation (e.g. matrix multiplication), [cmd make_powm] will 
  construct the corresponding repetition of that operation, implemented 
  in a fairly efficient manner.
  
%</man>
% \end{tcl}
% 
% Testing someting like |make_powm|, designed to be used for very 
% large numbers as it is, can be something of a challenge. One 
% approach can be to pick two distinct primes $p$ and $q$, and then 
% compute $a^{\mathrm{lcm}(p-1,q-1)+1} \bmod pq$ for a number of 
% distinct bases $a$, since the result should again be $a$ by (Euler's 
% generalisation of) Fermat's little theorem.
% 
% Two nice primes are \(p = 10^9+7\) and \(q = 10^9+9\), for which 
% the product \(pq = 10^{18} + 16 \cdot 10^9 + 63 = 
% 1 \mkern1mu 000 \mkern1mu 000 \mkern1mu 016 \mkern1mu 000 \mkern1mu 
% 000 \mkern1mu 063\); this is of the same order of magnitude as $2^{60}$. 
% It is immediate that \(\gcd( p -\nobreak 1, q -\nobreak 1) = 2\) and 
% hence \(\mathrm{lcm}( p -\nobreak 1, q -\nobreak 1) = 
% (p -\nobreak 1)(q -\nobreak 1) \big/ 2 =
% 5 \cdot 10^{17} + 7 \cdot 10^9 + 24\).
% \begin{tcl}
%<*test>
test powm-1.1 "powm(a,lcm(p-1,q-1)+1,pq)=a" -body {
   set powm [
      math::numtheory::make_powm 500000007000000025 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {2 3 5 7 11 13 100 98754}
% \end{tcl}
% Of course, it would not be entirely impossible for a completely 
% messed up implementation to accidentally give back exactly what 
% is fed in, so we might as well test that it also gives back $1$ for 
% an exponent one less. It is somewhat harder for a complete 
% garbage implementation to get both of these right.
% \begin{tcl}
test powm-1.2 "powm(a,lcm(p-1,q-1),pq)=1" -body {
   set powm [
      math::numtheory::make_powm 500000007000000024 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {1 1 1 1 1 1 1 1}
% \end{tcl}
% And way harder still for it to also get the 
% $(p -\nobreak 1)(q -\nobreak 1) + 2$ case right.
% \begin{tcl}
test powm-1.3 "powm(a,lcm(p-1,q-1)+2,pq)=a**2" -body {
   set powm [
      math::numtheory::make_powm 500000007000000026 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {4 9 25 49 121 169 10000 9752352516}
% \end{tcl}
% 
% A different test direction would be to check that all code paths in 
% |make_powm| and subsidiaries do things the right number of times. 
% Here, it can be convenient to instead of modular multiplication use 
% \((x,y) \mapsto x + 3 + y\) as a binary operation. When that is 
% applied to $7$, the result will be \(7+3 = 10\) times the 
% ``exponent'', minus $3$.
% \begin{tcl}
test powm-2.1 "Code paths" -body {
   set nearadd {::apply {{x y} {expr {$x+3+$y}}}}
   list [
      {*}[math::numtheory::make_powm 31 mulprefix $nearadd] 7
% \end{tcl}
% \(31 = 2^5-1\) has a bitsize \(n=4\), and will thus take the 
% \(k=1\) shortcut in |make_powm|.
% \begin{tcl}
   ] [
      {*}[math::numtheory::make_powm 512 mulprefix $nearadd] 7
% \end{tcl}
% \(512 = 2^9\) has a bitsize \(n=8\), so |make_powm| computes \(x_1 
% \approx 1.79\) and computes covers for the window sizes \(k=1\) and 
% \(k=2\). It picks the former.
% \begin{tcl}
   ] [
      {*}[math::numtheory::make_powm 1023 mulprefix $nearadd] 7
% \end{tcl}
% \(1023 = 2^{10}-1\) also has bitsize \(n=8\), so |make_powm| again 
% finds \(x_1 \approx 1.79\) and computes covers for the window sizes 
% \(k=1\) and \(k=2\), but here it picks the latter.
% 
% The final group of exponents are in octal |470701|, |470703|, and 
% |470707|, respectively. The initial |47070| pattern produces equal 
% costs for window widths $2$ and $3$, so the final digit decides 
% which is used: with |1| there is a tie (and one tail bit), with |3| 
% window width $2$ wins (it gets no tail, whereas $3$ would), and 
% with |7| window width $3$ wins (it gets no tail, whereas $2$ 
% would).
% \begin{tcl}
   ] [
      {*}[math::numtheory::make_powm 160193 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 160195 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 160199 mulprefix $nearadd] 7
   ]
} -result {307 5117 10227 1601927 1601947 1601987}
%</test>
% \end{tcl}
% 
% 
% 
% 
% 
% \section{Primes}
% 
% The first (and so far only) operation provided is |isprime|, which 
% tests if an integer is a prime.
% \begin{tcl}
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
  known that no false positives are possible.
  [para]
  
  The only option currently defined is:
  [list_begin options]
  [opt_def -randommr [arg repetitions]]
    which controls how many times the Miller-Rabin test should be 
    repeated with randomly chosen bases. Each repetition reduces the 
    probability of a false positive by a factor at least 4. The 

    default for [arg repetitions] is 4.
  [list_end]
  Unknown options are silently ignored.

%</man>
% \end{tcl}
% 
% 







|
|
>
|







1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
  known that no false positives are possible.
  [para]
  
  The only option currently defined is:
  [list_begin options]
  [opt_def -randommr [arg repetitions]]
    which controls how many times the Miller-Rabin test should be 
    repeated with randomly chosen bases. The risk that one iteration 
    of the test (with a random basis) fails to detect compositeness 
    is at most 25%, with two iterations it is at most 6.25%, and so 
    on. The default for [arg repetitions] is 4.
  [list_end]
  Unknown options are silently ignored.

%</man>
% \end{tcl}
% 
% 
829
830
831
832
833
834
835






836
837
838
839
840
841
842
843
     [::math::numtheory::isprime $n -randommr 0]\
     [::math::numtheory::isprime $n -randommr 1]\
     [::math::numtheory::isprime $n -randommr 2]
} -result {on on on 0}
%   \end{tcl}
%   RFC~2409~\cite{RFC2409} lists a number of primes (and primitive 
%   generators of their respective multiplicative groups). The 






%   smallest of these is defined as \(p = 2^{768} - 2^{704} - 1 + 
%   2^{64} \cdot \left( [2^{638} \pi] + 149686 \right)\) (where the 
%   brackets probably denote rounding to the nearest integer), but 
%   since high precision (roughly $200$ decimal digits would be 
%   required) values of \(\pi = 3.14159\dots\) are a bit awkward to 
%   get hold of, we might as well use the stated hexadecimal digit 
%   expansion for~$p$. It might also be a good idea to verify that 
%   this is given with most significant digit first.







>
>
>
>
>
>
|







2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
     [::math::numtheory::isprime $n -randommr 0]\
     [::math::numtheory::isprime $n -randommr 1]\
     [::math::numtheory::isprime $n -randommr 2]
} -result {on on on 0}
%   \end{tcl}
%   RFC~2409~\cite{RFC2409} lists a number of primes (and primitive 
%   generators of their respective multiplicative groups). The 
%   smallest of these\footnote{
%     The authors of the Logjam attack calculate that it would be 
%     feasible for an academic team to precompute tables that would 
%     allow computing the discrete logarithm modulo this prime (or 
%     any other given prime of similar size), so it shouldn't be used 
%     in cryptographic applications anymore.
%   } is defined as \(p = 2^{768} - 2^{704} - 1 + 
%   2^{64} \cdot \left( [2^{638} \pi] + 149686 \right)\) (where the 
%   brackets probably denote rounding to the nearest integer), but 
%   since high precision (roughly $200$ decimal digits would be 
%   required) values of \(\pi = 3.14159\dots\) are a bit awkward to 
%   get hold of, we might as well use the stated hexadecimal digit 
%   expansion for~$p$. It might also be a good idea to verify that 
%   this is given with most significant digit first.
851
852
853
854
855
856
857


858
859
860
861
862
863
864
   } ""]
   expr srand(1)
   list\
     [::math::numtheory::isprime 0x$digits]\
     [::math::numtheory::isprime 0x[string reverse $digits]]
} -result {on 0}
%   \end{tcl}


%   
%   A quite different thing to test is that the tweaked PRNG really 
%   produces only \(a \equiv 1,5 \pmod{6}\).
%   \begin{tcl}
test isprime-2.0 "PRNG tweak" -setup {
   namespace eval ::math::numtheory {
      rename Miller--Rabin _orig_Miller--Rabin







>
>







2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
   } ""]
   expr srand(1)
   list\
     [::math::numtheory::isprime 0x$digits]\
     [::math::numtheory::isprime 0x[string reverse $digits]]
} -result {on 0}
%   \end{tcl}
%   I.e., the second (least significant digit first) interpretation 
%   is clearly not a prime.
%   
%   A quite different thing to test is that the tweaked PRNG really 
%   produces only \(a \equiv 1,5 \pmod{6}\).
%   \begin{tcl}
test isprime-2.0 "PRNG tweak" -setup {
   namespace eval ::math::numtheory {
      rename Miller--Rabin _orig_Miller--Rabin
881
882
883
884
885
886
887
888

889
890
891
892
893
894
895
% 
% \section*{Closings}
% 
% \begin{tcl}
%<*man>
[list_end]

[keywords {number theory} prime]

[manpage_end]
%</man>
% \end{tcl}
% 
% \begin{tcl}
%<test>testsuiteCleanup
% \end{tcl}







|
>







2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
% 
% \section*{Closings}
% 
% \begin{tcl}
%<*man>
[list_end]

[vset CATEGORY {math :: numtheory}]
[include ../doctools2base/include/feedback.inc]
[manpage_end]
%</man>
% \end{tcl}
% 
% \begin{tcl}
%<test>testsuiteCleanup
% \end{tcl}

Changes to modules/math/numtheory.man.

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
















































































































19
20
21
22
23
24
25
[manpage_begin math::numtheory n 1.0]

[keywords {number theory}]
[keywords prime]
[copyright "2010 Lars Hellstr\u00F6m\
  <Lars dot Hellstrom at residenset dot net>"]
[moddesc   {Tcl Math Library}]
[titledesc {Number Theory}]
[category  Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt 1.0]]

[description]
[para]
This package is for collecting various number-theoretic operations,
though at the moment it only provides that of testing whether an
integer is a prime.

[list_begin definitions]
















































































































[call [cmd math::numtheory::isprime] [arg N] [
   opt "[arg option] [arg value] ..."
]]
  The [cmd isprime] command tests whether the integer [arg N] is a
  prime, returning a boolean true value for prime [arg N] and a
  boolean false value for non-prime [arg N]. The formal definition of
  'prime' used is the conventional, that the number being tested is
|
>








|








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
[manpage_begin math::numtheory n 1.1]
[keywords {modular exponentiation}]
[keywords {number theory}]
[keywords prime]
[copyright "2010 Lars Hellstr\u00F6m\
  <Lars dot Hellstrom at residenset dot net>"]
[moddesc   {Tcl Math Library}]
[titledesc {Number Theory}]
[category  Mathematics]
[require Tcl [opt 8.5]]
[require math::numtheory [opt 1.1]]

[description]
[para]
This package is for collecting various number-theoretic operations,
though at the moment it only provides that of testing whether an
integer is a prime.

[list_begin definitions]
[call [cmd math::numtheory::make_modulo] [arg subcmd] [arg N]]
  The [cmd make_modulo] command precomputes some data that are useful
  for quickly computing remainders modulo [arg N], which must be a
  positive integer. The format of the return value depends on the
  [arg subcmd]. This kind of preparation is primarily of interest if
  one needs to compute many remainders modulo the same [arg N], but
  that turns out to be quite common.

  The [arg subcmd]s are:
  [list_begin commands]
  [cmd_def prefix]
    Returns a [emph {command prefix}] that expects one extra argument
    [arg x].
    [example_begin]{*}[arg modprefix] [arg x][example_end]
    This argument [arg x] is an integer which should be nonnegative
    and less than [arg N]**2. The result of that call will be the
    remainder of [arg x] divided by [arg N].
  [cmd_def mulprefix]
    Returns a command prefix that expects two extra arguments
    [arg x] and [arg y].
    [example_begin]{*}[arg mulmodprefix] [arg x] [arg y][example_end]
    These arguments are integers whose product should be nonnegative
    and less than [arg N]**2 (typically, [arg x] and [arg y] are both
    less than [arg N]), and the result of that call will be the
    remainder of [arg x]*[arg y] divided by [arg N].
  [cmd_def Barrett-parameters]
    Returns a list of three integers [arg N], [arg M], and [arg s]
    that are what one needs in order to perform Barrett reduction
    ([uri {http://en.wikipedia.org/wiki/Barrett_reduction}]). [arg N]
    is the argument. The shift amount [arg s] satisfies 2**([arg s]/2)
    > [arg N]. The scaled reciprocal [arg M] satisfies
    [arg M]*[arg N] >= 2**[arg s] > ([arg M]-1)*[arg N].
  [list_end]

  Note that the [arg modprefix] computed is tuned for applications
  where the number to be reduced modulo [arg N] is uniformly
  distributed in the interval from 0 (inclusive) to [arg N]**2. In
  applications where the number comes from a much smaller interval,
  the choice of algorithm for the [arg modprefix] may be suboptimal,
  but many number-theoretical and cryptographic algorithms end up
  exercising the full range.

[call [cmd math::numtheory::powm] [arg a] [arg b] [arg N]]
  The [cmd powm] command performs a modular exponentiation, i.e., it
  modulo [arg N] raises [arg a] to the power [arg b]. The arguments
  must all be integers and satisfy [arg N],[arg b]>=1. It is
  furthermore preferred that 0<=[arg a]<[arg N]; if it is not, then
  the result may sometimes fail to be so bounded, even though it will
  still be congruent to [arg a]**[arg b] modulo [arg N].
  [para]

  This command is optimised for the case of large [arg b] and
  [arg N]; appropriate algorithms will be chosen also for small
  argument values, but the overhead for [emph {making the choice}]
  could then be nonnegligible. If the same values for [arg b] and
  [arg N] are to be used several times, then the overhead can be
  reduced considerably by instead using the [cmd make_powm] command
  to construct a command prefix which has those values hardwired.
  ([cmd powm] is in fact a convenience wrapper around
  [cmd make_powm].)

[call [cmd math::numtheory::make_powm] [arg exponent] [method modulo] [arg modulus]]
  This command returns a command prefix, which expects an integer
  base [arg a] as its only additional argument. That command prefix
  computes [arg a] raised to the power [arg exponent] modulo the
  [arg modulus], using a "sliding window" variant of the
  exponentiation by squaring algorithm. The [arg exponent] and
  [arg modulus] must both be positive, and the implementation is
  designed to be performant when these numbers are very large. The
  returned command prefix has several large pieces of data embedded
  into it, that [cmd make_powm] derives from the [arg exponent] and
  [arg modulus], but no related data are cached outside of the command
  prefix itself.
  [para]

  For example, the definition of [cmd powm] as a convenience call to
  [cmd make_powm] is
[example {
   proc ::math::numtheory::powm {a b N} {
      {*}[make_powm $b modulo $N] $a
   }
}]
[call [cmd math::numtheory::make_powm] [arg exponent] [method mulprefix] [arg prefix]]
  This command returns a command prefix, which implements raising its
  argument to the power [arg exponent], through multiplying various
  smaller powers of that argument with each other. The [arg prefix]
  argument is the command prefix called upon to actually perform
  those multiplications; it should have the call syntax
[example_begin]
  {*}[arg prefix] [arg x] [arg y]
[example_end]
  and return the product of [arg x] and [arg y]. If [arg powprefix]
  similarly is the return value of [cmd make_powm], then it has the
  call syntax
[example_begin]
  {*}[arg powprefix] [arg a]
[example_end]
  and returns [arg a] raised to the power [arg exponent].
  [para]

  The [method modulo] form of [cmd make_powm] is a shorthand that
  calls [cmd make_modulo] to compute the multiplication prefix. The
  longer [method mulprefix] form is useful in two cases. First, if
  the caller anyway has that multiplication prefix at hand, it would
  be unnecessary for [cmd make_powm] to compute it again. Second, the
  reduction of exponentiation to a select sequence of multiplications
  is not something that only makes sense in modular arithmetic; as
  long as the [arg prefix] implements some associative binary
  operation (e.g. matrix multiplication), [cmd make_powm] will
  construct the corresponding repetition of that operation, implemented
  in a fairly efficient manner.

[call [cmd math::numtheory::isprime] [arg N] [
   opt "[arg option] [arg value] ..."
]]
  The [cmd isprime] command tests whether the integer [arg N] is a
  prime, returning a boolean true value for prime [arg N] and a
  boolean false value for non-prime [arg N]. The formal definition of
  'prime' used is the conventional, that the number being tested is
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
  known that no false positives are possible.
  [para]

  The only option currently defined is:
  [list_begin options]
  [opt_def -randommr [arg repetitions]]
    which controls how many times the Miller-Rabin test should be
    repeated with randomly chosen bases. Each repetition reduces the
    probability of a false positive by a factor at least 4. The

    default for [arg repetitions] is 4.
  [list_end]
  Unknown options are silently ignored.

[list_end]

[vset CATEGORY {math :: numtheory}]
[include ../doctools2base/include/feedback.inc]
[manpage_end]







|
|
>
|








152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  known that no false positives are possible.
  [para]

  The only option currently defined is:
  [list_begin options]
  [opt_def -randommr [arg repetitions]]
    which controls how many times the Miller-Rabin test should be
    repeated with randomly chosen bases. The risk that one iteration
    of the test (with a random basis) fails to detect compositeness
    is at most 25%, with two iterations it is at most 6.25%, and so
    on. The default for [arg repetitions] is 4.
  [list_end]
  Unknown options are silently ignored.

[list_end]

[vset CATEGORY {math :: numtheory}]
[include ../doctools2base/include/feedback.inc]
[manpage_end]

Changes to modules/math/numtheory.tcl.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

















































































































































24
25
26
27
28
29
30
## 
## In other words:
## **************************************
## * This Source is not the True Source *
## **************************************
## the true source is the file from which this one was generated.
##
# Copyright (c) 2010 by Lars Hellstrom.  All rights reserved.
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
package require Tcl 8.5
package provide math::numtheory 1.0
namespace eval ::math::numtheory {
   namespace export isprime
}

















































































































































proc ::math::numtheory::prime_trialdivision {n} {
    if {$n<2}      then {return -code return 0}
    if {$n<4}      then {return -code return 1}
    if {$n%2 == 0} then {return -code return 0}
    if {$n<9}      then {return -code return 1}
    if {$n%3 == 0} then {return -code return 0}
    if {$n%5 == 0} then {return -code return 0}







|



|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## 
## In other words:
## **************************************
## * This Source is not the True Source *
## **************************************
## the true source is the file from which this one was generated.
##
# Copyright (c) 2010, 2015 by Lars Hellstrom.  All rights reserved.
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
package require Tcl 8.5
package provide math::numtheory 1.1
namespace eval ::math::numtheory {
   namespace export isprime
}
proc ::math::numtheory::Barrett_mod {N invN shift a} {
   set r [expr {$a - (($a * $invN) >> $shift) * $N}]
   if {$r<0} then {incr r $N}
   return $r
}
proc ::math::numtheory::Barrett_parameters {N} {
   set s [expr {8*[string length [format %llx $N]]}]
   set M [expr {-( (-1 << $s) / $N)}]
   return [list $N $M $s]
}
namespace eval ::math::numtheory {
   namespace ensemble create -command make_modulo -map {
      Barrett-parameters  Barrett_parameters
      prefix              {Make_modulo_prefix 0}
      mulprefix           {Make_modulo_prefix 1}
   }
}
proc ::math::numtheory::Barrett_mulmod {N invN shift x y} {
   set a [expr {$x*$y}]
   set r [expr {$a - (($a * $invN) >> $shift) * $N}]
   if {$r<0} then {incr r $N}
   return $r
}
proc ::math::numtheory::Plain_mod {N a} {expr {$a % $N}}
proc ::math::numtheory::Plain_mulmod {N x y} {expr {$x*$y % $N}}
proc ::math::numtheory::Make_modulo_prefix {mulQ N} {
   set P [Barrett_parameters $N]
   if {[lindex $P 2] >= 1250} then {
      return [linsert $P 0 [
         namespace which [lindex {Barrett_mod Barrett_mulmod} $mulQ]
      ]]
   } else {
      return [list [
         namespace which [lindex {Plain_mod Plain_mulmod} $mulQ]
      ] $N]
   }
}
proc ::math::numtheory::Sliding_window_powm {k i0 iL tL mulmod a} {
   set apow $a
   for {set r 1} {$r < $k} {incr r} {
      set apow [{*}$mulmod $apow $apow]
   }
   set aL [list $apow]
   set r [expr {1 << ($k-1)}]
   while {[llength $aL] < $r} {
      set apow [{*}$mulmod $apow $a]
      lappend aL $apow
   }
   set res [lindex $aL $i0]
   foreach i $iL {
      if {$i < 0} then {
         set res [{*}$mulmod $res $res]
      } else {
         for {set r 0} {$r < $k} {incr r} {
            set res [{*}$mulmod $res $res]
         }
         set res [{*}$mulmod $res [lindex $aL $i]]
      }
   }
   foreach i $tL {
      set res [{*}$mulmod $res $res]
      if {$i} then {
         set res [{*}$mulmod $res $a]
      }
   }
   return $res
}
proc ::math::numtheory::Sliding_window_cover {k bitlist} {
   if {$k>=2} then {
      set km1 [expr {$k-1}]
      set cost [expr {(1 << $km1) - 2}]
      set imL {}
      set collect 0
      foreach bit $bitlist {
         if {$collect>0} then {
            set i [expr {($i<<1) | $bit}]
            if {[incr collect -1]} then {
               lappend tail $bit
            } else {
               lappend imL $i
               incr cost
            }
         } elseif {$bit} then {
            set tail [list $bit]
            set i 0
            set collect $km1
         } else {
            lappend imL -1
         }
      }
   } else {
      set imL [list 0]
      set tail [lrange $bitlist 1 end]
      set cost 0
      set collect 1
   }
   if {$collect} then {
      foreach bit $tail {incr cost $bit}
   } else {
      set tail {}
   }
   return [list $cost $imL $tail]
}
proc ::math::numtheory::make_powm {b style data} {
   if {$b < 1} then {
      return -code error "Exponent must be positive"
   }
   switch $style {
      modulo {
         set mulmod [make_modulo mulprefix $data]
      }
      mulprefix {
         set mulmod $data
      }
      default {
         return -code error\
           {Modulo style must be "modulo" or "mulprefix"}
      }
   }
   set bitlist [split [string trimleft [
      string map {0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111}\
        [format %llo $b]
   ] 0] ""]
   if {[llength $bitlist] < 7} then {
      return [list [namespace which Sliding_window_powm]\
        1 0 {} [lrange $bitlist 1 end] $mulmod]
   }
   set x [expr {log([llength $bitlist]-1)/log(2) + 2}]
   set x [expr {$x -
      (log($x) + log($x+1)) / (1/$x + 1/($x+1) + log(2))
   }]
   set k [expr {int($x)}]
   set down [Sliding_window_cover $k $bitlist]
   incr k
   set up [Sliding_window_cover $k $bitlist]
   if {[lindex $down 0] < [lindex $up 0]} then {
      incr k -1
   } else {
      set down $up
   }
   return [list [namespace which Sliding_window_powm]\
     $k [lindex $down 1 0] [lrange [lindex $down 1] 1 end]\
     [lindex $down 2] $mulmod]
}
proc ::math::numtheory::powm {a b N} {{*}[make_powm $b modulo $N] $a}
proc ::math::numtheory::prime_trialdivision {n} {
    if {$n<2}      then {return -code return 0}
    if {$n<4}      then {return -code return 1}
    if {$n%2 == 0} then {return -code return 0}
    if {$n<9}      then {return -code return 1}
    if {$n%3 == 0} then {return -code return 0}
    if {$n%5 == 0} then {return -code return 0}

Changes to modules/math/numtheory.test.

15
16
17
18
19
20
21













































22
23
24
25
26
27
28
##
source [file join\
  [file dirname [file dirname [file join [pwd] [info script]]]]\
  devtools testutilities.tcl]
testsNeedTcl     8.5
testsNeedTcltest 2
testing {useLocal numtheory.tcl math::numtheory}













































test prime_trialdivision-1 "Trial division of 1" -body {
   ::math::numtheory::prime_trialdivision 1
} -returnCodes 2 -result 0
test prime_trialdivision-2 "Trial division of 2" -body {
   ::math::numtheory::prime_trialdivision 2
} -returnCodes 2 -result 1
test prime_trialdivision-3 "Trial division of 6" -body {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
##
source [file join\
  [file dirname [file dirname [file join [pwd] [info script]]]]\
  devtools testutilities.tcl]
testsNeedTcl     8.5
testsNeedTcltest 2
testing {useLocal numtheory.tcl math::numtheory}
test Barrett-1.1 "1e643" -body {
   set mod [math::numtheory::make_modulo prefix 1[string repeat 0 643]]
   list [
      {*}$mod 1[string repeat 0 642]9
   ] [
      {*}$mod 10[string repeat 9 643]
   ]
} -result [list 9 [string repeat 9 643]]
test powm-1.1 "powm(a,lcm(p-1,q-1)+1,pq)=a" -body {
   set powm [
      math::numtheory::make_powm 500000007000000025 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {2 3 5 7 11 13 100 98754}
test powm-1.2 "powm(a,lcm(p-1,q-1),pq)=1" -body {
   set powm [
      math::numtheory::make_powm 500000007000000024 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {1 1 1 1 1 1 1 1}
test powm-1.3 "powm(a,lcm(p-1,q-1)+2,pq)=a**2" -body {
   set powm [
      math::numtheory::make_powm 500000007000000026 modulo 1000000016000000063
   ]
   list [{*}$powm 2] [{*}$powm 3] [{*}$powm 5] [{*}$powm 7]\
     [{*}$powm 11] [{*}$powm 13] [{*}$powm 100] [{*}$powm 98754]
} -result {4 9 25 49 121 169 10000 9752352516}
test powm-2.1 "Code paths" -body {
   set nearadd {::apply {{x y} {expr {$x+3+$y}}}}
   list [
      {*}[math::numtheory::make_powm 31 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 512 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 1023 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 160193 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 160195 mulprefix $nearadd] 7
   ] [
      {*}[math::numtheory::make_powm 160199 mulprefix $nearadd] 7
   ]
} -result {307 5117 10227 1601927 1601947 1601987}
test prime_trialdivision-1 "Trial division of 1" -body {
   ::math::numtheory::prime_trialdivision 1
} -returnCodes 2 -result 0
test prime_trialdivision-2 "Trial division of 2" -body {
   ::math::numtheory::prime_trialdivision 2
} -returnCodes 2 -result 1
test prime_trialdivision-3 "Trial division of 6" -body {

Changes to modules/math/pkgIndex.tcl.

22
23
24
25
26
27
28
29
30
31
32
33
package ifneeded math::bignum            3.1.1 [list source [file join $dir bignum.tcl]]
package ifneeded math::bigfloat          1.2.2 [list source [file join $dir bigfloat.tcl]]
package ifneeded math::machineparameters 0.1   [list source [file join $dir machineparameters.tcl]]

if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded math::calculus::symdiff 1.0   [list source [file join $dir symdiff.tcl]]
package ifneeded math::bigfloat          2.0.2 [list source [file join $dir bigfloat2.tcl]]
package ifneeded math::numtheory         1.0   [list source [file join $dir numtheory.tcl]]
package ifneeded math::decimal           1.0.3 [list source [file join $dir decimal.tcl]]

if {![package vsatisfies [package require Tcl] 8.6]} {return}
package ifneeded math::exact             1.0   [list source [file join $dir exact.tcl]]







|




22
23
24
25
26
27
28
29
30
31
32
33
package ifneeded math::bignum            3.1.1 [list source [file join $dir bignum.tcl]]
package ifneeded math::bigfloat          1.2.2 [list source [file join $dir bigfloat.tcl]]
package ifneeded math::machineparameters 0.1   [list source [file join $dir machineparameters.tcl]]

if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded math::calculus::symdiff 1.0   [list source [file join $dir symdiff.tcl]]
package ifneeded math::bigfloat          2.0.2 [list source [file join $dir bigfloat2.tcl]]
package ifneeded math::numtheory         1.1   [list source [file join $dir numtheory.tcl]]
package ifneeded math::decimal           1.0.3 [list source [file join $dir decimal.tcl]]

if {![package vsatisfies [package require Tcl] 8.6]} {return}
package ifneeded math::exact             1.0   [list source [file join $dir exact.tcl]]