Tcl Source Code

Changes On Branch sebres-8-5-timerate
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch sebres-8-5-timerate Excluding Merge-Ins

This is equivalent to a diff from 523e36b232 to 1e109808c9

2019-03-08
04:05
merge sebres-8-5-timerate (prepare for consolidation with 8.5) check-in: ca89c4e5a7 user: sebres tags: sebres-8-5-event-perf-branch
2019-03-05
16:25
merge sebres-8-5-timerate (TIP#527 - New measurement facilities in TCL: New command timerate, perfor... check-in: 5c26638643 user: sebres tags: core-8-5-branch
16:13
merge updated 8.5-timerate branch Closed-Leaf check-in: 5246d61897 user: sebres tags: sebres-8-6-timerate
15:46
extended performance test-suite, since max-count is implemented in timerate, usage `::tclTestPerf::_... Closed-Leaf check-in: 1e109808c9 user: sebres tags: sebres-8-5-timerate
12:58
back-porting other performance test (timer-event.perf.tcl) from event-perf-branch check-in: c3a401ee2c user: sebres tags: sebres-8-5-timerate
2019-02-24
17:05
No longer run socket test-cases on travis with OSX: There are too many random failures/hangups. check-in: d5a91ad9d9 user: jan.nijtmans tags: core-8-5-branch
2019-02-12
18:41
merge 8.5 (note: to avoid too many conflicts, merged using `fossil merge --baseline 0055a16a8b core-... check-in: 0e846f3e6f user: sergey.brester tags: sebres-8-5-timerate
2019-01-28
16:15
merge 8.5 check-in: 99fa18a640 user: sebres tags: core-8-6-branch
16:12
fixes [4ee9b4f3e965a7da5133]: result of command `time` overflows by single iteration longer as 35 mi... check-in: 523e36b232 user: sebres tags: core-8-5-branch
2019-01-25
13:43
Do not assume that literals have a non-NULL bytes field; user code could purge it. check-in: da7b45afb4 user: dkf tags: core-8-5-branch

Added doc/timerate.n.


































































































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
'\"
'\" Copyright (c) 2005 Sergey Brester aka sebres.
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
.TH timerate n "" Tcl "Tcl Built-In Commands"
.so man.macros
.BS
'\" Note:  do not modify the .SH NAME line immediately below!
.SH NAME
timerate \- Time-related execution resp. performance measurement of a script
.SH SYNOPSIS
\fBtimerate \fIscript\fR \fI?time ?max-count??\fR
.sp
\fBtimerate \fI?-direct?\fR \fI?-overhead double?\fR \fIscript\fR \fI?time ?max-count??\fR
.sp
\fBtimerate \fI?-calibrate?\fR \fI?-direct?\fR \fIscript\fR \fI?time ?max-count??\fR
.BE
.SH DESCRIPTION
.PP
The first and second form will evaluate \fIscript\fR until the interval
\fItime\fR given in milliseconds elapses, or for 1000 milliseconds (1 second)
if \fItime\fR is not specified.
.sp
The parameter \fImax-count\fR could additionally impose a further restriction
by the maximal number of iterations to evaluate the script.
If \fImax-count\fR is specified, the evalution will stop either this count of
iterations is reached or the time is exceeded.
.sp
It will then return a canonical tcl-list of the form
.PP
.CS
\fB0.095977 \(mcs/# 52095836 # 10419167 #/sec 5000.000 nett-ms\fR
.CE
.PP
which indicates:
.IP \(bu
the average amount of time required per iteration, in microseconds ([\fBlindex\fR $result 0])
.IP \(bu
the count how many times it was executed ([\fBlindex\fR $result 2])
.IP \(bu
the estimated rate per second ([\fBlindex\fR $result 4])
.IP \(bu
the estimated real execution time without measurement overhead ([\fBlindex\fR $result 6])
.PP
Time is measured in elapsed time using the finest timer resolution as possible,
not CPU time.
This command may be used to provide information as to how well the script or a
tcl-command is performing and can help determine bottlenecks and fine-tune
application performance.
.TP
\fI-calibrate\fR
.
To measure very fast scripts as exact as posible the calibration process
may be required.

The \fI-calibrate\fR option is used to calibrate timerate, calculating the
estimated overhead of the given script as the default overhead for future 
invocations of the \fBtimerate\fR command. If the \fItime\fR parameter is not 
specified, the calibrate procedure runs for up to 10 seconds.
.TP
\fI-overhead double\fR
.
The \fI-overhead\fR parameter supplies an estimate (in microseconds) of the
measurement overhead of each iteration of the tested script. This quantity
will be subtracted from the measured time prior to reporting results.
.TP
\fI-direct\fR
.
The \fI-direct\fR option causes direct execution of the supplied script,
without compilation, in a manner similar to the \fBtime\fR command. It can be
used to measure the cost of \fBTcl_EvalObjEx\fR, of the invocation of canonical
lists, and of the uncompiled versions of bytecoded commands.
.PP
As opposed to the \fBtime\fR commmand, which runs the tested script for a fixed
number of iterations, the timerate command runs it for a fixed time.
Additionally, the compiled variant of the script will be used during the entire
measurement, as if the script were part of a compiled procedure, if the \fI-direct\fR
option is not specified. The fixed time period and possibility of compilation allow
for more precise results and prevent very long execution times by slow scripts, making
it practical for measuring scripts with highly uncertain execution times.

.SH EXAMPLE
Estimate how fast it takes for a simple Tcl \fBfor\fR loop (including
operations on variable \fIi\fR) to count to a ten:
.PP
.CS
# calibrate:
timerate -calibrate {}
# measure:
timerate { for {set i 0} {$i<10} {incr i} {} } 5000
.CE
.PP
Estimate how fast it takes for a simple Tcl \fBfor\fR loop, ignoring the
overhead for to perform ten iterations, ignoring the overhead of the management
of the variable that controls the loop:
.PP
.CS
# calibrate for overhead of variable operations:
set i 0; timerate -calibrate {expr {$i<10}; incr i} 1000
# measure:
timerate { for {set i 0} {$i<10} {incr i} {} } 5000
.CE
.PP
Estimate the speed of calculating the hour of the day using \fBclock format\fR only,
ignoring overhead of the portion of the script that prepares the time for it to
calculate:
.PP
.CS
# calibrate:
timerate -calibrate {}
# estimate overhead:
set tm 0
set ovh [lindex [timerate { incr tm [expr {24*60*60}] }] 0]
# measure using esimated overhead:
set tm 0
timerate -overhead $ovh {
    clock format $tm -format %H
    incr tm [expr {24*60*60}]; # overhead for this is ignored
} 5000
.CE
.SH "SEE ALSO"
time(n)
.SH KEYWORDS
script, timerate, time
.\" Local Variables:
.\" mode: nroff
.\" End:

Changes to generic/tclBasic.c.

199
200
201
202
203
204
205



206
207
208
209
210
211
212
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215







+
+
+







    {"pwd",		Tcl_PwdObjCmd,		NULL,			0},
    {"read",		Tcl_ReadObjCmd,		NULL,			1},
    {"seek",		Tcl_SeekObjCmd,		NULL,			1},
    {"socket",		Tcl_SocketObjCmd,	NULL,			0},
    {"source",		Tcl_SourceObjCmd,	NULL,			0},
    {"tell",		Tcl_TellObjCmd,		NULL,			1},
    {"time",		Tcl_TimeObjCmd,		NULL,			1},
#ifdef TCL_TIMERATE
    {"timerate",	Tcl_TimeRateObjCmd,	NULL,			1},
#endif
    {"unload",		Tcl_UnloadObjCmd,	NULL,			0},
    {"update",		Tcl_UpdateObjCmd,	NULL,			1},
    {"vwait",		Tcl_VwaitObjCmd,	NULL,			1},
    {NULL,		NULL,			NULL,			0}
};

/*
382
383
384
385
386
387
388
389

390
391
392
393
394
395
396
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399







-
+







{
    Interp *iPtr;
    Tcl_Interp *interp;
    Command *cmdPtr;
    const BuiltinFuncDef *builtinFuncPtr;
    const OpCmdInfo *opcmdInfoPtr;
    const CmdInfo *cmdInfoPtr;
    Tcl_Namespace *mathfuncNSPtr, *mathopNSPtr;
    Tcl_Namespace *nsPtr;
    union {
	char c[sizeof(short)];
	short s;
    } order;
#ifdef TCL_COMPILE_STATS
    ByteCodeStats *statsPtr;
#endif /* TCL_COMPILE_STATS */
716
717
718
719
720
721
722











723
724
725
726
727
728
729
730
731
732
733
734
735
736
737


738
739
740
741
742
743
744
745
746
747

748
749
750
751
752
753
754

755
756

757
758
759

760
761
762
763
764
765
766
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749


750
751
752
753
754
755
756
757
758
759
760

761
762
763
764
765
766
767

768
769

770
771
772

773
774
775
776
777
778
779
780







+
+
+
+
+
+
+
+
+
+
+













-
-
+
+









-
+






-
+

-
+


-
+








    /*
     * Create an unsupported command for debugging bytecode.
     */

    Tcl_CreateObjCommand(interp, "::tcl::unsupported::disassemble",
	    Tcl_DisassembleObjCmd, NULL, NULL);

    /* Create an unsupported command for timerate */
    Tcl_CreateObjCommand(interp, "::tcl::unsupported::timerate",
	    Tcl_TimeRateObjCmd, NULL, NULL);

    /* Export unsupported commands */
    nsPtr = Tcl_FindNamespace(interp, "::tcl::unsupported", NULL, 0);
    if (nsPtr) {
	Tcl_Export(interp, nsPtr, "*", 1);
    }


#ifdef USE_DTRACE
    /*
     * Register the tcl::dtrace command.
     */

    Tcl_CreateObjCommand(interp, "::tcl::dtrace", DTraceObjCmd, NULL, NULL);
#endif /* USE_DTRACE */

    /*
     * Register the builtin math functions.
     */

    mathfuncNSPtr = Tcl_CreateNamespace(interp, "::tcl::mathfunc", NULL,NULL);
    if (mathfuncNSPtr == NULL) {
    nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathfunc", NULL,NULL);
    if (nsPtr == NULL) {
	Tcl_Panic("Can't create math function namespace");
    }
    strcpy(mathFuncName, "::tcl::mathfunc::");
#define MATH_FUNC_PREFIX_LEN 17 /* == strlen("::tcl::mathfunc::") */
    for (builtinFuncPtr = BuiltinFuncTable; builtinFuncPtr->name != NULL;
	    builtinFuncPtr++) {
	strcpy(mathFuncName+MATH_FUNC_PREFIX_LEN, builtinFuncPtr->name);
	Tcl_CreateObjCommand(interp, mathFuncName,
		builtinFuncPtr->objCmdProc, builtinFuncPtr->clientData, NULL);
	Tcl_Export(interp, mathfuncNSPtr, builtinFuncPtr->name, 0);
	Tcl_Export(interp, nsPtr, builtinFuncPtr->name, 0);
    }

    /*
     * Register the mathematical "operator" commands. [TIP #174]
     */

    mathopNSPtr = Tcl_CreateNamespace(interp, "::tcl::mathop", NULL, NULL);
    nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathop", NULL, NULL);
#define MATH_OP_PREFIX_LEN 15 /* == strlen("::tcl::mathop::") */
    if (mathopNSPtr == NULL) {
    if (nsPtr == NULL) {
	Tcl_Panic("can't create math operator namespace");
    }
    (void) Tcl_Export(interp, mathopNSPtr, "*", 1);
    (void) Tcl_Export(interp, nsPtr, "*", 1);
    strcpy(mathFuncName, "::tcl::mathop::");
    for (opcmdInfoPtr=mathOpCmds ; opcmdInfoPtr->name!=NULL ; opcmdInfoPtr++){
	TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)
		ckalloc(sizeof(TclOpCmdClientData));

	occdPtr->op = opcmdInfoPtr->name;
	occdPtr->i.numArgs = opcmdInfoPtr->i.numArgs;

Changes to generic/tclClock.c.

1735
1736
1737
1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749
1750
1751
1735
1736
1737
1738
1739
1740
1741


1742

1743
1744
1745
1746
1747
1748
1749







-
-
+
-







#else
	Tcl_WideInt clicks = TclpGetWideClicks();
#endif
	Tcl_SetObjResult(interp, Tcl_NewWideIntObj((Tcl_WideInt) clicks));
	break;
    }
    case CLICKS_MICROS:
	Tcl_GetTime(&now);
	Tcl_SetObjResult(interp, Tcl_NewWideIntObj(
	Tcl_SetObjResult(interp, Tcl_NewWideIntObj(TclpGetMicroseconds()));
		((Tcl_WideInt) now.sec * 1000000) + now.usec));
	break;
    }

    return TCL_OK;
}

/*----------------------------------------------------------------------
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

1821
1822
1823
1824
1825
1826
1827
1828
1804
1805
1806
1807
1808
1809
1810


1811
1812
1813
1814


1815

1816
1817
1818
1819
1820
1821
1822







-
-




-
-
+
-







int
ClockMicrosecondsObjCmd(
    ClientData clientData,	/* Client data is unused */
    Tcl_Interp* interp,		/* Tcl interpreter */
    int objc,			/* Parameter count */
    Tcl_Obj* const* objv)	/* Parameter values */
{
    Tcl_Time now;

    if (objc != 1) {
	Tcl_WrongNumArgs(interp, 1, objv, NULL);
	return TCL_ERROR;
    }
    Tcl_GetTime(&now);
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(
    Tcl_SetObjResult(interp, Tcl_NewWideIntObj(TclpGetMicroseconds()));
	    ((Tcl_WideInt) now.sec * 1000000) + now.usec));
    return TCL_OK;
}

/*
 *-----------------------------------------------------------------------------
 *
 * ClockParseformatargsObjCmd --

Changes to generic/tclCmdMZ.c.

13
14
15
16
17
18
19

20
21
22
23
24
25
26
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27







+







 * Copyright (c) 2003 Donal K. Fellows.
 *
 * See the file "license.terms" for information on usage and redistribution of
 * this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#include "tclInt.h"
#include "tclCompile.h"
#include "tclRegexp.h"

static int		UniCharIsAscii(int character);
static int		UniCharIsHexDigit(int character);

/*
 *----------------------------------------------------------------------
3944
3945
3946
3947
3948
3949
3950





























































































































































































































































































































































































3951
3952
3953
3954
3955
3956
3957
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







    TclNewLiteralStringObj(objs[1], "microseconds");
    TclNewLiteralStringObj(objs[2], "per");
    TclNewLiteralStringObj(objs[3], "iteration");
    Tcl_SetObjResult(interp, Tcl_NewListObj(4, objs));

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * Tcl_TimeRateObjCmd --
 *
 *	This object-based procedure is invoked to process the "timerate" Tcl
 *	command. 
 *	This is similar to command "time", except the execution limited by 
 *	given time (in milliseconds) instead of repetition count.
 *
 * Example:
 *	timerate {after 5} 1000 ; # equivalent for `time {after 5} [expr 1000/5]`
 *
 * Results:
 *	A standard Tcl object result.
 *
 * Side effects:
 *	See the user documentation.
 *
 *----------------------------------------------------------------------
 */

int
Tcl_TimeRateObjCmd(
    ClientData dummy,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* Argument objects. */
{
    static 
    double measureOverhead = 0; /* global measure-overhead */
    double overhead = -1;	/* given measure-overhead */
    register Tcl_Obj *objPtr;
    register int result, i;
    Tcl_Obj *calibrate = NULL, *direct = NULL;
    Tcl_WideUInt count = 0;	/* Holds repetition count */
    Tcl_WideInt  maxms  = WIDE_MIN;
				/* Maximal running time (in milliseconds) */
    Tcl_WideUInt maxcnt = WIDE_MAX;
				/* Maximal count of iterations. */
    Tcl_WideUInt threshold = 1;	/* Current threshold for check time (faster
				 * repeat count without time check) */
    Tcl_WideUInt maxIterTm = 1;	/* Max time of some iteration as max threshold
				 * additionally avoid divide to zero (never < 1) */
    unsigned short factor = 50;	/* Factor (4..50) limiting threshold to avoid
				 * growth of execution time. */
    register Tcl_WideInt start, middle, stop;
#ifndef TCL_WIDE_CLICKS
    Tcl_Time now;
#endif

    static const char *const options[] = {
	"-direct",	"-overhead",	"-calibrate",	"--",	NULL
    };
    enum options {
	TMRT_EV_DIRECT,	TMRT_OVERHEAD,	TMRT_CALIBRATE,	TMRT_LAST
    };

    ByteCode	 *codePtr = NULL;

    for (i = 1; i < objc - 1; i++) {
    	int index;
	if (Tcl_GetIndexFromObj(NULL, objv[i], options, "option", TCL_EXACT,
		&index) != TCL_OK) {
	    break;
	}
	if (index == TMRT_LAST) {
	    i++;
	    break;
	}
	switch (index) {
	case TMRT_EV_DIRECT:
	    direct = objv[i];
	    break;
	case TMRT_OVERHEAD:
	    if (++i >= objc - 1) {
		goto usage;
	    }
	    if (Tcl_GetDoubleFromObj(interp, objv[i], &overhead) != TCL_OK) {
		return TCL_ERROR;
	    }
	    break;
	case TMRT_CALIBRATE:
	    calibrate = objv[i];
	    break;
	}
    }

    if (i >= objc || i < objc-3) {
usage:
	Tcl_WrongNumArgs(interp, 1, objv, "?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??");
	return TCL_ERROR;
    }
    objPtr = objv[i++];
    if (i < objc) {	/* max-time */
	result = Tcl_GetWideIntFromObj(interp, objv[i++], &maxms);
	if (result != TCL_OK) {
	    return result;
	}
	if (i < objc) {	/* max-count*/
	    Tcl_WideInt v;
	    result = Tcl_GetWideIntFromObj(interp, objv[i], &v);
	    if (result != TCL_OK) {
		return result;
	    }
	    maxcnt = (v > 0) ? v : 0;
	}
    }

    /* if calibrate */
    if (calibrate) {

	/* if no time specified for the calibration */
	if (maxms == WIDE_MIN) {
	    Tcl_Obj *clobjv[6];
	    Tcl_WideInt maxCalTime = 5000;
	    double lastMeasureOverhead = measureOverhead;
	    
	    clobjv[0] = objv[0]; 
	    i = 1;
	    if (direct) {
	    	clobjv[i++] = direct;
	    }
	    clobjv[i++] = objPtr; 

	    /* reset last measurement overhead */
	    measureOverhead = (double)0;

	    /* self-call with 100 milliseconds to warm-up,
	     * before entering the calibration cycle */
	    TclNewLongObj(clobjv[i], 100);
	    Tcl_IncrRefCount(clobjv[i]);
	    result = Tcl_TimeRateObjCmd(dummy, interp, i+1, clobjv);
	    Tcl_DecrRefCount(clobjv[i]);
	    if (result != TCL_OK) {
		return result;
	    }

	    i--;
	    clobjv[i++] = calibrate;
	    clobjv[i++] = objPtr; 

	    /* set last measurement overhead to max */
	    measureOverhead = (double)UWIDE_MAX;

	    /* calibration cycle until it'll be preciser */
	    maxms = -1000;
	    do {
		lastMeasureOverhead = measureOverhead;
		TclNewLongObj(clobjv[i], (int)maxms);
		Tcl_IncrRefCount(clobjv[i]);
		result = Tcl_TimeRateObjCmd(dummy, interp, i+1, clobjv);
		Tcl_DecrRefCount(clobjv[i]);
		if (result != TCL_OK) {
		    return result;
		}
		maxCalTime += maxms;
		/* increase maxms for preciser calibration */
		maxms -= (-maxms / 4);
		/* as long as new value more as 0.05% better */
	    } while ( (measureOverhead >= lastMeasureOverhead
		    || measureOverhead / lastMeasureOverhead <= 0.9995)
		    && maxCalTime > 0
	    );

	    return result;
	}
	if (maxms == 0) {
	    /* reset last measurement overhead */
	    measureOverhead = 0;
	    Tcl_SetObjResult(interp, Tcl_NewLongObj(0));
	    return TCL_OK;
	}

	/* if time is negative - make current overhead more precise */
	if (maxms > 0) {
	    /* set last measurement overhead to max */
	    measureOverhead = (double)UWIDE_MAX;
	} else {
	    maxms = -maxms;
	}

    }

    if (maxms == WIDE_MIN) {
    	maxms = 1000;
    }
    if (overhead == -1) {
	overhead = measureOverhead;
    }

    /* be sure that resetting of result will not smudge the further measurement */
    Tcl_ResetResult(interp);

    /* compile object */
    if (!direct) {
	if (TclInterpReady(interp) != TCL_OK) {
	    return TCL_ERROR;
	}
	codePtr = TclCompileObj(interp, objPtr, NULL, 0);
	TclPreserveByteCode(codePtr);
    }

    /* get start and stop time */
#ifdef TCL_WIDE_CLICKS
    start = middle = TclpGetWideClicks();
    /* time to stop execution (in wide clicks) */
    stop = start + (maxms * 1000 / TclpWideClickInMicrosec());
#else
    Tcl_GetTime(&now);
    start = now.sec; start *= 1000000; start += now.usec;
    middle = start;
    /* time to stop execution (in microsecs) */
    stop = start + maxms * 1000;
#endif

    /* start measurement */
    if (maxcnt > 0)
    while (1) {
    	/* eval single iteration */
    	count++;

	if (!direct) {
	    /* precompiled */
	    result = TclExecuteByteCode(interp, codePtr);
	} else {
	    /* eval */
	    result = TclEvalObjEx(interp, objPtr, 0, NULL, 0);
	}
	if (result != TCL_OK) {
	    /* allow break from measurement cycle (used for conditional stop) */
	    if (result != TCL_BREAK) {
		goto done;
	    }
	    /* force stop immediately */
	    threshold = 1;
	    maxcnt = 0;
	    result = TCL_OK;
	}
	
	/* don't check time up to threshold */
	if (--threshold > 0) continue;

	/* check stop time reached, estimate new threshold */
    #ifdef TCL_WIDE_CLICKS
	middle = TclpGetWideClicks();
    #else
	Tcl_GetTime(&now);
	middle = now.sec; middle *= 1000000; middle += now.usec;
    #endif
	if (middle >= stop || count >= maxcnt) {
	    break;
	}

	/* don't calculate threshold by few iterations, because sometimes first
	 * iteration(s) can be too fast or slow (cached, delayed clean up, etc) */
	if (count < 10) {
	   threshold = 1; continue;
	}

	/* average iteration time in microsecs */
	threshold = (middle - start) / count;
	if (threshold > maxIterTm) {
	    maxIterTm = threshold;
	    /* interations seems to be longer */
	    if (threshold > (maxIterTm * 2)) {
		if ((factor *= 2) > 50) factor = 50;
	    } else {
		if (factor < 50) factor++;
	    }
	} else if (factor > 4) {
	    /* interations seems to be shorter */
	    if (threshold < (maxIterTm / 2)) {
		if ((factor /= 2) < 4) factor = 4;
	    } else {
		factor--;
	    }
	}
	/* as relation between remaining time and time since last check,
	 * maximal some % of time (by factor), so avoid growing of the execution time
	 * if iterations are not consistent, e. g. wax continuously on time) */
	threshold = ((stop - middle) / maxIterTm) / factor + 1;
	if (threshold > 100000) {	    /* fix for too large threshold */
	    threshold = 100000;
	}
	/* consider max-count */
	if (threshold > maxcnt - count) {
	    threshold = maxcnt - count;
	}
    }

    {
	Tcl_Obj *objarr[8], **objs = objarr;
	Tcl_WideInt val;
	const char *fmt;

	middle -= start;		     /* execution time in microsecs */

    #ifdef TCL_WIDE_CLICKS
	/* convert execution time in wide clicks to microsecs */
	middle *= TclpWideClickInMicrosec();
    #endif

	/* if not calibrate */
	if (!calibrate) {
	    /* minimize influence of measurement overhead */
	    if (overhead > 0) {
		/* estimate the time of overhead (microsecs) */
		Tcl_WideUInt curOverhead = overhead * count;
		if (middle > curOverhead) {
		    middle -= curOverhead;
		} else {
		    middle = 0;
		}
	    }
	} else {
	    /* calibration - obtaining new measurement overhead */
	    if (measureOverhead > (double)middle / count) {
		measureOverhead = (double)middle / count;
	    }
	    objs[0] = Tcl_NewDoubleObj(measureOverhead);
	    TclNewLiteralStringObj(objs[1], "\xC2\xB5s/#-overhead"); /* mics */
	    objs += 2;
	}

	val = middle / count;		     /* microsecs per iteration */
	if (val >= 1000000) {
	    objs[0] = Tcl_NewWideIntObj(val);
	} else {
	    if (val < 10)    { fmt = "%.6f"; } else
	    if (val < 100)   { fmt = "%.4f"; } else
	    if (val < 1000)  { fmt = "%.3f"; } else
	    if (val < 10000) { fmt = "%.2f"; } else
			     { fmt = "%.1f"; };
	    objs[0] = Tcl_ObjPrintf(fmt, ((double)middle)/count);
	}

	objs[2] = Tcl_NewWideIntObj(count); /* iterations */
	
	/* calculate speed as rate (count) per sec */
	if (!middle) middle++; /* +1 ms, just to avoid divide by zero */
	if (count < (WIDE_MAX / 1000000)) {
	    val = (count * 1000000) / middle;
	    if (val < 100000) {
		if (val < 100)	{ fmt = "%.3f"; } else
		if (val < 1000) { fmt = "%.2f"; } else
				{ fmt = "%.1f"; };
		objs[4] = Tcl_ObjPrintf(fmt, ((double)(count * 1000000)) / middle);
	    } else {
		objs[4] = Tcl_NewWideIntObj(val);
	    }
	} else {
	    objs[4] = Tcl_NewWideIntObj((count / middle) * 1000000);
	}

	/* estimated net execution time (in millisecs) */
	if (!calibrate) {
	    objs[6] = Tcl_ObjPrintf("%.3f", (double)middle / 1000);
	    TclNewLiteralStringObj(objs[7], "nett-ms");
	}

	/*
	* Construct the result as a list because many programs have always parsed
	* as such (extracting the first element, typically).
	*/

	TclNewLiteralStringObj(objs[1], "\xC2\xB5s/#"); /* mics/# */
	TclNewLiteralStringObj(objs[3], "#");
	TclNewLiteralStringObj(objs[5], "#/sec");
	Tcl_SetObjResult(interp, Tcl_NewListObj(8, objarr));
    }

done:

    if (codePtr != NULL) {
	TclReleaseByteCode(codePtr);
    }

    return result;
}

/*
 *----------------------------------------------------------------------
 *
 * Tcl_WhileObjCmd --
 *
 *	This procedure is invoked to process the "while" Tcl command. See the

Changes to generic/tclCompile.h.

854
855
856
857
858
859
860



861
862
863
864
865
866
867
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870







+
+
+







			    int objc, Tcl_Obj *const objv[],
			    CONST char *command, int length, int flags);
/*
 *----------------------------------------------------------------
 * Procedures exported by the engine to be used by tclBasic.c
 *----------------------------------------------------------------
 */

MODULE_SCOPE ByteCode *	TclCompileObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
			    const CmdFrame *invoker, int word);

MODULE_SCOPE int	TclCompEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
			    const CmdFrame *invoker, int word);

/*
 *----------------------------------------------------------------
 * Procedures shared among Tcl bytecode compilation and execution modules but
933
934
935
936
937
938
939



















940
941
942
943
944
945
946
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







			    unsigned char *pc);
MODULE_SCOPE void	TclPrintObject(FILE *outFile,
			    Tcl_Obj *objPtr, int maxChars);
MODULE_SCOPE void	TclPrintSource(FILE *outFile,
			    CONST char *string, int maxChars);
MODULE_SCOPE int	TclRegisterLiteral(CompileEnv *envPtr,
			    char *bytes, int length, int flags);

static inline void
TclPreserveByteCode(
    register ByteCode *codePtr)
{
    codePtr->refCount++;
}

static inline void
TclReleaseByteCode(
    register ByteCode *codePtr)
{
    if (codePtr->refCount-- > 1) {
	return;
    }
    /* Just dropped to refcount==0.  Clean up. */
    TclCleanupByteCode(codePtr);
}

MODULE_SCOPE void	TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr);
MODULE_SCOPE int	TclSingleOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *CONST objv[]);
MODULE_SCOPE int	TclSortingOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *CONST objv[]);

Changes to generic/tclExecute.c.

1342
1343
1344
1345
1346
1347
1348
1349

1350
1351

1352
1353
1354
1355
1356
1357

1358
1359
1360

1361
1362
1363
1364
1365
1366
1367



1368
1369
1370
1371
1372
1373
1374
1375

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1342
1343
1344
1345
1346
1347
1348

1349
1350

1351

1352
1353



1354
1355
1356

1357
1358
1359
1360
1361



1362
1363
1364
1365
1366
1367
1368
1369
1370


1371















1372
1373
1374
1375
1376
1377
1378







-
+

-
+
-


-
-
-
+


-
+




-
-
-
+
+
+






-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-







    }
    objPtr->typePtr = NULL;
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompEvalObj --
 * TclCompileObj --
 *
 *	This procedure evaluates the script contained in a Tcl_Obj by first
 *  This procedure compiles the script contained in a Tcl_Obj.
 *	compiling it and then passing it to TclExecuteByteCode.
 *
 * Results:
 *	The return value is one of the return codes defined in tcl.h (such as
 *	TCL_OK), and interp->objResultPtr refers to a Tcl object that either
 *	contains the result of executing the code or an error message.
 *  A pointer to the corresponding ByteCode, never NULL.
 *
 * Side effects:
 *	Almost certainly, depending on the ByteCode's instructions.
 *  The object is shimmered to bytecode type.
 *
 *----------------------------------------------------------------------
 */

int
TclCompEvalObj(
    Tcl_Interp *interp,
ByteCode *
TclCompileObj(
    Tcl_Interp *interp, 
    Tcl_Obj *objPtr,
    const CmdFrame *invoker,
    int word)
{
    register Interp *iPtr = (Interp *) interp;
    register ByteCode *codePtr;	/* Tcl Internal type of bytecode. */
    int result;
    Namespace *namespacePtr;
    Namespace *namespacePtr = iPtr->varFramePtr->nsPtr;

    /*
     * Check that the interpreter is ready to execute scripts. Note that we
     * manage the interp's runlevel here: it is a small white lie (maybe), but
     * saves a ++/-- pair at each invocation. Amazingly enough, the impact on
     * performance is noticeable.
     */

    iPtr->numLevels++;
    if (TclInterpReady(interp) == TCL_ERROR) {
	result = TCL_ERROR;
	goto done;
    }

    namespacePtr = iPtr->varFramePtr->nsPtr;

    /*
     * If the object is not already of tclByteCodeType, compile it (and reset
     * the compilation flags in the interpreter; this should be done after any
     * compilation). Otherwise, check that it is "fresh" enough.
     */

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429













1430

1431
1432



1433
1434
1435
1436
1437
1438
1439
1440
1395
1396
1397
1398
1399
1400
1401









1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416


1417
1418
1419

1420
1421
1422
1423
1424
1425
1426







-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+

+
-
-
+
+
+
-







	 */

	codePtr = (ByteCode *) objPtr->internalRep.twoPtrValue.ptr1;
	if (((Interp *) *codePtr->interpHandle != iPtr)
		|| (codePtr->compileEpoch != iPtr->compileEpoch)
		|| (codePtr->nsPtr != namespacePtr)
		|| (codePtr->nsEpoch != namespacePtr->resolverEpoch)) {
	    if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) {
		if ((Interp *) *codePtr->interpHandle != iPtr) {
		    Tcl_Panic("Tcl_EvalObj: compiled script jumped interps");
		}
		codePtr->compileEpoch = iPtr->compileEpoch;
	    } else {
		/*
		 * This byteCode is invalid: free it and recompile.
		 */
	    if (!(codePtr->flags & TCL_BYTECODE_PRECOMPILED)) {
		goto recompileObj;
	    }
	    if ((Interp *) *codePtr->interpHandle != iPtr) {
		Tcl_Panic("Tcl_EvalObj: compiled script jumped interps");
	    }
	    codePtr->compileEpoch = iPtr->compileEpoch;
	}

	/*
	 * Check that any compiled locals do refer to the current proc
	 * environment! If not, recompile.
	 */

	if (!(codePtr->flags & TCL_BYTECODE_PRECOMPILED) &&
		objPtr->typePtr->freeIntRepProc(objPtr);
		goto recompileObj;
		(codePtr->procPtr == NULL) &&
		(codePtr->localCachePtr != iPtr->varFramePtr->localCachePtr)){
	    goto recompileObj;
	    }
	}

	/*
	 * #280.
	 * Literal sharing fix. This part of the fix is not required by 8.4
	 * because it eval-directs any literals, so just saving the argument
	 * locations per command in bytecode is enough, embedded 'eval'
1464
1465
1466
1467
1468
1469
1470
1471



1472
1473
1474
1475
1476
1477
1478
1479
1480












1481
1482
1483
1484
1485
1486





1487
1488
1489
1490
1491




1492
1493

1494
1495
1496
1497
1498




1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510











1511
1512
1513


1514
1515
1516


1517
1518

1519
1520

1521
1522
1523
1524
1525

1526
1527
1528
1529
1530

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553

1554
1555






1556
1557
1558




























































1559
1560
1561
1562
1563
1564
1565
1450
1451
1452
1453
1454
1455
1456

1457
1458
1459
1460
1461
1462






1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475





1476
1477
1478
1479
1480
1481




1482
1483
1484
1485


1486
1487




1488
1489
1490
1491
1492











1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504


1505
1506
1507


1508
1509
1510

1511


1512





1513





1514






1515

1516
1517

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538



1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605







-
+
+
+



-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
+
+
+
+
+

-
-
-
-
+
+
+
+
-
-
+

-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+

-
-
+
+

-
-
+
+

-
+
-
-
+
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
-

-


-
+











-
+


+
+
+
+
+
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







	 *     offset between saved starting line and actual one. Then modify
	 *     the users to adjust the locations they have by this offset.
	 *
	 * (3) Alternative 2: Do not fully recompile, adjust just the location
	 *     information.
	 */

	if (invoker) {
	if (invoker == NULL) {
	    return codePtr;
	} else {
	    Tcl_HashEntry *hePtr =
		    Tcl_FindHashEntry(iPtr->lineBCPtr, (char *) codePtr);

	    if (hePtr) {
		ExtCmdLoc *eclPtr = Tcl_GetHashValue(hePtr);
		int redo = 0;
		CmdFrame *ctxPtr = TclStackAlloc(interp,sizeof(CmdFrame));

		*ctxPtr = *invoker;
	    ExtCmdLoc *eclPtr;
	    CmdFrame *ctxCopyPtr;
	    int redo;

	    if (!hePtr) {
		return codePtr;
	    }

	    eclPtr = Tcl_GetHashValue(hePtr);
	    redo = 0;
	    ctxCopyPtr = TclStackAlloc(interp, sizeof(CmdFrame));
	    *ctxCopyPtr = *invoker;

		if (invoker->type == TCL_LOCATION_BC) {
		    /*
		     * Note: Type BC => ctx.data.eval.path    is not used.
		     *		    ctx.data.tebc.codePtr used instead
		     */
	    if (invoker->type == TCL_LOCATION_BC) {
		/*
		 * Note: Type BC => ctx.data.eval.path    is not used.
		 *		    ctx.data.tebc.codePtr used instead
		 */

		    TclGetSrcInfoForPc(ctxPtr);
		    if (ctxPtr->type == TCL_LOCATION_SOURCE) {
			/*
			 * The reference made by 'TclGetSrcInfoForPc' is
		TclGetSrcInfoForPc(ctxCopyPtr);
		if (ctxCopyPtr->type == TCL_LOCATION_SOURCE) {
		    /*
		     * The reference made by 'TclGetSrcInfoForPc' is dead.
			 * dead.
			 */
		     */

			Tcl_DecrRefCount(ctxPtr->data.eval.path);
			ctxPtr->data.eval.path = NULL;
		    }
		}
		    Tcl_DecrRefCount(ctxCopyPtr->data.eval.path);
		    ctxCopyPtr->data.eval.path = NULL;
		}
	    }

		if (word < ctxPtr->nline) {
		    /*
		     * Note: We do not care if the line[word] is -1. This
		     * is a difference and requires a recompile (location
		     * changed from absolute to relative, literal is used
		     * fixed and through variable)
		     *
		     * Example:
		     * test info-32.0 using literal of info-24.8
		     *     (dict with ... vs           set body ...).
		     */
	    if (word < ctxCopyPtr->nline) {
		/*
		 * Note: We do not care if the line[word] is -1. This is a
		 * difference and requires a recompile (location changed from
		 * absolute to relative, literal is used fixed and through
		 * variable)
		 *
		 * Example:
		 * test info-32.0 using literal of info-24.8
		 *     (dict with ... vs           set body ...).
		 */

		    redo = ((eclPtr->type == TCL_LOCATION_SOURCE)
			    && (eclPtr->start != ctxPtr->line[word]))
		redo = ((eclPtr->type == TCL_LOCATION_SOURCE)
			    && (eclPtr->start != ctxCopyPtr->line[word]))
			|| ((eclPtr->type == TCL_LOCATION_BC)
				&& (ctxPtr->type == TCL_LOCATION_SOURCE));
		}
			    && (ctxCopyPtr->type == TCL_LOCATION_SOURCE));
	    }

		TclStackFree(interp, ctxPtr);
	    TclStackFree(interp, ctxCopyPtr);

		if (redo) {
	    if (!redo) {
		    goto recompileObj;
		}
	    }
	}

		return codePtr;
	/*
	 * Increment the code's ref count while it is being executed. If
	 * afterwards no references to it remain, free the code.
	 */

	    }
    runCompiledObj:
	codePtr->refCount++;
	result = TclExecuteByteCode(interp, codePtr);
	codePtr->refCount--;
	if (codePtr->refCount <= 0) {
	    TclCleanupByteCode(codePtr);
	}
	goto done;
    }

    recompileObj:
  recompileObj:
    iPtr->errorLine = 1;

    /*
     * TIP #280. Remember the invoker for a moment in the interpreter
     * structures so that the byte code compiler can pick it up when
     * initializing the compilation environment, i.e. the extended location
     * information.
     */

    iPtr->invokeCmdFramePtr = invoker;
    iPtr->invokeWord = word;
    tclByteCodeType.setFromAnyProc(interp, objPtr);
    TclSetByteCodeFromAny(interp, objPtr, NULL, NULL);
    iPtr->invokeCmdFramePtr = NULL;
    codePtr = (ByteCode *) objPtr->internalRep.twoPtrValue.ptr1;
    if (iPtr->varFramePtr->localCachePtr) {
	codePtr->localCachePtr = iPtr->varFramePtr->localCachePtr;
	codePtr->localCachePtr->refCount++;
    }
    return codePtr;
}
    goto runCompiledObj;

    done:

/*
 *----------------------------------------------------------------------
 *
 * TclCompEvalObj --
 *
 *	This procedure evaluates the script contained in a Tcl_Obj by first
 *	compiling it and then passing it to TclExecuteByteCode.
 *
 * Results:
 *	The return value is one of the return codes defined in tcl.h (such as
 *	TCL_OK), and interp->objResultPtr refers to a Tcl object that either
 *	contains the result of executing the code or an error message.
 *
 * Side effects:
 *	Almost certainly, depending on the ByteCode's instructions.
 *
 *----------------------------------------------------------------------
 */

int
TclCompEvalObj(
    Tcl_Interp *interp,
    Tcl_Obj *objPtr,
    const CmdFrame *invoker,
    int word)
{
    register Interp *iPtr = (Interp *) interp;
    register ByteCode *codePtr;	/* Tcl Internal type of bytecode. */
    int result;

    /*
     * Check that the interpreter is ready to execute scripts. Note that we
     * manage the interp's runlevel here: it is a small white lie (maybe), but
     * saves a ++/-- pair at each invocation. Amazingly enough, the impact on
     * performance is noticeable.
     */

    iPtr->numLevels++;
    if (TclInterpReady(interp) == TCL_ERROR) {
	result = TCL_ERROR;
	goto done;
    }

    /* Compile objPtr to the byte code */
    codePtr = TclCompileObj(interp, objPtr, invoker, word);

    /*
     * Increment the code's ref count while it is being executed. If
     * afterwards no references to it remain, free the code.
     */

    codePtr->refCount++;
    result = TclExecuteByteCode(interp, codePtr);
    codePtr->refCount--;
    if (codePtr->refCount <= 0) {
	TclCleanupByteCode(codePtr);
    }

  done:
    iPtr->numLevels--;
    return result;
}

/*
 *----------------------------------------------------------------------
 *

Changes to generic/tclInt.h.

2766
2767
2768
2769
2770
2771
2772

2773
2774
2775









2776


2777
2778
2779
2780
2781
2782
2783
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795







+



+
+
+
+
+
+
+
+
+

+
+







MODULE_SCOPE int	TclpLoadMemory(Tcl_Interp *interp, void *buffer,
			    int size, int codeSize, Tcl_LoadHandle *loadHandle,
			    Tcl_FSUnloadFileProc **unloadProcPtr);
#endif
MODULE_SCOPE void	TclInitThreadStorage(void);
MODULE_SCOPE void	TclpFinalizeThreadDataThread(void);
MODULE_SCOPE void	TclFinalizeThreadStorage(void);

#ifdef TCL_WIDE_CLICKS
MODULE_SCOPE Tcl_WideInt TclpGetWideClicks(void);
MODULE_SCOPE double	TclpWideClicksToNanoseconds(Tcl_WideInt clicks);
MODULE_SCOPE double	TclpWideClickInMicrosec(void);
#else
#   ifdef _WIN32
#	define TCL_WIDE_CLICKS 1
MODULE_SCOPE Tcl_WideInt TclpGetWideClicks(void);
MODULE_SCOPE double	TclpWideClickInMicrosec(void);
#	define		TclpWideClicksToNanoseconds(clicks) \
				((double)(clicks) * TclpWideClickInMicrosec() * 1000)
#   endif
#endif
MODULE_SCOPE Tcl_WideInt TclpGetMicroseconds(void);

MODULE_SCOPE Tcl_Obj *	TclDisassembleByteCodeObj(Tcl_Obj *objPtr);
MODULE_SCOPE int TclUtfCasecmp(CONST char *cs, CONST char *ct);

/*
 *----------------------------------------------------------------
 * Command procedures in the generic core:
 *----------------------------------------------------------------
3011
3012
3013
3014
3015
3016
3017



3018
3019
3020
3021
3022
3023
3024
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039







+
+
+







			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	Tcl_TellObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	Tcl_TimeObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	Tcl_TimeRateObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	Tcl_TraceObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	Tcl_UnloadObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);

Changes to generic/tclPort.h.

35
36
37
38
39
40
41



42
43
35
36
37
38
39
40
41
42
43
44
45
46







+
+
+


#         define LLONG_MIN ((Tcl_WideInt)(Tcl_LongAsWide(1)<<63))
#      endif
#   endif
/* Assume that if LLONG_MIN is undefined, then so is LLONG_MAX */
#   define LLONG_MAX (~LLONG_MIN)
#endif

#define UWIDE_MAX ((Tcl_WideUInt)-1)
#define WIDE_MAX ((Tcl_WideInt)(UWIDE_MAX >> 1))
#define WIDE_MIN ((Tcl_WideInt)((Tcl_WideUInt)WIDE_MAX+1))

#endif /* _TCLPORT */

Changes to library/tclIndex.

81
82
83
84
85
86
87



81
82
83
84
85
86
87
88
89
90







+
+
+
set auto_index(tcl_startOfPreviousWord) [list source [file join $dir word.tcl]]
set auto_index(::tcl::tm::add) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::remove) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::list) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::UnknownHandler) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::roots) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::path) [list source [file join $dir tm.tcl]]
if {[namespace exists ::tcl::unsupported]} {
    set auto_index(timerate) {namespace import ::tcl::unsupported::timerate}
}

Added tests-perf/clock.perf.tcl.




























































































































































































































































































































































































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
#!/usr/bin/tclsh
# ------------------------------------------------------------------------
#
# test-performance.tcl --
# 
#  This file provides common performance tests for comparison of tcl-speed
#  degradation by switching between branches.
#  (currently for clock ensemble only)
#
# ------------------------------------------------------------------------
# 
# Copyright (c) 2014 Serg G. Brester (aka sebres)
# 
# See the file "license.terms" for information on usage and redistribution
# of this file.
# 

array set in {-time 500}
if {[info exists ::argv0] && [file tail $::argv0] eq [file tail [info script]]} {
  array set in $argv
}

## common test performance framework:
if {![namespace exists ::tclTestPerf]} {
  source [file join [file dirname [info script]] test-performance.tcl]
}

namespace eval ::tclTestPerf-TclClock {

namespace path {::tclTestPerf}

## set testing defaults:
set ::env(TCL_TZ) :CET

# warm-up interpeter compiler env, clock platform-related features:

## warm-up test-related features (load clock.tcl, system zones, locales, etc.):
clock scan "" -gmt 1
clock scan ""
clock scan "" -timezone :CET
clock scan "" -format "" -locale en
clock scan "" -format "" -locale de

## ------------------------------------------

proc test-format {{reptime 1000}} {
  _test_run $reptime {
    # Format : short, week only (in gmt)
    {clock format 1482525936 -format "%u" -gmt 1}
    # Format : short, week only (system zone)
    {clock format 1482525936 -format "%u"}
    # Format : short, week only (CEST)
    {clock format 1482525936 -format "%u" -timezone :CET}
    # Format : date only (in gmt)
    {clock format 1482525936 -format "%Y-%m-%d" -gmt 1}
    # Format : date only (system zone)
    {clock format 1482525936 -format "%Y-%m-%d"}
    # Format : date only (CEST)
    {clock format 1482525936 -format "%Y-%m-%d" -timezone :CET}
    # Format : time only (in gmt)
    {clock format 1482525936 -format "%H:%M" -gmt 1}
    # Format : time only (system zone)
    {clock format 1482525936 -format "%H:%M"}
    # Format : time only (CEST)
    {clock format 1482525936 -format "%H:%M" -timezone :CET}
    # Format : time only (in gmt)
    {clock format 1482525936 -format "%H:%M:%S" -gmt 1}
    # Format : time only (system zone)
    {clock format 1482525936 -format "%H:%M:%S"}
    # Format : time only (CEST)
    {clock format 1482525936 -format "%H:%M:%S" -timezone :CET}
    # Format : default (in gmt)
    {clock format 1482525936 -gmt 1 -locale en}
    # Format : default (system zone)
    {clock format 1482525936 -locale en}
    # Format : default (CEST)
    {clock format 1482525936 -timezone :CET -locale en}
    # Format : ISO date-time (in gmt, numeric zone)
    {clock format 1246379400 -format "%Y-%m-%dT%H:%M:%S %z" -gmt 1}
    # Format : ISO date-time (system zone, CEST, numeric zone)
    {clock format 1246379400 -format "%Y-%m-%dT%H:%M:%S %z"}
    # Format : ISO date-time (CEST, numeric zone)
    {clock format 1246379400 -format "%Y-%m-%dT%H:%M:%S %z" -timezone :CET}
    # Format : ISO date-time (system zone, CEST)
    {clock format 1246379400 -format "%Y-%m-%dT%H:%M:%S %Z"}
    # Format : julian day with time (in gmt):
    {clock format 1246379415 -format "%J %H:%M:%S" -gmt 1}
    # Format : julian day with time (system zone):
    {clock format 1246379415 -format "%J %H:%M:%S"}

    # Format : locale date-time (en):
    {clock format 1246379415 -format "%x %X" -locale en}
    # Format : locale date-time (de):
    {clock format 1246379415 -format "%x %X" -locale de}

    # Format : locale lookup table month:
    {clock format 1246379400 -format "%b" -locale en -gmt 1}
    # Format : locale lookup 2 tables - month and day:
    {clock format 1246379400 -format "%b %Od" -locale en -gmt 1}
    # Format : locale lookup 3 tables - week, month and day:
    {clock format 1246379400 -format "%a %b %Od" -locale en -gmt 1}
    # Format : locale lookup 4 tables - week, month, day and year:
    {clock format 1246379400 -format "%a %b %Od %Oy" -locale en -gmt 1}

    # Format : dynamic clock value (without converter caches):
    setup {set i 0}
    {clock format [incr i] -format "%Y-%m-%dT%H:%M:%S" -locale en -timezone :CET}
    cleanup {puts [clock format $i -format "%Y-%m-%dT%H:%M:%S" -locale en -timezone :CET]}
    # Format : dynamic clock value (without any converter caches, zone range overflow):
    setup {set i 0}
    {clock format [incr i 86400] -format "%Y-%m-%dT%H:%M:%S" -locale en -timezone :CET}
    cleanup {puts [clock format $i -format "%Y-%m-%dT%H:%M:%S" -locale en -timezone :CET]}

    # Format : dynamic format (cacheable)
    {clock format 1246379415 -format [string trim "%d.%m.%Y %H:%M:%S "] -gmt 1}

    # Format : all (in gmt, locale en)
    {clock format 1482525936 -format "%%a = %a | %%A = %A | %%b = %b | %%h = %h | %%B = %B | %%C = %C | %%d = %d | %%e = %e | %%g = %g | %%G = %G | %%H = %H | %%I = %I | %%j = %j | %%J = %J | %%k = %k | %%l = %l | %%m = %m | %%M = %M | %%N = %N | %%p = %p | %%P = %P | %%Q = %Q | %%s = %s | %%S = %S | %%t = %t | %%u = %u | %%U = %U | %%V = %V | %%w = %w | %%W = %W | %%y = %y | %%Y = %Y | %%z = %z | %%Z = %Z | %%n = %n | %%EE = %EE | %%EC = %EC | %%Ey = %Ey | %%n = %n | %%Od = %Od | %%Oe = %Oe | %%OH = %OH | %%Ok = %Ok | %%OI = %OI | %%Ol = %Ol | %%Om = %Om | %%OM = %OM | %%OS = %OS | %%Ou = %Ou | %%Ow = %Ow | %%Oy = %Oy" -gmt 1 -locale en}
    # Format : all (in CET, locale de)
    {clock format 1482525936 -format "%%a = %a | %%A = %A | %%b = %b | %%h = %h | %%B = %B | %%C = %C | %%d = %d | %%e = %e | %%g = %g | %%G = %G | %%H = %H | %%I = %I | %%j = %j | %%J = %J | %%k = %k | %%l = %l | %%m = %m | %%M = %M | %%N = %N | %%p = %p | %%P = %P | %%Q = %Q | %%s = %s | %%S = %S | %%t = %t | %%u = %u | %%U = %U | %%V = %V | %%w = %w | %%W = %W | %%y = %y | %%Y = %Y | %%z = %z | %%Z = %Z | %%n = %n | %%EE = %EE | %%EC = %EC | %%Ey = %Ey | %%n = %n | %%Od = %Od | %%Oe = %Oe | %%OH = %OH | %%Ok = %Ok | %%OI = %OI | %%Ol = %Ol | %%Om = %Om | %%OM = %OM | %%OS = %OS | %%Ou = %Ou | %%Ow = %Ow | %%Oy = %Oy" -timezone :CET -locale de}
  }
}

proc test-scan {{reptime 1000}} {
  _test_run $reptime {
    # Scan : date (in gmt)
    {clock scan "25.11.2015" -format "%d.%m.%Y" -base 0 -gmt 1}
    # Scan : date (system time zone, with base)
    {clock scan "25.11.2015" -format "%d.%m.%Y" -base 0}
    # Scan : date (system time zone, without base)
    {clock scan "25.11.2015" -format "%d.%m.%Y"}
    # Scan : greedy match
    {clock scan "111" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "1111" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "11111" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "111111" -format "%d%m%y" -base 0 -gmt 1}
    # Scan : greedy match (space separated)
    {clock scan "1 1 1" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "111 1" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "1 111" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "1 11 1" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "1 11 11" -format "%d%m%y" -base 0 -gmt 1}
    {clock scan "11 11 11" -format "%d%m%y" -base 0 -gmt 1}

    # Scan : time (in gmt)
    {clock scan "10:35:55" -format "%H:%M:%S" -base 1000000000 -gmt 1}
    # Scan : time (system time zone, with base)
    {clock scan "10:35:55" -format "%H:%M:%S" -base 1000000000}
    # Scan : time (gmt, without base)
    {clock scan "10:35:55" -format "%H:%M:%S" -gmt 1}
    # Scan : time (system time zone, without base)
    {clock scan "10:35:55" -format "%H:%M:%S"}

    # Scan : date-time (in gmt)
    {clock scan "25.11.2015 10:35:55" -format "%d.%m.%Y %H:%M:%S" -base 0 -gmt 1}
    # Scan : date-time (system time zone with base)
    {clock scan "25.11.2015 10:35:55" -format "%d.%m.%Y %H:%M:%S" -base 0}
    # Scan : date-time (system time zone without base)
    {clock scan "25.11.2015 10:35:55" -format "%d.%m.%Y %H:%M:%S"}

    # Scan : julian day in gmt
    {clock scan 2451545 -format %J -gmt 1}
    # Scan : julian day in system TZ
    {clock scan 2451545 -format %J}
    # Scan : julian day in other TZ
    {clock scan 2451545 -format %J -timezone +0200}
    # Scan : julian day with time:
    {clock scan "2451545 10:20:30" -format "%J %H:%M:%S"}
    # Scan : julian day with time (greedy match):
    {clock scan "2451545 102030" -format "%J%H%M%S"}

    # Scan : century, lookup table month
    {clock scan {1970 Jan 2} -format {%C%y %b %d} -locale en -gmt 1}
    # Scan : century, lookup table month and day (both entries are first)
    {clock scan {1970 Jan 01} -format {%C%y %b %Od} -locale en -gmt 1}
    # Scan : century, lookup table month and day (list scan: entries with position 12 / 31)
    {clock scan {2016 Dec 31} -format {%C%y %b %Od} -locale en -gmt 1}

    # Scan : ISO date-time (CEST)
    {clock scan "2009-06-30T18:30:00+02:00" -format "%Y-%m-%dT%H:%M:%S%z"}
    {clock scan "2009-06-30T18:30:00 CEST" -format "%Y-%m-%dT%H:%M:%S %z"}
    # Scan : ISO date-time (UTC)
    {clock scan "2009-06-30T18:30:00Z" -format "%Y-%m-%dT%H:%M:%S%z"}
    {clock scan "2009-06-30T18:30:00 UTC" -format "%Y-%m-%dT%H:%M:%S %z"}

    # Scan : locale date-time (en):
    {clock scan "06/30/2009 18:30:15" -format "%x %X" -gmt 1 -locale en}
    # Scan : locale date-time (de):
    {clock scan "30.06.2009 18:30:15" -format "%x %X" -gmt 1 -locale de}

    # Scan : dynamic format (cacheable)
    {clock scan "25.11.2015 10:35:55" -format [string trim "%d.%m.%Y %H:%M:%S "] -base 0 -gmt 1}

    break
    # # Scan : long format test (allock chain)
    # {clock scan "25.11.2015" -format "%d.%m.%Y %d.%m.%Y %d.%m.%Y %d.%m.%Y %d.%m.%Y %d.%m.%Y %d.%m.%Y %d.%m.%Y" -base 0 -gmt 1}
    # # Scan : dynamic, very long format test (create obj representation, allock chain, GC, etc):
    # {clock scan "25.11.2015" -format [string repeat "[incr i] %d.%m.%Y %d.%m.%Y" 10] -base 0 -gmt 1}
    # # Scan : again:
    # {clock scan "25.11.2015" -format [string repeat "[incr i -1] %d.%m.%Y %d.%m.%Y" 10] -base 0 -gmt 1}
  } {puts [clock format $_(r) -locale en]}
}

proc test-freescan {{reptime 1000}} {
  _test_run $reptime {
    # FreeScan : relative date
    {clock scan "5 years 18 months 385 days" -base 0 -gmt 1}
    # FreeScan : relative date with relative weekday
    {clock scan "5 years 18 months 385 days Fri" -base 0 -gmt 1}
    # FreeScan : relative date with ordinal month
    {clock scan "5 years 18 months 385 days next 1 January" -base 0 -gmt 1}
    # FreeScan : relative date with ordinal month and relative weekday
    {clock scan "5 years 18 months 385 days next January Fri" -base 0 -gmt 1}
    # FreeScan : ordinal month
    {clock scan "next January" -base 0 -gmt 1}
    # FreeScan : relative week
    {clock scan "next Fri" -base 0 -gmt 1}
    # FreeScan : relative weekday and week offset 
    {clock scan "next January + 2 week" -base 0 -gmt 1}
    # FreeScan : time only with base
    {clock scan "19:18:30" -base 148863600 -gmt 1}
    # FreeScan : time only without base, gmt
    {clock scan "19:18:30" -gmt 1}
    # FreeScan : time only without base, system
    {clock scan "19:18:30"}
    # FreeScan : date, system time zone
    {clock scan "05/08/2016 20:18:30"}
    # FreeScan : date, supplied time zone
    {clock scan "05/08/2016 20:18:30" -timezone :CET}
    # FreeScan : date, supplied gmt (equivalent -timezone :GMT)
    {clock scan "05/08/2016 20:18:30" -gmt 1}
    # FreeScan : date, supplied time zone gmt
    {clock scan "05/08/2016 20:18:30" -timezone :GMT}
    # FreeScan : time only, numeric zone in string, base time gmt (exchange zones between gmt / -0500)
    {clock scan "20:18:30 -0500" -base 148863600 -gmt 1}
    # FreeScan : time only, zone in string (exchange zones between system / gmt)
    {clock scan "19:18:30 GMT" -base 148863600}
    # FreeScan : fast switch of zones in cycle - GMT, MST, CET (system) and EST
    {clock scan "19:18:30 MST" -base 148863600 -gmt 1
     clock scan "19:18:30 EST" -base 148863600
    }
  } {puts [clock format $_(r) -locale en]}
}

proc test-add {{reptime 1000}} {
  set tests {
    # Add : years
    {clock add 1246379415 5 years -gmt 1}
    # Add : months
    {clock add 1246379415 18 months -gmt 1}
    # Add : weeks
    {clock add 1246379415 20 weeks -gmt 1}
    # Add : days
    {clock add 1246379415 385 days -gmt 1}
    # Add : weekdays
    {clock add 1246379415 3 weekdays -gmt 1}

    # Add : hours
    {clock add 1246379415 5 hours -gmt 1}
    # Add : minutes
    {clock add 1246379415 55 minutes -gmt 1}
    # Add : seconds
    {clock add 1246379415 100 seconds -gmt 1}

    # Add : +/- in gmt
    {clock add 1246379415 -5 years +21 months -20 weeks +386 days -19 hours +30 minutes -10 seconds -gmt 1}
    # Add : +/- in system timezone
    {clock add 1246379415 -5 years +21 months -20 weeks +386 days -19 hours +30 minutes -10 seconds -timezone :CET}

    # Add : gmt
    {clock add 1246379415 -5 years 18 months 366 days 5 hours 30 minutes 10 seconds -gmt 1}
    # Add : system timezone
    {clock add 1246379415 -5 years 18 months 366 days 5 hours 30 minutes 10 seconds -timezone :CET}

    # Add : all in gmt
    {clock add 1246379415 4 years 18 months 50 weeks 378 days 3 weekdays 5 hours 30 minutes 10 seconds -gmt 1}
    # Add : all in system timezone
    {clock add 1246379415 4 years 18 months 50 weeks 378 days 3 weekdays 5 hours 30 minutes 10 seconds -timezone :CET}

  }
  # if does not support add of weekdays:
  if {[catch {clock add 0 3 weekdays -gmt 1}]} {
    regsub -all {\mweekdays\M} $tests "days" tests
  }
  _test_run $reptime $tests {puts [clock format $_(r) -locale en]}
}

proc test-convert {{reptime 1000}} {
  _test_run $reptime {
    # Convert locale (en -> de):
    {clock format [clock scan "Tue May 30 2017" -format "%a %b %d %Y" -gmt 1 -locale en] -format "%a %b %d %Y" -gmt 1 -locale de}
    # Convert locale (de -> en):
    {clock format [clock scan "Di Mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale de] -format "%a %b %d %Y" -gmt 1 -locale en}

    # Convert TZ: direct
    {clock format [clock scan "19:18:30" -base 148863600 -timezone EST] -timezone MST}
    {clock format [clock scan "19:18:30" -base 148863600 -timezone MST] -timezone EST}
    # Convert TZ: included in scan string & format
    {clock format [clock scan "19:18:30 EST" -base 148863600] -format "%H:%M:%S %z" -timezone MST}
    {clock format [clock scan "19:18:30 EST" -base 148863600] -format "%H:%M:%S %z" -timezone EST}

    # Format locale 1x: comparison values
    {clock format 0 -gmt 1 -locale en} 
    {clock format 0 -gmt 1 -locale de}
    {clock format 0 -gmt 1 -locale fr}
    # Format locale 2x: without switching locale (en, en)
    {clock format 0 -gmt 1 -locale en; clock format 0 -gmt 1 -locale en}
    # Format locale 2x: with switching locale (en, de)
    {clock format 0 -gmt 1 -locale en; clock format 0 -gmt 1 -locale de}
    # Format locale 3x: without switching locale (en, en, en)
    {clock format 0 -gmt 1 -locale en; clock format 0 -gmt 1 -locale en; clock format 0 -gmt 1 -locale en}
    # Format locale 3x: with switching locale (en, de, fr)
    {clock format 0 -gmt 1 -locale en; clock format 0 -gmt 1 -locale de; clock format 0 -gmt 1 -locale fr}

    # Scan locale 2x: without switching locale (en, en) + (de, de)
    {clock scan "Tue May 30 2017" -format "%a %b %d %Y" -gmt 1 -locale en; clock scan "Tue May 30 2017" -format "%a %b %d %Y" -gmt 1 -locale en}
    {clock scan "Di Mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale de; clock scan "Di Mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale de}
    # Scan locale 2x: with switching locale (en, de)
    {clock scan "Tue May 30 2017" -format "%a %b %d %Y" -gmt 1 -locale en; clock scan "Di Mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale de}
    # Scan locale 3x: with switching locale (en, de, fr)
    {clock scan "Tue May 30 2017" -format "%a %b %d %Y" -gmt 1 -locale en; clock scan "Di Mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale de; clock scan "mar. mai 30 2017" -format "%a %b %d %Y" -gmt 1 -locale fr}

    # Format TZ 2x: comparison values
    {clock format 0 -timezone CET -format "%Y-%m-%d %H:%M:%S %z"}
    {clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"}
    # Format TZ 2x: without switching
    {clock format 0 -timezone CET -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone CET -format "%Y-%m-%d %H:%M:%S %z"}
    {clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"}
    # Format TZ 2x: with switching
    {clock format 0 -timezone CET -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"}
    # Format TZ 3x: with switching (CET, EST, MST)
    {clock format 0 -timezone CET -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone MST -format "%Y-%m-%d %H:%M:%S %z"}
    # Format TZ 3x: with switching (GMT, EST, MST)
    {clock format 0 -gmt 1 -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone EST -format "%Y-%m-%d %H:%M:%S %z"; clock format 0 -timezone MST -format "%Y-%m-%d %H:%M:%S %z"}

    # FreeScan TZ 2x (+1 system-default): without switching TZ
    {clock scan "19:18:30 MST" -base 148863600; clock scan "19:18:30 MST" -base 148863600}
    {clock scan "19:18:30 EST" -base 148863600; clock scan "19:18:30 EST" -base 148863600}
    # FreeScan TZ 2x (+1 system-default): with switching TZ
    {clock scan "19:18:30 MST" -base 148863600; clock scan "19:18:30 EST" -base 148863600}
    # FreeScan TZ 2x (+1 gmt, +1 system-default)
    {clock scan "19:18:30 MST" -base 148863600 -gmt 1; clock scan "19:18:30 EST" -base 148863600}
    
    # Scan TZ: comparison included in scan string vs. given
    {clock scan "2009-06-30T18:30:00 CEST" -format "%Y-%m-%dT%H:%M:%S %z"}
    {clock scan "2009-06-30T18:30:00 CET" -format "%Y-%m-%dT%H:%M:%S %z"}
    {clock scan "2009-06-30T18:30:00" -timezone CET -format "%Y-%m-%dT%H:%M:%S"}
  }
}

proc test-other {{reptime 1000}} {
  _test_run $reptime {
    # Bad zone
    {catch {clock scan "1 day" -timezone BAD_ZONE -locale en}}

    # Scan : julian day (overflow)
    {catch {clock scan 5373485 -format %J}}

    # Scan : test rotate of GC objects (format is dynamic, so tcl-obj removed with last reference)
    {set i 0; time { clock scan "[incr i] - 25.11.2015" -format "$i - %d.%m.%Y" -base 0 -gmt 1 } 50}
    # Scan : test reusability of GC objects (format is dynamic, so tcl-obj removed with last reference)
    {set i 50; time { clock scan "[incr i -1] - 25.11.2015" -format "$i - %d.%m.%Y" -base 0 -gmt 1 } 50}
  }
}

proc test-ensemble-perf {{reptime 1000}} {
  _test_run $reptime {
    # Clock clicks (ensemble)
    {clock clicks}
    # Clock clicks (direct)
    {::tcl::clock::clicks}
    # Clock seconds (ensemble)
    {clock seconds}
    # Clock seconds (direct)
    {::tcl::clock::seconds}
    # Clock microseconds (ensemble)
    {clock microseconds}
    # Clock microseconds (direct)
    {::tcl::clock::microseconds}
    # Clock scan (ensemble)
    {clock scan ""}
    # Clock scan (direct)
    {::tcl::clock::scan ""}
    # Clock format (ensemble)
    {clock format 0 -f %s}
    # Clock format (direct)
    {::tcl::clock::format 0 -f %s}
  }
}

proc test {{reptime 1000}} {
  puts ""
  test-ensemble-perf [expr {$reptime / 2}]; #fast enough
  test-format $reptime
  test-scan $reptime
  test-freescan $reptime
  test-add $reptime
  test-convert [expr {$reptime / 2}]; #fast enough
  test-other $reptime

  puts \n**OK**
}

}; # end of ::tclTestPerf-TclClock

# ------------------------------------------------------------------------

# if calling direct:
if {[info exists ::argv0] && [file tail $::argv0] eq [file tail [info script]]} {
  ::tclTestPerf-TclClock::test $in(-time)
}

Added tests-perf/test-performance.tcl.

















































































































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
# ------------------------------------------------------------------------
#
# test-performance.tcl --
# 
#  This file provides common performance tests for comparison of tcl-speed
#  degradation or regression by switching between branches.
#
#  To execute test case evaluate direct corresponding file "tests-perf\*.perf.tcl".
#
# ------------------------------------------------------------------------
# 
# Copyright (c) 2014 Serg G. Brester (aka sebres)
# 
# See the file "license.terms" for information on usage and redistribution
# of this file.
# 

namespace eval ::tclTestPerf {
# warm-up interpeter compiler env, calibrate timerate measurement functionality:

# if no timerate here - import from unsupported:
if {[namespace which -command timerate] eq {}} {
  namespace inscope ::tcl::unsupported {namespace export timerate}
  namespace import ::tcl::unsupported::timerate
}

# if not yet calibrated:
if {[lindex [timerate {} 10] 6] >= (10-1)} {
  puts -nonewline "Calibration ... "; flush stdout
  puts "done: [lrange \
    [timerate -calibrate {}] \
  0 1]"
}

proc {**STOP**} {args} {
  return -code error -level 4 "**STOP** in [info level [expr {[info level]-2}]] [join $args { }]" 
}

proc _test_get_commands {lst} {
  regsub -all {(?:^|\n)[ \t]*(\#[^\n]*|\msetup\M[^\n]*|\mcleanup\M[^\n]*)(?=\n\s*(?:[\{\#]|setup|cleanup|$))} $lst "\n{\\1}"
}

proc _test_out_total {} {
  upvar _ _

  set tcnt [llength $_(itm)]
  if {!$tcnt} {
    puts ""
    return
  }

  set mintm 0x7fffffff
  set maxtm 0
  set nett 0
  set wtm 0
  set wcnt 0
  set i 0
  foreach tm $_(itm) {
    if {[llength $tm] > 6} {
      set nett [expr {$nett + [lindex $tm 6]}]
    }
    set wtm [expr {$wtm + [lindex $tm 0]}]
    set wcnt [expr {$wcnt + [lindex $tm 2]}]
    set tm [lindex $tm 0]
    if {$tm > $maxtm} {set maxtm $tm; set maxi $i}
    if {$tm < $mintm} {set mintm $tm; set mini $i}
    incr i
  }

  puts [string repeat ** 40]
  set s [format "%d cases in %.2f sec." $tcnt [expr {([clock milliseconds] - $_(starttime)) / 1000.0}]]
  if {$nett > 0} {
    append s [format " (%.2f nett-sec.)" [expr {$nett / 1000.0}]]
  }
  puts "Total $s:"
  lset _(m) 0 [format %.6f $wtm]
  lset _(m) 2 $wcnt
  lset _(m) 4 [format %.3f [expr {$wcnt / (($nett ? $nett : ($tcnt * [lindex $_(reptime) 0])) / 1000.0)}]]
  if {[llength $_(m)] > 6} {
    lset _(m) 6 [format %.3f $nett]
  }
  puts $_(m)
  puts "Average:"
  lset _(m) 0 [format %.6f [expr {[lindex $_(m) 0] / $tcnt}]]
  lset _(m) 2 [expr {[lindex $_(m) 2] / $tcnt}]
  if {[llength $_(m)] > 6} {
    lset _(m) 6 [format %.3f [expr {[lindex $_(m) 6] / $tcnt}]]
    lset _(m) 4 [format %.0f [expr {[lindex $_(m) 2] / [lindex $_(m) 6] * 1000}]]
  }
  puts $_(m)
  puts "Min:"
  puts [lindex $_(itm) $mini]
  puts "Max:"
  puts [lindex $_(itm) $maxi]
  puts [string repeat ** 40]
  puts ""
}

proc _test_run {args} {
  upvar _ _
  # parse args:
  set _(out-result) 1
  if {[lindex $args 0] eq "-no-result"} {
    set _(out-result) 0
    set args [lrange $args 1 end]
  }
  if {[llength $args] < 2 || [llength $args] > 3} {
    return -code error "wrong # args: should be \"[lindex [info level [info level]] 0] ?-no-result? reptime lst ?outcmd?\""
  }
  set outcmd {puts $_(r)}
  set args [lassign $args reptime lst]
  if {[llength $args]} {
    set outcmd [lindex $args 0]
  }
  # avoid output if only once:
  if {[lindex $reptime 0] <= 1 || ([llength $reptime] > 1 && [lindex $reptime 1] == 1)} {
    set _(out-result) 0
  }
  array set _ [list itm {} reptime $reptime starttime [clock milliseconds]]

  # process measurement:
  foreach _(c) [_test_get_commands $lst] {
    puts "% [regsub -all {\n[ \t]*} $_(c) {; }]"
    if {[regexp {^\s*\#} $_(c)]} continue
    if {[regexp {^\s*(?:setup|cleanup)\s+} $_(c)]} {
      puts [if 1 [lindex $_(c) 1]]
      continue
    }
    # if output result (and not once):
    if {$_(out-result)} {
      set _(r) [if 1 $_(c)]
      if {$outcmd ne {}} $outcmd
      if {[llength $_(reptime)] > 1} { # decrement max-count
        lset _(reptime) 1 [expr {[lindex $_(reptime) 1] - 1}]
      }
    }
    puts [set _(m) [timerate $_(c) {*}$_(reptime)]]
    lappend _(itm) $_(m)
    puts ""
  }
  _test_out_total
}

}; # end of namespace ::tclTestPerf

Added tests-perf/timer-event.perf.tcl.























































































































































































1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
#!/usr/bin/tclsh

# ------------------------------------------------------------------------
#
# timer-event.perf.tcl --
# 
#  This file provides performance tests for comparison of tcl-speed
#  of timer events (event-driven tcl-handling).
#
# ------------------------------------------------------------------------
# 
# Copyright (c) 2014 Serg G. Brester (aka sebres)
# 
# See the file "license.terms" for information on usage and redistribution
# of this file.
# 


if {![namespace exists ::tclTestPerf]} {
  source [file join [file dirname [info script]] test-performance.tcl]
}


namespace eval ::tclTestPerf-Timer-Event {

namespace path {::tclTestPerf}

proc test-queue {{reptime {1000 10000}}} {

  set howmuch [lindex $reptime 1]

  # because of extremely short measurement times by tests below, wait a little bit (warming-up),
  # to minimize influence of the time-gradation (just for better dispersion resp. result-comparison)
  timerate {after 0} 156

  puts "*** up to $howmuch events ***"
  # single iteration by update, so using -no-result (measure only):
  _test_run -no-result $reptime [string map [list \{*\}\$reptime $reptime \$howmuch $howmuch \\# \#] {
    # generate up to $howmuch idle-events:
    {after idle {set foo bar}}
    # update / after idle:
    {update; if {![llength [after info]]} break}
    
    # generate up to $howmuch idle-events:
    {after idle {set foo bar}}
    # update idletasks / after idle:
    {update idletasks; if {![llength [after info]]} break}

    # generate up to $howmuch immediate events:
    {after 0 {set foo bar}}
    # update / after 0:
    {update; if {![llength [after info]]} break}
    
    # generate up to $howmuch 1-ms events:
    {after 1 {set foo bar}}
    setup {after 1}
    # update / after 1:
    {update; if {![llength [after info]]} break}

    # generate up to $howmuch immediate events (+ 1 event of the second generation):
    {after 0 {after 0 {}}}
    # update / after 0 (double generation):
    {update; if {![llength [after info]]} break}

    # cancel forwards "after idle" / $howmuch idle-events in queue:
    setup {set i 0; timerate {set ev([incr i]) [after idle {set foo bar}]} {*}$reptime}
    setup {set le $i; set i 0; list 1 .. $le; # cancel up to $howmuch events}
    {after cancel $ev([incr i]); if {$i >= $le} break}
    cleanup {update; unset -nocomplain ev}
    # cancel backwards "after idle" / $howmuch idle-events in queue:
    setup {set i 0; timerate {set ev([incr i]) [after idle {set foo bar}]} {*}$reptime}
    setup {set le $i; incr i; list $le .. 1; # cancel up to $howmuch events}
    {after cancel $ev([incr i -1]); if {$i <= 1} break}
    cleanup {update; unset -nocomplain ev}

    # cancel forwards "after 0" / $howmuch timer-events in queue:
    setup {set i 0; timerate {set ev([incr i]) [after 0 {set foo bar}]} {*}$reptime}
    setup {set le $i; set i 0; list 1 .. $le; # cancel up to $howmuch events}
    {after cancel $ev([incr i]); if {$i >= $howmuch} break}
    cleanup {update; unset -nocomplain ev}
    # cancel backwards "after 0" / $howmuch timer-events in queue:
    setup {set i 0; timerate {set ev([incr i]) [after 0 {set foo bar}]} {*}$reptime}
    setup {set le $i; incr i; list $le .. 1; # cancel up to $howmuch events}
    {after cancel $ev([incr i -1]); if {$i <= 1} break}
    cleanup {update; unset -nocomplain ev}
    
    # end $howmuch events.
    cleanup {if [llength [after info]] {error "unexpected: [llength [after info]] events are still there."}}
  }]
}

proc test-access {{reptime {1000 5000}}} {
  set howmuch [lindex $reptime 1]

  _test_run $reptime [string map [list \{*\}\$reptime $reptime \$howmuch $howmuch] {
    # event random access: after idle + after info (by $howmuch events)
    setup {set i -1; timerate {set ev([incr i]) [after idle {}]} {*}$reptime}
    {after info $ev([expr {int(rand()*$i)}])}
    cleanup {update; unset -nocomplain ev}
    # event random access: after 0 + after info (by $howmuch events)
    setup {set i -1; timerate {set ev([incr i]) [after 0 {}]} {*}$reptime}
    {after info $ev([expr {int(rand()*$i)}])}
    cleanup {update; unset -nocomplain ev}

    # end $howmuch events.
    cleanup {if [llength [after info]] {error "unexpected: [llength [after info]] events are still there."}}
  }]
}

proc test-exec {{reptime 1000}} {
  _test_run $reptime {
    # after idle + after cancel
    {after cancel [after idle {set foo bar}]}
    # after 0 + after cancel
    {after cancel [after 0 {set foo bar}]}
    # after idle + update idletasks
    {after idle {set foo bar}; update idletasks}
    # after idle + update
    {after idle {set foo bar}; update}
    # immediate: after 0 + update
    {after 0 {set foo bar}; update}
    # delayed: after 1 + update
    {after 1 {set foo bar}; update}
    # empty update:
    {update}
    # empty update idle tasks:
    {update idletasks}

    # simple shortest sleep:
    {after 0}
  }
}

proc test-nrt-capability {{reptime 1000}} {
  _test_run $reptime {
    # comparison values:
    {after 0 {set a 5}; update}
    {after 0 {set a 5}; vwait a}

    # conditional vwait with very brief wait-time:
    {after 1 {set a timeout}; vwait a; expr {$::a ne "timeout" ? 1 : "0[unset ::a]"}}
    {after 0 {set a timeout}; vwait a; expr {$::a ne "timeout" ? 1 : "0[unset ::a]"}}
  }
}

proc test-long {{reptime 1000}} {
  _test_run $reptime {
    # in-between important event by amount of idle events:
    {time {after idle {after 30}} 10; after 1 {set important 1}; vwait important;}
    cleanup {foreach i [after info] {after cancel $i}}
    # in-between important event (of new generation) by amount of idle events:
    {time {after idle {after 30}} 10; after 1 {after 0 {set important 1}}; vwait important;} 
    cleanup {foreach i [after info] {after cancel $i}}
  }
}

proc test {{reptime 1000}} {
  test-exec $reptime
  foreach howmuch {5000 50000} {
    test-access [list $reptime $howmuch]
  }
  test-nrt-capability $reptime
  test-long $reptime

  puts ""
  foreach howmuch { 10000 20000 40000 60000 } {
    test-queue [list $reptime $howmuch]
  }

  puts \n**OK**
}

}; # end of ::tclTestPerf-Timer-Event

# ------------------------------------------------------------------------

# if calling direct:
if {[info exists ::argv0] && [file tail $::argv0] eq [file tail [info script]]} {
  array set in {-time 500}
  array set in $argv
  ::tclTestPerf-Timer-Event::test $in(-time)
}

Changes to tests/cmdMZ.test.

342
343
344
345
346
347
348
































































349
350
351
352
353
354
355
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







test cmdMZ-5.7 {Tcl_TimeObjCmd: errors generate right trace} {
    list [catch {time {error foo}} msg] $msg $::errorInfo
} {1 foo {foo
    while executing
"error foo"
    invoked from within
"time {error foo}"}}

test cmdMZ-6.1 {Tcl_TimeRateObjCmd: basic format of command} {
    list [catch {timerate} msg] $msg
} {1 {wrong # args: should be "timerate ?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??"}}
test cmdMZ-6.2.1 {Tcl_TimeRateObjCmd: basic format of command} {
    list [catch {timerate a b c d} msg] $msg
} {1 {wrong # args: should be "timerate ?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??"}}
test cmdMZ-6.2.2 {Tcl_TimeRateObjCmd: basic format of command} {
    list [catch {timerate a b c} msg] $msg
} {1 {expected integer but got "b"}}
test cmdMZ-6.2.3 {Tcl_TimeRateObjCmd: basic format of command} {
    list [catch {timerate a b} msg] $msg
} {1 {expected integer but got "b"}}
test cmdMZ-6.3 {Tcl_TimeRateObjCmd: basic format of command} {
    list [catch {timerate -overhead b {} a b} msg] $msg
} {1 {expected floating-point number but got "b"}}
test cmdMZ-6.4 {Tcl_TimeRateObjCmd: compile of script happens even with negative iteration counts} {
    list [catch {timerate "foreach a {c d e} \{" -12456} msg] $msg
} {1 {missing close-brace}}
test cmdMZ-6.5 {Tcl_TimeRateObjCmd: result format and one iteration} {
    regexp {^\d+.\d+ \ws/# 1 # \d+ #/sec \d+.\d+ nett-ms$} [timerate {} 0]
} 1
test cmdMZ-6.6 {Tcl_TimeRateObjCmd: slower commands take longer, but it remains almost the same time of measument} {
    set m1 [timerate {after 0} 20]
    set m2 [timerate {after 1} 20]
    list \
	[expr {[lindex $m1 0] < [lindex $m2 0]}] \
	[expr {[lindex $m1 0] < 100}] \
	[expr {[lindex $m2 0] >= 500}] \
	[expr {[lindex $m1 2] > 1000}] \
	[expr {[lindex $m2 2] <= 50}] \
	[expr {[lindex $m1 4] > 10000}] \
	[expr {[lindex $m2 4] < 10000}] \
	[expr {[lindex $m1 6] > 10 && [lindex $m1 6] < 50}] \
	[expr {[lindex $m2 6] > 10 && [lindex $m2 6] < 50}]
} [lrepeat 9 1]
test cmdMZ-6.7 {Tcl_TimeRateObjCmd: errors generate right trace} {
    list [catch {timerate {error foo} 1} msg] $msg $::errorInfo
} {1 foo {foo
    while executing
"error foo"
    invoked from within
"timerate {error foo} 1"}}
test cmdMZ-6.8 {Tcl_TimeRateObjCmd: allow (conditional) break from timerate} {
    set m1 [timerate {break}]
    list \
	[expr {[lindex $m1 0] < 1000}] \
	[expr {[lindex $m1 2] == 1}] \
	[expr {[lindex $m1 4] > 1000}] \
	[expr {[lindex $m1 6] < 10}]
} {1 1 1 1}
test cmdMZ-6.9 {Tcl_TimeRateObjCmd: max count of iterations} {
    set m1 [timerate {} 1000 5];	# max-count wins
    set m2 [timerate {after 20} 1 5];	# max-time wins
    list [lindex $m1 2] [lindex $m2 2]
} {5 1}
test cmdMZ-6.10 {Tcl_TimeRateObjCmd: huge overhead cause 0us result} {
    set m1 [timerate -overhead 1e6 {after 10} 100 1]
    list \
	[expr {[lindex $m1 0] == 0.0}] \
	[expr {[lindex $m1 2] == 1}] \
	[expr {[lindex $m1 4] == 1000000}] \
	[expr {[lindex $m1 6] <= 0.001}]
} {1 1 1 1}

# The tests for Tcl_WhileObjCmd are in while.test

# cleanup
cleanupTests
}
namespace delete ::tcl::test::cmdMZ

Changes to tools/tcltk-man2html.tcl.

347
348
349
350
351
352
353

354
355
356
357
358
359
360
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361







+







		     {\&}	"\t" \
		     {\%}	{} \
		     "\\\n"	"\n" \
		     {\(+-}	"&#177;" \
		     {\(co}	"&copy;" \
		     {\(em}	"&#8212;" \
		     {\(fm}	"&#8242;" \
		     {\(mc}	"&#181;" \
		     {\(mu}	"&#215;" \
		     {\(->}	"<font size=\"+1\">&#8594;</font>" \
		     {\fP}	{\fR} \
		     {\.}	. \
		     {\(bu}	"&#8226;" \
		    ]
    lappend charmap {\o'o^'} {&ocirc;} ; # o-circumflex in re_syntax.n

Changes to unix/tclUnixTime.c.

83
84
85
86
87
88
89


























90
91
92
93
94
95
96
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







{
    return time(NULL);
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetMicroseconds --
 *
 *	This procedure returns the number of microseconds from the epoch.
 *	On most Unix systems the epoch is Midnight Jan 1, 1970 GMT.
 *
 * Results:
 *	Number of microseconds from the epoch.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

Tcl_WideInt
TclpGetMicroseconds(void)
{
    Tcl_Time time;

    tclGetTimeProcPtr(&time, tclTimeClientData);
    return ((Tcl_WideInt)time.sec)*1000000 + time.usec;
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetClicks --
 *
 *	This procedure returns a value that represents the highest resolution
 *	clock available on the system. There are no garantees on what the
 *	resolution will be. In Tcl we will call this value a "click". The
 *	start time is also system dependant.
 *
215
216
217
218
219
220
221













































222
223
224
225
226
227
228
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299







+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+







#else
#error Wide high-resolution clicks not implemented on this platform
#endif
    }

    return nsec;
}

/*
 *----------------------------------------------------------------------
 *
 * TclpWideClickInMicrosec --
 *
 *	This procedure return scale to convert click values from the 
 *	TclpGetWideClicks native resolution to microsecond resolution
 *	and back.
 *
 * Results:
 * 	1 click in microseconds as double.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

double
TclpWideClickInMicrosec(void)
{
    if (tclGetTimeProcPtr != NativeGetTime) {
	return 1.0;
    } else {
#ifdef MAC_OSX_TCL
	static int initialized = 0;
	static double scale = 0.0;

	if (initialized) {
	    return scale;
	} else {
	    mach_timebase_info_data_t tb;

	    mach_timebase_info(&tb);
	    /* value of tb.numer / tb.denom = 1 click in nanoseconds */
	    scale = ((double)tb.numer) / tb.denom / 1000;
	    initialized = 1;
	    return scale;
	}
#else
#error Wide high-resolution clicks not implemented on this platform
#endif
    }
}
#endif /* TCL_WIDE_CLICKS */

/*
 *----------------------------------------------------------------------
 *
 * TclpGetTimeZone --
 *

Changes to win/tclWinTime.c.

47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92

93
94
95
96
97
98
99
100

101
102
103
104
105





106
107
108
109
110











111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105




106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149







+










-












+
+













-
+


+








+

-
-
-
-
+
+
+
+
+





+
+
+
+
+
+
+
+
+
+
+















+








typedef struct TimeInfo {
    CRITICAL_SECTION cs;	/* Mutex guarding this structure. */
    int initialized;		/* Flag == 1 if this structure is
				 * initialized. */
    int perfCounterAvailable;	/* Flag == 1 if the hardware has a performance
				 * counter. */
    DWORD calibrationInterv;	/* Calibration interval in seconds (start 1 sec) */
    HANDLE calibrationThread;	/* Handle to the thread that keeps the virtual
				 * clock calibrated. */
    HANDLE readyEvent;		/* System event used to trigger the requesting
				 * thread when the clock calibration procedure
				 * is initialized for the first time. */
    HANDLE exitEvent; 		/* Event to signal out of an exit handler to
				 * tell the calibration loop to terminate. */
    LARGE_INTEGER nominalFreq;	/* Nominal frequency of the system performance
				 * counter, that is, the value returned from
				 * QueryPerformanceFrequency. */

    /*
     * The following values are used for calculating virtual time. Virtual
     * time is always equal to:
     *    lastFileTime + (current perf counter - lastCounter)
     *				* 10000000 / curCounterFreq
     * and lastFileTime and lastCounter are updated any time that virtual time
     * is returned to a caller.
     */

    ULARGE_INTEGER fileTimeLastCall;
    LARGE_INTEGER perfCounterLastCall;
    LARGE_INTEGER curCounterFreq;
    LARGE_INTEGER posixEpoch;	/* Posix epoch expressed as 100-ns ticks since
				 * the windows epoch. */

    /*
     * Data used in developing the estimate of performance counter frequency
     */

    Tcl_WideUInt fileTimeSample[SAMPLES];
				/* Last 64 samples of system time. */
    Tcl_WideInt perfCounterSample[SAMPLES];
				/* Last 64 samples of performance counter. */
    int sampleNo;		/* Current sample number. */
} TimeInfo;

static TimeInfo timeInfo = {
    { NULL },
    { NULL, 0, 0, NULL, NULL, 0 },
    0,
    0,
    1,
    (HANDLE) NULL,
    (HANDLE) NULL,
    (HANDLE) NULL,
#ifdef HAVE_CAST_TO_UNION
    (LARGE_INTEGER) (Tcl_WideInt) 0,
    (ULARGE_INTEGER) (DWORDLONG) 0,
    (LARGE_INTEGER) (Tcl_WideInt) 0,
    (LARGE_INTEGER) (Tcl_WideInt) 0,
    (LARGE_INTEGER) (Tcl_WideInt) 0,
#else
    0,
    0,
    0,
    0,
    {0, 0},
    {0, 0},
    {0, 0},
    {0, 0},
    {0, 0},
#endif
    { 0 },
    { 0 },
    0
};

/*
 * Scale to convert wide click values from the TclpGetWideClicks native
 * resolution to microsecond resolution and back.
 */
static struct {
    int initialized;		/* 1 if initialized, 0 otherwise */
    int perfCounter;		/* 1 if performance counter usable for wide clicks */
    double microsecsScale;	/* Denominator scale between clock / microsecs */
} wideClick = {0, 0.0};


/*
 * Declarations for functions defined later in this file.
 */

static struct tm *	ComputeGMT(const time_t *tp);
static void		StopCalibration(ClientData clientData);
static DWORD WINAPI	CalibrationThread(LPVOID arg);
static void 		UpdateTimeEachSecond(void);
static void		ResetCounterSamples(Tcl_WideUInt fileTime,
			    Tcl_WideInt perfCounter, Tcl_WideInt perfFreq);
static Tcl_WideInt	AccumulateSample(Tcl_WideInt perfCounter,
			    Tcl_WideUInt fileTime);
static void		NativeScaleTime(Tcl_Time* timebuf,
			    ClientData clientData);
static Tcl_WideInt	NativeGetMicroseconds(void);
static void		NativeGetTime(Tcl_Time* timebuf,
			    ClientData clientData);

/*
 * TIP #233 (Virtualized Time): Data for the time hooks, if any.
 */

150
151
152
153
154
155
156








157

158
159
160



161
162
163
164
165
166
167
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183


184
185
186
187
188
189
190
191
192
193







+
+
+
+
+
+
+
+
-
+

-
-
+
+
+







 *
 *----------------------------------------------------------------------
 */

unsigned long
TclpGetSeconds(void)
{
    Tcl_WideInt usecSincePosixEpoch;

    /* Try to use high resolution timer */
    if ( tclGetTimeProcPtr == NativeGetTime
      && (usecSincePosixEpoch = NativeGetMicroseconds())
    ) {
	return usecSincePosixEpoch / 1000000;
    } else {
    Tcl_Time t;
	Tcl_Time t;

    (*tclGetTimeProcPtr) (&t, tclTimeClientData);    /* Tcl_GetTime inlined. */
    return t.sec;
	tclGetTimeProcPtr(&t, tclTimeClientData);	/* Tcl_GetTime inlined. */
	return t.sec;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetClicks --
 *
178
179
180
181
182
183
184








185
186
187
188




189
190
191
192
193
194
195
196


























































































































197





198
199
200
201
202
203
204
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218




219
220
221
222
223







224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358







+
+
+
+
+
+
+
+
-
-
-
-
+
+
+
+

-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+







 *
 *----------------------------------------------------------------------
 */

unsigned long
TclpGetClicks(void)
{
    Tcl_WideInt usecSincePosixEpoch;

    /* Try to use high resolution timer */
    if ( tclGetTimeProcPtr == NativeGetTime
      && (usecSincePosixEpoch = NativeGetMicroseconds())
    ) {
	return (unsigned long)usecSincePosixEpoch;
    } else {
    /*
     * Use the Tcl_GetTime abstraction to get the time in microseconds, as
     * nearly as we can, and return it.
     */
	/*
	* Use the Tcl_GetTime abstraction to get the time in microseconds, as
	* nearly as we can, and return it.
	*/

    Tcl_Time now;		/* Current Tcl time */
    unsigned long retval;	/* Value to return */

    (*tclGetTimeProcPtr) (&now, tclTimeClientData);   /* Tcl_GetTime inlined */

    retval = (now.sec * 1000000) + now.usec;
    return retval;
	Tcl_Time now;		/* Current Tcl time */

	tclGetTimeProcPtr(&now, tclTimeClientData);	/* Tcl_GetTime inlined */
	return (unsigned long)(now.sec * 1000000) + now.usec;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetWideClicks --
 *
 *	This procedure returns a WideInt value that represents the highest
 *	resolution clock in microseconds available on the system.
 *
 * Results:
 *	Number of microseconds (from some start time).
 *
 * Side effects:
 *	This should be used for time-delta resp. for measurement purposes
 *	only, because on some platforms can return microseconds from some
 *	start time (not from the epoch).
 *
 *----------------------------------------------------------------------
 */

Tcl_WideInt
TclpGetWideClicks(void)
{
    LARGE_INTEGER curCounter;

    if (!wideClick.initialized) {
	LARGE_INTEGER perfCounterFreq;

	/*
	 * The frequency of the performance counter is fixed at system boot and
	 * is consistent across all processors. Therefore, the frequency need 
	 * only be queried upon application initialization.
	 */
	if (QueryPerformanceFrequency(&perfCounterFreq)) {
	    wideClick.perfCounter = 1;
	    wideClick.microsecsScale = 1000000.0 / perfCounterFreq.QuadPart;
	} else {
	    /* fallback using microseconds */
	    wideClick.perfCounter = 0;
	    wideClick.microsecsScale = 1;
	}
	
	wideClick.initialized = 1;
    }
    if (wideClick.perfCounter) {
	if (QueryPerformanceCounter(&curCounter)) {
	    return (Tcl_WideInt)curCounter.QuadPart;
	}
	/* fallback using microseconds */
	wideClick.perfCounter = 0;
	wideClick.microsecsScale = 1;
	return TclpGetMicroseconds();
    } else {
    	return TclpGetMicroseconds();
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclpWideClickInMicrosec --
 *
 *	This procedure return scale to convert wide click values from the 
 *	TclpGetWideClicks native resolution to microsecond resolution
 *	and back.
 *
 * Results:
 * 	1 click in microseconds as double.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

double
TclpWideClickInMicrosec(void)
{
    if (!wideClick.initialized) {
    	(void)TclpGetWideClicks();	/* initialize */
    }
    return wideClick.microsecsScale;
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetMicroseconds --
 *
 *	This procedure returns a WideInt value that represents the highest
 *	resolution clock in microseconds available on the system.
 *
 * Results:
 *	Number of microseconds (from the epoch).
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

Tcl_WideInt 
TclpGetMicroseconds(void)
{
    Tcl_WideInt usecSincePosixEpoch;

    /* Try to use high resolution timer */
    if ( tclGetTimeProcPtr == NativeGetTime
      && (usecSincePosixEpoch = NativeGetMicroseconds())
    ) {
	return usecSincePosixEpoch;
    } else {
	/*
	* Use the Tcl_GetTime abstraction to get the time in microseconds, as
	* nearly as we can, and return it.
	*/

	Tcl_Time now;

	tclGetTimeProcPtr(&now, tclTimeClientData);	/* Tcl_GetTime inlined */
	return (((Tcl_WideInt)now.sec) * 1000000) + now.usec;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclpGetTimeZone --
 *
248
249
250
251
252
253
254









255


256
257
258
259
260
261
262
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426







+
+
+
+
+
+
+
+
+
-
+
+







 *----------------------------------------------------------------------
 */

void
Tcl_GetTime(
    Tcl_Time *timePtr)		/* Location to store time information. */
{
    Tcl_WideInt usecSincePosixEpoch;

    /* Try to use high resolution timer */
    if ( tclGetTimeProcPtr == NativeGetTime
      && (usecSincePosixEpoch = NativeGetMicroseconds())
    ) {
	timePtr->sec = (long) (usecSincePosixEpoch / 1000000);
	timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000);
    } else {
    (*tclGetTimeProcPtr) (timePtr, tclTimeClientData);
    	tclGetTimeProcPtr(timePtr, tclTimeClientData);
    }
}

/*
 *----------------------------------------------------------------------
 *
 * NativeScaleTime --
 *
281
282
283
284
285
286
287
288

289
290
291


292
293
294


295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313














314
315
316
317
318
319
320
321
322
323




324
325
326
327
328
329
330
445
446
447
448
449
450
451

452
453


454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471







472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506







-
+

-
-
+
+


-
+
+












-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+










+
+
+
+







     * Native scale is 1:1. Nothing is done.
     */
}

/*
 *----------------------------------------------------------------------
 *
 * NativeGetTime --
 * NativeGetMicroseconds --
 *
 *	TIP #233: Gets the current system time in seconds and microseconds
 *	since the beginning of the epoch: 00:00 UCT, January 1, 1970.
 *	Gets the current system time in microseconds since the beginning
 *	of the epoch: 00:00 UCT, January 1, 1970.
 *
 * Results:
 *	Returns the current time in timePtr.
 *	Returns the wide integer with number of microseconds from the epoch, or
 *	0 if high resolution timer is not available.
 *
 * Side effects:
 *	On the first call, initializes a set of static variables to keep track
 *	of the base value of the performance counter, the corresponding wall
 *	clock (obtained through ftime) and the frequency of the performance
 *	counter. Also spins a thread whose function is to wake up periodically
 *	and monitor these values, adjusting them as necessary to correct for
 *	drift in the performance counter's oscillator.
 *
 *----------------------------------------------------------------------
 */

static void
NativeGetTime(
    Tcl_Time *timePtr,
    ClientData clientData)
{
    struct _timeb t;

static inline Tcl_WideInt
NativeCalc100NsTicks(
    ULONGLONG fileTimeLastCall,
    LONGLONG perfCounterLastCall,
    LONGLONG curCounterFreq,
    LONGLONG curCounter
) {
    return fileTimeLastCall + 
	((curCounter - perfCounterLastCall) * 10000000 / curCounterFreq);
}

static Tcl_WideInt
NativeGetMicroseconds(void)
{
    /*
     * Initialize static storage on the first trip through.
     *
     * Note: Outer check for 'initialized' is a performance win since it
     * avoids an extra mutex lock in the common case.
     */

    if (!timeInfo.initialized) {
	TclpInitLock();
	if (!timeInfo.initialized) {

	    timeInfo.posixEpoch.LowPart = 0xD53E8000;
	    timeInfo.posixEpoch.HighPart = 0x019DB1DE;

	    timeInfo.perfCounterAvailable =
		    QueryPerformanceFrequency(&timeInfo.nominalFreq);

	    /*
	     * Some hardware abstraction layers use the CPU clock in place of
	     * the real-time clock as a performance counter reference. This
	     * results in:
421
422
423
424
425
426
427
428
429


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454



455
456
457
458
459
460
461
462


463
464
465
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480


481

482
483


484
485
486



487
488
489
490
491
492






























493







494
495


496


497
498
499




500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518


519
520
521
522
523
524
525
597
598
599
600
601
602
603


604
605
606
607
608
609










610
611
612
613
614
615
616
617



618
619
620
621
622
623
624
625
626


627
628




629
630
631
632
633
634
635
636
637
638
639
640
641


642
643
644
645


646
647



648
649
650






651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688


689
690
691
692
693



694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725







-
-
+
+




-
-
-
-
-
-
-
-
-
-








-
-
-
+
+
+






-
-
+
+
-
-
-
-
+












-
-
+
+

+
-
-
+
+
-
-
-
+
+
+
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
-
-
+
+

+
+
-
-
-
+
+
+
+



















+
+








    if (timeInfo.perfCounterAvailable && timeInfo.curCounterFreq.QuadPart!=0) {
	/*
	 * Query the performance counter and use it to calculate the current
	 * time.
	 */

	ULARGE_INTEGER fileTimeLastCall;
	LARGE_INTEGER perfCounterLastCall, curCounterFreq;
	ULONGLONG fileTimeLastCall;
	LONGLONG perfCounterLastCall, curCounterFreq;
				/* Copy with current data of calibration cycle */

	LARGE_INTEGER curCounter;
				/* Current performance counter. */
	Tcl_WideInt curFileTime;/* Current estimated time, expressed as 100-ns
				 * ticks since the Windows epoch. */
	static LARGE_INTEGER posixEpoch;
				/* Posix epoch expressed as 100-ns ticks since
				 * the windows epoch. */
	Tcl_WideInt usecSincePosixEpoch;
				/* Current microseconds since Posix epoch. */

	posixEpoch.LowPart = 0xD53E8000;
	posixEpoch.HighPart = 0x019DB1DE;

	QueryPerformanceCounter(&curCounter);

	/*
	 * Hold time section locked as short as possible
	 */
	EnterCriticalSection(&timeInfo.cs);

	fileTimeLastCall.QuadPart = timeInfo.fileTimeLastCall.QuadPart;
	perfCounterLastCall.QuadPart = timeInfo.perfCounterLastCall.QuadPart;
	curCounterFreq.QuadPart = timeInfo.curCounterFreq.QuadPart;
	fileTimeLastCall = timeInfo.fileTimeLastCall.QuadPart;
	perfCounterLastCall = timeInfo.perfCounterLastCall.QuadPart;
	curCounterFreq = timeInfo.curCounterFreq.QuadPart;

	LeaveCriticalSection(&timeInfo.cs);

	/*
	 * If calibration cycle occurred after we get curCounter
	 */
	if (curCounter.QuadPart <= perfCounterLastCall.QuadPart) {
	    usecSincePosixEpoch =
	if (curCounter.QuadPart <= perfCounterLastCall) {
	    /* Calibrated file-time is saved from posix in 100-ns ticks */
		(fileTimeLastCall.QuadPart - posixEpoch.QuadPart) / 10;
	    timePtr->sec = (long) (usecSincePosixEpoch / 1000000);
	    timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000);
	    return;
	    return fileTimeLastCall / 10;
	}

	/*
	 * If it appears to be more than 1.1 seconds since the last trip
	 * through the calibration loop, the performance counter may have
	 * jumped forward. (See MSDN Knowledge Base article Q274323 for a
	 * description of the hardware problem that makes this test
	 * necessary.) If the counter jumps, we don't want to use it directly.
	 * Instead, we must return system time. Eventually, the calibration
	 * loop should recover.
	 */

	if (curCounter.QuadPart - perfCounterLastCall.QuadPart <
		11 * curCounterFreq.QuadPart / 10
	if (curCounter.QuadPart - perfCounterLastCall <
		11 * curCounterFreq * timeInfo.calibrationInterv / 10
	) {
	    /* Calibrated file-time is saved from posix in 100-ns ticks */
	    curFileTime = fileTimeLastCall.QuadPart +
		 ((curCounter.QuadPart - perfCounterLastCall.QuadPart)
	    return NativeCalc100NsTicks(fileTimeLastCall,
		perfCounterLastCall, curCounterFreq, curCounter.QuadPart) / 10;
		    * 10000000 / curCounterFreq.QuadPart);

	    usecSincePosixEpoch = (curFileTime - posixEpoch.QuadPart) / 10;
	}
    }

	    timePtr->sec = (long) (usecSincePosixEpoch / 1000000);
	    timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000);
	    return;
	}
    }

    /*
     * High resolution timer is not available.
     */
    return 0;
}

/*
 *----------------------------------------------------------------------
 *
 * NativeGetTime --
 *
 *	TIP #233: Gets the current system time in seconds and microseconds
 *	since the beginning of the epoch: 00:00 UCT, January 1, 1970.
 *
 * Results:
 *	Returns the current time in timePtr.
 *
 * Side effects:
 *	See NativeGetMicroseconds for more information.
 *
 *----------------------------------------------------------------------
 */

static void
NativeGetTime(
    Tcl_Time *timePtr,
    ClientData clientData)
{
    Tcl_WideInt usecSincePosixEpoch;

    /*
     * Try to use high resolution timer.
     */
    if ( (usecSincePosixEpoch = NativeGetMicroseconds()) ) {
	timePtr->sec = (long) (usecSincePosixEpoch / 1000000);
	timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000);
    } else {
	/*
     * High resolution timer is not available. Just use ftime.
     */
	* High resolution timer is not available. Just use ftime.
	*/

	struct _timeb t;

    _ftime(&t);
    timePtr->sec = (long)t.time;
    timePtr->usec = t.millitm * 1000;
	_ftime(&t);
	timePtr->sec = (long)t.time;
	timePtr->usec = t.millitm * 1000;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * StopCalibration --
 *
 *	Turns off the calibration thread in preparation for exiting the
 *	process.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Sets the 'exitEvent' event in the 'timeInfo' structure to ask the
 *	thread in question to exit, and waits for it to do so.
 *
 *----------------------------------------------------------------------
 */

void TclWinResetTimerResolution(void);

static void
StopCalibration(
    ClientData unused)		/* Client data is unused */
{
    SetEvent(timeInfo.exitEvent);

888
889
890
891
892
893
894


895
896
897
898
899
900
901
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103







+
+







     */

    GetSystemTimeAsFileTime(&curFileTime);
    QueryPerformanceCounter(&timeInfo.perfCounterLastCall);
    QueryPerformanceFrequency(&timeInfo.curCounterFreq);
    timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime;
    timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime;
    /* Calibrated file-time will be saved from posix in 100-ns ticks */
    timeInfo.fileTimeLastCall.QuadPart -= timeInfo.posixEpoch.QuadPart;

    ResetCounterSamples(timeInfo.fileTimeLastCall.QuadPart,
	    timeInfo.perfCounterLastCall.QuadPart,
	    timeInfo.curCounterFreq.QuadPart);

    /*
     * Wake up the calling thread. When it wakes up, it will release the
947
948
949
950
951
952
953

954
955
956
957
958
959
960
961
962
963
964
965

966
967
968
969
970
971








972
973




974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026


1027
1028
1029

1030
1031
1032
1033
1034
1035
1036
1037

1038

1039
1040


1041








1042






1043
1044
1045
1046
1047
1048
1049
1050













































1051
1052


1053
1054
1055
1056
1057
1058
1059
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

1168
1169
1170

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181


1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234



1235
1236



1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

1247

1248
1249
1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265








1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321







+











-
+


-



+
+
+
+
+
+
+
+
-
-
+
+
+
+











-


















-
+



















-
-
-
+
+
-
-
-
+








+
-
+
-

+
+
-
+
+
+
+
+
+
+
+

+
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+


+
+







static void
UpdateTimeEachSecond(void)
{
    LARGE_INTEGER curPerfCounter;
				/* Current value returned from
				 * QueryPerformanceCounter. */
    FILETIME curSysTime;	/* Current system time. */
    static LARGE_INTEGER lastFileTime; /* File time of the previous calibration */
    LARGE_INTEGER curFileTime;	/* File time at the time this callback was
				 * scheduled. */
    Tcl_WideInt estFreq;	/* Estimated perf counter frequency. */
    Tcl_WideInt vt0;		/* Tcl time right now. */
    Tcl_WideInt vt1;		/* Tcl time one second from now. */
    Tcl_WideInt tdiff;		/* Difference between system clock and Tcl
				 * time. */
    Tcl_WideInt driftFreq;	/* Frequency needed to drift virtual time into
				 * step over 1 second. */

    /*
     * Sample performance counter and system time.
     * Sample performance counter and system time (from posix epoch).
     */

    QueryPerformanceCounter(&curPerfCounter);
    GetSystemTimeAsFileTime(&curSysTime);
    curFileTime.LowPart = curSysTime.dwLowDateTime;
    curFileTime.HighPart = curSysTime.dwHighDateTime;
    curFileTime.QuadPart -= timeInfo.posixEpoch.QuadPart;
    /* If calibration still not needed (check for possible time switch) */
    if ( curFileTime.QuadPart > lastFileTime.QuadPart
      && curFileTime.QuadPart < lastFileTime.QuadPart +
      				    (timeInfo.calibrationInterv * 10000000)
    ) {
    	/* again in next one second */
	return;

    EnterCriticalSection(&timeInfo.cs);
    }
    QueryPerformanceCounter(&curPerfCounter);
    
    lastFileTime.QuadPart = curFileTime.QuadPart;

    /*
     * We devide by timeInfo.curCounterFreq.QuadPart in several places. That
     * value should always be positive on a correctly functioning system. But
     * it is good to be defensive about such matters. So if something goes
     * wrong and the value does goes to zero, we clear the
     * timeInfo.perfCounterAvailable in order to cause the calibration thread
     * to shut itself down, then return without additional processing.
     */

    if (timeInfo.curCounterFreq.QuadPart == 0){
	LeaveCriticalSection(&timeInfo.cs);
	timeInfo.perfCounterAvailable = 0;
	return;
    }

    /*
     * Several things may have gone wrong here that have to be checked for.
     *  (1) The performance counter may have jumped.
     *  (2) The system clock may have been reset.
     *
     * In either case, we'll need to reinitialize the circular buffer with
     * samples relative to the current system time and the NOMINAL performance
     * frequency (not the actual, because the actual has probably run slow in
     * the first case). Our estimated frequency will be the nominal frequency.
     *
     * Store the current sample into the circular buffer of samples, and
     * estimate the performance counter frequency.
     */

    estFreq = AccumulateSample(curPerfCounter.QuadPart,
     estFreq = AccumulateSample(curPerfCounter.QuadPart,
	    (Tcl_WideUInt) curFileTime.QuadPart);

    /*
     * We want to adjust things so that time appears to be continuous.
     * Virtual file time, right now, is
     *
     * vt0 = 10000000 * (curPerfCounter - perfCounterLastCall)
     *	     / curCounterFreq
     *	     + fileTimeLastCall
     *
     * Ideally, we would like to drift the clock into place over a period of 2
     * sec, so that virtual time 2 sec from now will be
     *
     * vt1 = 20000000 + curFileTime
     *
     * The frequency that we need to use to drift the counter back into place
     * is estFreq * 20000000 / (vt1 - vt0)
     */

    vt0 = 10000000 * (curPerfCounter.QuadPart
		- timeInfo.perfCounterLastCall.QuadPart)
	    / timeInfo.curCounterFreq.QuadPart
    vt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart,
	    timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart,
	    + timeInfo.fileTimeLastCall.QuadPart;
    vt1 = 20000000 + curFileTime.QuadPart;

	    curPerfCounter.QuadPart);
    /*
     * If we've gotten more than a second away from system time, then drifting
     * the clock is going to be pretty hopeless. Just let it jump. Otherwise,
     * compute the drift frequency and fill in everything.
     */

    tdiff = vt0 - curFileTime.QuadPart;
    if (tdiff > 10000000 || tdiff < -10000000) {
    	/* jump to current system time, use curent estimated frequency */
	timeInfo.fileTimeLastCall.QuadPart = curFileTime.QuadPart;
    	vt0 = curFileTime.QuadPart;
	timeInfo.curCounterFreq.QuadPart = estFreq;
    } else {
    	/* calculate new frequency and estimate drift to the next second */
	vt1 = 20000000 + curFileTime.QuadPart;
	driftFreq = estFreq * 20000000 / (vt1 - vt0);
	driftFreq = (estFreq * 20000000 / (vt1 - vt0));
	/* 
	 * Avoid too large drifts (only half of the current difference),
	 * that allows also be more accurate (aspire to the smallest tdiff),
	 * so then we can prolong calibration interval by tdiff < 100000
	 */
	driftFreq = timeInfo.curCounterFreq.QuadPart +
		(driftFreq - timeInfo.curCounterFreq.QuadPart) / 2;

	/* 
	 * Average between estimated, 2 current and 5 drifted frequencies,
	 * (do the soft drifting as possible)
	 */
	estFreq = (estFreq + 2 * timeInfo.curCounterFreq.QuadPart + 5 * driftFreq) / 8;
    }
	if (driftFreq > 1003*estFreq/1000) {
	    driftFreq = 1003*estFreq/1000;
	} else if (driftFreq < 997*estFreq/1000) {
	    driftFreq = 997*estFreq/1000;
	}

	timeInfo.fileTimeLastCall.QuadPart = vt0;
	timeInfo.curCounterFreq.QuadPart = driftFreq;
    
    /* Avoid too large discrepancy from nominal frequency */
    if (estFreq > 1003*timeInfo.nominalFreq.QuadPart/1000) {
	estFreq = 1003*timeInfo.nominalFreq.QuadPart/1000;
	vt0 = curFileTime.QuadPart;
    } else if (estFreq < 997*timeInfo.nominalFreq.QuadPart/1000) {
	estFreq = 997*timeInfo.nominalFreq.QuadPart/1000;
	vt0 = curFileTime.QuadPart;
    } else if (vt0 != curFileTime.QuadPart) {
	/* 
	 * Be sure the clock ticks never backwards (avoid it by negative drifting)
	 * just compare native time (in 100-ns) before and hereafter using 
	 * new calibrated values) and do a small adjustment (short time freeze)
	 */
	LARGE_INTEGER newPerfCounter;
	Tcl_WideInt nt0, nt1;

	QueryPerformanceCounter(&newPerfCounter);
	nt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart,
		timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart,
		newPerfCounter.QuadPart);
	nt1 = NativeCalc100NsTicks(vt0,
		curPerfCounter.QuadPart, estFreq,
		newPerfCounter.QuadPart);
	if (nt0 > nt1) { /* drifted backwards, try to compensate with new base */
	    /* first adjust with a micro jump (short frozen time is acceptable) */
	    vt0 += nt0 - nt1;
	    /* if drift unavoidable (e. g. we had a time switch), then reset it */
	    vt1 = vt0 - curFileTime.QuadPart;
	    if (vt1 > 10000000 || vt1 < -10000000) {
	    	/* larger jump resp. shift relative new file-time */
	    	vt0 = curFileTime.QuadPart;
	    }
	}
    }

    /* In lock commit new values to timeInfo (hold lock as short as possible) */
    EnterCriticalSection(&timeInfo.cs);

    /* grow calibration interval up to 10 seconds (if still precise enough) */
    if (tdiff < -100000 || tdiff > 100000) {
	/* too long drift - reset calibration interval to 1000 second */
	timeInfo.calibrationInterv = 1;
    } else if (timeInfo.calibrationInterv < 10) {
	timeInfo.calibrationInterv++;
    }

    timeInfo.fileTimeLastCall.QuadPart = vt0;
    timeInfo.curCounterFreq.QuadPart = estFreq;
    timeInfo.perfCounterLastCall.QuadPart = curPerfCounter.QuadPart;

    LeaveCriticalSection(&timeInfo.cs);
}

/*
 *----------------------------------------------------------------------