Attachment "aes.tcl" to
ticket [1267178fff]
added by
patthoyts
2005-08-28 07:50:38.
#!/usr/bin/tclsh
#
#
# Tcl-script for AES en-/description
#
# Feb/Mar 2005 by Thorsten Schloermann
#
#
#
#
# usage:
#
# ::aes::start <mode> <key> <(plain|cipher)text>
#
# <mode>: "d" for decryption, "e" for encryption, followed by
# the keylength of 128, 196 or 256, eg. "e128"
#
# <key>: hexadecimal representation of the key according to the keylength
#
# <(plain/cipher)text>: the plain- or ciphertext (in hexadecimal representation)
#
#
# -------------------------------------------------------------------------
#
# Some performance notes:
#
# All [expr] expressions should be braced - [expr {....}] unless they require
# an additional substitution step.
#
# Avoid excessive [expr] eg: if {[expr ...]} is better written if {(...)}
#
# You can copy arrays quickly using [array set tempState [array get state]]
#
# By bracing expressions and copying arrays as above I've halved the time taken
# to perform an encryption.
# The inverse sbox function is twice as fast if we use a table lookup.
#
# What we want to use is:
#
# set key [aes::Init key cbc] initialize state
# foreach chunk [datasource] {
# output [aes::Encrypt $key $chunk] en/decrypt data
# }
# aes::Final $key cleanup state
#
# We need to be able to specify ECB or CBC mode - I assume this is CBC at
# the moment (CHECK)
#
# -------------------------------------------------------------------------
package require Tcl 8.2
namespace eval ::aes {
variable version 0.3
# constants
# S-box
variable sbox {
0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5 0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76
0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0 0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0
0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc 0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15
0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a 0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75
0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0 0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84
0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b 0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf
0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85 0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8
0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5 0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2
0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17 0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88 0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb
0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c 0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79
0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9 0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08
0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6 0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a
0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e 0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e
0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94 0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf
0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68 0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16
}
# inverse S-box
variable xobs {
0x52 0x09 0x6a 0xd5 0x30 0x36 0xa5 0x38 0xbf 0x40 0xa3 0x9e 0x81 0xf3 0xd7 0xfb
0x7c 0xe3 0x39 0x82 0x9b 0x2f 0xff 0x87 0x34 0x8e 0x43 0x44 0xc4 0xde 0xe9 0xcb
0x54 0x7b 0x94 0x32 0xa6 0xc2 0x23 0x3d 0xee 0x4c 0x95 0x0b 0x42 0xfa 0xc3 0x4e
0x08 0x2e 0xa1 0x66 0x28 0xd9 0x24 0xb2 0x76 0x5b 0xa2 0x49 0x6d 0x8b 0xd1 0x25
0x72 0xf8 0xf6 0x64 0x86 0x68 0x98 0x16 0xd4 0xa4 0x5c 0xcc 0x5d 0x65 0xb6 0x92
0x6c 0x70 0x48 0x50 0xfd 0xed 0xb9 0xda 0x5e 0x15 0x46 0x57 0xa7 0x8d 0x9d 0x84
0x90 0xd8 0xab 0x00 0x8c 0xbc 0xd3 0x0a 0xf7 0xe4 0x58 0x05 0xb8 0xb3 0x45 0x06
0xd0 0x2c 0x1e 0x8f 0xca 0x3f 0x0f 0x02 0xc1 0xaf 0xbd 0x03 0x01 0x13 0x8a 0x6b
0x3a 0x91 0x11 0x41 0x4f 0x67 0xdc 0xea 0x97 0xf2 0xcf 0xce 0xf0 0xb4 0xe6 0x73
0x96 0xac 0x74 0x22 0xe7 0xad 0x35 0x85 0xe2 0xf9 0x37 0xe8 0x1c 0x75 0xdf 0x6e
0x47 0xf1 0x1a 0x71 0x1d 0x29 0xc5 0x89 0x6f 0xb7 0x62 0x0e 0xaa 0x18 0xbe 0x1b
0xfc 0x56 0x3e 0x4b 0xc6 0xd2 0x79 0x20 0x9a 0xdb 0xc0 0xfe 0x78 0xcd 0x5a 0xf4
0x1f 0xdd 0xa8 0x33 0x88 0x07 0xc7 0x31 0xb1 0x12 0x10 0x59 0x27 0x80 0xec 0x5f
0x60 0x51 0x7f 0xa9 0x19 0xb5 0x4a 0x0d 0x2d 0xe5 0x7a 0x9f 0x93 0xc9 0x9c 0xef
0xa0 0xe0 0x3b 0x4d 0xae 0x2a 0xf5 0xb0 0xc8 0xeb 0xbb 0x3c 0x83 0x53 0x99 0x61
0x17 0x2b 0x04 0x7e 0xba 0x77 0xd6 0x26 0xe1 0x69 0x14 0x63 0x55 0x21 0x0c 0x7d
}
}
#-------------------------------#
# ::aes::init #
# #
# setting up the needed data #
# #
#-------------------------------#
proc ::aes::init {m key text} {
variable state
variable keyArray
variable Nk
variable Nb
variable Nr
upvar $m mode
# the first char is the mode (e or d), the other 3 chars define the keylength
set bit [string range $mode 1 3]
set mode [string index $mode 0]
# put plain-/ciphertext bytewise into a list
set i 0
while {$i<[string length $text]} {
set cc [string range $text $i [expr $i+1]]
set hex [format "0x$cc"]
lappend textlist $hex
incr i 2
}
# put the textlist into an array
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
set state($i,$j) [lindex $textlist [expr {$i + ($j * 4)}]]
}
}
unset textlist
# Nk: columns of the key-array
# Nr: number of rounds (depends on key-length)
switch -- $bit {
"128" {set Nk 4; set Nr 10}
"192" {set Nk 6; set Nr 12}
"256" {set Nk 8; set Nr 14}
default {
return -code error "invalid key size \"$bit\":\
must be one of 128,192 or 256."
}
}
# Nb: columns of the text-block, is always 4 in AES
set Nb 4
# now put the key bytewise into an array
# if the keylength is smaller than desired, it will be padded with 0s
set i 0
set m 0
set hexDigits [expr {$bit / 4}]
while {$i < $hexDigits} {
set l 0
while {$l < 4} {
set value [string range $key $i [expr {$i+1}]]
if {[string length $value] == 0} {
append value 00
} elseif {[string length $value] == 1} {
append value 0
}
set keyArray($l,$m) [format "0x$value"]
incr i 2
incr l
}
incr m
}
}
#-----------------------------------------------#
# ::aes::SubFunc #
# #
# operates on the sbox, gets one byte #
# and returns the byte substituted by the sbox #
#-----------------------------------------------#
proc ::aes::SubFunc {byte} {
variable sbox
return [lindex $sbox $byte]
}
#---------------------------------#
# ::aes::InvSubFunc #
# #
# the inverse of SubFunc #
#---------------------------------#
proc ::aes::InvSubFunc {byte} {
variable xobs
return [lindex $xobs $byte]
}
#-----------------------------------#
# ::aes::GFMult* #
# #
# some needed functions for #
# multiplication in a Galois-field #
#-----------------------------------#
proc ::aes::GFMult2 {number} {
# this is a tabular representation of xtime (multiplication by 2)
# it is used instead of calculation to prevent timing attacks
set xtime {0x00 0x02 0x04 0x06 0x08 0x0a 0x0c 0x0e 0x10 0x12 0x14 0x16 0x18 0x1a 0x1c 0x1e
0x20 0x22 0x24 0x26 0x28 0x2a 0x2c 0x2e 0x30 0x32 0x34 0x36 0x38 0x3a 0x3c 0x3e
0x40 0x42 0x44 0x46 0x48 0x4a 0x4c 0x4e 0x50 0x52 0x54 0x56 0x58 0x5a 0x5c 0x5e
0x60 0x62 0x64 0x66 0x68 0x6a 0x6c 0x6e 0x70 0x72 0x74 0x76 0x78 0x7a 0x7c 0x7e
0x80 0x82 0x84 0x86 0x88 0x8a 0x8c 0x8e 0x90 0x92 0x94 0x96 0x98 0x9a 0x9c 0x9e
0xa0 0xa2 0xa4 0xa6 0xa8 0xaa 0xac 0xae 0xb0 0xb2 0xb4 0xb6 0xb8 0xba 0xbc 0xbe
0xc0 0xc2 0xc4 0xc6 0xc8 0xca 0xcc 0xce 0xd0 0xd2 0xd4 0xd6 0xd8 0xda 0xdc 0xde
0xe0 0xe2 0xe4 0xe6 0xe8 0xea 0xec 0xee 0xf0 0xf2 0xf4 0xf6 0xf8 0xfa 0xfc 0xfe
0x1b 0x19 0x1f 0x1d 0x13 0x11 0x17 0x15 0x0b 0x09 0x0f 0x0d 0x03 0x01 0x07 0x05
0x3b 0x39 0x3f 0x3d 0x33 0x31 0x37 0x35 0x2b 0x29 0x2f 0x2d 0x23 0x21 0x27 0x25
0x5b 0x59 0x5f 0x5d 0x53 0x51 0x57 0x55 0x4b 0x49 0x4f 0x4d 0x43 0x41 0x47 0x45
0x7b 0x79 0x7f 0x7d 0x73 0x71 0x77 0x75 0x6b 0x69 0x6f 0x6d 0x63 0x61 0x67 0x65
0x9b 0x99 0x9f 0x9d 0x93 0x91 0x97 0x95 0x8b 0x89 0x8f 0x8d 0x83 0x81 0x87 0x85
0xbb 0xb9 0xbf 0xbd 0xb3 0xb1 0xb7 0xb5 0xab 0xa9 0xaf 0xad 0xa3 0xa1 0xa7 0xa5
0xdb 0xd9 0xdf 0xdd 0xd3 0xd1 0xd7 0xd5 0xcb 0xc9 0xcf 0xcd 0xc3 0xc1 0xc7 0xc5
0xfb 0xf9 0xff 0xfd 0xf3 0xf1 0xf7 0xf5 0xeb 0xe9 0xef 0xed 0xe3 0xe1 0xe7 0xe5}
return [lindex $xtime $number]
}
proc ::aes::GFMult3 {number} {
# multliply by 2 (via GFMult2) and add the number again on the result (via XOR)
return [expr {$number ^ [GFMult2 $number]}]
}
proc ::aes::GFMult09 {number} {
# 09 is: (02*02*02) + 01
return [expr {[GFMult2 [GFMult2 [GFMult2 $number]]] ^ $number}]
}
proc ::aes::GFMult0b {number} {
# 0b is: (02*02*02) + 02 + 01
#return [expr [GFMult2 [GFMult2 [GFMult2 $number]]] ^ [GFMult2 $number] ^ $number]
#set g0 [GFMult2 $number]
return [expr {[GFMult09 $number] ^ [GFMult2 $number]}]
}
proc ::aes::GFMult0d {number} {
# 0d is: (02*02*02) + (02*02) + 01
set temp [GFMult2 [GFMult2 $number]]
return [expr {[GFMult2 $temp] ^ ($temp ^ $number)}]
}
proc ::aes::GFMult0e {number} {
# 0e is: (02*02*02) + (02*02) + 02
set temp [GFMult2 [GFMult2 $number]]
return [expr {[GFMult2 $temp] ^ ($temp ^ [GFMult2 $number])}]
}
#------------------------------------------#
# ::aes::KeyExpansion #
# #
# takes the initial key and expands it #
# to get a round key for each round of aes #
#------------------------------------------#
proc ::aes::KeyExpansion keyList {
variable expKey
variable Nk
variable Nr
variable Nb
# setting up the round constants
set RC [list 0x00 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 0x1b 0x36 0x6c 0xd8 0xab 0x4d]
array set key $keyList ;# put the passed keyList back to an array
set Ne [expr {$Nb * ($Nr + 1)}];# number of columns the expKey will have totally
# the following cascaded for-construct copies the initial key
# to the first columns of the expanded key
for {set j 0} {$j < $Nk} {incr j} {
for {set i 0} {$i < 4} {incr i} {
set expKey($i,$j) $key($i,$j)
}
}
# next follows the expansion of the initial key
#
for {set j $Nk} {$j < $Ne} {incr j} {
if {($j % $Nk) == 0} {
set jNk [expr {$j - $Nk}]
set jm1 [expr {$j - 1}]
set k0 $expKey(0,$jNk)
set k2 $expKey(1,$jm1)
set temp [expr {$k0 ^ [SubFunc $k2]}]
set expKey(0,$j) [expr {$temp ^ [lindex $RC [expr {$j / $Nk}]]}]
for {set i 1} {$i < 4} {incr i} {
set ki0 $expKey($i,$jNk)
set ki1 $expKey([expr {($i + 1) % 4}],$jm1)
set expKey($i,$j) [expr {$ki0 ^ [SubFunc $ki1]}]
}
} elseif {$Nk == 8 && ($j % $Nk) == 4} {
for {set i 0} {$i < 4} {incr i} {
set k0 $expKey($i,[expr {$j - $Nk}])
set k1 $expKey($i,[expr {$j - 1}])
set expKey($i,$j) [expr {$k0 ^ [SubFunc $k1]}]
}
} else {
for {set i 0} {$i < 4} {incr i} {
set k0 $expKey($i,[expr {$j - $Nk}])
set k1 $expKey($i,[expr {$j - 1}])
set expKey($i,$j) [expr {$k0 ^ $k1}]
}
}
}
}
#----------------------------------------------#
# ::aes::AddRoundKey #
# #
# calculates a new state by XOR-ing the actual #
# state with the corresponding round key #
#----------------------------------------------#
proc ::aes::AddRoundKey {round} {
variable state
variable expKey
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
set roundKeyIndex [expr {($round * 4) + $j}] ;# where to find roundKey in expKey
set result [expr {$state($i,$j) ^ $expKey($i,$roundKeyIndex)}]
# make the result hexadecimal
set state($i,$j) [format "%#x" $result]
}
}
}
#-----------------------------------------#
# ::aes::SubBytes #
# #
# substitutes each byte of the state #
# with bytes form the s-box (via SubFunc) #
#-----------------------------------------#
proc ::aes::SubBytes {} {
variable state
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
set state($i,$j) [SubFunc $state($i,$j)]
}
}
}
#-----------------------------------------#
# ::aes::InvSubBytes #
# #
# the inverse of SubBytes #
#-----------------------------------------#
proc ::aes::InvSubBytes {} {
variable state
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
set state($i,$j) [InvSubFunc $state($i,$j)]
}
}
}
#-------------------------------------------#
# ::aes::ShiftRows #
# #
# shifts the rows of the state to the left, #
# row 0 by 0 bytes, row 1 by 1 byte, etc. #
#-------------------------------------------#
proc ::aes::ShiftRows {} {
variable state
for {set i 1} {$i < 4} {incr i} {
for {set k 0} {$k < $i} {incr k} {
set temp $state($i,0)
for {set j 0} {$j < 3} {incr j} {
set state($i,$j) $state($i,[expr {$j + 1}])
}
set state($i,3) $temp
}
}
}
#-------------------------------------------#
# ::aes::InvShiftRows #
# #
# the inverse of ShiftRows #
#-------------------------------------------#
proc ::aes::InvShiftRows {} {
variable state
for {set i 1} {$i < 4} {incr i} {
for {set k 0} {$k < $i} {incr k} {
set temp $state($i,3)
for {set j 3} {$j > 0} {incr j -1} {
set state($i,$j) $state($i,[expr {$j - 1}])
}
set state($i,0) $temp
}
}
}
#-------------------------------------------#
# ::aes::MixColumns #
# #
# the actual state is multiplicated with a #
# fixed matrix, given by the standard #
#-------------------------------------------#
proc ::aes::MixColumns {} {
variable state
# copy state into a temp array
array set tempState [array get state]
# calculate the new state (with matrix multiplication)
for {set j 0} {$j < 4} {incr j} {
set state(0,$j) [expr {[GFMult2 $tempState(0,$j)] ^ \
[GFMult3 $tempState(1,$j)] ^ \
$tempState(2,$j) ^ \
$tempState(3,$j)}]
set state(1,$j) [expr {$tempState(0,$j) ^ \
[GFMult2 $tempState(1,$j)] ^ \
[GFMult3 $tempState(2,$j)] ^ \
$tempState(3,$j)}]
set state(2,$j) [expr {$tempState(0,$j) ^ \
$tempState(1,$j) ^ \
[GFMult2 $tempState(2,$j)] ^ \
[GFMult3 $tempState(3,$j)]}]
set state(3,$j) [expr {[GFMult3 $tempState(0,$j)] ^ \
$tempState(1,$j) ^ \
$tempState(2,$j) ^ \
[GFMult2 $tempState(3,$j)]}]
}
}
#-------------------------------------------#
# ::aes::InvMixColumns #
# #
# the inverse of MixColumns #
#-------------------------------------------#
proc ::aes::InvMixColumns {} {
variable state
# copy state into a temp array
array set tempState [array get state]
# calculate the new state (with matrix multiplication)
for {set j 0} {$j < 4} {incr j} {
set state(0,$j) [expr {[GFMult0e $tempState(0,$j)] ^ \
[GFMult0b $tempState(1,$j)] ^ \
[GFMult0d $tempState(2,$j)] ^ \
[GFMult09 $tempState(3,$j)]}]
set state(1,$j) [expr {[GFMult09 $tempState(0,$j)] ^ \
[GFMult0e $tempState(1,$j)] ^ \
[GFMult0b $tempState(2,$j)] ^ \
[GFMult0d $tempState(3,$j)]}]
set state(2,$j) [expr {[GFMult0d $tempState(0,$j)] ^ \
[GFMult09 $tempState(1,$j)] ^ \
[GFMult0e $tempState(2,$j)] ^ \
[GFMult0b $tempState(3,$j)]}]
set state(3,$j) [expr {[GFMult0b $tempState(0,$j)] ^ \
[GFMult0d $tempState(1,$j)] ^ \
[GFMult09 $tempState(2,$j)] ^ \
[GFMult0e $tempState(3,$j)]}]
}
}
#----------------------------------------#
# ::aes::start #
# #
# this is the start-procedure containing #
# the main algorithm for en-/decryption. #
#----------------------------------------#
proc ::aes::start {mode key text} {
variable keyArray
variable Nr
variable state
init mode $key $text
KeyExpansion [array get keyArray];# needs to convert the array to a list for passing
switch -- $mode {
e {
#
# encryption
#
AddRoundKey 0 ;# initial round
for {set i 1} {$i < $Nr} {incr i} {
SubBytes
ShiftRows
MixColumns
AddRoundKey $i
}
#final round
SubBytes
ShiftRows
AddRoundKey $Nr
# put final state into string and return it
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
lappend cipherlist [format "%#04x" $state($i,$j)]
}
}
foreach value $cipherlist {
append ciphertext [format "%02x" $value]
}
return $ciphertext
}
d {
#
# decryption
#
#final round first
AddRoundKey $Nr
InvShiftRows
InvSubBytes
# now backwards through the rounds
for {set i [expr $Nr - 1]} {$i > 0} {incr i -1} {
AddRoundKey $i
InvMixColumns
InvShiftRows
InvSubBytes
}
AddRoundKey 0
# put final state into string and return it
for {set j 0} {$j < 4} {incr j} {
for {set i 0} {$i < 4} {incr i} {
append plaintext [format "%02x" $state($i,$j)]
}
}
return $plaintext
}
}
}
# -------------------------------------------------------------------------
package provide aes $::aes::version
# -------------------------------------------------------------------------
# Local variables:
# mode: tcl
# indent-tabs-mode: nil
# End: