Tcl Library Source Code

Changes On Branch kbk-math-exact
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch kbk-math-exact Excluding Merge-Ins

This is equivalent to a diff from 04e098e60c to 4ff50ad527

2015-10-20
02:27
Release math::exact 1.0 check-in: 68ddfcef98 user: kennykb tags: trunk
02:26
Manual page for math::exact Closed-Leaf check-in: 4ff50ad527 user: kennykb tags: kbk-math-exact
01:13
merge trunk check-in: 56526e643d user: kennykb tags: kbk-math-exact
2015-10-19
16:32
rest documentation - Ticket [2a45e56f92] - Extended to mention TLS integration. check-in: 04e098e60c user: aku tags: trunk
15:26
icr/example - Ticket [a86b8b85e5] - Fixed misuse of target commmand in example. check-in: 34ae01af66 user: aku tags: trunk

Added modules/math/exact.man.





















































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
[manpage_begin math::exact n 1.0]
[copyright "2015 Kevin B. Kenny <[email protected]>
Redistribution permitted under the terms of the Open\
Publication License <http://www.opencontent.org/openpub/>"]
[moddesc {Tcl Math Library}]
[titledesc {Exact Real Arithmetic}]
[category Mathematics]
[require Tcl 8.6]
[require grammar::aycock 1.0]
[require math::exact 1.0]
[description]
[para]
The [cmd exactexpr] command in the [cmd math::exact] package
allows for exact computations over the computable real numbers.
These are not arbitrary-precision calculations; rather they are
exact, with numbers represented by algorithms that produce successive
approximations. At the end of a calculation, the caller can
request a given precision for the end result, and intermediate results are
computed to whatever precision is necessary to satisfy the request.
[section "Procedures"]
The following procedure is the primary entry into the [cmd math::exact]
package.
[list_begin definitions]
[call [cmd ::math::exact::exactexpr] [arg expr]]

Accepts a mathematical expression in Tcl syntax, and returns an object
that represents the program to calculate successive approximations to
the expression's value. The result will be referred to as an
exact real number.

[call [arg number] [cmd ref]]

Increases the reference count of a given exact real number.

[call [arg number] [cmd unref]]

Decreases the reference count of a given exact real number, and destroys
the number if the reference count is zero.

[call [arg number] [cmd asPrint] [arg precision]]

Formats the given [arg number] for printing, with the specified [arg precision].
(See below for how [arg precision] is interpreted). Numbers that are known to
be rational are formatted as fractions.

[call [arg number] [cmd asFloat] [arg precision]]

Formats the given [arg number] for printing, with the specified [arg precision].
(See below for how [arg precision] is interpreted). All numbers are formatted
in floating-point E format.

[list_end]

[section Parameters]

[list_begin definitions]

[def [arg expr]]

Expression to evaluate. The syntax for expressions is the same as it is in Tcl,
but the set of operations is smaller. See [sectref Expressions] below
for details.

[def [arg number]]

The object returned by an earlier invocation of [cmd math::exact::exactexpr]

[def [arg precision]]

The requested 'precision' of the result. The precision is (approximately)
the absolute value of the binary exponent plus the number of bits of the
binary significand. For instance, to return results to IEEE-754 double
precision, 56 bits plus the exponent are required. Numbers between 1/2 and 2
will require a precision of 57; numbers between 1/4 and 1/2 or between 2 and 4
will require 58; numbers between 1/8 and 1/4 or between 4 and 8 will require
59; and so on.

[list_end]

[section Expressions]

The [cmd math::exact::exactexpr] command accepts expressions in a subset
of Tcl's syntax. The following components may be used in an expression.

[list_begin itemized]

[item]Decimal integers.
[item]Variable references with the dollar sign ([const \$]).
The value of the variable must be the result of another call to
[cmd math::exact::exactexpr]. The reference count of the value
will be increased by one for each position at which it appears
in the expression.
[item]The exponentiation operator ([const **]).
[item]Unary plus ([const +]) and minus ([const -]) operators.
[item]Multiplication ([const *]) and division ([const /]) operators.
[item]Parentheses used for grouping.
[item]Functions. See [sectref Functions] below for the functions that are
available.

[list_end]

[section Functions]

The following functions are available for use within exact real expressions.

[list_begin definitions]


[def [const acos(][arg x][const )]]
The inverse cosine of [arg x]. The result is expressed in radians. 
The absolute value of [arg x] must be less than 1.

[def [const acosh(][arg x][const )]]
The inverse hyperbolic cosine of [arg x]. 
[arg x] must be greater than 1.

[def [const asin(][arg x][const )]]
The inverse sine of [arg x]. The result is expressed in radians. 
The absolute value of [arg x] must be less than 1.

[def [const asinh(][arg x][const )]]
The inverse hyperbolic sine of [arg x].

[def [const atan(][arg x][const )]]
The inverse tangent of [arg x]. The result is expressed in radians.

[def [const atanh(][arg x][const )]]
The inverse hyperbolic tangent of [arg x].
The absolute value of [arg x] must be less than 1.

[def [const cos(][arg x][const )]]
The cosine of [arg x]. [arg x] is expressed in radians.

[def [const cosh(][arg x][const )]]
The hyperbolic cosine of [arg x].

[def [const e()]]
The base of the natural logarithms = [const 2.71828...]

[def [const exp(][arg x][const )]]
The exponential function of [arg x].

[def [const log(][arg x][const )]]
The natural logarithm of [arg x]. [arg x] must be positive.

[def [const pi()]]
The value of pi = [const 3.15159...]

[def [const sin(][arg x][const )]]
The sine of [arg x]. [arg x] is expressed in radians.

[def [const sinh(][arg x][const )]]
The hyperbolic sine of [arg x].

[def [const sqrt(][arg x][const )]]
The square root of [arg x]. [arg x] must be positive.

[def [const tan(][arg x][const )]]
The tangent of [arg x]. [arg x] is expressed in radians.

[def [const tanh(][arg x][const )]]
The hyperbolic tangent of [arg x].

[list_end]

[section Summary]

The [cmd math::exact::exactexpr] command provides a system that
performs exact arithmetic over computable real numbers, representing
the numbers as algorithms for successive approximation.

An example, which implements the high-school quadratic formula,
is shown below.

[example {
namespace import math::exact::exactexpr
proc exactquad {a b c} {
    set d [[exactexpr {sqrt($b*$b - 4*$a*$c)}] ref]
    set r0 [[exactexpr {(-$b - $d) / (2 * $a)}] ref]
    set r1 [[exactexpr {(-$b + $d) / (2 * $a)}] ref]
    $d unref
    return [list $r0 $r1]
}

set a [[exactexpr 1] ref]
set b [[exactexpr 200] ref]
set c [[exactexpr {(-3/2) * 10**-12}] ref]
lassign [exactquad $a $b $c] r0 r1
$a unref; $b unref; $c unref
puts [list [$r0 asFloat 70] [$r1 asFloat 110]]
$r0 unref; $r1 unref
}]

The program prints the result:
[example {
-2.000000000000000075e2 7.499999999999999719e-15
}]

Note that if IEEE-754 floating point had been used, a catastrophic
roundoff error would yield a smaller root that is a factor of two
too high:

[example {
-200.0 1.4210854715202004e-14
}]

The invocations of [cmd exactexpr] should be fairly self-explanatory.
The other commands of note are [cmd ref] and [cmd unref]. It is necessary
for the caller to keep track of references to exact expressions - to call
[cmd ref] every time an exact expression is stored in a variable and
[cmd unref] every time the variable goes out of scope or is overwritten.

The [cmd asFloat] method emits decimal digits as long as the requested
precision supports them. It terminates when the requested precision
yields an uncertainty of more than one unit in the least significant digit.

[vset CATEGORY mathematics]
[manpage_end]

Added modules/math/exact.tcl.























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
# exact.tcl --
#
#	Tcl package for exact real arithmetic.
#
# Copyright (c) 2015 by Kevin B. Kenny
#
# See the file "license.terms" for information on usage and redistribution of
# this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# This package provides a library for performing exact
# computations over the computable real numbers. The algorithms
# are largely based on the ones described in:
#
# Potts, Peter John. _Exact Real Arithmetic using Möbius Transformations._
# PhD thesis, University of London, July 1998.
# http://www.doc.ic.ac.uk/~ae/papers/potts-phd.pdf
#
# Some of the algorithms for the elementary functions are found instead
# in:
#
# Menissier-Morain, Valérie. _Arbitrary Precision Real Arithmetic:
# Design and Algorithms. J. Symbolic Computation 11 (1996)
# http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8983
# 
#-----------------------------------------------------------------------------

package require Tcl 8.6
package require grammar::aycock 1.0

namespace eval math::exact {
    
    namespace eval function {
	namespace path ::math::exact
    }
    namespace path ::tcl::mathop

    # math::exact::parser --
    #
    #	Grammar for parsing expressions in the exact real calculator
    #
    # The expression syntax is almost exactly that of Tcl expressions,
    # minus Tcl arrays, square-bracket substitution, and noncomputable
    # operations such as equality, comparisons, bit and Boolean operations,
    # and ?:.

    variable parser [grammar::aycock::parser {

	target ::= expression {
	    lindex $_ 0
	}

	expression ::= expression addop term {
	    {*}$_
	}
	expression ::= term {
	    lindex $_ 0
	}
	addop ::= + {
	    lindex $_ 0
	}
	addop ::= - {
	    lindex $_ 0
	}

	term ::= term mulop factor {
	    {*}$_
	}
	term ::= factor {
	    lindex $_ 0
	}
	mulop ::= * {
	    lindex $_ 0
	}
	mulop ::= / {
	    lindex $_ 0
	}

	factor ::= addop factor {
	    switch -exact -- [lindex $_ 0] {
		+ {
		    set result [lindex $_ 1]
		}
		- {
		    set result [[lindex $_ 1] U-]
		}
	    }
	    set result
	}
	factor ::= primary ** factor {
	    {*}$_
	}
	factor ::= primary {
	    lindex $_ 0
	}

	primary ::= {$} bareword {
	    uplevel [dict get $clientData caller] set [lindex $_ 1]
	}
	primary ::= number {
	    [dict get $clientData namespace]::V new [list [lindex $_ 0] 1]
	}
	primary ::= bareword ( ) {
	    [dict get $clientData namespace]::function::[lindex $_ 0]
	}	    
	primary ::= bareword ( arglist ) {
	    [dict get $clientData namespace]::function::[lindex $_ 0] \
		{*}[lindex $_ 2]
	}
	primary ::= ( expression ) {
	    lindex $_ 1
	}
	arglist ::= expression {
	    set _
	}
	arglist ::= arglist , expression {
	    linsert [lindex $_ 0] end [lindex $_ 2]
	}

    }]
}

# math::exact::Lexer --
#
#	Lexer for the arithmetic expressions that the 'math::exact' package
#	can evaluate.
#
# Results:
#	Returns a two element list. The first element is a list of the
#	lexical values of the tokens that were found in the expression;
#	the second is a list of the semantic values of the tokens. The
#	two sublists are the same length.

proc math::exact::Lexer {expression} {
    set start 0
    set tokens {}
    set values {}
    while {$expression ne {}} {
	if {[regexp {^\*\*(.*)} $expression -> rest]} {

	    # Exponentiation

	    lappend tokens **
	    lappend values **
	} elseif {[regexp {^([-+/*$(),])(.*)} $expression -> token rest]} {

	    # Single-character operators

	    lappend tokens $token
	    lappend values $token
	} elseif {[regexp {^([[:alpha:]][[:alnum:]_]*)(.*)} \
		       $expression -> token rest]} {

	    # Variable and function names

	    lappend tokens bareword
	    lappend values $token
	} elseif {[regexp -nocase {^([[:digit:]]+)(.*)} $expression -> \
		       token rest] } {

	    # Numbers

	    lappend tokens number
	    lappend values $token

	} elseif {[regexp {^[[:space:]]+(.*)} $expression -> rest]} {

	    # Whitespace

	} else {

	    # Anything else is an error

	    return -code error \
		-errorcode [list MATH EXACT EXPR INVCHAR \
				[string index $expression 0]] \
		[list invalid character [string index $expression 0]] \
	}
	set expression $rest
    }
    return [list $tokens $values]
}

# math::exact::K --
#
#	K combinator. Returns its first argumetn
#
# Parameters:
#	a - Return value
#	b - Value to discard
#
# Results:
#	Returns the first argument

proc math::exact::K {a b} {return $a}

# math::exact::exactexpr --
#
#	Evaluates an exact real expression.
#
# Parameters:
#	expr - Expression to evaluate. Variables in the expression are
#	       assumed to be reals, which are represented as Tcl objects.
#
# Results:
#	Returns a Tcl object representing the expression's value.
#
# The returned object must have its refcount incremented with [ref] if
# the caller retains a reference, and in general it is expected that a
# user of a real will [ref] the object when storing it in a variable and
# [unref] it again when the variable goes out of scope or is overwritten.

proc math::exact::exactexpr {expr} {
    variable parser
    set result [$parser parse {*}[Lexer $expr] \
		    [dict create \
			 caller "#[expr {[info level] - 1}]" \
			 namespace [namespace current]]]
}

# Basic data types

# A vector is a list {a b}. It can represent the rational number {a/b}

# A matrix is a list of its columns {{a b} {c d}}. In addition to
# the ordinary rules of linear algebra, it represents the linear
# transform (ax+b)/(cx+d). 

# If x is presumed to lie in the interval [0, Inf) then this transform 
# applied to x will lie in the interval [b/d, a/c), so the matrix 
# {{a b} {c d}} can represent that interval. The interval [0,Inf)
# can be represented by the identity matrix {{1 0} {0 1}}

# Moreover, if x  = {p/q} is a rational number, then 
#    (ax+b)/(cx+d) = (a(p/q)+b)/(c(p/q)+d)
#                  = ((ap+bq)/q)/(cp+dq)/q)
#                  = (ap+bq)/(cp+dq)
# which is the rational number represented by {{a c} {b d}} {p q}
# using the conventional rule of vector-matrix multiplication.

# Note that matrices used for this purpose are unique only up to scaling.
# If (ax+b)/(cx+d) is a rational number, then (eax+eb)/(ecx+ed) represents
# the same rational number. This means that matrix inversion may be replaced
# by matrix reversion: for {{a b} {c d}}, simply form the list of cofactors
# {{d -b} {-c a}}, without dividing by the determinant. The reverse of a matrix
# is well defined even if the matrix is singular.

# A tensor of the third degree is a list of its levels:
#  {{{a b} {c d}} {{e f} {g h}}}

# math::exact::gcd --
#
#	Greatest common divisor of a set of integers
#
# Parameters:
#	The integers whose gcd is to be found
#
# Results:
#	Returns the gcd

proc math::exact::gcd {a args} {
    foreach b $args {
	if {$a > $b} {
	    set t $b; set b $a; set a $t
	}
	while {$b > 0} {
	    set t $b
	    set b [expr {$a % $b}]
	    set a $t
	}
    }
    return $a
}

# math::exact::trans --
#
#	Transposes a 2x2 matrix or a 2x2x2 tensor
#
# Parameters:
#	x - Object to transpose
#
# Results:
#	Returns the transpose

proc math::exact::trans {x} {
    lassign $x ab cd
    lassign $ab a b
    lassign $cd c d
    tailcall list [list $a $c] [list $b $d]
}

# math::exact::determinant --
#
#	Calculates the determinant of a 2x2 matrix
#
# Parameters:
#	x - Matrix
#
# Results:
#	Returns the determinant.

proc math::exact::determinant {x} {
    lassign $x ab cd
    lassign $ab a b
    lassign $cd c d
    return [expr {$a*$d - $b*$c}]
}

# math::exact::reverse --
#
#	Calculates the reverse of a 2x2 matrix, which is its inverse times
#	its determinant.
#
# Parameters:
#	x - Matrix
#
# Results:
#	Returns reverse[x].
#
# Notes:
#	The reverse is well defined even for singular matrices.

proc math::exact::reverse {x} {
    lassign $x ab cd
    lassign $ab a b
    lassign $cd c d
    tailcall list [list $d [expr {-$b}]] [list [expr {-$c}] $a]
}

# math::exact::veven --
#
#	Tests if both components of a 2-vector are even.
#
# Parameters:
#	x - Vector to test
#
# Results:
#	Returns 1 if both components are even, 0 otherwise.

proc math::exact::veven {x} {
    lassign $x a b
    return [expr {($a % 2 == 0) && ($b % 2 == 0)}]
}

# math::exact::meven --
#
#	Tests if all components of a 2x2 matrix are even.
#
# Parameters:
#	x - Matrix to test
#
# Results:
#	Returns 1 if all components are even, 0 otherwise.

proc math::exact::meven {x} {
    lassign $x a b
    return [expr {[veven $a] && [veven $b]}]
}

# math::exact::teven --
#
#	Tests if all components of a 2x2x2 tensor are even
#
# Parameters:
#	x - Tensor to test
#
# Results:
#	Returns 1 if all components are even, 0 otherwise

proc math::exact::teven {x} {
    lassign $x a b
    return [expr {[meven $a] && [meven $b]}]
}

# math::exact::vhalf --
#
#	Divides both components of a 2-vector by 2
#
# Parameters:
#	x - Vector to scale
#
# Results:
#	Returns the scaled vector

proc math::exact::vhalf {x} {
    lassign $x a b
    tailcall list [expr {$a / 2}] [expr {$b / 2}]
}

# math::exact::mhalf --
#
#	Divides all components of a 2x2 matrix by 2
#
# Parameters:
#	x - Matrix to scale
#
# Results:
#	Returns the scaled matrix

proc math::exact::mhalf {x} {
    lassign $x a b
    tailcall list [vhalf $a] [vhalf $b]
}

# math::exact::thalf --
#
#	Divides all components of a 2x2x2 tensor by 2
#
# Parameters:
#	x - Tensor to scale
#
# Results:
#	Returns the scaled tensor

proc math::exact::thalf {x} {
    lassign $x a b
    tailcall list [mhalf $a] [mhalf $b]
}

# math::exact::vscale --
#
#	Removes all common factors of 2 from the two components of a 2-vector
#
# Paramters:
#	x - Vector to scale
#
# Results:
#	Returns the scaled vector

proc math::exact::vscale {x} {
    while {[veven $x]} {
	set x [vhalf $x]
    }
    return $x
}

# math::exact::mscale --
#
#	Removes all common factors of 2 from the two components of a
#	2x2 matrix
#
# Paramters:
#	x - Matrix to scale
#
# Results:
#	Returns the scaled matrix

proc math::exact::mscale {x} {
    while {[meven $x]} {
	set x [mhalf $x]
    }
    return $x
}

# math::exact::tscale --
#
#	Removes all common factors of 2 from the two components of a
#	2x2x2 tensor
#
# Paramters:
#	x - Tensor to scale
#
# Results:
#	Returns the scaled tensor

proc math::exact::tscale {x} {
    while {[teven $x]} {
	set x [thalf $x]
    }
    return $x
}

# math::exact::vreduce --
#
#	Reduces a vector (i.e., a rational number) to lowest terms
#
# Parameters:
#	x - Vector to scale
#
# Results:
#	Returns the scaled vector

proc math::exact::vreduce {x} {
    lassign $x a b
    set g [gcd $a $b]
    tailcall list [expr {$a / $g}] [expr {$b / $g}]
}

# math::exact::mreduce --
#
#	Removes all common factors from the two components of a
#	2x2 matrix
#
# Paramters:
#	x - Matrix to scale
#
# Results:
#	Returns the scaled matrix
#
# This procedure suffices to reduce the matrix to lowest terms if the matrix
# was constructed by pre- or post-multiplying a series of sign and digit
# matrices.

proc math::exact::mreduce {x} {
    lassign $x ab cd
    lassign $ab a b
    lassign $cd c d
    set g [gcd $a $b $c $d]
    tailcall list \
	[list [expr {$a / $g}] [expr {$b / $g}]] \
	[list [expr {$c / $g}] [expr {$d / $g}]]
}

# math::exact::treduce --
#
#	Removes all common factors from the components of a
#	2x2x2 tensor
#
# Paramters:
#	x - Tensor to scale
#
# Results:
#	Returns the scaled tensor
#
# This procedure suffices to reduce a tensor to lowest terms if it was 
# constructed by absorbing a digit matrix into a tensor that was already
# in lowest terms.

proc math::exact::treduce {x} {
    lassign $x abcd efgh
    lassign $abcd ab cd
    lassign $ab a b
    lassign $cd c d
    lassign $efgh ef gh
    lassign $ef e f
    lassign $gh g h
    set G [gcd $a $b $c $d $e $f $g $h]
    tailcall list \
	[list \
	     [list [expr {$a / $G}] [expr {$b / $G}]] \
	     [list [expr {$c / $G}] [expr {$d / $G}]]] \
	[list \
	     [list [expr {$e / $G}] [expr {$f / $G}]] \
	     [list [expr {$g / $G}] [expr {$h / $G}]]]
}

# math::exact::vadd --
#
#	Adds two 2-vectors
#
# Parameters:
#	x - First vector
#	y - Second vector
#
# Results:
#	Returns the vector sum

proc math::exact::vadd {x y} {
    lmap p $x q $y {expr {$p + $q}}
}

# math::exact::madd --
#
#	Adds two 2x2 matrices
#
# Parameters:
#	A - First matrix
#	B - Second matrix
#
# Results:
#	Returns the matrix sum

proc math::exact::madd {A B} {
    lmap x $A y $B {
	lmap p $x q $y {expr {$p + $q}}
    }
}

# math::exact::tadd --
#
#	Adds two 2x2x2 tensors
#
# Parameters:
#	U - First tensor
#	V - Second tensor
#
# Results:
#	Returns the tensor sum

proc math::exact::tadd {U V} {
    lmap A $U B $V {
	lmap x $A y $B {
	    lmap p $x q $y {expr {$p + $q}}
	}
    }
}

# math::exact::mdotv --
#
#	2x2 matrix times 2-vector
#
# Parameters;
#	A - Matrix
#	x - Vector
# 
# Results:
#	Returns the product vector

proc math::exact::mdotv {A x} {
    lassign $A ab cd
    lassign $ab a b
    lassign $cd c d
    lassign $x e f
    tailcall list [expr {$a*$e + $c*$f}] [expr {$b*$e + $d*$f}]
}

# math::exact::mdotm --
#
#	Product of two matrices
#
# Parameters:
#	A - Left matrix
#	B - Right matrix
#
# Results:
#	Returns the matrix product

proc math::exact::mdotm {A B} {
    lassign $B x y
    tailcall list [mdotv $A $x] [mdotv $A $y]
}

# math::exact::mdott --
#
#	Product of a matrix and a tensor
#
# Parameters:
#	A - Matrix
#	T - Tensor
#
# Results:
#	Returns the product tensor

proc math::exact::mdott {A T} {
    lassign $T B C
    tailcall list [mdotm $A $B] [mdotm $A $C]
}

# math::exact::trightv --
#
#	Right product of a tensor and a vector
#
# Parameters:
#	T - Tensor
#	v - Right-hand vector
#
# Results:
#	Returns the product matrix

proc math::exact::trightv {T v} {
    lassign $T m n
    tailcall list [mdotv $m $v] [mdotv $n $v]
}

# math::exact::trightm --
#
#	Right product of a tensor and a matrix
#
# Parameters:
#	T - Tensor
#	A - Right-hand matrix
#
# Results:
#	Returns the product tensor

proc math::exact::trightm {T A} {
    lassign $T m n
    tailcall list [mdotm $m $A] [mdotm $n $A]
}

# math::exact::tleftv --
#
#	Left product of a tensor and a vector
#
# Parameters:
#	T - Tensor
#	v - Left-hand vector
#
# Results:
#	Returns the product matrix

proc math::exact::tleftv {T v} {
    tailcall trightv [trans $T] $v
}

# math::exact::tleftm --
#
#	Left product of a tensor and a matrix
#
# Parameters:
#	T - Tensor
#	A - Left-hand matrix
#
# Results:
#	Returns the product tensor

proc math::exact::tleftm {T A} {
    tailcall trans [trightm [trans $T] $A]
}

# math::exact::vsign --
#
#	Computes the 'sign function' of a vector.
#
# Parameters:
#	v - Vector whose sign function is needed
#
# Results:
#	Returns the result of the sign function.
#
# a	b	sign
# -	-	 -1
# -	0	 -1
# -	+	  0
# 0	-	 -1
# 0	0	  0
# 0	+	  1
# +	-	  0
# +	0	  1
# +	+	  1
#
# If the quotient a/b is negative or indeterminate, the result is zero.
# If the quotient a/b is zero, the result is the sign of b.
# If the quotient a/b is positive, the result is the common sign of the
# operands, which are known to be of like sign
# If the quotient a/b is infinite, the result is the sign of a.

proc math::exact::sign {v} {
    lassign $v a b
    if {$a < 0} {
	if {$b <= 0} {
	    return -1
	} else {
	    return 0
	}
    } elseif {$a == 0} {
	if {$b < 0} {
	    return -1
	} elseif {$b == 0} {
	    return 0
	} else {
	    return 1
	}
    } else {
	if {$b < 0} {
	    return 0
	} else {
	    return 1
	}
    }
}

# math::exact::vrefines --
#
#	Test if a vector refines.
#
# Parameters:
#	v - Vector to test
#
# Results:
#	1 if the vector refines, 0 otherwise.

proc math::exact::vrefines {v} {
    return [expr {[sign $v] != 0}]
}

# math::exact::mrefines --
#
#	Test whether a matrix refines
#
# Parameters:
#	A - Matrix to test
#
# Results:
#	1 if the matrix refines, 0 otherwise.

proc math::exact::mrefines {A} {
    lassign $A v w
    set a [sign $v]
    set b [sign $w]
    return [expr {$a == $b && $b != 0}]
}

# math::exact::trefines --
#
#	Tests whether a tensor refines
#
# Parameters:
#	T - Tensor to test.
#
# Results:
#	1 if the tensor refines, 0 otherwise.

proc math::exact::trefines {T} {
    lassign $T vw xy
    lassign $vw v w
    lassign $xy x y
    set a [sign $v]
    set b [sign $w]
    set c [sign $x]
    set d [sign $y]
    return [expr {$a == $b && $b == $c && $c == $d && $d != 0}]
}

# math::exact::vlessv -
#
#	Test whether one rational is less than another
#
# Parameters:
#	v, w - Two rational numbers
#
# Returns:
#	The result of the comparison.

proc math::exact::vlessv {v w} {
    expr {[determinant [list $v $w]] < 0}
}

# math::exact::mlessv -
#
#	Tests whether a rational interval is less than a vector
#
# Parameters:
#	m - Matrix representing the interval
#	x - Rational to compare against
#
# Results:
#	Returns 1 if m < x, 0 otherwise

proc math::exact::mlessv {m x} {
    lassign $m v w
    expr {[vlessv $v $x] && [vlessv $w $x]}
}

# math::exact::mlessm -
#
#	Tests whether one rational interval is strictly less than another
#
# Parameters:
#	m - First interval
#	n - Second interval
#
# Results:
#	Returns 1 if m < n, 0 otherwise

proc math::exact::mlessm {m n} {
    lassign $n v w
    expr {[mlessv $m $v] && [mlessv $m $w]}
}

# math::exact::mdisjointm -
#
#	Tests whether two rational intervals are disjoint
#
# Parameters:
#	m - First interval
#	n - Second interval
#
# Results:
#	Returns 1 if the intervals are disjoint, 0 otherwise

proc math::exact::mdisjointm {m n} {
    expr {[mlessm $m $n] || [mlessm $n $m]}
}

# math::exact::mAsFloat
#
#	Formats a matrix that represents a rational interval as a floating 
#	point number, stopping as soon as a digit is not determined.
#
# Parameters:
#	m - Matrix to format
#
# Results:
#	Returns the floating point number in scientific notation, with no
#	digits to the left of the decimal point.

proc math::exact::mAsFloat {m} {

    # Special case: If a number is exact, the determinant is zero.

    set d [determinant $m]
    lassign [lindex $m 0] p q
    if {$d == 0} {
	if {$q < 0} {
	    set p [expr {-$p}]
	    set q [expr {-$q}]
	}
	if {$p == 0} {
	    if {$q == 0} {
		return NaN
	    } else {
		return 0
	    }
	} elseif {$q == 0} {
	    return Inf
	} elseif {$q == 1} {
	    return $p
	} else {
	    set G [gcd $p $q]
	    return [expr {$p/$G}]/[expr {$q/$G}]
	}
    } else {
	tailcall eFormat [scientificNotation $m]
    }
}

# math::exact::scientificNotation --
#
#	Takes a matrix representing a rational interval, and extracts as
#	many decimal digits as can be determined unambiguously
#
# Parameters:
#	m - Matrix to format
#
# Results:
#	Returns a list comprising the decimal exponent, followed by a series of
#	digits of the significand. The decimal point is to the left of the
#	leftmost digit of the significand.
#
#	Returns the empty string if a number is entirely undetermined.

proc math::exact::scientificNotation {m} {
    set n 0
    while {1} {
	if {[vrefines [mdotv [reverse $m] {1 0}]]} {
	    return {}
	} elseif {[mrefines [mdotm $math::exact::iszer $m]]} {
	    return [linsert [mantissa $m] 0 $n]
	} else {
	    set m [mdotm {{1 0} {0 10}} $m]
	    incr n
	}
    }
}

# math::exact::mantissa --
#
#	Given a matrix m that represents a rational interval whose
#	endpoints are in [0,1), formats as many digits of the represented
#	number as possible.
#
# Parameters:
#	m - Matrix to format
#
# Results:
#	Returns a list of digits

proc math::exact::mantissa {m} {
    set retval {}
    set done 0
    while {!$done} {
	set done 1

	# Brute force: try each digit in turn. This could no doubt be
	# improved on.

	for {set j -9} {$j <= 9} {incr j} {
	    set digitMatrix \
		[list [list [expr {$j+1}] 10] [list [expr {$j-1}] 10]]
	    if {[mrefines [mdotm [reverse $digitMatrix] $m]]} {
		lappend retval $j
		set nextdigit [list {10 0} [list [expr {-$j}] 1]]
		set m [mdotm $nextdigit $m]
		set done 0
		break
	    }
	}
    }
    return $retval
}

# math::exact::eFormat --
#
#	Formats a decimal exponent and significand in E format
#
# Parameters:
#	expAndDigits - List whose first element is the exponent and
#		       whose remaining elements are the digits of the
#		       significand.

proc math::exact::eFormat {expAndDigits} {

    # An empty sequence of digits is an indeterminate number

    if {[llength $expAndDigits] < 2} {
	return Undetermined
    }
    set significand [lassign $expAndDigits exponent]

    # Accumulate the digits
    set v 0
    foreach digit $significand {
	set v [expr {10 * $v + $digit}]
    }

    # Adjust the exponent if the significand has too few digits.

    set l [llength $significand]
    while {$l > 0 && abs($v) < 10**($l-1)} {
	incr l -1
	incr exponent -1
    }
    incr exponent -1

    # Put in the sign

    if {$v < 0} {
	set result -
	set v [expr {-$v}]
    } else {
	set result {}
    }

    # Put in the significand with the decimal point after the leading digit.

    if {$v == 0} {
	append result 0
    } else {
	append result [string index $v 0] . [string range $v 1 end]
    }

    # Put in the exponent

    append result e $exponent

    return $result
}

# math::exact::showRat --
#
#	Formats an exact rational for printing in E format.
#
# Parameters:
#	v - Two-element list of numerator and denominator.
#
# Results:
#	Returns the quotient in E format.  Nonzero/zero == Infinity,
#	0/0 == NaN.

proc math::exact::showRat {v} {
    lassign $v p q
    if {$p != 0 || $q != 0} {
	return [format %e [expr {double($p)/double($q)}]]
    } else {
	return NaN
    }
}

# math::exact::showInterval --
#
#	Formats a rational interval for printing
#
# Parameters:
#	m - Matrix representing the interval
#
# Results:
#	Returns a string representing the interval in E format.

proc math::exact::showInterval {m} {
    lassign $m v w
    return "\[[showRat $w] .. [showRat $v]\]"
}

# math::exact::showTensor --
#
#	Formats a tensor for printing
#
# Parameters:
#	t - Tensor to print
#
# Results:
#	Returns a string containing the left and right matrices of the
#	tensor, each represented as an interval.

proc math::exact::showTensor {t} {
    lassign $t m n
    return [list [showInterval $m] [showInterval $n]]
}

# math::exact::counted --
#
#	Reference counted object

oo::class create math::exact::counted {
    variable refcount_

    # Constructor builds an object with a zero refcount.
    constructor {} {
	if 0 {
	    puts {}
	    puts "construct: [self object] refcount now 0"
	    for {set i [info frame]} {$i > 0} {incr i -1} {
		set frame [info frame $i]
		if {[dict get $frame type] eq {source}} {
		    set line [dict get $frame line]
		    puts "\t[file tail [dict get $frame file]]:$line"
		    if {$line < 0} {
			if {[dict exists $frame proc]} {
			    puts "\t\t[dict get $frame proc]"
			}
			puts "\t\t\[[dict get $frame cmd]\]"
		    }
		} else {
		    puts $frame
		}
	    }
	}
	incr refcount_
	set refcount_ 0
    }

    # The 'ref' method adds a reference to this object, and returns this object
    method ref {} {
	if 0 {
	    puts {}
	    puts "ref: [self object] refcount now [expr {$refcount_ + 1}]"
	    if {$refcount_ == 0} {
		puts "\t[my dump]"
	    }
	    for {set i [info frame]} {$i > 0} {incr i -1} {
		set frame [info frame $i]
		if {[dict get $frame type] eq {source}} {
		    set line [dict get $frame line]
		    puts "\t[file tail [dict get $frame file]]:$line"
		    if {$line < 0} {
			if {[dict exists $frame proc]} {
			    puts "\t\t[dict get $frame proc]"
			}
			puts "\t\t\[[dict get $frame cmd]\]"
		    }
		} else {
		    puts $frame
		}
	    }
	}
	incr refcount_
	return [self]
    }

    # The 'unref' method removes a reference from this object, and destroys
    # this object if the refcount becomes nonpositive.
    method unref {} {
	if 0 {
	    puts {}
	    puts "unref: [self object] refcount now [expr {$refcount_ - 1}]"
	    for {set i [info frame]} {$i > 0} {incr i -1} {
		set frame [info frame $i]
		if {[dict get $frame type] eq {source}} {
		    set line [dict get $frame line]
		    puts "\t[file tail [dict get $frame file]]:$line"
		    if {$line < 0} {
			if {[dict exists $frame proc]} {
			    puts "\t\t[dict get $frame proc]"
			}
			puts "\t\t\[[dict get $frame cmd]\]"
		    }
		}
	    }
	}

	# Destroying this object can result in a long chain of object
	# destruction and eventually a stack overflow. Instead of destroying
	# immediately, list the objects to be destroyed in
	# math::exact::deleteStack, and destroy them only from the outermost
	# stack level that's running 'unref'.

	if {[incr refcount_ -1] <= 0} {
	    variable ::math::exact::deleteStack

	    # Is this the outermost level?
	    set queueActive [expr {[info exists deleteStack]}]

	    # Schedule this object's destruction
	    lappend deleteStack [self object]
	    if {!$queueActive} {

		# At outermost level, destroy all scheduled objects.
		# Destroying one may schedule another.
		while {[llength $deleteStack] != 0} {
		    set obj [lindex $deleteStack end]
		    set deleteStack \
			[lreplace $deleteStack[set deleteStack {}] end end]
		    $obj destroy
		}

		# Once everything quiesces, delete the list.
		unset deleteStack
	    }
	}
    }

    # The 'refcount' method returns the reference count of this object for
    # debugging.
    method refcount {} {
	return $refcount_
    }

    destructor {
    }
}

# An expression is a vector, a matrix applied to an expression,
# or a tensor applied to two expressions. The inner expressions
# may be constructed lazily.

oo::class create math::exact::Expression {
    superclass math::exact::counted

    # absorbed_, signAndMagnitude_, and leadingDigitAndRest_
    # memoize the return values of the 'absorb', 'getSignAndMagnitude',
    # and 'getLeadingDigitAndRest' methods.

    variable absorbed_ signAndMagnitude_ leadingDigitAndRest_

    # Constructor initializes refcount
    constructor {} {
	next
    }

    # Destructor releases memoized objects
    destructor {
	if {[info exists signAndMagnitude_]} {
	    [lindex $signAndMagnitude_ 1] unref
	}
	if {[info exists absorbed_]} {
	    $absorbed_ unref
	}
	if {[info exists leadingDigitAndRest_]} {
	    [lindex $leadingDigitAndRest_ 1] unref
	}
	next
    }

    # getSignAndMagnitude returns a two-element list:
    # the sign matrix, which is one of ispos, isneg, isinf, and iszer,
    # the magnitude, which is another exact real.
    method getSignAndMagnitude {} {
	if {![info exists signAndMagnitude_]} {
	    if {[my refinesM $::math::exact::ispos]} {
		set signAndMagnitude_ \
		    [list $::math::exact::spos \
			 [[my applyM $::math::exact::ispos] ref]]
	    } elseif {[my refinesM $::math::exact::isneg]} {
		set signAndMagnitude_ \
		    [list $::math::exact::sneg \
			 [[my applyM $::math::exact::isneg] ref]]
	    } elseif {[my refinesM $::math::exact::isinf]} {
		set signAndMagnitude_ \
		    [list $::math::exact::sinf \
			 [[my applyM $::math::exact::isinf] ref]]
	    } elseif {[my refinesM $::math::exact::iszer]} {
		set signAndMagnitude_ \
		    [list $::math::exact::szer \
			 [[my applyM $::math::exact::iszer] ref]]
	    } else {
		set absorbed_ [my absorb]
		set signAndMagnitude_ [$absorbed_ getSignAndMagnitude]
		[lindex $signAndMagnitude_ 1] ref
	    }
	}
	return $signAndMagnitude_
    }

    # The 'getLeadingDigitAndRest' method accepts a flag for whether
    # a digit must be extracted (1) or a rational number may be returned
    # directly (0). It returns a two-element list: a digit matrix, which
    # is one of $dpos, $dneg or $dzer, and an exact real representing
    # the number by which the given digit matrix must be postmultiplied.
    method getLeadingDigitAndRest {needDigit} {
	if {![info exists leadingDigitAndRest_]} {
	    if {[my refinesM $::math::exact::idpos]} {
		set leadingDigitAndRest_ \
		    [list $::math::exact::dpos \
			 [[my applyM $::math::exact::idpos] ref]]
	    } elseif {[my refinesM $::math::exact::idneg]} {
		set leadingDigitAndRest_ \
		    [list $::math::exact::dneg \
			 [[my applyM $::math::exact::idneg] ref]]
	    } elseif {[my refinesM $::math::exact::idzer]} {
		set leadingDigitAndRest_ \
		    [list $::math::exact::dzer \
			 [[my applyM $::math::exact::idzer] ref]]
	    } else {
		set absorbed_ [my absorb]
		set newval $absorbed_
		$newval ref
		set leadingDigitAndRest_ \
		    [$newval getLeadingDigitAndRest $needDigit]
		if {[llength $leadingDigitAndRest_] >= 2} {
		    [lindex $leadingDigitAndRest_ 1] ref
		}
		$newval unref
	    }
	}
	return $leadingDigitAndRest_
    }

    # getInterval --
    #	Accumulates 'nDigits' digit matrices, and returns their product,
    #	which is a matrix representing the interval that the digits represent.
    method getInterval {nDigits} {
	lassign [my getSignAndMagnitude] interval e
	$e ref
	lassign [$e getLeadingDigitAndRest 1] ld f
	set interval [math::exact::mdotm $interval $ld]
	$f ref; $e unref; set e $f
	set d $ld
	while {[incr nDigits -1] > 0} {
	    lassign [$e getLeadingDigitAndRest 1] d f
	    set interval [math::exact::mdotm $interval $d]
	    $f ref; $e unref; set e $f
	}
	$e unref
	return $interval
    }

    # asReal --
    #	Coerces an object from rational to real
    #
    # Parameters:
    #	None.
    #
    # Results:
    #	Returns this object
    method asReal {} {self object}

    # asFloat --
    #	Represents this number in E format, after accumulating 'relDigits'
    #	digit matrices.
    method asFloat {relDigits} {
	set v [[my asReal] ref]
	set result [math::exact::mAsFloat [$v getInterval $relDigits]]
	$v unref
	return $result
    }

    # asPrint --
    #	Represents this number for printing. Represents rationals exactly,
    #   others after accumulating 'relDigits' digit matrices.
    method asPrint {relDigits} {
	tailcall math::exact::mAsFloat [my getInterval $relDigits]
    }
    
    # Derived classes are expected to implement the following methods:
    # method dump {} {  
    #	# Formats the object for debugging 
    #	# Returns the formatted string
    # }
    method dump {} {
	error "[info object class [self object]] does not implement the 'dump' method."
    }

    # method refinesM {m} { 
    #	# Returns 1 if premultiplying by the matrix m refines this object
    #   # Returns 0 otherwise
    # }
    method refinesM {m} {
	error "[info object class [self object]] does not implement the 'refinesM' method."
    }
    
    # method applyM {m} { 
    #	# Premultiplies this object by the matrix m 
    # }
    method applyM {m} {
	error "[info object class [self object]] does not implement the 'applyM' method."
    }

    # method applyTLeft {t r} {
    # 	# Computes the left product of the tensor t with this object, and
    #	# applies the result to the right operand r.
    #	# Returns a new exact real representing the product
    # }
    method applyTLeft {t r} {
	error "[info object class [self object]] does not implement the 'applyTLeft' method."
    }
    
    # method applyTRight {t l} {
    # 	# Computes the right product of the tensor t with this object, and
    #	# applies the result to the left operand l.
    #	# Returns a new exact real representing the product
    # }
    method applyTRight {t l} {
	error "[info object class [self object]] does not implement the 'applyTRight' method."
    }
    
    # method absorb {} {
    #	# Absorbs the next subexpression or digit into this expression
    #	# Returns the result of absorption, which always represents a
    #	# smaller interval than this expression
    # }
    method absorb {} {
	error "[info object class [self object]] does not implement the 'absorb' method."
    }

    # U- --
    #
    #   Unary - applied to this object
    #
    # Results:
    #	Returns the negation.

    method U- {} {
	my ref
	lassign [my getSignAndMagnitude] sA mA
	set m [math::exact::mdotm {{-1 0} {0 1}} $sA]
	set result [math::exact::Mstrict new $m $mA]
	my unref
	return $result
    }; export U-

    # + --
    #	Adds this object to another.
    #
    # Parameters:
    #	r - Right addend
    #
    # Results:
    #	Returns the sum
    #
    # Either object may be rational (an instance of V) or real (any other
    # Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method + {r} {
	return [$r E+ [self object]]
    }; export +

    # E+ --
    #	Adds two exact reals.
    #
    # Parameters:
    #	l - Left addend
    #
    # Results:
    #	Returns the sum.
    #
    # Neither object is an instance of V (that is, neither is a rational).
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E+ {l} {
	tailcall math::exact::+real $l [self object]
    }; export E+

    # V+ --
    #	Adds a rational and an exact real
    #
    # Parameters:
    #	l - Left addend
    #
    # Results:
    #	Returns the sum.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method V+ {l} {
	tailcall math::exact::+real $l [self object]
    }; export V+

    # - --
    #	Subtracts another object from this object
    #
    # Parameters:
    #	r - Subtrahend
    #
    # Results:
    #	Returns the difference
    #
    # Either object may be rational (an instance of V) or real (any other
    # Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method - {r} {
	return [$r E- [self object]]
    }; export -

    # E- --
    #	Subtracts this exact real from another
    #
    # Parameters:
    #	l - Minuend
    #
    # Results:
    #	Returns the difference
    #
    # Neither object is an instance of V (that is, neither is a rational).
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E- {l} {
	tailcall math::exact::-real $l [self object]
    }; export E-

    # V- --
    #	Subtracts this exact real from a rational
    #
    # Parameters:
    #	l - Minuend
    #
    # Results:
    #	Returns the difference
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method V- {l} {
	tailcall math::exact::-real $l [self object]
    }; export V-

    # * --
    #	Multiplies this object by another.
    #
    # Parameters:
    #	r - Right argument to the multiplication
    #
    # Results:
    #	Returns the product
    #
    # Either object may be rational (an instance of V) or real (any other
    # Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method * {r} {
	return [$r E* [self object]]
    }; export *

    # E* --
    #	Multiplies two exact reals.
    #
    # Parameters:
    #	l - Left argument to the multiplication
    #
    # Results:
    #	Returns the product.
    #
    # Neither object is an instance of V (that is, neither is a rational).
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E* {l} {
	tailcall math::exact::*real $l [self object]
    }; export E*

    # V* --
    #	Multiplies a rational and an exact real
    #
    # Parameters:
    #	l - Left argument to the multiplication
    #
    # Results:
    #	Returns the product.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method V* {l} {
	tailcall math::exact::*real $l [self object]
    }; export V*

    # / --
    #	Divides this object by another.
    #
    # Parameters:
    #	r - Divisor
    #
    # Results:
    #	Returns the quotient
    #
    # Either object may be rational (an instance of V) or real (any other
    # Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method / {r} {
	return [$r E/ [self object]]
    }; export /

    # E/ --
    #	Divides two exact reals.
    #
    # Parameters:
    #	l - Dividend
    #
    # Results:
    #	Returns the quotient.
    #
    # Neither object is an instance of V (that is, neither is a rational).
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E/ {l} {
	tailcall math::exact::/real $l [self object]
    }; export E/

    # V/ --
    #	Divides a rational by an exact real
    #
    # Parameters:
    #	l - Dividend
    #
    # Results:
    #	Returns the product.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method V/ {l} {
	tailcall math::exact::/real $l [self object]
    }; export V/

    # ** -
    #	Raises an exact real to a power
    #
    # Parameters:
    #	r - Exponent
    #
    # Results:
    #	Returns the power.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method ** {r} {
	tailcall $r E** [self object]
    }; export **

    # E** -
    #	Raises an exact real to the power of an exact real
    #
    # Parameters:
    #	l - Base to exponentiate
    #
    # Results:
    #	Returns the power
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method E** {l} {
	# This doesn't work as a tailcall, because this object could have
	# been destroyed by the time we're trying to invoke the tailcall,
	# and that will keep command names from resolving because the
	# tailcall mechanism will try to find them in the destroyed namespace.
	return [math::exact::function::exp \
		    [my * [math::exact::function::log $l]]]
    }; export E**

    # V** -
    #	Raises a rational to the power of an exact real
    #
    # Parameters:
    #	l - Base to exponentiate
    #
    # Results:
    #	Returns the power
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method V** {l} {
	# This doesn't work as a tailcall, because this object could have
	# been destroyed by the time we're trying to invoke the tailcall,
	# and that will keep command names from resolving because the
	# tailcall mechanism will try to find them in the destroyed namespace.
	return [math::exact::function::exp \
		    [my * [math::exact::function::log $l]]]
    }; export V**
    
    # sqrt --
    #
    #	Create an expression representing the square root of an exact
    #	real argument.
    #
    # Results:
    #	Returns the square root.
    #
    # This procedure is a Consumer with respect the the argument and a
    # Constructor with respect to the result, returning a zero-reference
    # result.

    method sqrt {} {
	variable ::math::exact::isneg
	variable ::math::exact::idzer
	variable ::math::exact::idneg
	variable ::math::exact::idpos
	
	# The algorithm is a modified Newton-Raphson from the Potts and
	# Menissier-Morain papers. The algorithm for sqrt(x) converges
	# rapidly only if x is close to 1, so we rescale to make sure that
	# x is between 1/3 and 3. Specifically:
	# - if x is known to be negative (that is, if $idneg refines it)
	#   then error.
	# - if x is close to 1, $idzer refines it, and we can calculate the
	#   square root directly.
	# - if x is less than 1, $idneg refines it, and we calculate sqrt(4*x)
	#   and multiply by 1/2.
	# - if x is greater than 1, $idpos refines it, and we calculate
	#   sqrt(x/4) and multiply by 2.
	# - if none of the above hold, we have insufficient information about
	#   the magnitude of x and perform a digit exchange.
	
	my ref
	if {[my refinesM $isneg]} {
	    # Negative argument is an error
	    return -code error -errorcode {MATH EXACT SQRTNEGATIVE} \
		"sqrt of negative argument"
	} elseif {[my refinesM $idzer]} {
	    # Argument close to 1
	    set res [::math::exact::SqrtWorker new [self object]]
	} elseif {[my refinesM $idneg]} {
	    # Small argument - multiply by 4 and halve the square root
	    set y [[my applyM {{4 0} {0 1}}] ref]
	    set z [[$y sqrt] ref]
	    set res [$z applyM {{1 0} {0 2}}]
	    $z unref
	    $y unref
	} elseif {[my refinesM $idpos]} {
	    # Large argument - divide by 4 and double the square root
	    set y [[my applyM {{1 0} {0 4}}] ref]
	    set z [[$y sqrt] ref]
	    set res [$z applyM {{2 0} {0 1}}]
	    $z unref
	    $y unref
	} else {
	    # Unclassified argyment. Perform a digit exchange and try again.
	    set y [[my absorb] ref]
	    set res [$y sqrt]
	    $y unref
	}
	my unref
	return $res
    }
}

# math::exact::V --
#	Vector object
#
# A vector object represents a rational number. It is always strict; no
# methods need to perform lazy evaluation.

oo::class create math::exact::V {
    superclass math::exact::Expression

    # v_ is the vector represented.
    variable v_

    # Constructor accepts the vector as a two-element list {n d}
    # where n is by convention the numerator and d the denominator.
    # It is expected that either n or d is nonzero, and that gcd(n,d) == 0.
    # It is also expected that the fraction will be in lowest terms.
    constructor {v} {
	next
	set v_ $v
    }

    # Destructor need only update reference counts
    destructor {
	next
    }
    
    # If a rational is acceptable, getLeadingDigitAndRest may simply return 
    # this object.
    method getLeadingDigitAndRest {needDigit} {
	if {$needDigit} {
	    return [next $needDigit]
	} else {
	    # Note that the result MUST NOT be memoized, as that would lead
	    # to a circular reference, breaking the refcount system.
	    return [self object]
	}
    }

    # Print this object
    method dump {} {
	return "V($v_)"
    }

    # Test if the vector refines when premultiplied by a matrix
    method refinesM {m} {
	return [math::exact::vrefines [math::exact::mdotv $m $v_]]
    }

    # Apply a matrix to the vector. 
    # Precondition: v is in lowest terms

    method applyM {m} {
	set d [math::exact::determinant $m]
	if {$d < 0} { set d [expr {-$d}] }
	if {($d & ($d-1)) != 0} {
	    return [math::exact::V new \
			[math::exact::vreduce [math::exact::mdotv $m $v_]]]
	} else {
	    return [math::exact::V new \
			[math::exact::vscale [math::exact::mdotv $m $v_]]]
	}
    }

    # Left-multiply a tensor t by the vector, and apply the result to
    # an expression 'r'
    method applyTLeft {t r} {
	set u [math::exact::mscale [math::exact::tleftv $t $v_]]
	set det [math::exact::determinant $u]
	if {$det < 0} { set det [expr {-$det}] }
	if {($det & ($det-1)) == 0} {
	    # determinant is a power of 2
	    set res [$r applyM $u]
	    return $res
	} else {
	    return [math::exact::Mstrict new $u $r]
	}
    }

    # Right-multiply a tensor t by the vector, and apply the result
    # to an expression 'l'
    method applyTRight {t l} {
	set u [math::exact::mscale [math::exact::trightv $t $v_]]
	set det [math::exact::determinant $u]
	if {$det < 0} { set det [expr {-$det}] }
	if {($det & ($det-1)) == 0} {
	    # determinant is a power of 2
	    set res [$l applyM $u]
	    return $res
	} else {
	    return [math::exact::Mstrict new $u $l]
	}
    }

    # Get the vector components
    method getV {} {
	return $v_
    }

    # Get the (zero-width) interval that the vector represents.
    method getInterval {nDigits} {
	return [list $v_ $v_]
    }

    # Absorb more information
    method absorb {} {
	# Nothing should ever call this, because a vector's information is
	# already complete.
	error "cannot absorb anything into a vector"
    }

    # asReal --
    #	Coerces an object from rational to real
    #
    # Parameters:
    #	None.
    #
    # Results:
    #	Returns this object converted to an exact real.
    method asReal {} {
	my ref
	lassign [my getSignAndMagnitude] s m
	set result [math::exact::Mstrict new $s $m]
	my unref
	return $result
    }

    # U- --
    #
    #   Unary - applied to this object
    #
    # Results:
    #	Returns the negation.

    method U- {} {
	my ref
	lassign $v_ p q
	set result [math::exact::V new [list [expr {-$p}] $q]]
	my unref
	return $result
    }; export U-

    # + --
    #	Adds a vector to another object
    #
    # Parameters:
    #	r - Right addend
    #
    # Results:
    #	Returns the sum
    #
    # The right-hand addend may be rational (an instance of V) or real
    # (any other Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method + {r} {
	return [$r V+ [self object]]
    }; export +

    # E+ --
    #	Adds an exact real and a vector
    #
    # Parameters:
    #	l - Left addend
    #
    # Results:
    #	Returns the sim.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E+ {l} {
	tailcall math::exact::+real $l [self object]
    }; export E+

    # V+ --
    #	Adds two rationals
    #
    # Parameters:
    #	l - Rational multiplicand
    #
    # Results:
    #	Returns the product.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    method V+ {l} {
	my ref
	$l ref
	lassign [$l getV] a b
	lassign $v_ c d
	$l unref
	my unref
	return [math::exact::V new \
		    [math::exact::vreduce \
			 [list [expr {$a*$d+$b*$c}] [expr {$b*$d}]]]]
    }; export V+

    # - --
    #	Subtracts another object from a vector
    #
    # Parameters:
    #	r - Subtrahend
    #
    # Results:
    #	Returns the difference
    #
    # The right-hand operand may be rational (an instance of V) or real
    # (any other Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method - {r} {
	return [$r V- [self object]]
    }; export -

    # E- --
    #	Subtracts this exact real from a rational
    #
    # Parameters:
    #	l - Left addend
    #
    # Results:
    #	Returns the difference.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E- {l} {
	tailcall math::exact::-real $l [self object]
    }; export E-

    # V- --
    #	Subtracts this rational from another
    #
    # Parameters:
    #	l - Rational minuend
    #
    # Results:
    #	Returns the difference.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    method V- {l} {
	my ref
	$l ref
	lassign [$l getV] a b
	lassign $v_ c d
	$l unref
	my unref
	return [math::exact::V new \
		    [math::exact::vreduce \
			 [list [expr {$a*$d-$b*$c}] [expr {$b*$d}]]]]
    }; export V-

    # * --
    #	Multiplies a rational by another object
    #
    # Parameters:
    #	r - Right-hand factor
    #
    # Results:
    #	Returns the difference
    #
    # The right-hand operand may be rational (an instance of V) or real
    # (any other Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method * {r} {
	return [$r V* [self object]]
    }; export *

    # E* --
    #	Multiplies an exact real and a rational
    #
    # Parameters:
    #	l - Multiplicand
    #
    # Results:
    #	Returns the product.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E* {l} {
	tailcall math::exact::*real $l [self object]
    }; export E*

    # V* --
    #	Multiplies two rationals
    #
    # Parameters:
    #	l - Rational multiplicand
    #
    # Results:
    #	Returns the product.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    method V* {l} {
	my ref
	$l ref
	lassign [$l getV] a b
	lassign $v_ c d
	$l unref
	my unref
	return [math::exact::V new \
		    [math::exact::vreduce \
			 [list [expr {$a*$c}] [expr {$b*$d}]]]]
    }; export V*

    # / --
    #	Divides this object by another.
    #
    # Parameters:
    #	r - Divisor
    #
    # Results:
    #	Returns the quotient
    #
    # Either object may be rational (an instance of V) or real (any other
    # Expression).
    #
    # This method is a Consumer with respect to the current object and to r.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method / {r} {
	return [$r V/ [self object]]
    }; export /
 
   # E/ --
    #	Divides an exact real and a rational
    #
    # Parameters:
    #	l - Dividend
    #
    # Results:
    #	Returns the quotient.
    #
    # The divisor is not a rationa.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    
    method E/ {l} {
	tailcall math::exact::/real $l [self object]
    }; export E/

    # V/ --
    #	Divides two rationals
    #
    # Parameters:
    #	l - Dividend
    #
    # Results:
    #	Returns the quotient.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.
    method V/ {l} {
	my ref
	$l ref
	lassign [$l getV] a b
	lassign $v_ c d
	set result [math::exact::V new \
			[math::exact::vreduce \
			     [list [expr {$a*$d}] [expr {$b*$c}]]]]
	$l unref
	my unref
	return $result
    }; export V/

    # ** -
    #	Raises a rational to a power
    #
    # Parameters:
    #	r - Exponent
    #
    # Results:
    #	Returns the power.
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method ** {r} {
	tailcall $r V** [self object]
    }; export **

    # E** -
    #	Raises an exact real to a rational power
    #
    # Parameters:
    #	l - Base to exponentiate
    #
    # Results:
    #	Returns the power
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method E** {l} {

	# Extract numerator and demominator of the exponent, and consume the
	# exponent.
	my ref
	lassign $v_ c d
	my unref
 
	# Normalize the sign of the exponent
	if {$d < 0} {
	    set c [expr {-$c}]
	    set d [expr {-$d}]
	}

	# Don't choke if somehow a 0/0 gets here.
	if {$c == 0 && $d == 0} {
	    $l unref
	    return -code error -errorcode "MATH EXACT ZERODIVZERO" \
		"zero divided by zero"
	}

	# Handle integer powers
	if {$d == 1} {
	    return [math::exact::real**int $l $c]
	}

	# Other rational powers come here.
	# We know that $d > 0, and we're not just doing
	# exponentiation by an integer
	    
	return [math::exact::real**rat $l $c $d]
    }; export E**

    # V** -
    #	Raises a rational base to a rational power
    #
    # Parameters:
    #	l - Base to exponentiate
    #
    # Results:
    #	Returns the power
    #
    # This method is a Consumer with respect to the current object and to l.
    # It is a Constructor with respect to its result, returning a zero-ref
    # object.

    method V** {l} {

	# Extract the numerator and denominator of the base and consume
	# the base.
	$l ref
	lassign [$l getV] a b
	$l unref

	# Extract numerator and demominator of the exponent, and consume the
	# exponent.
	my ref
	lassign $v_ c d
	my unref

	# Normalize the signs of the arguments
	if {$b < 0} {
	    set a [expr {-$a}]
	    set b [expr {-$b}]
	}
	if {$d < 0} {
	    set c [expr {-$c}]
	    set d [expr {-$d}]
	}

	# Don't choke if somehow a 0/0 gets here.
	if {$a == 0 && $b == 0 || $c == 0 && $d == 0} {
	    return -code error -errorcode "MATH EXACT ZERODIVZERO" \
		"zero divided by zero"
	}

	# b >= 0 and d >= 0

	if {$a == 0} {
	    if {$c == 0} {
		return -code error -errorcode "MATH EXACT ZEROPOWZERO" \
		    "zero to zero power"
	    } elseif {$d == 0} {
		return -code error -errorcode "MATH EXACT ZEROPOWINF" \
		    "zero to infinite power"
	    } else {
		return [math::exact::V new {0 1}]
	    }
	}

	# a != 0, b >= 0, d >= 0

	if {$b == 0} {
	    if {$c == 0} {
		return -code error -errorcode "MATH EXACT INFPOWZERO" \
		    "infinity to zero power"
	    } elseif {$c < 0} {
		return [math::exact::V new {0 1}]
	    } else {
		return [math::exact::V new {1 0}]
	    }
	}

	# a != 0, b > 0, d >= 0

	if {$c == 0} {
	    return [math::exact::V new {1 1}]
	}

	# handle integer exponents

	if {$d == 1} {
	    return [math::exact::rat**int $a $b $c]
	}

	# a != 0, b > 0, c != 0, d >= 0

	return [math::exact::rat**rat $a $b $c $d]
    }; export V**
    
    # sqrt --
    #
    #	Calculates the square root of this object
    #
    # Results:
    #	Returns the square root as an exact real.
    #
    # This method is a Consumer with respect to this object and a Constructor
    # with respect to the result, returning a zero-ref object.
    method sqrt {} {
	my ref
	if {([lindex $v_ 0] < 0) ^ ([lindex $v_ 1] < 0)} {
	    return -code error -errorCode "MATH EXACT SQRTNEGATIVE" \
		{square root of negative argument}
	}
	set result [::math::exact::Sqrtrat new {*}$v_]
	my unref
	return $result
    }
    
}

# math::exact::M --
#	Expression consisting of a matrix times another expression
#
# The matrix {a c} {b d} represents the homography (a*x + b) / (c*x + d).
#
# The inner expression may need to be evaluated lazily. Whether evaluation
# is strict or lazy, the 'e' method will return the expression.

oo::class create math::exact::M {
    superclass math::exact::Expression

    # m_ is the matrix; e_ the inner expression; absorbed_ a cache of the
    # result of the 'absorb' method.
    variable m_ e_ absorbed_

    # constructor accepts the matrix only. The expression is managed in
    # derived classes.
    constructor {m} {
	next
	set m_ $m
    }

    # destructor deletes the memoized expression if one has been stored.
    # The base class destructor handles cleaning up the result of 'absorb'
    destructor {
	if {[info exists e_]} {
	    $e_ unref
	}
	next
    }

    # Test if the matrix refines when premultiplied by another matrix n
    method refinesM {n} {
	return [math::exact::mrefines [math::exact::mdotm $n $m_]]
    }

    # Premultiply the matrix by another matrix n
    method applyM {n} {
	set d [math::exact::determinant $n]
	if {$d < 0} {set d [expr {-$d}]}
	if {($d & ($d-1)) != 0} {
	    return [math::exact::Mstrict new \
			[math::exact::mreduce [math::exact::mdotm $n $m_]] \
			[my e]]
	} else {
	    return [math::exact::Mstrict new \
			[math::exact::mscale [math::exact::mdotm $n $m_]] \
			[my e]]
	}
    }

    # Compute the left product of a tensor t with this matrix, and
    # apply the resulting tensor to the expression 'r'.
    method applyTLeft {t r} {
	return [math::exact::Tstrict new \
		    [math::exact::tscale [math::exact::tleftm $t $m_]] \
		    1 [my e] $r]
    }

    # Compute the right product of a tensor t with this matrix, and
    # apply the resulting tensor to the expression 'l'.
    method applyTRight {t l} {
	return [math::exact::Tstrict new \
		    [math::exact::tscale [math::exact::trightm $t $m_]] \
		    0 $l [my e]]
    }

    # Absorb a digit into this matrix.
    method absorb {} {
	if {![info exists absorbed_]} {
	    set absorbed_ [[[my e] applyM $m_] ref]
	}
	return $absorbed_
    }

    # Derived classes are expected to implement:
    # method e {} {
    #	# Returns the expression to which this matrix is applied.
    #	# Optionally memoizes the result in $e_.
    # }
    method e {} {
	error "[info object class [self object]] does not implement the 'e' method."
    }
}

# math::exact::Mstrict --
#
#	Expression representing the product of a matrix and another
#	expression.
#
# In this version of the class, the expression is known in advance - 
# evaluated strictly.

oo::class create math::exact::Mstrict {
    superclass math::exact::M

    # m_ is the matrix.
    # e_ is the expression
    # absorbed_ caches the result of the 'absorb' method.
    variable m_ e_ absorbed_

    # Constructor accepts the matrix and the expression to which
    # it applies.
    constructor {m e} {
	next $m 
	set e_ [$e ref]
    }

    # All the heavy lifting of destruction is performed in the base class.
    destructor {
	next
    }

    # The 'e' method returns the expression.
    method e {} {
	return $e_
    }

    # The 'dump' method formats this object for debugging.
    method dump {} {
	return "M($m_,[$e_ dump])"
    }
}

# math::exact::T --
#	Expression representing a 2x2x2 tensor of the third order,
#	applied to two subexpressions.

oo::class create math::exact::T {
    superclass math::exact::Expression

    # t_ - the tensor
    # i_ A flag indicating whether the next 'absorb' should come from the
    #    left (0) or the right (1).
    # l_ - the left subexpression
    # r_ - the right subexpression
    # absorbed_ - the result of an 'absorb' operation

    variable t_ i_ l_ r_ absorbed_

    # constructor accepts the tensor and the initial state for absorption
    constructor {t i} {
	next
	set t_ $t
	set i_ $i
    }

    # destructor removes cached items.
    destructor {
	if {[info exists l_]} {
	    $l_ unref
	}
	if {[info exists r_]} {
	    $r_ unref
	}
	next;			# The base class will clean up absorbed_
    }

    # refinesM --
    #
    #	Tests if this tensor refines when premultiplied by a matrix
    #
    # Parameters:
    #	m - matrix to test
    #
    # Results:
    #	Returns a Boolean indicator that is true if the product refines.

    method refinesM {m} {
	return [math::exact::trefines [math::exact::mdott $m $t_]]
    }

    # applyM --
    #
    #	Left multiplies this tensor by a matrix
    #
    # Parameters:
    #	m - Matrix to multiply
    #
    # Results:
    #	Returns the product
    #
    # This operation has the side effect of making the product strict at
    # the uppermost level, by calling [my l] [my r] to instantiate the
    # subexpressions.

    method applyM {m} {
	set d [math::exact::determinant $m]
	if {$d < 0} {set d [expr {-$d}]}
	if {($d & ($d-1)) != 0} {
	    return [math::exact::Tstrict new \
			[math::exact::treduce [math::exact::mdott $m $t_]] \
			0 [my l] [my r]]
	} else {
	    return [math::exact::Tstrict new \
			[math::exact::tscale [math::exact::mdott $m $t_]] \
			0 [my l] [my r]]
	}
    }

    # absorb --
    #
    #	Absorbs information from the subexpressions.
    #
    # Results:
    #	Returns a copy of the current object, with information from 
    #   at least one subexpression absorbed so that more information is
    #	immediately available.

    method absorb {} {
	if {![info exists absorbed_]} {
	    if {[math::exact::trefines $t_]} {
		lassign [math::exact::trans $t_] m n
		set side [math::exact::mdisjointm $m $n]
	    } else {
		set side $i_
	    }
	    if {$side} {
		set absorbed_ [[[my r] applyTRight $t_ [my l]] ref]
	    } else {
		set absorbed_ [[[my l] applyTLeft $t_ [my r]] ref]
	    }
	}
	return $absorbed_
    }

    # applyTRight --
    #
    #	Right-multiplies a tensor by this expression
    #
    # Results:
    #	Returns 't' left-product l right-product $r_.

    method applyTRight {t l} {
	# This is the hard case of digit exchange. We have to
	# get the leading digit from this tensor, absorbing as
	# necessary, right-multiply it into the tensor $t, and
	# compose the new object.
	#
	# Note that unless 'rest' is empty, 'ld' is a digit matrix,
	# so we need to check only for powers of 2 when reducing to
	# lowest terms
	lassign [my getLeadingDigitAndRest 0] ld rest
	if {$rest eq {}} {
	    set u [math::exact::mreduce [math::exact::trightv $t $ld]]
	    return [math::exact::Mstrict new $u $l]
	} else {
	    set u [math::exact::tscale [math::exact::trightm $t $ld]]
	    return [math::exact::Tstrict new $u 0 $l $rest]
	}
    }

    # applyTLeft --
    #
    #	Left-multiplies a tensor by this expression
    #
    # Results:
    #	Returns 't' left-product $l_ right-product 'r'
    method applyTLeft {t r} {
	# This is the hard case of digit exchange. We have to
	# get the leading digit from this tensor, absorbing as
	# necessary, left-multiply it into the tensor $t, and
	# compose the new object
	#
	# Note that unless 'rest' is empty, 'ld' is a digit matrix,
	# so we need to check only for powers of 2 when reducing to
	# lowest terms
	lassign [my getLeadingDigitAndRest 0] ld rest
	if {$rest eq {}} {
	    set u [math::exact::mreduce [math::exact::tleftv $t $ld]]
	    return [math::exact::Mstrict $u $r]
	} else {
	    set u [math::exact::tscale [math::exact::tleftm $t $ld]]
	    return [math::exact::Tstrict new $u 1 $rest $r]
	} 
    }

    # Derived classes are expected to implement the following:
    # l --
    #
    #	Returns the left operand
    method l {} {
	error "[info object class [self object]] does not implement the 'l' method"
    }

    # r --
    #
    #	Returns the right operand
    method r {} {
	error "[info object class [self object]] does not implement the 'r' method"
    }
    
}

# math::exact::Tstrict --
#
#	A strict tensor - one where the subexpressions are both known in
#	advance.

oo::class create math::exact::Tstrict {
    superclass math::exact::T

    # t_ - the tensor
    # i_ A flag indicating whether the next 'absorb' should come from the
    #    left (0) or the right (1).
    # l_ - the left subexpression
    # r_ - the right subexpression
    # absorbed_ - the result of an 'absorb' operation

    variable t_ i_ l_ r_ absorbed_

    # constructor accepts the tensor, the absorption state, and the
    # left and right operands.
    constructor {t i l r} {
	next $t $i
	set l_ [$l ref]
	set r_ [$r ref]
    }

    # base class handles all cleanup
    destructor {
	next
    }

    # l --
    #
    #	Returns the left operand
    method l {} {
	return $l_
    }

    # r --
    #
    #	Returns the right operand
    method r {} {
	return $r_
    }

    # dump --
    #
    #	Formats this object for debugging
    method dump {} {
	return T($t_,$i_\;[$l_ dump],[$r_ dump])
    }
}

# math::exact::opreal --
#
#	Applies a bihomography (bilinear fractional transformation)
#	to two expressions.
#
# Parameters:
#	op - Tensor {{{a b} {c d}} {{e f} {g h}}} representing the operation
#	x - left operand
#	y - right operand
#
# Results:
#	Returns an expression that represents the form:
#	(axy + cx + ey + g) / (bxy + dx + fy + h)
#
# Notes:
#	Note that the four basic arithmetic operations are included here.
#	In addition, this procedure may be used to craft other useful
#	transformations. For example, (1 - u**2) / (1 + u**2)
#	could be constructed as [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $u $u]

proc math::exact::opreal {op x y {kludge {}}} {
    # split x and y into sign and magnitude
    $x ref; $y ref
    lassign [$x getSignAndMagnitude] sx mx
    lassign [$y getSignAndMagnitude] sy my
    $mx ref; $my ref
    $x unref; $y unref
    set t [tleftm [trightm $op $sy] $sx]
    set r [math::exact::Tstrict new $t 0 $mx $my]
    $mx unref; $my unref
    return $r
}

# math::exact::+real --
# math::exact::-real --
# math::exact::*real --
# math::exact::/real --
#
#	Sum, difference, product and quotient of exact reals
#
# Parameters:
#	x - First operand
#	y - Second operand
#
# Results:
#	Returns x+y, x-y, x*y or x/y as requested.

proc math::exact::+real {a b} { variable tadd; return [opreal $tadd $a $b] }
proc math::exact::-real {a b} { variable tsub; return [opreal $tsub $a $b] }
proc math::exact::*real {a b} { variable tmul; return [opreal $tmul $a $b] }
proc math::exact::/real {a b} { variable tdiv; return [opreal $tdiv $a $b] }

# real --
#
#	Coerce an argument to exact-real (possibly from rational)
#
# Parameters:
#	x - Argument to coerce.
#
# Results:
#	Returns the argument coerced to a real.
#
# This operation either does nothing and returns its argument, or is a
# Consumer with respect to its argument and a Constructor with respect to
# its result.

proc math::exact::function::real {x} {
    tailcall $x asReal
}

# SqrtWorker --
#
#	Class to calculate the square root of a real.


oo::class create math::exact::SqrtWorker {
    superclass math::exact::T
    variable l_ r_

    # e - The expression whose square root should be calculated.
    #     e should be between close to 1 for good performance. The
    #     'sqrtreal' procedure below handles the scaling.
    constructor {e} {
	next {{{1 0} {2 1}} {{1 2} {0 1}}} 0
	set l_ [$e ref]
    }
    method l {} {
	return $l_
    }
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::SqrtWorker new $l_] ref]
	}
	return $r_
    }
    method dump {} {
	return "sqrt([$l_ dump])"
    }
}

# sqrt --
#
#	Returns the square root of a number
#
# Parameters:
#	x - Exact real number whose square root is needed.
#
# Results:
#	Returns the square root as an exact real.
#
# The number may be rational or real. There is a special optimization used
# if the number is rational

proc math::exact::function::sqrt {x} {
    tailcall $x sqrt
}

# ExpWorker --
#
#	Class that evaluates the exponential function for small exact reals

oo::class create math::exact::ExpWorker {
    superclass math::exact::T
    variable t_ l_ r_ n_

    # Constructor --
    #
    # Parameters:
    #	e - Argument whose exponential is to be computed. (What is
    #	    actually passed in is S0'(x) = (1+x)/(1-x))
    #	n - Number of the convergent of the continued fraction
    #
    # This class is implemented by expanding the continued fraction
    # as needed for precision. Each successive step becomes a new right
    # subexpression of the tensor product.

    constructor {e {n 0}} {
	next [list \
		  [list \
		       [list [expr {2*$n + 2}] [expr {2*$n + 1}]] \
		       [list [expr {2*$n + 1}] [expr {2*$n}]]] \
		  [list \
		       [list [expr {2*$n}] [expr {2*$n + 1}]] \
		       [list [expr {2*$n + 1}] [expr {2*$n + 2}]]]] 0
	set l_ [$e ref]
	set n_ [expr {$n + 1}]
    }

    # l --
    #
    #	Returns the left subexpression; that is, the argument to the
    #	exponential
    method l {} {
	return $l_
    }

    # r --
    #	Returns the right subexpresison - the next convergent, creating it
    #	if necessary
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::ExpWorker new $l_ $n_] ref]
	}
	return $r_
    }

    # dump --
    #
    #	Displays this object for debugging
    method dump {} {
	return ExpWorker([$l_ dump],[expr {$n_-1}])
    }
}

# exp --
#
#	Evaluates the exponential function of an exact real
#
# Parameters:
#	x - Quantity to be exponentiated
#
# Results:
#	Returns the exact real function value.
#
# This procedure is a Consumer with respect to its argument and a
# Constructor with respect to its result, returning a zero-ref object.

proc math::exact::function::exp {x} {
    variable ::math::exact::iszer
    variable ::math::exact::tmul

    # The continued fraction converges only for arguments between -1 and 1.
    # If $iszer refines the argument, then it is in the correct range and
    # we launch ExpWorker to evaluate the continued fraction. If the argument
    # is outside the range [-1/2..1/2], then we evaluate exp(x/2) and square
    # the result. If neither of the above is true, then we perform a digit
    # exchange to get more information about the magnitude of the argument.

    $x ref
    if {[$x refinesM $iszer]} {
	# Argument's absolute value is small - evaluate the exponential
	set y [$x applyM $iszer]
	set result [ExpWorker new $y]
    } elseif {[$x refinesM {{2 2} {-1 1}}]} {
	# Argument's absolute value is large - evaluate exp(x/2)**2
	set xover2 [$x applyM {{1 0} {0 2}}]
	set expxover2 [exp $xover2]
	set result [*real $expxover2 $expxover2]
    } else {
	# Argument's absolute value is uncharacterized - perform a digit
	# exchange to get more information.
	set result [exp [$x absorb]]
    }
    $x unref
    return $result
}

# LogWorker --
#
#	Helper class for evaluating logarithm of an exact real argument.
#
# The algorithm used is a continued fraction representation from Peter Potts's
# paper. This worker evaluates the second and subsequent convergents. The
# first convergent is in the 'log' procedure below, and follows a different
# pattern from the rest of them.

oo::class create math::exact::LogWorker {
    superclass math::exact::T
    variable t_ l_ r_ n_

    # Constructor -
    #
    # Parameters:
    #	e - Argument whose log is to be extracted
    #   n - Number of the convergent.
    constructor {e {n 1}} {
	next [list \
		  [list \
		       [list $n 0] \
		       [list [expr {2*$n + 1}] [expr {$n+1}]]] \
		  [list \
		       [list [expr {$n + 1}] [expr {2*$n + 1}]] \
		       [list 0 $n]]] 0
	set l_ [$e ref]
	set n_ [expr {$n + 1}]
    }

    # l -
    #	Returns the argument whose log is to be extracted
    method l {} {
	return $l_
    }

    # r -
    #	Returns the next convergent, constructing it if necessary.
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::LogWorker new $l_ $n_] ref]
	}
	return $r_
    }

    # dump -
    #	Dumps this object for debugging
    method dump {} {
	return LogWorker([$l_ dump],[expr {$n_-1}])
    }
}

# log -
#
#	Calculates the natural logarithm of an exact real argument.
#
# Parameters:
#	x - Quantity whose log is to be extracted.
#
# Results:
#	Returns the logarithm
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.

proc math::exact::function::log {x} {
    variable ::math::exact::ispos
    variable ::math::exact::isneg
    variable ::math::exact::idpos
    variable ::math::exact::idneg
    variable ::math::exact::log2

    # If x is between 1/2 and 2, the continued fraction will converge. If
    # y = LogWorker(x), then log(x) = (xy + x - y - 1)/(x + y), and the
    # latter function is a bihomography that can be evaluated by 'opreal'
    # directly.
    #
    # If x is negative, that's an error.
    # If x > 1, idpos will refine it, and we compute log(x/2) + log(2)
    # If x < 1, idneg will refine it, and we compute log(2x) - log(2)
    # If none of the above can be proven, perform a digit exchange and
    # try again.

    $x ref
    if {[$x refinesM {{2 -1} {-1 2}}]} {
	# argument in bounds
	set result [math::exact::opreal {{{1 0} {1 1}} {{-1 1} {-1 0}}} \
			$x \
			[LogWorker new $x]]
    } elseif {[$x refinesM $isneg]} {
	# domain error
        return -code error -errorcode {MATH EXACT LOGNEGATIVE} \
	    "log of negative argument"
    } elseif {[$x refinesM $idpos]} {
	# large argument, reduce it and try again
	set result [+real [function::log [$x applyM {{1 0} {0 2}}]] $log2]
    } elseif {[$x refinesM $idneg]} {
	# small argument, increase it and try again
	set result [-real [function::log [$x applyM {{2 0} {0 1}}]] $log2]
    } else {
	# too little information, perform digit exchange.
	set result [function::log [$x absorb]]
    }
    $x unref
    return $result
}

# TanWorker --
#
#	Auxiliary function for tangent of an exact real argument
#
# This class develops the second and subsequent convergents of the continued
# fraction expansion in Potts's paper
oo::class create math::exact::TanWorker {
    superclass math::exact::T
    variable t_ l_ r_ n_

    # Constructor -
    #
    # Parameters:
    #	e - S0'(x) = (1+x)/(1-x), where we wish to evaluate tan(x).
    #   n - Ordinal position of the convergent
    constructor {e {n 1}} {
	next [list \
		  [list \
		       [list [expr {2*$n + 1}] [expr {2*$n + 3}]] \
		       [list [expr {2*$n - 1}] [expr {2*$n + 1}]]] \
		  [list \
		       [list [expr {2*$n + 1}] [expr {2*$n - 1}]] \
		       [list [expr {2*$n + 3}] [expr {2*$n + 1}]]]] 0
	set l_ [$e ref]
	set n_ [expr {$n + 1}]
    }

    # l -
    #  	Returns the argument S0'(x)
    method l {} {
	return $l_
    }

    # r -
    #	Returns the next convergent, constructing it if necessary
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::TanWorker new $l_ $n_] ref]
	}
	return $r_
    }

    # dump -
    #	Displays this object for debugging
    method dump {} {
	return TanWorker([$l_ dump],[expr {$n_-1}])
    }
}

# tan --
#	Tangent of an exact real argument
#
# Parameters:
#	x - Quantity whose tangent is to be computed.
#
# Results:
#	Returns the tangent
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.

proc math::exact::function::tan {x} {
    variable ::math::exact::iszer

    # If |x| < 1, then we use Potts's formula for the tangent.
    # If |x| > 1/2, then we compute y = tan(x/2) and then use the
    # trig identity tan(x) = 2*y/(1-y**2), recognizing that the latter
    # expression can be expressed as a bihomography applied to y and itself,
    # allowing opreal to do the job.
    # If neither can be proven, we perform a digit exchange to get more
    # information.
    # tan((2*n+1)*pi/2), for n an integer, is a well-behaved pole.
    # In particular, 1/tan(pi/2) will correctly return zero.

    $x ref
    if {[$x refinesM $iszer]} {
	set xx [$x applyM $iszer]
	set result [math::exact::Tstrict new {{{1 2} {1 0}} {{-1 0} {-1 2}}} 0 \
			$xx [TanWorker new $xx]]
    } elseif {[$x refinesM {{2 2} {-1 1}}]} {
	set xover2 [$x applyM {{1 0} {0 2}}]
	set tanxover2 [function::tan $xover2]
	set result [opreal {{{0 -1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2]
    } else {
	set result [function::tan [$x absorb]]
    }
    $x unref
    return $result
}

# sin --
#	Sine of an exact real argument
#
# Parameters:
#	x - Quantity whose sine is to be computed.
#
# Results:
#	Returns the sine
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.

proc math::exact::function::sin {x} {
    $x ref
    set tanxover2 [tan [$x applyM {{1 0} {0 2}}]]
    $x unref
    return [opreal {{{0 1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2]
}

# cos --
#	Cosine of an exact real argument
#
# Parameters:
#	x - Quantity whose cosine is to be computed.
#
# Results:
#	Returns the cosine
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.

proc math::exact::function::cos {x} {
    $x ref
    set tanxover2 [tan [$x applyM {{1 0} {0 2}}]]
    $x unref
    return [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $tanxover2 $tanxover2]
}

# AtanWorker --
#
#	Auxiliary function for arctangent of an exact real argument
#
# This class develops the second and subsequent convergents of the continued
# fraction expansion in Potts's paper. The argument lies in [-1,1].

oo::class create math::exact::AtanWorker {
    superclass math::exact::T
    variable t_ l_ r_ n_
    # Constructor -
    #
    # Parameters:
    #	e - S0(x) = (x-1)/(x+1), where we wish to evaluate atan(x).
    #   n - Ordinal position of the convergent
    constructor {e {n 1}} {
	next [list \
		  [list \
		       [list [expr {2*$n + 1}] [expr {$n + 1}]] \
		       [list $n 0]] \
		  [list \
		       [list 0 $n] \
		       [list [expr {$n + 1}] [expr {2*$n + 1}]]]] 0
	set l_ [$e ref]
	set n_ [expr {$n + 1}]
    }

    # l -
    #  	Returns the argument S0(x)
    method l {} {
	return $l_
    }

    # r -
    #	Returns the next convergent, constructing it if necessary
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::AtanWorker new $l_ $n_] ref]
	}
	return $r_
    }

    # dump -
    #	Displays this object for debugging
    method dump {} {
	return AtanWorker([$l_ dump],[expr {$n_-1}])
    }
}

# atanS0 -
#
#	Evaluates the arctangent of S0(x) = (x-1)/(x+1)
#
# Parameters:
#	x - Exact real argumetn
#
# Results:
#	Returns atan((x-1)/(x+1))
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.

proc math::exact::atanS0 {x} {
    return [opreal {{{1 2} {1 0}} {{-1 0} {-1 2}}} $x [AtanWorker new $x]]
}

# atan -
#
#	Arctangent of an exact real
#
# Parameters:
#	x - Exact real argument
#
# Results:
#	Returns atan(x)
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# atan(1/0) is undefined and may cause an infinite loop.

proc math::exact::function::atan {x} {

    # TODO - find p/q close to the real number x - can be done by
    #        getting a few digits - and do
    # arctan(p/q + eps) = arctan(p/q) + arctan(q**2*eps/(p*q*eps+p**q+q**2))
    # using [$eps applyM] to compute the argument of the second arctan

    variable ::math::exact::szer 
    variable ::math::exact::spos 
    variable ::math::exact::sinf 
    variable ::math::exact::sneg
    variable ::math::exact::pi

    # Four cases, depending on which octant the arctangent lies in.
    
    $x ref
    lassign [$x getSignAndMagnitude] signum mag
    $mag ref
    $x unref
    set aS0x [atanS0 $mag]
    $mag unref
    if {$signum eq $szer} {
	# -1 < x < 1
	return $aS0x
    } elseif {$signum eq $spos} {
	# x > 0
	return [opreal {{{0 0} {4 0}} {{1 0} {0 4}}} $aS0x $pi]
    } elseif {$signum eq $sinf} {
	# x < -1 or x > 1
	return [opreal {{{0 0} {2 0}} {{1 0} {0 2}}} $aS0x $pi]
    } elseif {$signum eq $sneg} {
	# x < 0
	return [opreal {{{0 0} {4 0}} {{-1 0} {0 4}}} $aS0x $pi]
    } else {
	# can't happen
	error "wrong sign: $signum"
    }
}

# asinreal -
#
#	Computes the arcsine of an exact real argument.
#
# The arcsine is computed from the arctangent by trigonometric identities
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# The function is defined only over the open interval (-1,1). Outside
# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite
# loop or stack overflow.

proc math::exact::asinreal {x} {
    variable iszer
    variable pi

    # Potts's formula doesn't work here - it's singular at zero,
    # and undefined over negative numbers. But some messing with the
    # algebra gives us:
    #     asin(S0*x) = 2*atan(sqrt(x)) - pi/2
    #                = (4*atan(sqrt(x)) - pi) / 2
    # which is continuous and computable over (-1..1)
    $x ref
    set y [$x applyM $iszer]
    $x unref
    return [opreal {{{0 0} {-1 0}} {{4 0} {0 2}}} \
		$pi \
		[function::atan [function::sqrt $y]]]
}

interp alias {} math::exact::function::asin {} math::exact::asinreal

# acosreal -
#
#	Computes the arccosine of an exact real argument.
#
# The arccosine is computed from the arctangent by trigonometric identities
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# The function is defined only over the open interval (-1,1). Outside
# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite
# loop or stack overflow.

proc math::exact::acosreal {x} {
    variable iszer
    variable pi
    # Potts's formula doesn't work here - it's singular at zero,
    # and undefined over negative numbers. But some messing with the
    # algebra gives us:
    # acos(S0*x) = pi - 2*atan(sqrt(x))
    $x ref
    set y [$x applyM $iszer]
    $x unref
    return [opreal {{{0 0} {1 0}} {{-2 0} {0 1}}} \
		$pi \
		[function::atan [function::sqrt $y]]]
}

interp alias {} math::exact::function::acos {} math::exact::acosreal

# sinhreal, coshreal, tanhreal --
#
#	Hyperbolic functions of exact real arguments
#
# Parameter:
#	x - Argument at which to evaluate the function
#
# Results:
#	Return sinh(x), cosh(x), tanh(x), respectively.
#
# These functions are all Consumers with respect to their arguments and
# Constructors with respect to their results, returning zero-ref objects.
#
# The three functions are well defined over all the finite reals, but
# are ill-behaved at infinity.

proc math::exact::sinhreal {x} {
    set expx [function::exp $x]
    return [opreal {{{1 0} {0 1}} {{0 1} {-1 0}}} $expx $expx]
}

interp alias {} math::exact::function::sinh {} math::exact::sinhreal

proc math::exact::coshreal {x} {
    set expx [function::exp $x]
    return [opreal {{{1 0} {0 1}} {{0 1} {1 0}}} $expx $expx]
}

interp alias {} math::exact::function::cosh {} math::exact::coshreal

proc math::exact::tanhreal {x} {
    set expx [function::exp $x]
    return [opreal {{{1 1} {0 0}} {{0 0} {-1 1}}} $expx $expx]
}

interp alias {} math::exact::function::tanh {} math::exact::tanhreal

# asinhreal, acoshreal, atanhreal --
#
#	Inverse hyperbolic functions of exact real arguments
#
# Parameter:
#	x - Argument at which to evaluate the function
#
# Results:
#	Return asinh(x), acosh(x), atanh(x), respectively.
#
# These functions are all Consumers with respect to their arguments and
# Constructors with respect to their results, returning zero-ref objects.
#
# asinh is defined over the entire real number line, with the exception
# of the point at infinity.  acosh is defined over x > 1 (NOT x=1, which
# is singular). atanh is defined over (-1..1) (NOT the endpoints of the
# interval.)

proc math::exact::asinhreal {x} {
    # domain (-Inf .. Inf)
    # asinh(x) = log(x + sqrt(x**2 + 1))
    $x ref
    set retval [function::log \
		    [+real $x \
			 [function::sqrt \
			      [opreal {{{1 0} {0 0}} {{0 0} {1 1}}} $x $x]]]]
    $x unref
    return $retval
}

interp alias {} math::exact::function::asinh {} math::exact::asinhreal

proc math::exact::acoshreal {x} {
    # domain (1 .. Inf)
    # asinh(x) = log(x + sqrt(x**2 - 1))
    $x ref
    set retval [function::log \
		    [+real $x \
			 [function::sqrt \
			      [opreal {{{1 0} {0 0}} {{0 0} {-1 1}}} $x $x]]]]
    $x unref
    return $retval
}

interp alias {} math::exact::function::acosh {} math::exact::acoshreal

proc math::exact::atanhreal {x} {
    # domain (-1 .. 1)
    variable sinf
    #atanh(x) = log(Sinf[x])/2

    $x ref
    set y [$x applyM $sinf]
    $y ref
    $x unref
    set z [function::log $y]
    $z ref
    $y unref
    set retval [$z applyM {{1 0} {0 2}}]
    $z unref
    return $retval
}

interp alias {} math::exact::function::atanh {} math::exact::atanhreal

# EWorker --
#
#	Evaluates the constant 'e' (the base of the natural logarithms
#
# This class is intended to be singleton. It returns 2.71828.... (the
# base of the natural logarithms) as an exact real.

oo::class create math::exact::EWorker {
    superclass math::exact::M
    variable m_ e_ n_

    # Constructor accepts the number of the continuant.

    constructor {{n 0}} {
	set n_ [expr {$n + 1}]
	next [list [list [expr {2*$n + 2}] [expr {2*$n + 1}]] \
		  [list [expr {2*$n + 1}] [expr {2*$n}]]]
    }
    destructor {
	next
    }

    # e -- Returns the next continuant after this one.

    method e {} {
	if {![info exists e_]} {
	    set e_ [[math::exact::EWorker new $n_] ref]
	}
	return $e_
    }

    # Formats this object for debugging
    
    method dump {} {
	return M($m_,EWorker($n_))
    }
}

# PiWorker --
#
#	Auxiliary object used in evaluating pi.
#
# This class evaluates the second and subsequent continuants in
# Ramanaujan's formula for sqrt(10005)/pi. The Potts paper presents
# the algorithm, almost without commentary.

oo::class create math::exact::PiWorker {
    superclass math::exact::M
    variable m_ e_ n_

    # Constructor accepts the number of the continuant

    constructor {{n 1}} {
	set n_ [expr {$n + 1}]
	set nsq [expr {$n * $n}]
	set n4 [expr {$nsq * $nsq}]
	set b [expr {(2*$n - 1) * (6*$n - 5) * (6*$n - 1)}]
	set c [expr {$b * (545140134 * $n + 13591409)}]
	set d [expr {$b * ($n + 1)}]
	set e [expr {10939058860032000 * $n4}]
	set p [list [expr {$e - $d - $c}] [expr {$e + $d + $c}]]
	set q [list [expr {$e + $d - $c}] [expr {$e - $d + $c}]]
	next [list $p $q]
    }
    destructor {
	next
    }

    # e --
    #
    #	Returns the next continuant after this one

    method e {} {
	if {![info exists e_]} {
	    set e_ [[math::exact::PiWorker new $n_] ref]
	}
	return $e_
    }

    # dump --
    #
    #	Formats this object for debugging
    method dump {} {
	return M($m_,PiWorker($n_))
    }
}

# Log2Worker --
#
#	Auxiliary class for evaluating log(2).
#
# This object represents the constant (1-2*log(2))/(log(2)-1), the
# product of the second, third, ... nth LFT's of the representation of log(2).

oo::class create math::exact::Log2Worker {
    superclass math::exact::M
    variable m_ e_ n_

    # Constructor accepts the number of the continuant
    constructor {{n 1}} {
	set n_ [expr {$n + 1}]
	set a [expr {3*$n + 1}]
	set b [expr {2*$n + 1}]
	set c [expr {4*$n + 2}]
	set d [expr {3*$n + 2}]
	next [list [list $a $b] [list $c $d]]
    }
    destructor {
	next
    }

    # e --
    #
    #	Returns the next continuant after this one.
    method e {} {
	if {![info exists e_]} {
	    set e_ [[math::exact::Log2Worker new $n_] ref]
	}
	return $e_
    }

    # dump --
    #
    #	Displays this object for debugging
    method dump {} {
	return M($m_,Log2Worker($n_))
    }
}

# Sqrtrat --
#
#	Class that evaluates the square root of a rational

oo::class create math::exact::Sqrtrat {
    superclass math::exact::M
    variable m_ e_ a_ b_ c_

    # Constructor accepts the numerator and denominator. The third argument
    # is an intermediate result for the second and later continuants.
    constructor {a b {c {}}} {
	if {$c eq {}} {
	    set c [expr {$a - $b}]
	}
	set d [expr {2*($b-$a) + $c}]
	if {$d >= 0} {
	    next $math::exact::dneg
	    set a_ [expr {4 * $a}]
	    set b_ $d
	    set c_ $c
	} else {
	    next $math::exact::dpos
	    set a_ [expr {-$d}]
	    set b_ [expr {4 * $b}]
	    set c_ $c
	}
    }
    destructor {
	next
    }

    # e --
    #
    #	Returns the next continuant after this one.
    method e {} {
	if {![info exists e_]} {
	    set e_ [[math::exact::Sqrtrat new $a_ $b_ $c_] ref]
	}
	return $e_
    }

    # dump --
    #	Formats this object for debugging.
    
    method dump {} {
	return "M($m_,Sqrtrat($a_,$b_,$c_))"
    }
}

# math::exact::rat**int --
#
#	Service procedure to raise a rational number to an integer power
#
# Parameters:
#	a - Numerator of the rational
#	b - Denominator of the rational
#	n - Power
#
# Preconditions:
#	n is not zero, a is not zero, b is positive.
#
# Results:
#	Returns the power
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.

proc math::exact::rat**int {a b n} {
    if {$n < 0} {
	return [V new [list [expr {$b**(-$n)}] [expr {$a**(-$n)}]]]
    } elseif {$n > 0} {
	return [V new [list [expr {$a**($n)}] [expr {$b**($n)}]]]
    } else { ;# zero power shouldn't get here
	return [V new {1 1}]
    }
}

# math::exact::rat**rat --
#
#	Service procedure to raise a rational number to a rational power
#
# Parameters:
#	a - Numerator of the base
#	b - Denominator of the base
#	m - Numerator of the exponent
#	n - Denominator of the exponent
#
# Results:
#	Returns the power as an exact real
#
# Preconditions:
#	a != 0, b > 0, m != 0, n > 0
#
# This procedure is a Constructor with respect to its result

proc math::exact::rat**rat {a b m n} {

    # It would be attractive to special case this, but the real mechanism
    # works as well for the moment.

    tailcall real**rat [V new [list $a $b]] $m $n
}

# PowWorker --
#
#	Auxiliary class to compute
#		((p/q)**n + b)**(m/n),
#	where 0<m<n are integers, p, q are integers, b is an exact real

oo::class create math::exact::PowWorker {
    superclass math::exact::T

    variable t_ l_ r_ delta_

    # Self-method: start
    #
    #	Sets up to find z**(m/n) (1 <= m < n), with
    #   z = (p/q)**n + y for integers p and q.
    #
    # Parameters:
    #	p - numerator of the estimated nth root
    #	q - denominator of the estimated nth root
    #	y - residual of the quantity whose root is being extracted
    #	m - numerator of the exponent
    #	n - denominator of the exponent (1 <= m < n)
    #
    # Results:
    #	Returns the power, as an exact real.
    
    self method start {p q y m n} {
	set pm [expr {$p ** $m}]
	set pnmm [expr {$p ** ($n-$m)}]
	set pn [expr {$pm * $pnmm}]
	set qm [expr {$q ** $m}]
	set qnmm [expr {$q ** ($n-$m)}]
	set qn [expr {$qm * $qnmm}]

	set t0 \
	    [list \
		 [list \
		      [list [expr {$m * $qn}] [expr {$n*$pnmm*$qm}]] \
		      [list 0 [expr {($n-$m) * $qn}]]] \
		 [list \
		      [list [expr {2 * $n * $pn}] 0] \
		      [list [expr {2 * ($n-$m) * $pm * $qnmm}] 0]]]
	set t1 \
	    [list \
		 [list \
		      [list [expr {$n * $qn}] [expr {2*$n * $pnmm*$qm}]] \
		      [list 0 [expr {$n * $qn}]]] \
		 [list \
		      [list [expr {4 * $n * $pn}] 0] \
		      [list [expr {2 * $n * $pm * $qnmm}] 0]]]
    
	set tinit \
	    [list \
		 [list \
		      [list [expr {$m * $qn}] 0] \
		      [list 0 0]] \
		 [list \
		      [list [expr {$n * $pn}] [expr {$n * $pnmm * $qm}]] \
		      [list \
			   [expr {($n-$m) * $pm * $qnmm}] \
			   [expr {($n-$m) * $qn}]]]]
	$y ref
	set result [$y applyTLeft $tinit [my new $t0 $t1 $y]]
	$y unref
	return $result
    }

    # Constructor --
    #
    # Parameters:
    #	t0 - Tensor from the previous iteration
    #	delta - Increment to use
    #	y - Residual
    #
    # The constructor should not be called directly. Instead, the 'start'
    # method should be called to initialize the iteration

    constructor {t0 delta y} {
	set t [math::exact::tadd $t0 $delta]
	next $t 0
	set l_ [$y ref]
	set delta_ $delta
    }

    # l --
    #
    #	Returns the left subexpression: that is, the 'y' parameter
    method l {} {
	return $l_
    }

    # r --
    #
    #	Returns the right subexpression: that is, the next continuant,
    #	creating it if necessary
    method r {} {
	if {![info exists r_]} {
	    set r_ [[math::exact::PowWorker new $t_ $delta_ $l_] ref]
	}
	return $r_
    }

    method dump {} {
	set res "PowWorker($t_,$delta_,[$l_ dump],"
	if {[info exists r_]} {
	    append res [$r_ dump]
	} else {
	    append res ...
	}
	append res ")"
	return $res
    }
    
}

# math::exact::real**int --
#
#	Service procedure to raise a real number to an integer power.
#
# Parameters:
#	b - Number to exponentiate
#	e - Power to raise b to.
#
# Results:
#	Returns the power.
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.

proc math::exact::real**int {b e} {

    # Handle a negative power by raising the reciprocal of the base to
    # a positive power
    if {$e < 0} {
	set e [expr {-$e}]
	set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]]
    }
    
    # Reduce using square-and-add
    $b ref
    set result [V new {1 1}]
    while {$e != 0} {
	if {$e & 1} {
	    set result [$b * $result]
	    set e [expr {$e & ~1}]
	}
	if {$e == 0} break
	set b [K [[$b * $b] ref] [$b unref]]
	set e [expr {$e>>1}]
    }
    $b unref
    return $result
}

# math::exact::real**rat --
#
#	Service procedure to raise a real number to a rational power.
#
# Parameters -
#
#	b - The base to be exponentiated
#	m - The numerator of the power
#	n - The denominator of the power
#
# Preconditions:
#	n > 0
#
# Results:
#	Returns the power.
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.

proc math::exact::real**rat {b m n} {

    variable isneg
    variable ispos

    # At this point we need to know the sign of b. Try to determine it.
    # (This can be an infinite loop if b is zero or infinite)
    while {1} {
	if {[$b refinesM $ispos]} {
	    break
	} elseif {[$b refinesM $isneg]} {
	    # negative number to rational power. The denominator must be
	    # odd.
	    if {$n % 2 == 0} {
		return -code error -errorCode {MATH EXACT NEGATIVEPOWREAL} \
		    "negative number to real power"
	    } else {
		set b [K [[$b ref] U-] [$b unref]]
		tailcall [math::exact::real**rat $b $m $n] U-
	    }
	} else {
	    # can't determine positive or negative yet
	    $b ref
	    set nextb [$b absorb]
	    set result [math::exact::real**rat $nextb $m $n]
	    $b unref
	    return $result
	}
    }
	    
    # Handle b(-m/n) by taking (1/b)(m/n)
    if {$m < 0} {
	set m [expr {-$m}]
	set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]]
    }

    # Break m/n apart into integer and fractional parts
    set i [expr {$m / $n}]
    set m [expr {$m % $n}]

    # Do the integer part
    $b ref
    set result [real**int $b $i]
    if {$m == 0} {
	# We really shouldn't get here if m/n is an integer, but don't choke
	$b unref
	return $result
    }

    # Come up with a rational approximation for b**(1/n)
    # real: exp(log(b)/n)
    set approx [[math::exact::function::exp \
		     [[math::exact::function::log $b] \
			  * [math::exact::V new [list 1 $n]]]] ref]
    lassign [$approx getSignAndMagnitude] partial rest
    $rest ref
    $approx unref
    while {1} {
	lassign [$rest getLeadingDigitAndRest 0] digit y
	$y ref
	$rest unref
	set partial [math::exact::mscale [math::exact::mdotm $partial $digit]]
	set rest $y
	lassign $partial pq rs
	lassign $pq p q
	lassign $rs r s
	set qrn [expr {($q*$r)**$n}]
	set t1 [expr {$qrn}]
	set t2 [expr {2 * ($p*$s)**$n}]
	set t3 [expr {4 * $qrn}]
	if {$t1 < $t2 && $t2 < $t3} break
    }
    $y unref
    
    # Get the residual

    lassign [math::exact::vscale [list $r $s]] p q
    set xn [math::exact::V new [list [expr {$p**$n}] [expr {$q**$n}]]]
    set y [$b - $xn]; $b unref

    # Launch a worker process to perform quasi-Newton iteration to refine
    # the result
    
    set retval [$result * [math::exact::PowWorker start $p $q $y $m $n]]
    return $retval
}

# pi --
#
#	Returns pi as an exact real

proc math::exact::function::pi {} {
    variable ::math::exact::pi
    return $pi
}

# e --
#
#	Returns e as an exact real

proc math::exact::function::e {} {
    variable ::math::exact::e
    return $e
}

# math::exact::signum1 --
#
#	Tests an argument's sign.
#
# Parameters:
#	x - Exact real number to test.
#
# Results:
#	Returns -1 if x < -1. Returns 1 if x > 1. May return -1, 0 or 1 if
#	-1 <= x <= 1.
#
# Equality of exact reals is not decidable, so a weaker version of comparison
# testing is needed. This function provides the guts of such a thing. It
# returns an approximation to the signum function that is exact for
# |x| > 1, and arbitrary for |x| < 1.
#
# A typical use would be to replace a test p < q with a test that
# looks like signum1((p-q) / epsilon) == -1. This test is decidable,
# and becomes a test that is true if p < q - epsilon, false if p > q+epsilon,
# and indeterminate if p lies within epsilon of q.  This test is enough for
# most checks for convergence or for selecting a branch of a function.
#
# This function is not decidable if it is not decidable whether x is finite.

proc math::exact::signum1 {x} {
    variable ispos
    variable isneg
    variable iszer
    while {1} {
	if {[$x refinesM $ispos]} {
	    return 1
	} elseif {[$x refinesM $isneg]} {
	    return -1
	} elseif {[$x refinesM $iszer]} {
	    return 0
	} else {
	    set x [$x absorb]
	}
    }
}

# math::exact::abs1 -
#
#	Test whether an exact real is 'small' in absolute value.
#
# Parameters:
#	x - Exact real number to test
#
# Results:
#	Returns 0 if |x| is 'close to zero', 1 if |x| is 'far from zero'
#	and either 0, or 1 if |x| is close to 1.
#
# This function is another useful comparator for convergence testing.
# It returns a three-way indication:
#	|x| < 1/2 : 0
#	|x| > 1 : 1
#	1/2 <= |x| <= 2 : May return -1, 0, 1
#
# This function is useful for convergence testing, where it is desired
# to know whether a given value has an absolute value less than a given
# tolerance.

proc math::exact::abs1 {x} {
    variable iszer
    while 1 {
	if {[$x refinesM $iszer]} {
	    return 0
	} elseif {[$x refinesM {{2 1} {-2 1}}]} {
	    return 1
	} else {
	    set x [$x absorb]
	}
    }
}

namespace eval math::exact {

    # Constant vectors, matrices and tensors

    ;				# the identity matrix
    variable identity		{{ 1  0} { 0  1}}
    ;				# sign matrices for exact floating point
    variable spos		$identity
    variable sinf		{{ 1 -1} { 1  1}}
    variable sneg		{{ 0  1} {-1  0}}
    variable szer		{{ 1  1} {-1  1}}

    ;				# inverses of the sign matrices
    variable ispos		[reverse $spos]
    variable isinf		[reverse $sinf]
    variable isneg		[reverse $sneg]
    variable iszer		[reverse $szer]

    ;				# digit matrices for exact floating point
    variable dneg		{{ 1  1} { 0  2}}
    variable dzer		{{ 3  1} { 1  3}}
    variable dpos		{{ 2  0} { 1  1}}

    ;				# inverses of the digit matrices
    variable idneg 		[reverse $dneg]
    variable idzer		[reverse $dzer]
    variable idpos		[reverse $dpos]

    ;				# aritmetic operators as tensors
    variable tadd		{{{ 0  0} { 1  0}} {{ 1  0} { 0  1}}}
    variable tsub		{{{ 0  0} { 1  0}} {{-1  0} { 0  1}}}
    variable tmul		{{{ 1  0} { 0  0}} {{ 0  0} { 0  1}}}
    variable tdiv		{{{ 0  0} { 1  0}} {{ 0  1} { 0  0}}}

    proc init {} {

	# Variables for fundamental constants e, pi, log2

	variable e [[EWorker new] ref]

	set worker \
	    [[math::exact::Mstrict new {{6795705 213440} {6795704 213440}} \
		  [math::exact::PiWorker new]] ref]
	variable pi [[/real [function::sqrt [V new {10005 1}]] $worker] ref]
	$worker unref

	set worker [[Log2Worker new] ref]
	variable log2 [[$worker applyM {{1 1} {1 2}}] ref]
	$worker unref

    }
    init
    rename init {}

    namespace export exactexpr abs1 signum1
}

package provide math::exact 1.0

#-----------------------------------------------------------------------

Added modules/math/exact.test.































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
# exact.test --
#
#    Test cases for the math::exact package
#
# Copyright (c) 2015 by Kevin B. Kenny
#
# See the file "license.terms" for information on usage and redistribution of
# this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
#-----------------------------------------------------------------------------

source [file join \
	    [file dirname [file dirname [file join [pwd] [info script]]]] \
	    devtools testutilities.tcl]

testsNeedTcl     8.6
testsNeedTcltest 2.3

support {
    use     grammar_aycock/aycock-runtime.tcl grammar::aycock::runtime grammar::aycock
    useKeep grammar_aycock/aycock-debug.tcl   grammar::aycock::debug   grammar::aycock
    useKeep grammar_aycock/aycock-build.tcl   grammar::aycock          grammar::aycock
}
testing {
    useLocal exact.tcl             math::exact
}

package require Tcl             8.6
package require grammar::aycock 1.0
package require math::exact     1.0

#-----------------------------------------------------------------------------

namespace eval math::exact::test {

    namespace import ::math::exact::exactexpr

    proc signum {x} {expr {($x > 0) - ($x < 0)}}

    proc leakBaseline {} {
	variable leakBaseline
	foreach o [info commands ::oo::Obj*] {
	    dict set leakBaseline $o {}
	}
	return
    }

    proc leakCheck {} {
	variable leakBaseline
	set trouble {}
	set sep {}
	foreach o [lsort -dictionary [info commands ::oo::Obj*]] {
	    if {![dict exists $leakBaseline $o]} {
		if {[info object isa typeof $o math::exact::counted]} {
		    append trouble $sep "Leaked counted object " \
			$o ": " [$o dump] \n
		} else {
		    append trouble $sep "Leaked object " $o \n
		}
	    }
	}
	if {$trouble ne {}} {
	    return -code error -errorcode {LEAKCHECK} $trouble
	}
	return
    }
			  
    namespace import ::tcltest::test

    test math::exact-1.0 {unit test gcd} {
	math::exact::gcd 2
    } 2
    test math::exact-1.1 {unit test gcd} {
	math::exact::gcd 2 0
    } 2
    test math::exact-1.2 {unit test gcd} {
	math::exact::gcd 0 2
    } 2
    test math::exact-1.3 {unit test gcd} {
	math::exact::gcd 2 3
    } 1
    test math::exact-1.4 {unit test gcd} {
	math::exact::gcd 3 2
    } 1
    test math::exact-1.5 {unit test gcd} {
	math::exact::gcd 21 12
     } 3
    test math::exact-1.6 {unit test gcd} {
	math::exact::gcd 12 21
    } 3
    test math::exact-1.5 {unit test gcd} {
	math::exact::gcd 21 12
     } 3
    test math::exact-1.6 {unit test gcd} {
	math::exact::gcd 12 21
    } 3
    test math::exact-1.7 {unit test gcd} {
	math::exact::gcd 108 66
     } 6
    test math::exact-1.8 {unit test gcd} {
	math::exact::gcd 66 108
    } 6
    test math::exact-1.9 {unit test gcd} {
	math::exact::gcd 66 108 88
    } 2

    test math::exact-2.0 {unit test transpose matrix} {
	math::exact::trans {{0 1} {2 3}}
    } {{0 2} {1 3}}
    test math::exact-2.1 {unit test transpose 2x2x2} {
	math::exact::trans {{{0 1} {2 3}} {{4 5} {6 7}}}
    } {{{0 1} {4 5}} {{2 3} {6 7}}}

    test math::exact-3.1 {unit test determinant} {
	math::exact::determinant {{2 3} {5 7}}
    } -1

    test math::exact-4.1 {unit test reverse} {
	math::exact::reverse {{2 3} {5 7}}
    } {{7 -3} {-5 2}}

    test math::exact-5.1 {unit test veven} {
	math::exact::veven {2 4}
    } 1
    test math::exact-5.2 {unit test veven} {
	math::exact::veven {2 3}
    } 0

    test math::exact-6.1 {unit test meven} {
	math::exact::meven {{2 4} {6 8}}
    } 1
    test math::exact-6.2 {unit test meven} {
	math::exact::meven {{2 3} {6 8}}
    } 0

    test math::exact-7.1 {unit test teven} {
	math::exact::teven {{{2 4} {6 8}} {{10 12} {14 16}}}
    } 1
    test math::exact-7.2 {unit test teven} {
	math::exact::teven {{{2 4} {6 8}} {{10 13} {14 16}}}
    } 0

    test math::exact-8.1 {unit test vhalf} {
	math::exact::vhalf {6 8}
    } {3 4}

    test math::exact-9.1 {unit test mhalf} {
	math::exact::mhalf {{6 8} {10 12}}
    } {{3 4} {5 6}}

    test math::exact-10.1 {unit test thalf} {
	math::exact::thalf {{{6 8} {10 12}} {{14 16} {18 20}}}
    } {{{3 4} {5 6}} {{7 8} {9 10}}}

    test math::exact-11.1 {unit test sign} {
	set trouble {}
	set sep \n
	for {set a -1} {$a <= 1} {incr a} {
	    for {set b -1} {$b <= 1} {incr b} {
		if {$a ==0 && $b == 0} {
		    set sb 0
		} elseif {$a == 0} {
		    set sb [signum $b]
		} elseif {$b == 0} {
		    set sb [signum $a]
		} elseif {$a/$b < 0} {
		    set sb 0
		} else {
		    set sb [signum $a]
		}
		set is [math::exact::sign [list $a $b]]
		if {$is != $sb} {
		    append trouble "sign(" $a "," $b ") is " $is \
			", should be " $sb "\n"
		}
	    }
	}
	set trouble
    } {}

    test math::exact-12.1 {unit test vrefines} {
	set trouble {}
	set sep {}
	for {set a -1} {$a <= 1} {incr a} {
	    for {set b -1} {$b <= 1} {incr b} {
		if {$a ==0 && $b == 0} {
		    set sb 0
		} elseif {$a == 0} {
		    set sb 1
		} elseif {$b == 0} {
		    set sb 1
		} elseif {$a/$b < 0} {
		    set sb 0
		} else {
		    set sb 1
		}
		set is [math::exact::vrefines [list $a $b]]
		if {$is != $sb} {
		    append trouble $sep "vrefines(" $a "," $b ") is " $is \
			", should be " $sb
		    set sep \n
		}
	    }
	}
	set trouble
    } {}

    test math::exact-13.1 {unit test mrefines} {
	math::exact::mrefines {{1 2} {3 4}}
    } 1
    test math::exact-13.2 {unit test mrefines} {
	math::exact::mrefines {{1 2} {-3 -4}}
    } 0
    test math::exact-13.3 {unit test mrefines} {
	math::exact::mrefines {{-1 -2} {-3 -4}}
    } 1
    test math::exact-13.4 {unit test mrefines} {
	math::exact::mrefines {{-1 2} {-3 4}}
    } 0

    test math::exact-14.1 {unit test trefines} {
	math::exact::trefines {{{1 2} {3 4}} {{5 6} {7 8}}}
    } 1
    test math::exact-14.2 {unit test trefines} {
	math::exact::trefines {{{-1 -2} {-3 -4}} {{-5 -6} {-7 -8}}}
    } 1
    test math::exact-14.3 {unit test trefines} {
	math::exact::trefines {{{-1 2} {-3 4}} {{-5 6} {-7 8}}}
    } 0
    test math::exact-14.4 {unit test trefines} {
	math::exact::trefines {{{1 2} {3 4}} {{5 6}} {{-7 -8}}}
    } 0
    test math::exact-14.5 {unit test trefines} {
	math::exact::trefines {{{1 2} {3 4}} {{-5 -6}} {{-7 -8}}}
    } 0
    test math::exact-14.6 {unit test trefines} {
	math::exact::trefines {{{1 2} {-3 -4}} {{-5 -6}} {{-7 -8}}}
    } 0

    test math::exact-15.1 {unit test vlessv} {
	set intervals {
	    {-1 0} {-2 1} {-1 1} {-1 2} {0 1} {2 4} {3 3} {14 7} {1 0}
	}
	set trouble {}
	set sep {}
	set i 0
	foreach a $intervals {
	    set j 0
	    foreach b $intervals {
		set is [math::exact::vlessv $a $b]
		if {[lindex $a 1] == 0 && [lindex $b 1] == 0} {
		    set sb 0
		} else {
		    set sb [expr {$i < $j}]
		}
		if {$is != $sb} {
		    append trouble $sep "vlessv(" $a ";" $b ") is " $is \
			" should be " $sb
		    set sep \n
		}
		incr j
	    }
	    incr i
	}
	set trouble
    } {}
    
    test math::exact-16.1 {unit test mlessm - also tests mlessv} {
	set intervals {
	    {-2 1} {-1 1} {-1 2} {0 1} {2 4} {3 3} {14 7} {1 0}
	}
	set trouble {}
	set sep {}
	set i 0
	foreach a $intervals {
	    set j $i
	    foreach b [lrange $intervals $i end] {
		set k 0
		foreach c $intervals {
		    set l $k
		    foreach d [lrange $intervals $k end] {
			if {[lindex $b 1] == 0 && [lindex $c 1] == 0} {
			    set sb 0
			} else {
			    set sb [expr {$j < $k}]
			}
			set is [math::exact::mlessm [list $b $a] [list $d $c]]
			if {$is != $sb} {
			    append trouble $sep "mlessm(" $a "," $b ";" \
				$c "," $d ") is " $is \
				" should be " $sb " -- " \
				[list i $i j $j k $k l $k]
			    set sep \n
			}
			incr l
		    }
		    incr k
		}
		incr j
	    }
	    incr i
	}
	set trouble
    } {}

    test math::exact-17.1 {unit test vscale} {
	math::exact::vscale {2 3}
    } {2 3}
    test math::exact-17.2 {unit test vscale} {
	math::exact::vscale {4 6}
    } {2 3}
    test math::exact-17.1 {unit test vscale} {
	math::exact::vscale {8 12}
    } {2 3}

    test math::exact-18.1 {unit test mscale} {
	math::exact::mscale {{2 3} {4 5}}
    } {{2 3} {4 5}}
    test math::exact-18.2 {unit test mscale} {
	math::exact::mscale {{4 6} {8 10}}
    } {{2 3} {4 5}}
    test math::exact-18.3 {unit test mscale} {
	math::exact::mscale {{8 12} {16 20}}
    } {{2 3} {4 5}}
    
    test math::exact-19.1 {unit test tscale} {
	math::exact::tscale {{{2 3} {4 5}} {{6 7} {8 9}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}
    test math::exact-19.2 {unit test tscale} {
	math::exact::tscale {{{4 6} {8 10}} {{12 14} {16 18}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}
    test math::exact-10.3 {unit test tscale} {
	math::exact::tscale {{{8 12} {16 20}} {{24 28} {32 36}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}
    
    test math::exact-20.1 {unit test vreduce} {
	math::exact::vreduce {2 3}
    } {2 3}
    test math::exact-20.2 {unit test vreduce} {
	math::exact::vreduce {4 6}
    } {2 3}
    test math::exact-20.1 {unit test vreduce} {
	math::exact::vreduce {8 12}
    } {2 3}

    test math::exact-21.1 {unit test mreduce} {
	math::exact::mreduce {{2 3} {4 5}}
    } {{2 3} {4 5}}
    test math::exact-21.2 {unit test mreduce} {
	math::exact::mreduce {{4 6} {8 10}}
    } {{2 3} {4 5}}
    test math::exact-21.3 {unit test mreduce} {
	math::exact::mreduce {{8 12} {16 20}}
    } {{2 3} {4 5}}
    
    test math::exact-22.1 {unit test treduce} {
	math::exact::treduce {{{2 3} {4 5}} {{6 7} {8 9}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}
    test math::exact-22.2 {unit test treduce} {
	math::exact::treduce {{{4 6} {8 10}} {{12 14} {16 18}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}
    test math::exact-22.3 {unit test treduce} {
	math::exact::treduce {{{8 12} {16 20}} {{24 28} {32 36}}}
    } {{{2 3} {4 5}} {{6 7} {8 9}}}

    test math::exact-23.1 {unit test mdotv} {
	math::exact::mdotv {{2 3} {4 5}} {10 1}
    } {24 35}

    test math::exact-24.1 {unit test mdotm} {
	math::exact::mdotm {{2 3} {4 5}} {{1000 10} {100 1}}
    } {{2040 3050} {204 305}}

    test math::exact-25.1 {unit test mdott} {
	math::exact::mdott {{1000 10} {100 1}} {{{2 3} {4 5}} {{6 7} {8 9}}}
    } {{{2300 23} {4500 45}} {{6700 67} {8900 89}}}

    test math::exact-26.1 {unit test tleftv} {
	math::exact::tleftv {{{2 3} {4 5}} {{6 7} {8 9}}} {10 1}
    } {{26 37} {48 59}}

    test math::exact-27.1 {unit test trightv} {
	math::exact::trightv {{{2 3} {4 5}} {{6 7} {8 9}}} {10 1}
    } {{24 35} {68 79}}

    test math::exact-28.1 {unit test tleftm} {
	math::exact::tleftm {{{2 3} {4 5}} {{6 7} {8 9}}} {{1000 10} {100 1}}
    } {{{2060 3070} {4080 5090}} {{206 307} {408 509}}}

    test math::exact-29.1 {unit test trightm} {
	math::exact::trightm {{{2 3} {4 5}} {{6 7} {8 9}}} {{1000 10} {100 1}}
    } {{{2040 3050} {204 305}} {{6080 7090} {608 709}}}

    test math::exact-30.1 {unit test mdisjointm} {
	set intervals {
	    {-2 1} {-1 1} {-1 2} {0 1} {2 4} {3 3} {14 7} {1 0}
	}
	set trouble {}
	set sep {}
	set i 0
	foreach a $intervals {
	    set j $i
	    foreach b [lrange $intervals $i end] {
		set k 0
		foreach c $intervals {
		    set l $k
		    foreach d [lrange $intervals $k end] {
			set sb [expr {$j < $k || $l < $i}]
			set is [math::exact::mdisjointm \
				    [list $b $a] [list $d $c]]
			if {$is != $sb} {
			    append trouble $sep "mdisjointm(" $a "," $b ";" \
				$c "," $d ") is " $is \
				" should be " $sb " -- " \
				[list i $i j $j k $k l $k]
			    set sep \n
			}
			incr l
		    }
		    incr k
		}
		incr j
	    }
	    incr i
	}
	set trouble
    } {}

    test math::exact-31.0 {mAsFloat, rational} {
	math::exact::mAsFloat {{1 3} {1 3}}
    } 1/3

    test math::exact-31.1 {mAsFloat, scientificNotation, mantissa, eFormat} {
	set p 0
	set q 1
	set res {}
	for {set i 0} {$i < 16} {incr i} {
	    set r [expr {$p + $q}]
	    if {$q * $q > $p * $r} {
		set m [list [list $q $p] \
			   [list $r $q]]
	    } else {
		set m [list [list $r $q] \
			   [list $q $p]]
	    }
	    lappend res [math::exact::mAsFloat $m]
	    set p $q
	    set q $r
	}
	set res
    } [list \
	   Undetermined 1.e0 1.e0 1.6e0 1.6e0 1.6e0 1.62e0 1.61e0 1.61e0 \
	   1.618e0 1.618e0 1.6180e0 1.6180e0 1.61803e0 1.61803e0 1.61803e0]
    
    test math::exact-31.2 {mAsFloat, scientificNotation, mantissa, eFormat} {
	set p 0
	set q 1
	set res {}
	for {set i 0} {$i < 16} {incr i} {
	    set r [expr {$p + $q}]
	    if {$q * $q > $p * $r} {
		set m [list [list [expr {1000*$q}] $p] \
			   [list [expr {1000*$r}] $q]]
	    } else {
		set m [list [list [expr {1000*$r}] $q] \
			   [list [expr {1000*$q}] $p]]
	    }
	    lappend res [math::exact::mAsFloat $m]
	    set p $q
	    set q $r
	}
	set res
    } [list \
	   Undetermined 1.e3 1.e3 1.6e3 1.6e3 1.6e3 1.62e3 1.61e3 1.61e3 \
	   1.618e3 1.618e3 1.6180e3 1.6180e3 1.61803e3 1.61803e3 1.61803e3]

    test math::exact-31.3 {mAsFloat, scientificNotation, mantissa, eFormat} {
	set p 0
	set q 1
	set res {}
	for {set i 0} {$i < 16} {incr i} {
	    set r [expr {$p + $q}]
	    if {$q * $q > $p * $r} {
		set m [list [list $q [expr {1000*$p}]] \
			   [list $r [expr {1000*$q}]]]
	    } else {
		set m [list [list $r [expr {1000*$q}]] \
			   [list $q [expr {1000*$p}]]]
	    }
	    lappend res [math::exact::mAsFloat $m]
	    set p $q
	    set q $r
	}
	set res
    } [list \
	   Undetermined 1.e-3 1.e-3 1.6e-3 1.6e-3 \
	   1.6e-3 1.62e-3 1.61e-3 1.61e-3 \
	   1.618e-3 1.618e-3 1.6180e-3 1.6180e-3 \
	   1.61803e-3 1.61803e-3 1.61803e-3]
    
    test math::exact-31.4 {mAsFloat, scientificNotation, mantissa, eFormat} {
	set p 0
	set q 1
	set res {}
	for {set i 0} {$i < 16} {incr i} {
	    set r [expr {$p + $q}]
	    set mq [expr {-$q}]
	    set mr [expr {-$r}]
	    if {$q * $q > $p * $r} {
		set m [list [list $mq $p] \
			   [list $mr $q]]
	    } else {
		set m [list [list $mr $q] \
			   [list $mq $p]]
	    }
	    lappend res [math::exact::mAsFloat $m]
	    set p $q
	    set q $r
	}
	set res
    } [list \
	   Undetermined -2.e0 -2.e0 -1.6e0 \
	   -1.7e0 -1.7e0 -1.62e0 -1.62e0 \
	   -1.62e0 -1.618e0 -1.618e0 -1.6180e0 \
	   -1.6181e0 -1.61803e0 -1.61804e0 -1.61804e0]

    test math::exact-31.5 {mAsFloat, 0/0} {
	math::exact::mAsFloat {{0 0} {0 0}}
    } NaN

    test math::exact-31.6 {mAsFloat, infinity} {
	math::exact::mAsFloat {{1 0} {1 0}}
    } Inf

    test math::exact-31.7 {mAsFloat, zero} {
	math::exact::mAsFloat {{0 1} {0 1}}
    } 0

    test math::exact-31.8 {mAsFloat, integer} {
	math::exact::mAsFloat {{2 1} {2 1}}
    } 2

    test math::exact-31.9 {mAsFloat, reverse signs} {
	list [math::exact::mAsFloat {{2 -1} {2 -1}}] \
	    [math::exact::mAsFloat {{-2 -1} {-2 -1}}]
    } {-2 2}

    test math::exact-40.1 {simple expr} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {1}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }
    
    test math::exact-40.2 {unary plus} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {+ 1}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }
    
    test math::exact-40.3 {unary minus} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {- 1}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-1 -9.999999999999999e-1}
    }

    test math::exact-40.4 {product} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 * 3}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {6 6.000000000000000e0}
    }

    test math::exact-40.5 {quotient} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 / 3}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {2/3 6.666666666666666e-1}
    }

    test math::exact-40.6 {associativity of /} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 / 3 / 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1/6 1.6666666666666667e-1}
    }

    test math::exact-40.7 {associativity of */} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 / 3 * 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {8/3 2.6666666666666667e0}
    }

    test math::exact-40.8 {associativity of */} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 * 3 / 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {3/2 1.5000000000000000e0}
    }

    test math::exact-40.9 {sum} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 + 3}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {5 5.000000000000000e0}
    }

    test math::exact-40.10 {difference} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 - 3}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-1 -9.999999999999999e-1}
    }

    test math::exact-40.11 {associativity of -} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 - 3 - 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-5 -5.000000000000000e0}
    }

    test math::exact-40.12 {associativity of +-} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 - 3 + 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {3 3.0000000000000001e0}
    }

    test math::exact-40.13 {associativity of +-} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 + 3 - 4}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }

    test math::exact-40.14 {precedence of +*} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {3 + 5 * 7}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {38 3.800000000000000e1}
    }

    test math::exact-40.15 {precedence of +*} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {3 * 5 + 7}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {22 2.200000000000000e1}
    }

    test math::exact-40.16 {parentheses} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(2 + 3) * 5}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {25 2.500000000000000e1}
    }

    test math::exact-40.17 {V + E} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 + real(-3/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.4000000000000000e0 1.4000000000000000e0}
    }

    test math::exact-40.18 {V - E} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {2 - real(3/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.4000000000000000e0 1.4000000000000000e0}
    }

    test math::exact-40.19 {E / E} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {real(3/5)/real(2/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.5000000000000000e0 1.5000000000000000e0}
    }

    test math::exact-40.20 {E + V} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {real(3/2) + (2/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.9000000000000000e0 1.9000000000000000e0}
    }
	
    test math::exact-40.21 {E - V} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {real(3/2) - (2/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.1000000000000000e0 1.1000000000000000e0}
    }

    test math::exact-40.22 {E * V} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {real(3/2) * (2/5)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {6.0000000000000001e-1 6.0000000000000001e-1}
    }
	
    test math::exact-40.23 {E / V} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {real(3/2) / (5/2)}] ref]
	    set result [list [$v asPrint 57] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {6.0000000000000001e-1 6.0000000000000001e-1}
    }

    test math::exact-40.24 {lexical error} {
	-setup leakBaseline
	-body {
	    set result [list [catch {exactexpr {2 ! 1}} m] $m]
	    leakCheck
	    set result
	}
	-match glob
	-result {1 {invalid character*}}
    }
	
    test math::exact-40.25 {syntax error} {
	-setup leakBaseline
	-body {
	    set result [list [catch {exactexpr {2 $ 1}} m] $m]
	    leakCheck
	    set result
	}
	-match glob
	-result {1 {syntax error*}}
    }
	
    test math::exact-41.1 {square root} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(25/16)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    #leakCheck
	    set result
	}
	-result {1 1.2500000000000000e0}
    }

    test math::exact-41.2 {square root} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.4142135623730950e0}
    }

    test math::exact-41.3 {square root} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(2000000)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.4142135623731e3}
    }

    test math::exact-41.4 {square root} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(2 / 1000000)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.41421356237309e-3}
    }

    test math::exact-41.5 {square root} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(sqrt(1/81))}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 3.3333333333333333e-1}
    }

    test math::exact-41.6 {square root of negative rational} {
	-setup {
	    leakBaseline
	    catch {unset v}
	}
	-body {
	    set v [[exactexpr {sqrt(-1)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    unset v
	    set result
	}
	-cleanup {
	    if {[info exists v]} {$v unref}
	}
	-match glob
	-returnCodes error
	-result {*negative argument*}
    }

    test math::exact-41.7 {square root of negative real} {
	-setup {
	    leakBaseline
	    catch {unset v}
	}
	-body {
	    set v [[exactexpr {sqrt(-sqrt(81))}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    unset v
	    set result
	}
	-cleanup {
	    if {[info exists v]} {$v unref}
	}
	-match glob
	-returnCodes error
	-result {*negative argument*}
    }

    test math::exact-41.8 {square root, cached result} {
	-setup leakBaseline
	-body {
	    set x [[exactexpr {sqrt(2)}] ref]
	    set y [[exactexpr {$x * $x}] ref]
	    $x unref
	    set result [list [$y asFloat 57] [$y asFloat 57]]
	    $y unref
	    leakCheck
	    set result
	}
	-result {2.0000000000000000e0 2.0000000000000000e0}
    }
    
    test math::exact-42.1 {exponential} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {exp(1)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 2.7182818284590452e0}
    }

    test math::exact-42.2 {exponential} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {exp(4)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.45981500331442e1}
    }

    test math::exact-42.3 {exponential} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {exp(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }

    test math::exact-43.1 {logarithm} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {log(1)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-43.2 {logarithm} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {log(2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 6.931471805599453e-1}
    }

    test math::exact-43.3 {logarithm} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {log(1/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -6.931471805599454e-1}
    }

    test math::exact-43.4 {logarithm} {
	-setup {
	    # Consume digits from math::exact::log2 to avoid appearance of
	    # a leak in its cache
	    $math::exact::log2 asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {log(4)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.3862943611198906e0}
    }

    test math::exact-43.5 {logarithm} {
	-setup {
	    # Consume digits from math::exact::log2 to avoid appearance of
	    # a leak in its cache
	    $math::exact::log2 asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {log(1/4)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -1.3862943611198907e0}
    }

    test math::exact-43.6 {logarithm} {
	-setup {
	    # Consume digits from math::exact::log2 to avoid appearance of
	    # a leak in its cache
	    $math::exact::log2 asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {log(exp(10))}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e1}
    }

    test math::exact-43.7 {logarithm} {
	-setup {
	    # Consume digits from math::exact::log2 to avoid appearance of
	    # a leak in its cache
	    $math::exact::log2 asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {log(exp(1/10))}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e-1}
    }

    test math::exact-43.8 {logarithm of negative argument} {
	-setup {
	    leakBaseline
	    catch {unset v}
	}
	-body {
	    set v [[exactexpr {log(-sqrt(81))}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    unset v
	    set result
	}
	-cleanup {
	    if {[info exists v]} {$v unref}
	}
	-match glob
	-returnCodes error
	-result {*negative argument*}
    }

    test math::exact-44.1 {pi} {
	-setup {
	    # Consume digits from math::exact::pi to avoid appearance of
	    # a leak in its cache
	    $math::exact::pi asFloat 3000
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {pi()}] ref]
	    set result [$v asFloat 3000]
	    $v unref
	    leakCheck
	    list [string range $result 0 4] \
		[string first 999999 $result] \
		[string range $result end-1 end]
	}
	-result {3.141 763 e0}
    }
    
    test math::exact-44.2 {Ramanujan constant} {
	-setup {
	    # Consume digits from math::exact::pi to avoid appearance of
	    # a leak in its cache
	    $math::exact::pi asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {exp(pi()*sqrt(163))}] ref]
	    set result [$v asFloat 160]
	    $v unref
	    leakCheck
	    set result
	}
	-result 2.625374126407687439999999999992e17
    }
	

    test math::exact-45.1 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.2 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(pi()/4)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }

    test math::exact-45.3 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(pi()/-4)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -1.0000000000000000e0}
    }

    test math::exact-45.4 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(pi()/3)-sqrt(3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.5 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(-pi()/3)+sqrt(3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.6 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {1/tan(pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.7 {tangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {tan(pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 Undetermined}
    }

    test math::exact-46.1 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-46.2 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(pi()/6)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }

    test math::exact-46.3 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(-pi()/6)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -5.000000000000000e-1}
    }

    test math::exact-46.4 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.0000000000000000e0}
    }

    test math::exact-46.5 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(-pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -1.0000000000000000e0}
    }

    test math::exact-46.6 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(pi())}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-46.7 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(-pi())}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-46.8 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(13*pi()/6)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }

    test math::exact-46.9 {sine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sin(-13*pi()/6)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -5.000000000000000e-1}
    }
    
    test math::exact-47.1 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 9.999999999999999e-1}
    }

    test math::exact-47.2 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(pi()/3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }

    test math::exact-47.3 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(-pi()/3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }

    test math::exact-47.4 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-47.5 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(-pi()/2)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-47.6 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(pi())}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -1.0000000000000000e0}
    }

    test math::exact-47.7 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(-pi())}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 -1.0000000000000000e0}
    }

    test math::exact-47.8 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(7*pi()/3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }

    test math::exact-47.9 {cosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {cos(-7*pi()/3)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 5.000000000000000e-1}
    }
    
    test math::exact-45.1 {arctangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {atan(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.2 {arctangent} {
	-setup leakBaseline
	-body {
	    # Hack to get $szer as a sign matrix
	    set v [[exactexpr {atan(pi()-pi())}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.3 {arctangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {4*atan(1)-pi()}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }
	
    test math::exact-45.4 {arctangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {4*atan(-1)+pi()}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-45.5 {arctangent} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {atan(tan(157/100))}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 1.5700000000000000e0}
    }
	    
    test math::exact-45.6 {arctangent, cached} {
	-setup leakBaseline
	-body {
	    set u [[exactexpr {atan(1)}] ref]
	    set v [[exactexpr {$u + $u + $u + $u}] ref]
	    $u unref
	    set result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 3.1415926535897933e0
    }

    test math::exact-46.1 {arcsine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {asin(0)}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-46.2 {arcsine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {asin(1/2)-pi()/6}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-46.3 {arcsine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {asin(-1/2)+pi()/6}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-47.1 {arccosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {acos(0)-pi()/2}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-47.2 {arccosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {acos(1/2)-pi()/3}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }

    test math::exact-47.3 {arccosine} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {acos(-1/2)-2*pi()/3}] ref]
	    set result [list [$v refcount] [$v asFloat 57]]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1 0e-18}
    }
    
    test math::exact-48.1 {hyperbolic functions} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {sinh(0)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {cosh(0)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {tanh(0)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {0e-18 1.0000000000000000e0 0e-18}
    }

    test math::exact-48.2 {hyperbolic functions} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {sinh(1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {cosh(1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {tanh(1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1.1752011936438014e0 1.5430806348152437e0 7.615941559557649e-1}
    }

    test math::exact-48.3 {hyperbolic functions} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {sinh(-1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {cosh(-1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {tanh(-1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-1.1752011936438015e0 1.5430806348152437e0 -7.615941559557649e-1}
    }

    test math::exact-49.1 {asinh} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {asinh(-1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {asinh(0)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {asinh(1)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-8.813735870195431e-1 0e-18 8.813735870195430e-1}
    }
	
    test math::exact-50.1 {acosh} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {acosh(3/2)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {acosh(2)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {acosh(3)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {9.624236501192069e-1 1.3169578969248167e0 1.7627471740390860e0}
    }

    test math::exact-51.1 {atanh} {
	-setup leakBaseline
	-body {
	    set result {}
	    set v [[exactexpr {atanh(-1/2)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {atanh(0)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    set v [[exactexpr {atanh(1/2)}] ref]
	    lappend result [$v asFloat 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {-5.4930614433405485e-1 0e-18 5.4930614433405485e-1}
    }
    
    test math::exact-52.1 {e} {
	-setup {
	    # don't report cached digits of e as a leak
	    $math::exact::e asPrint 100;
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {e()}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 2.7182818284590452e0
    }
    
    test math::exact-52.2 {e} {
	-setup {
	    # don't report cached digits of e as a leak
	    $math::exact::e asPrint 100;
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {log(e())}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1.0000000000000000e0
    }

    test math::exact-52.2 {e} {
	-setup {
	    # don't report cached digits of e as a leak
	    $math::exact::e asPrint 100;
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {asinh((e() - 1/e()) / 2)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1.0000000000000000e0
    }

    test math::exact-53.1 {real**real} {
	-setup {
	    # Consume digits from math::exact::e and math::exact::log2
	    # to avoid appearance of a leak in the cache
	    $math::exact::e asFloat 100
	    $math::exact::log2 asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {e() ** log(2)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 2.0000000000000000e0
    }

    test math::exact-53.2 {rational**real} {
	-setup {
	    # Consume digits from math::exact::e
	    # to avoid appearance of a leak in the cache
	    $math::exact::e asFloat 100
	    leakBaseline
	}
	-body {
	    set v [[exactexpr {2 ** e()}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 6.580885991017921e0
    }

    test math::exact-53.3 {real**1} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4) ** 1}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 2.0000000000000000e0
    }

    test math::exact-53.4 {real**-1} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4) ** (-1)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 5.000000000000000e-1
    }

    test math::exact-53.5 {real**0} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4) ** 0}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1
    }

    test math::exact-53.6 {real**+int} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4)**2}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 4.000000000000000e0
    }

    test math::exact-53.7 {real**+int} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4)**5}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 3.200000000000000e1
    }

    test math::exact-53.6 {real**-int} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4)**-2}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 2.5000000000000000e-1
    }

    test math::exact-53.7 {real**+int} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(4)**-5}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 3.125000000000000e-2
    }

    test math::exact-53.8 {real**rational} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(64)**(10/3)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1.02400000000000e3
    }

    test math::exact-53.9 {real**rational} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {sqrt(64)**(1/-3)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 5.000000000000000e-1
    }
	
    test math::exact-53.10 {real**integer, accidental} {
	-setup leakBaseline
	-body {
	    set v [[math::exact::real**rat [exactexpr {3}] 2 1] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 9
    }
	
    test math::exact-53.11 {zero to zero power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {0**0}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result "zero to zero power"
    }

    test math::exact-53.12 {zero to infinite power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {0**(1/0)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result "zero to infinite power"
    }
	
    test math::exact-53.13 {zero to rational power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {0**(1/2)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 0
    }
	
    test math::exact-53.14 {infinity to zero power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(1/0)**0}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result "infinity to zero power"
    }
	
    test math::exact-53.15 {infinity to negative power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(1/0)**-1}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 0
    }
	
    test math::exact-53.15 {infinity to positive power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(1/0)**1}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result Inf
    }
	
    test math::exact-53.16 {rational to zero power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(2/3)**0}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1
    }

    test math::exact-53.17 {rational power of negative real argument} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(-sqrt(64))**(1/3)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result -2.0000000000000000e0
    }

    test math::exact-53.18 {rational power of argument near zero} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {log(exp(1/8))**(1/3)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 5.000000000000000e-1
    }

    test math::exact-53.19 {negative real to real power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(-sqrt(4))**(1/2)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result "negative number to real power"
    }
	
    test math::exact-53.20 {rational to zero power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(2/3)**0}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 1
    }

    test math::exact-53.21 {rational to positive integer power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(2/3)**2}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 4/9
    }
	
    test math::exact-53.22 {rational to negative integer power} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(2/3)**-2}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result 9/4
    }

    test math::exact-53.23 {rational to rational} {
	-setup leakBaseline
	-body {
	    set v [[exactexpr {(-8)**(1/3)}] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result -2.0000000000000000e0
    }

    test math::exact-53.24 {real to 0/0} {
	-setup leakBaseline
	-body {
	    set bad [[math::exact::V new {0 0}] ref]
	    set v [[exactexpr {sqrt(2)**$bad}] ref]
	    $bad unref
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result {zero divided by zero}
    }
	
    test math::exact-53.24 {rational to 0/0} {
	-setup leakBaseline
	-body {
	    set bad [[math::exact::V new {0 0}] ref]
	    set v [[exactexpr {(1/2)**$bad}] ref]
	    $bad unref
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-returnCodes error
	-result {zero divided by zero}
    }
	
    test math::exact-53.26 {unit test - rat**int (2/3)**0} {
	-setup leakBaseline
	-body {
	    set v [[math::exact::rat**int 2 3 0] ref]
	    set result [$v asPrint 57]
	    $v unref
	    leakCheck
	    set result
	}
	-result {1}
    }

    test math::exact-53.27 {rational powers - normalize base and exponent} {
	-setup leakBaseline
	-body {
	    set p [[math::exact::V new {-2 -1}] ref]
	    set q [[math::exact::V new {-3 -1}] ref]
	    set r [[exactexpr {$p ** $q}] ref]
	    $p unref
	    $q unref
	    set result [$r asPrint 57]
	    $r unref
	    leakCheck
	    set result
	}
	-result 8
    }

    test math::exact-54.1 {abs1, signum1} {
	-setup leakBaseline
	-body {
	    set p [[exactexpr {0}] ref]
	    set q [[exactexpr {2}] ref]
	    while 1 {
		set t [[exactexpr {($q-$p) * 10**36}] ref]
		set f [math::exact::abs1 $t]; $t unref
		if {!$f} break
		set x [[exactexpr {($p+$q)/2}] ref]
		set resid [[exactexpr {$x*$x-2}] ref]
		set t [[exactexpr {$resid * 10**36}] ref]
		if {[math::exact::signum1 $t] > 0} {
		    $q unref; set q $x
		} else {
		    $p unref; set p $x
		}
		$t unref; $resid unref
	    }
	    set result [$p asFloat 100]
	    $p unref
	    $q unref
	    leakCheck
	    set result
	}
	-result 1.41421356237309504880168872421e0
    }

    # following are demos that I don't know where to put, yet

    if 0 {
    set p 1
	for {set i 0} {$i < 20} {incr i} {
	    set f [expr {sin(0.01 * $p* acos(-1))}]
	    set v [[exactexpr "sin($p * pi() / 100)"] ref]
	    set a [$v asPrint 57]
	    set r [expr {$f - $a}]
	    puts "i: $i p: $p float: $f exact: $a difference: $r"
	    $v unref
	    set p [expr {11 * $p}]
    }
    }

    if 0 {
	for {set x 100} {$x <= 12200} {incr x 100} {
	    set ex [[exactexpr $x] ref]
	    puts "x $x ex [$ex asPrint 57]"
	    set fa [expr {-(double($x)**-4)}]
	    set ea [[exactexpr {-($ex**-4)}] ref]
	    puts "fa $fa ea [$ea asPrint 57]"
	    set fb [expr {exp($fa)}]
	    set eb [[exactexpr {exp($ea)}] ref]
	    puts "fb $fb eb [$eb asPrint 120]"
	    set fc [expr {log($fb)}]
	    set ec [[exactexpr {log($eb)}] ref]
	    puts "fc $fc ec [$ec asPrint 120]"
	    catch {expr {(-$fc) ** -0.25}} ff
	    set ef [[exactexpr {(-$ec)**(-1/4)}] ref]
	    puts [format "kahan's function: %s %g" $ff [$ef asFloat 28]]
	    $ef unref
	    $ec unref
	    $eb unref
	    $ea unref
	    $ex unref
	}
    }

    if 0 {
	set x0 4.0
	set x1 4.25
	set ex0 [[exactexpr 4] ref]
	set ex1 [[exactexpr 4+25/100] ref]
	for {set i 1} {$i < 100} {incr i} {
	    set x2 [expr {108. - (815. - 1500. / $x0) / $x1}]
	    set x0 $x1
	    set x1 $x2
	    set ex2 [[exactexpr {108 - (815 - 1500 / $ex0) / $ex1}] ref]
	    $ex0 unref
	    set ex0 $ex1
	    set ex1 $ex2
	    puts "$i $x2 [$ex2 asFloat 57]"
	}
	$ex0 unref
	$ex1 unref
    }

    testsuiteCleanup

}

#-----------------------------------------------------------------------------

# End of test cases

testsuiteCleanup

# Exit if running this test standalone, to allow for Nagelfar coverage
if {$::argv0 eq [info script]} {
    exit
}

# Local Variables:
# mode: tcl
# End:

Changes to modules/math/pkgIndex.tcl.

25
26
27
28
29
30
31
32


if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded math::calculus::symdiff 1.0   [list source [file join $dir symdiff.tcl]]
package ifneeded math::bigfloat          2.0.2 [list source [file join $dir bigfloat2.tcl]]
package ifneeded math::numtheory         1.0   [list source [file join $dir numtheory.tcl]]
package ifneeded math::decimal           1.0.3 [list source [file join $dir decimal.tcl]]










|
>
25
26
27
28
29
30
31
32
33

if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded math::calculus::symdiff 1.0   [list source [file join $dir symdiff.tcl]]
package ifneeded math::bigfloat          2.0.2 [list source [file join $dir bigfloat2.tcl]]
package ifneeded math::numtheory         1.0   [list source [file join $dir numtheory.tcl]]
package ifneeded math::decimal           1.0.3 [list source [file join $dir decimal.tcl]]

if {![package vsatisfies [package require Tcl] 8.6]} {return}
package ifneeded math::exact             1.0   [list source [file join $dir exact.tcl]]