Tcl Source Code

Check-in [f70e3acac4]
Login
Bounty program for improvements to Tcl and certain Tcl packages.
Tcl 2019 Conference, Houston/TX, US, Nov 4-8
Send your abstracts to [email protected]
or submit via the online form by Sep 9.

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:merge core-8-branch
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | semver
Files: files | file ages | folders
SHA3-256: f70e3acac4c3dcf7740d2117cf92db9ac14fe96ccad5fc31e6c65ecfa1559b89
User & Date: jan.nijtmans 2017-11-05 14:41:32
Context
2017-11-24
09:24
Re-base everything to latest core-8-branch. But don't include deprecations in *.decls files any more... check-in: acd9fcacb4 user: jan.nijtmans tags: semver
2017-11-05
14:41
merge core-8-branch check-in: f70e3acac4 user: jan.nijtmans tags: semver
14:14
update .project file with branch name. Make clear that optparse doesnt work with 8.4 any more check-in: 29c3b25318 user: jan.nijtmans tags: core-8-branch
2017-09-08
14:38
Re-base to trunk. Now versioned as 8.7.0-alpha.2 check-in: eacebd08b2 user: jan.nijtmans tags: semver
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to .fossil-settings/ignore-glob.

14
15
16
17
18
19
20

21
22
23
24
25
26
27
..
36
37
38
39
40
41
42
43
44
45
46

*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc

html
libtommath/bn.ilg
libtommath/bn.ind
libtommath/pretty.build
libtommath/tommath.src
libtommath/*.pdf
libtommath/*.pl
................................................................................
libtommath/*.out
libtommath/*.tex
unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/Debug_VC*
win/Release_VC*
win/pkgs/*
win/tcl.hpj







>







 







|
|

|
>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
37
38
39
40
41
42
43
44
45
46
47
48
*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc
*/version.vc
html
libtommath/bn.ilg
libtommath/bn.ind
libtommath/pretty.build
libtommath/tommath.src
libtommath/*.pdf
libtommath/*.pl
................................................................................
libtommath/*.out
libtommath/*.tex
unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/Debug*
win/Release*
win/pkgs/*
win/tcl.hpj
win/nmhlp-out.txt

Changes to generic/regguts.h.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#endif

/*
 * misc
 */

#define	NOTREACHED	0
#define	xxx		1

#define	DUPMAX	_POSIX2_RE_DUP_MAX
#define	DUPINF	(DUPMAX+1)

#define	REMAGIC	0xfed7		/* magic number for main struct */

/*






<







66
67
68
69
70
71
72

73
74
75
76
77
78
79
#endif

/*
 * misc
 */

#define	NOTREACHED	0


#define	DUPMAX	_POSIX2_RE_DUP_MAX
#define	DUPINF	(DUPMAX+1)

#define	REMAGIC	0xfed7		/* magic number for main struct */

/*

Changes to generic/tclBasic.c.

3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
....
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
....
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
....
7718
7719
7720
7721
7722
7723
7724
7725
7726

7727
7728
7729
7730
7731
7732
7733
....
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
	return 0;
    }

    /*
     * We must delete this command, even though both traces and delete procs
     * may try to avoid this (renaming the command etc). Also traces and
     * delete procs may try to delete the command themsevles. This flag
     * declares that a delete is in progress and that recursive deletes should
     * be ignored.
     */

    cmdPtr->flags |= CMD_IS_DELETED;

    /*
................................................................................
			return TCL_OK;
		    }
		    string++;
		}
	    }
	    goto unChanged;
	} else if (l == LONG_MIN) {
	    TclBNInitBignumFromLong(&big, l);
	    goto tooLarge;
	}
	Tcl_SetObjResult(interp, Tcl_NewLongObj(-l));
	return TCL_OK;
    }

    if (type == TCL_NUMBER_DOUBLE) {
................................................................................
    if (type == TCL_NUMBER_WIDE) {
	Tcl_WideInt w = *((const Tcl_WideInt *) ptr);

	if (w >= (Tcl_WideInt)0) {
	    goto unChanged;
	}
	if (w == LLONG_MIN) {
	    TclBNInitBignumFromWideInt(&big, w);
	    goto tooLarge;
	}
	Tcl_SetObjResult(interp, Tcl_NewWideIntObj(-w));
	return TCL_OK;
    }
#endif

................................................................................
	return TCL_ERROR;
    }

    if (!(iPtr->flags & RAND_SEED_INITIALIZED)) {
	iPtr->flags |= RAND_SEED_INITIALIZED;

	/*
	 * Take into consideration the thread this interp is running in order
	 * to insure different seeds in different threads (bug #416643)

	 */

	iPtr->randSeed = TclpGetClicks() + (PTR2INT(Tcl_GetCurrentThread())<<12);

	/*
	 * Make sure 1 <= randSeed <= (2^31) - 2. See below.
	 */
................................................................................
    corPtr->callerEEPtr = iPtr->execEnvPtr;
    RESTORE_CONTEXT(corPtr->running);
    iPtr->execEnvPtr = corPtr->eePtr;

    TclNRAddCallback(interp, NRCoroutineExitCallback, corPtr,
	    NULL, NULL, NULL);

    /* insure that the command is looked up in the correct namespace */
    iPtr->lookupNsPtr = lookupNsPtr;
    Tcl_NREvalObj(interp, Tcl_NewListObj(objc-2, objv+2), 0);
    iPtr->numLevels--;

    SAVE_CONTEXT(corPtr->running);
    RESTORE_CONTEXT(corPtr->caller);
    iPtr->execEnvPtr = corPtr->callerEEPtr;






|







 







|







 







|







 







<
|
>







 







|







3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
....
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
....
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
....
7718
7719
7720
7721
7722
7723
7724

7725
7726
7727
7728
7729
7730
7731
7732
7733
....
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
	return 0;
    }

    /*
     * We must delete this command, even though both traces and delete procs
     * may try to avoid this (renaming the command etc). Also traces and
     * delete procs may try to delete the command themselves. This flag
     * declares that a delete is in progress and that recursive deletes should
     * be ignored.
     */

    cmdPtr->flags |= CMD_IS_DELETED;

    /*
................................................................................
			return TCL_OK;
		    }
		    string++;
		}
	    }
	    goto unChanged;
	} else if (l == LONG_MIN) {
	    TclInitBignumFromLong(&big, l);
	    goto tooLarge;
	}
	Tcl_SetObjResult(interp, Tcl_NewLongObj(-l));
	return TCL_OK;
    }

    if (type == TCL_NUMBER_DOUBLE) {
................................................................................
    if (type == TCL_NUMBER_WIDE) {
	Tcl_WideInt w = *((const Tcl_WideInt *) ptr);

	if (w >= (Tcl_WideInt)0) {
	    goto unChanged;
	}
	if (w == LLONG_MIN) {
	    TclInitBignumFromWideInt(&big, w);
	    goto tooLarge;
	}
	Tcl_SetObjResult(interp, Tcl_NewWideIntObj(-w));
	return TCL_OK;
    }
#endif

................................................................................
	return TCL_ERROR;
    }

    if (!(iPtr->flags & RAND_SEED_INITIALIZED)) {
	iPtr->flags |= RAND_SEED_INITIALIZED;

	/*

	 * To ensure different seeds in different threads (bug #416643), 
	 * take into consideration the thread this interp is running in.
	 */

	iPtr->randSeed = TclpGetClicks() + (PTR2INT(Tcl_GetCurrentThread())<<12);

	/*
	 * Make sure 1 <= randSeed <= (2^31) - 2. See below.
	 */
................................................................................
    corPtr->callerEEPtr = iPtr->execEnvPtr;
    RESTORE_CONTEXT(corPtr->running);
    iPtr->execEnvPtr = corPtr->eePtr;

    TclNRAddCallback(interp, NRCoroutineExitCallback, corPtr,
	    NULL, NULL, NULL);

    /* ensure that the command is looked up in the correct namespace */
    iPtr->lookupNsPtr = lookupNsPtr;
    Tcl_NREvalObj(interp, Tcl_NewListObj(objc-2, objv+2), 0);
    iPtr->numLevels--;

    SAVE_CONTEXT(corPtr->running);
    RESTORE_CONTEXT(corPtr->caller);
    iPtr->execEnvPtr = corPtr->callerEEPtr;

Changes to generic/tclBinary.c.

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
		    | (((Tcl_WideUInt) buffer[1]) << 48)
		    | (((Tcl_WideUInt) buffer[0]) << 56);
	}
	if (flags & BINARY_UNSIGNED) {
	    Tcl_Obj *bigObj = NULL;
	    mp_int big;

	    TclBNInitBignumFromWideUInt(&big, uwvalue);
	    bigObj = Tcl_NewBignumObj(&big);
	    return bigObj;
	}
	return Tcl_NewWideIntObj((Tcl_WideInt) uwvalue);

	/*
	 * Do not cache double values; they are already too large to use as






|







2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
		    | (((Tcl_WideUInt) buffer[1]) << 48)
		    | (((Tcl_WideUInt) buffer[0]) << 56);
	}
	if (flags & BINARY_UNSIGNED) {
	    Tcl_Obj *bigObj = NULL;
	    mp_int big;

	    TclInitBignumFromWideUInt(&big, uwvalue);
	    bigObj = Tcl_NewBignumObj(&big);
	    return bigObj;
	}
	return Tcl_NewWideIntObj((Tcl_WideInt) uwvalue);

	/*
	 * Do not cache double values; they are already too large to use as

Changes to generic/tclDictObj.c.

2327
2328
2329
2330
2331
2332
2333

2334

2335
2336
2337
2338
2339
2340
2341
	}

	if (appendObjPtr) {
	    if (Tcl_IsShared(valuePtr)) {
		valuePtr = Tcl_DuplicateObj(valuePtr);
	    }


	    Tcl_AppendObjToObj(valuePtr, appendObjPtr);

	}

	Tcl_DictObjPut(NULL, dictPtr, objv[2], valuePtr);
    }

    /*
     * Even if nothing changed, we still overwrite so that variable






>

>







2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
	}

	if (appendObjPtr) {
	    if (Tcl_IsShared(valuePtr)) {
		valuePtr = Tcl_DuplicateObj(valuePtr);
	    }

	    Tcl_IncrRefCount(appendObjPtr);
	    Tcl_AppendObjToObj(valuePtr, appendObjPtr);
	    Tcl_DecrRefCount(appendObjPtr);
	}

	Tcl_DictObjPut(NULL, dictPtr, objv[2], valuePtr);
    }

    /*
     * Even if nothing changed, we still overwrite so that variable

Changes to generic/tclEncoding.c.

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
...
847
848
849
850
851
852
853

854

855
856
857
858
859
860
861
....
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074





















1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    /*
     * Create a few initial encodings. Note that the UTF-8 to UTF-8
     * translation is not a no-op, because it will turn a stream of improperly
     * formed UTF-8 into a properly formed stream.
     */

    type.encodingName	= "identity";
    type.toUtfProc	= BinaryProc;
    type.fromUtfProc	= BinaryProc;
    type.freeProc	= NULL;
    type.nullSize	= 1;
    type.clientData	= NULL;
    tclIdentityEncoding = Tcl_CreateEncoding(&type);

................................................................................
    if (encodingPtr->refCount-- <= 1) {
	if (encodingPtr->freeProc != NULL) {
	    encodingPtr->freeProc(encodingPtr->clientData);
	}
	if (encodingPtr->hPtr != NULL) {
	    Tcl_DeleteHashEntry(encodingPtr->hPtr);
	}

	ckfree(encodingPtr->name);

	ckfree(encodingPtr);
    }
}
 
/*
 *-------------------------------------------------------------------------
 *
................................................................................
 */

Tcl_Encoding
Tcl_CreateEncoding(
    const Tcl_EncodingType *typePtr)
				/* The encoding type. */
{
    Tcl_HashEntry *hPtr;
    int isNew;
    Encoding *encodingPtr;
    char *name;

    Tcl_MutexLock(&encodingMutex);
    hPtr = Tcl_CreateHashEntry(&encodingTable, typePtr->encodingName, &isNew);
    if (isNew == 0) {
	/*
	 * Remove old encoding from hash table, but don't delete it until last
	 * reference goes away.
	 */

	encodingPtr = Tcl_GetHashValue(hPtr);
	encodingPtr->hPtr = NULL;
    }

    name = ckalloc(strlen(typePtr->encodingName) + 1);

    encodingPtr = ckalloc(sizeof(Encoding));
    encodingPtr->name		= strcpy(name, typePtr->encodingName);
    encodingPtr->toUtfProc	= typePtr->toUtfProc;
    encodingPtr->fromUtfProc	= typePtr->fromUtfProc;
    encodingPtr->freeProc	= typePtr->freeProc;
    encodingPtr->nullSize	= typePtr->nullSize;
    encodingPtr->clientData	= typePtr->clientData;
    if (typePtr->nullSize == 1) {
	encodingPtr->lengthProc = (LengthProc *) strlen;
    } else {
	encodingPtr->lengthProc = (LengthProc *) unilen;
    }
    encodingPtr->refCount	= 1;





















    encodingPtr->hPtr		= hPtr;
    Tcl_SetHashValue(hPtr, encodingPtr);

    Tcl_MutexUnlock(&encodingMutex);

    return (Tcl_Encoding) encodingPtr;
}
 
/*
 *-------------------------------------------------------------------------
 *
 * Tcl_ExternalToUtfDString --






|







 







>
|
>







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|







559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
...
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
....
1038
1039
1040
1041
1042
1043
1044



















1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    /*
     * Create a few initial encodings. Note that the UTF-8 to UTF-8
     * translation is not a no-op, because it will turn a stream of improperly
     * formed UTF-8 into a properly formed stream.
     */

    type.encodingName	= NULL;
    type.toUtfProc	= BinaryProc;
    type.fromUtfProc	= BinaryProc;
    type.freeProc	= NULL;
    type.nullSize	= 1;
    type.clientData	= NULL;
    tclIdentityEncoding = Tcl_CreateEncoding(&type);

................................................................................
    if (encodingPtr->refCount-- <= 1) {
	if (encodingPtr->freeProc != NULL) {
	    encodingPtr->freeProc(encodingPtr->clientData);
	}
	if (encodingPtr->hPtr != NULL) {
	    Tcl_DeleteHashEntry(encodingPtr->hPtr);
	}
	if (encodingPtr->name) {
	    ckfree(encodingPtr->name);
	}
	ckfree(encodingPtr);
    }
}
 
/*
 *-------------------------------------------------------------------------
 *
................................................................................
 */

Tcl_Encoding
Tcl_CreateEncoding(
    const Tcl_EncodingType *typePtr)
				/* The encoding type. */
{



















    Encoding *encodingPtr = ckalloc(sizeof(Encoding));
    encodingPtr->name		= NULL;
    encodingPtr->toUtfProc	= typePtr->toUtfProc;
    encodingPtr->fromUtfProc	= typePtr->fromUtfProc;
    encodingPtr->freeProc	= typePtr->freeProc;
    encodingPtr->nullSize	= typePtr->nullSize;
    encodingPtr->clientData	= typePtr->clientData;
    if (typePtr->nullSize == 1) {
	encodingPtr->lengthProc = (LengthProc *) strlen;
    } else {
	encodingPtr->lengthProc = (LengthProc *) unilen;
    }
    encodingPtr->refCount	= 1;
    encodingPtr->hPtr		= NULL;

  if (typePtr->encodingName) {
    Tcl_HashEntry *hPtr;
    int isNew;
    char *name;

    Tcl_MutexLock(&encodingMutex);
    hPtr = Tcl_CreateHashEntry(&encodingTable, typePtr->encodingName, &isNew);
    if (isNew == 0) {
	/*
	 * Remove old encoding from hash table, but don't delete it until last
	 * reference goes away.
	 */

	Encoding *replaceMe = Tcl_GetHashValue(hPtr);
	replaceMe->hPtr = NULL;
    }

    name = ckalloc(strlen(typePtr->encodingName) + 1);
    encodingPtr->name		= strcpy(name, typePtr->encodingName);
    encodingPtr->hPtr		= hPtr;
    Tcl_SetHashValue(hPtr, encodingPtr);

    Tcl_MutexUnlock(&encodingMutex);
  }
    return (Tcl_Encoding) encodingPtr;
}
 
/*
 *-------------------------------------------------------------------------
 *
 * Tcl_ExternalToUtfDString --

Changes to generic/tclEnv.c.

126
127
128
129
130
131
132

133
134
135
136
137
138
139
	    if (p2 == NULL) {
		/*
		 * This condition seem to happen occasionally under some
		 * versions of Solaris, or when encoding accidents swallow the
		 * '='; ignore the entry.
		 */


		continue;
	    }
	    p2++;
	    p2[-1] = '\0';
	    obj1 = Tcl_NewStringObj(p1, -1);
	    obj2 = Tcl_NewStringObj(p2, -1);
	    Tcl_DStringFree(&envString);






>







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
	    if (p2 == NULL) {
		/*
		 * This condition seem to happen occasionally under some
		 * versions of Solaris, or when encoding accidents swallow the
		 * '='; ignore the entry.
		 */

		Tcl_DStringFree(&envString);
		continue;
	    }
	    p2++;
	    p2[-1] = '\0';
	    obj1 = Tcl_NewStringObj(p1, -1);
	    obj2 = Tcl_NewStringObj(p2, -1);
	    Tcl_DStringFree(&envString);

Changes to generic/tclExecute.c.

8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
....
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
	    /* TODO: internals intrusion */
	    if ((w1 > ((Tcl_WideInt) 0)) ^ (big2.sign == MP_ZPOS)) {
		/*
		 * Arguments are opposite sign; remainder is sum.
		 */

		TclBNInitBignumFromWideInt(&big1, w1);
		mp_add(&big2, &big1, &big2);
		mp_clear(&big1);
		BIG_RESULT(&big2);
	    }

	    /*
	     * Arguments are same sign; remainder is first operand.
................................................................................
	case TCL_NUMBER_DOUBLE:
	    DOUBLE_RESULT(-(*((const double *) ptr)));
	case TCL_NUMBER_LONG:
	    w = (Tcl_WideInt) (*((const long *) ptr));
	    if (w != LLONG_MIN) {
		WIDE_RESULT(-w);
	    }
	    TclBNInitBignumFromLong(&big, *(const long *) ptr);
	    break;
#ifndef TCL_WIDE_INT_IS_LONG
	case TCL_NUMBER_WIDE:
	    w = *((const Tcl_WideInt *) ptr);
	    if (w != LLONG_MIN) {
		WIDE_RESULT(-w);
	    }
	    TclBNInitBignumFromWideInt(&big, w);
	    break;
#endif
	default:
	    Tcl_TakeBignumFromObj(NULL, valuePtr, &big);
	}
	mp_neg(&big, &big);
	BIG_RESULT(&big);






|







 







|







|







8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
....
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
	    /* TODO: internals intrusion */
	    if ((w1 > ((Tcl_WideInt) 0)) ^ (big2.sign == MP_ZPOS)) {
		/*
		 * Arguments are opposite sign; remainder is sum.
		 */

		TclInitBignumFromWideInt(&big1, w1);
		mp_add(&big2, &big1, &big2);
		mp_clear(&big1);
		BIG_RESULT(&big2);
	    }

	    /*
	     * Arguments are same sign; remainder is first operand.
................................................................................
	case TCL_NUMBER_DOUBLE:
	    DOUBLE_RESULT(-(*((const double *) ptr)));
	case TCL_NUMBER_LONG:
	    w = (Tcl_WideInt) (*((const long *) ptr));
	    if (w != LLONG_MIN) {
		WIDE_RESULT(-w);
	    }
	    TclInitBignumFromLong(&big, *(const long *) ptr);
	    break;
#ifndef TCL_WIDE_INT_IS_LONG
	case TCL_NUMBER_WIDE:
	    w = *((const Tcl_WideInt *) ptr);
	    if (w != LLONG_MIN) {
		WIDE_RESULT(-w);
	    }
	    TclInitBignumFromWideInt(&big, w);
	    break;
#endif
	default:
	    Tcl_TakeBignumFromObj(NULL, valuePtr, &big);
	}
	mp_neg(&big, &big);
	BIG_RESULT(&big);

Changes to generic/tclFileName.c.

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
		&driveNameLen, &driveName) == TCL_PATH_ABSOLUTE) {
	    pathPrefix = driveName;
	    tail += driveNameLen;
	}
    }

    /*
     * To process a [glob] invokation, this function may be called multiple
     * times. Each time, the previously discovered filenames are in the
     * interpreter result. We stash that away here so the result is free for
     * error messsages.
     */

    savedResultObj = Tcl_GetObjResult(interp);
    Tcl_IncrRefCount(savedResultObj);






|







1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
		&driveNameLen, &driveName) == TCL_PATH_ABSOLUTE) {
	    pathPrefix = driveName;
	    tail += driveNameLen;
	}
    }

    /*
     * To process a [glob] invocation, this function may be called multiple
     * times. Each time, the previously discovered filenames are in the
     * interpreter result. We stash that away here so the result is free for
     * error messsages.
     */

    savedResultObj = Tcl_GetObjResult(interp);
    Tcl_IncrRefCount(savedResultObj);

Changes to generic/tclHash.c.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * Prototypes for the array hash key methods.
 */

static Tcl_HashEntry *	AllocArrayEntry(Tcl_HashTable *tablePtr, void *keyPtr);
static int		CompareArrayKeys(void *keyPtr, Tcl_HashEntry *hPtr);
static TCL_HASH_TYPE	HashArrayKey(Tcl_HashTable *tablePtr, void *keyPtr);

/*
 * Prototypes for the one word hash key methods. Not actually declared because
 * this is a critical path that is implemented in the core hash table access
 * function.
 */

#if 0
static Tcl_HashEntry *	AllocOneWordEntry(Tcl_HashTable *tablePtr,
			    void *keyPtr);
static int		CompareOneWordKeys(void *keyPtr, Tcl_HashEntry *hPtr);
static unsigned int	HashOneWordKey(Tcl_HashTable *tablePtr, void *keyPtr);
#endif

/*
 * Prototypes for the string hash key methods.
 */

static Tcl_HashEntry *	AllocStringEntry(Tcl_HashTable *tablePtr,
			    void *keyPtr);
static int		CompareStringKeys(void *keyPtr, Tcl_HashEntry *hPtr);






<
<
<
<
<
<
<
<
<
<
<
<
<







41
42
43
44
45
46
47













48
49
50
51
52
53
54
 * Prototypes for the array hash key methods.
 */

static Tcl_HashEntry *	AllocArrayEntry(Tcl_HashTable *tablePtr, void *keyPtr);
static int		CompareArrayKeys(void *keyPtr, Tcl_HashEntry *hPtr);
static TCL_HASH_TYPE	HashArrayKey(Tcl_HashTable *tablePtr, void *keyPtr);














/*
 * Prototypes for the string hash key methods.
 */

static Tcl_HashEntry *	AllocStringEntry(Tcl_HashTable *tablePtr,
			    void *keyPtr);
static int		CompareStringKeys(void *keyPtr, Tcl_HashEntry *hPtr);

Changes to generic/tclIO.c.

6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
    /*
     * This operation should occur at the top of a channel stack.
     */

    chanPtr = statePtr->topChanPtr;

    if (CheckChannelErrors(statePtr, TCL_WRITABLE) != 0) {
	return -1;
    }

    result = FlushChannel(NULL, chanPtr, 0);
    if (result != 0) {
	return TCL_ERROR;
    }







|







6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
    /*
     * This operation should occur at the top of a channel stack.
     */

    chanPtr = statePtr->topChanPtr;

    if (CheckChannelErrors(statePtr, TCL_WRITABLE) != 0) {
	return TCL_ERROR;
    }

    result = FlushChannel(NULL, chanPtr, 0);
    if (result != 0) {
	return TCL_ERROR;
    }

Changes to generic/tclInt.h.

2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
....
2463
2464
2465
2466
2467
2468
2469




2470
2471
2472





2473
2474
2475
2476
2477
2478
2479
....
3003
3004
3005
3006
3007
3008
3009



3010
3011
3012
3013
3014
3015
3016
 * TclNRLmapCmd and their compilations.
 */

#define TCL_EACH_KEEP_NONE  0	/* Discard iteration result like [foreach] */
#define TCL_EACH_COLLECT    1	/* Collect iteration result like [lmap] */

/*
 * Macros providing a faster path to integers: Tcl_GetLongFromObj everywhere,
 * Tcl_GetIntFromObj and TclGetIntForIndex on platforms where longs are ints.
 *
 * WARNING: these macros eval their args more than once.
 */

#define TclGetLongFromObj(interp, objPtr, longPtr) \
    (((objPtr)->typePtr == &tclIntType)	\
	    ? ((*(longPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
................................................................................
	    : Tcl_GetIntFromObj((interp), (objPtr), (intPtr)))
#define TclGetIntForIndexM(interp, objPtr, endValue, idxPtr) \
    (((objPtr)->typePtr == &tclIntType)	\
	    ? ((*(idxPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
	    : TclGetIntForIndex((interp), (objPtr), (endValue), (idxPtr)))
#else
#define TclGetIntFromObj(interp, objPtr, intPtr) \




    Tcl_GetIntFromObj((interp), (objPtr), (intPtr))
#define TclGetIntForIndexM(interp, objPtr, ignore, idxPtr)	\
    TclGetIntForIndex(interp, objPtr, ignore, idxPtr)





#endif

/*
 * Macro used to save a function call for common uses of
 * Tcl_GetWideIntFromObj(). The ANSI C "prototype" is:
 *
 * MODULE_SCOPE int TclGetWideIntFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
................................................................................
MODULE_SCOPE int	TclInfoGlobalsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclInfoLocalsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclInfoVarsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE void	TclInitAlloc(void);



MODULE_SCOPE void	TclInitDbCkalloc(void);
MODULE_SCOPE void	TclInitDoubleConversion(void);
MODULE_SCOPE void	TclInitEmbeddedConfigurationInformation(
			    Tcl_Interp *interp);
MODULE_SCOPE void	TclInitEncodingSubsystem(void);
MODULE_SCOPE void	TclInitIOSubsystem(void);
MODULE_SCOPE void	TclInitLimitSupport(Tcl_Interp *interp);






|
|







 







>
>
>
>
|
|
<
>
>
>
>
>







 







>
>
>







2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
....
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475

2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
....
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
 * TclNRLmapCmd and their compilations.
 */

#define TCL_EACH_KEEP_NONE  0	/* Discard iteration result like [foreach] */
#define TCL_EACH_COLLECT    1	/* Collect iteration result like [lmap] */

/*
 * Macros providing a faster path to integers: Tcl_GetLongFromObj,
 * Tcl_GetIntFromObj and TclGetIntForIndex.
 *
 * WARNING: these macros eval their args more than once.
 */

#define TclGetLongFromObj(interp, objPtr, longPtr) \
    (((objPtr)->typePtr == &tclIntType)	\
	    ? ((*(longPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
................................................................................
	    : Tcl_GetIntFromObj((interp), (objPtr), (intPtr)))
#define TclGetIntForIndexM(interp, objPtr, endValue, idxPtr) \
    (((objPtr)->typePtr == &tclIntType)	\
	    ? ((*(idxPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
	    : TclGetIntForIndex((interp), (objPtr), (endValue), (idxPtr)))
#else
#define TclGetIntFromObj(interp, objPtr, intPtr) \
    (((objPtr)->typePtr == &tclIntType \
	    && (objPtr)->internalRep.longValue >= -(Tcl_WideInt)(UINT_MAX) \
	    && (objPtr)->internalRep.longValue <= (Tcl_WideInt)(UINT_MAX))	\
	    ? ((*(intPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
	    : Tcl_GetIntFromObj((interp), (objPtr), (intPtr)))
#define TclGetIntForIndexM(interp, objPtr, endValue, idxPtr) \

    (((objPtr)->typePtr == &tclIntType \
	    && (objPtr)->internalRep.longValue >= INT_MIN \
	    && (objPtr)->internalRep.longValue <= INT_MAX)	\
	    ? ((*(idxPtr) = (objPtr)->internalRep.longValue), TCL_OK) \
	    : TclGetIntForIndex((interp), (objPtr), (endValue), (idxPtr)))
#endif

/*
 * Macro used to save a function call for common uses of
 * Tcl_GetWideIntFromObj(). The ANSI C "prototype" is:
 *
 * MODULE_SCOPE int TclGetWideIntFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
................................................................................
MODULE_SCOPE int	TclInfoGlobalsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclInfoLocalsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclInfoVarsCmd(ClientData dummy, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE void	TclInitAlloc(void);
MODULE_SCOPE void	TclInitBignumFromLong(mp_int *, long);
MODULE_SCOPE void	TclInitBignumFromWideInt(mp_int *, Tcl_WideInt);
MODULE_SCOPE void	TclInitBignumFromWideUInt(mp_int *, Tcl_WideUInt);
MODULE_SCOPE void	TclInitDbCkalloc(void);
MODULE_SCOPE void	TclInitDoubleConversion(void);
MODULE_SCOPE void	TclInitEmbeddedConfigurationInformation(
			    Tcl_Interp *interp);
MODULE_SCOPE void	TclInitEncodingSubsystem(void);
MODULE_SCOPE void	TclInitIOSubsystem(void);
MODULE_SCOPE void	TclInitLimitSupport(Tcl_Interp *interp);

Changes to generic/tclOO.c.

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
....
1002
1003
1004
1005
1006
1007
1008

1009





1010




1011
1012
1013
1014
1015
1016
1017
....
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180









1181
1182
1183
1184
1185
1186
1187
....
1269
1270
1271
1272
1273
1274
1275

1276
1277
1278
1279

1280
1281
1282
1283

1284
1285
1286
1287
1288
1289
1290
....
1301
1302
1303
1304
1305
1306
1307




1308


1309
1310
1311
1312
1313
1314
1315
....
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
....
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
....
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
....
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
    }

    /*
     * The namespace is only deleted if it hasn't already been deleted. [Bug
     * 2950259]
     */

    if (((Namespace *) oPtr->namespacePtr)->earlyDeleteProc != NULL) {
	Tcl_DeleteNamespace(oPtr->namespacePtr);
    }
    if (oPtr->classPtr) {
	DelRef(oPtr->classPtr);
    }
    DelRef(fPtr->classCls->thisPtr);
    DelRef(fPtr->objectCls->thisPtr);
................................................................................
	FOREACH(instancePtr, clsPtr->instances) {
	    int j;
	    if (instancePtr->selfCls == clsPtr) {
		instancePtr->flags |= CLASS_GONE;
	    }
	    for(j=0 ; j<instancePtr->mixins.num ; j++) {
		Class *mixin = instancePtr->mixins.list[j];

		if (mixin == clsPtr) {





		    instancePtr->mixins.list[j] = NULL;




		}
	    }
	    if (instancePtr != NULL && !IsRoot(instancePtr)) {
		AddRef(instancePtr);
	    }
	}
    }
................................................................................
				 * being deleted. */
{
    Object *oPtr = clientData;
    FOREACH_HASH_DECLS;
    Class *clsPtr = oPtr->classPtr, *mixinPtr;
    Method *mPtr;
    Tcl_Obj *filterObj, *variableObj;
    int i;

    /*
     * Instruct everyone to no longer use any allocated fields of the object.
     * Also delete the commands that refer to the object at this point (if
     * they still exist) because otherwise their references to the object
     * point into freed memory, allowing crashes.
     */

    if (oPtr->command) {









	Tcl_DeleteCommandFromToken(oPtr->fPtr->interp, oPtr->command);
    }
    if (oPtr->myCommand) {
	Tcl_DeleteCommandFromToken(oPtr->fPtr->interp, oPtr->myCommand);
    }

    /*
................................................................................

	ClearMixins(clsPtr);

	ClearSuperclasses(clsPtr);

	if (clsPtr->subclasses.list) {
	    ckfree(clsPtr->subclasses.list);

	    clsPtr->subclasses.num = 0;
	}
	if (clsPtr->instances.list) {
	    ckfree(clsPtr->instances.list);

	    clsPtr->instances.num = 0;
	}
	if (clsPtr->mixinSubs.list) {
	    ckfree(clsPtr->mixinSubs.list);

	    clsPtr->mixinSubs.num = 0;
	}

	FOREACH_HASH_VALUE(mPtr, &clsPtr->classMethods) {
	    TclOODelMethodRef(mPtr);
	}
	Tcl_DeleteHashTable(&clsPtr->classMethods);
................................................................................
	DelRef(clsPtr);
    }

    /*
     * Delete the object structure itself.
     */





    DelRef(oPtr);


}
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOORemoveFromInstances --
 *
................................................................................
}
 
/*
 * ----------------------------------------------------------------------
 *
 * PublicObjectCmd, PrivateObjectCmd, TclOOInvokeObject --
 *
 *	Main entry point for object invokations. The Public* and Private*
 *	wrapper functions (implementations of both object instance commands
 *	and [my]) are just thin wrappers round the main TclOOObjectCmdCore
 *	function. Note that the core is function is NRE-aware.
 *
 * ----------------------------------------------------------------------
 */

................................................................................
}
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOObjectCmdCore, FinalizeObjectCall --
 *
 *	Main function for object invokations. Does call chain creation,
 *	management and invokation. The function FinalizeObjectCall exists to
 *	clean up after the non-recursive processing of TclOOObjectCmdCore.
 *
 * ----------------------------------------------------------------------
 */

int
TclOOObjectCmdCore(
    Object *oPtr,		/* The object being invoked. */
    Tcl_Interp *interp,		/* The interpreter containing the object. */
    int objc,			/* How many arguments are being passed in. */
    Tcl_Obj *const *objv,	/* The array of arguments. */
    int flags,			/* Whether this is an invokation through the
				 * public or the private command interface. */
    Class *startCls)		/* Where to start in the call chain, or NULL
				 * if we are to start at the front with
				 * filters and the object's methods (which is
				 * the normal case). */
{
    CallContext *contextPtr;
................................................................................
    }

    /*
     * Advance to the next method implementation in the chain in the method
     * call context while we process the body. However, need to adjust the
     * argument-skip control because we're guaranteed to have a single prefix
     * arg (i.e., 'next') and not the variable amount that can happen because
     * method invokations (i.e., '$obj meth' and 'my meth'), constructors
     * (i.e., '$cls new' and '$cls create obj') and destructors (no args at
     * all) come through the same code.
     */

    contextPtr->index++;
    contextPtr->skip = skip;

................................................................................
    }

    /*
     * Advance to the next method implementation in the chain in the method
     * call context while we process the body. However, need to adjust the
     * argument-skip control because we're guaranteed to have a single prefix
     * arg (i.e., 'next') and not the variable amount that can happen because
     * method invokations (i.e., '$obj meth' and 'my meth'), constructors
     * (i.e., '$cls new' and '$cls create obj') and destructors (no args at
     * all) come through the same code.
     */

    TclNRAddCallback(interp, FinalizeNext, contextPtr,
	    INT2PTR(contextPtr->index), INT2PTR(contextPtr->skip), NULL);
    contextPtr->index++;






|







 







>

>
>
>
>
>
|
>
>
>
>







 







|









>
>
>
>
>
>
>
>
>







 







>




>




>







 







>
>
>
>
|
>
>







 







|







 







|
|











|







 







|







 







|







876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
....
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
....
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
....
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
....
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
....
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
....
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
....
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
....
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
    }

    /*
     * The namespace is only deleted if it hasn't already been deleted. [Bug
     * 2950259]
     */

    if (oPtr->namespacePtr && ((Namespace *) oPtr->namespacePtr)->earlyDeleteProc != NULL) {
	Tcl_DeleteNamespace(oPtr->namespacePtr);
    }
    if (oPtr->classPtr) {
	DelRef(oPtr->classPtr);
    }
    DelRef(fPtr->classCls->thisPtr);
    DelRef(fPtr->objectCls->thisPtr);
................................................................................
	FOREACH(instancePtr, clsPtr->instances) {
	    int j;
	    if (instancePtr->selfCls == clsPtr) {
		instancePtr->flags |= CLASS_GONE;
	    }
	    for(j=0 ; j<instancePtr->mixins.num ; j++) {
		Class *mixin = instancePtr->mixins.list[j];
		Class *nextMixin = NULL;
		if (mixin == clsPtr) {
		    if (j < instancePtr->mixins.num - 1) {
			nextMixin = instancePtr->mixins.list[j+1];
		    }
		    if (j == 0) {
			instancePtr->mixins.num = 0;
			instancePtr->mixins.list = NULL;
		    } else {
			instancePtr->mixins.list[j-1] = nextMixin;
		    }
		    instancePtr->mixins.num -= 1;
		}
	    }
	    if (instancePtr != NULL && !IsRoot(instancePtr)) {
		AddRef(instancePtr);
	    }
	}
    }
................................................................................
				 * being deleted. */
{
    Object *oPtr = clientData;
    FOREACH_HASH_DECLS;
    Class *clsPtr = oPtr->classPtr, *mixinPtr;
    Method *mPtr;
    Tcl_Obj *filterObj, *variableObj;
    int deleteAlreadyInProgress = 0, i;

    /*
     * Instruct everyone to no longer use any allocated fields of the object.
     * Also delete the commands that refer to the object at this point (if
     * they still exist) because otherwise their references to the object
     * point into freed memory, allowing crashes.
     */

    if (oPtr->command) {
	if ((((Command *)oPtr->command)->flags && CMD_IS_DELETED)) {
	    /*
	     * Namespace deletion must have been triggered by a trace on command
	     * deletion , meaning that ObjectRenamedTrace() is eventually going
	     * to be called .
	     */
	    deleteAlreadyInProgress = 1;
	}

	Tcl_DeleteCommandFromToken(oPtr->fPtr->interp, oPtr->command);
    }
    if (oPtr->myCommand) {
	Tcl_DeleteCommandFromToken(oPtr->fPtr->interp, oPtr->myCommand);
    }

    /*
................................................................................

	ClearMixins(clsPtr);

	ClearSuperclasses(clsPtr);

	if (clsPtr->subclasses.list) {
	    ckfree(clsPtr->subclasses.list);
	    clsPtr->subclasses.list = NULL;
	    clsPtr->subclasses.num = 0;
	}
	if (clsPtr->instances.list) {
	    ckfree(clsPtr->instances.list);
	    clsPtr->instances.list = NULL;
	    clsPtr->instances.num = 0;
	}
	if (clsPtr->mixinSubs.list) {
	    ckfree(clsPtr->mixinSubs.list);
	    clsPtr->mixinSubs.list = NULL;
	    clsPtr->mixinSubs.num = 0;
	}

	FOREACH_HASH_VALUE(mPtr, &clsPtr->classMethods) {
	    TclOODelMethodRef(mPtr);
	}
	Tcl_DeleteHashTable(&clsPtr->classMethods);
................................................................................
	DelRef(clsPtr);
    }

    /*
     * Delete the object structure itself.
     */

    if (deleteAlreadyInProgress) {
	oPtr->classPtr = NULL;
	oPtr->namespacePtr = NULL;
    } else {
	DelRef(oPtr);
    }

}
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOORemoveFromInstances --
 *
................................................................................
}
 
/*
 * ----------------------------------------------------------------------
 *
 * PublicObjectCmd, PrivateObjectCmd, TclOOInvokeObject --
 *
 *	Main entry point for object invocations. The Public* and Private*
 *	wrapper functions (implementations of both object instance commands
 *	and [my]) are just thin wrappers round the main TclOOObjectCmdCore
 *	function. Note that the core is function is NRE-aware.
 *
 * ----------------------------------------------------------------------
 */

................................................................................
}
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOObjectCmdCore, FinalizeObjectCall --
 *
 *	Main function for object invocations. Does call chain creation,
 *	management and invocation. The function FinalizeObjectCall exists to
 *	clean up after the non-recursive processing of TclOOObjectCmdCore.
 *
 * ----------------------------------------------------------------------
 */

int
TclOOObjectCmdCore(
    Object *oPtr,		/* The object being invoked. */
    Tcl_Interp *interp,		/* The interpreter containing the object. */
    int objc,			/* How many arguments are being passed in. */
    Tcl_Obj *const *objv,	/* The array of arguments. */
    int flags,			/* Whether this is an invocation through the
				 * public or the private command interface. */
    Class *startCls)		/* Where to start in the call chain, or NULL
				 * if we are to start at the front with
				 * filters and the object's methods (which is
				 * the normal case). */
{
    CallContext *contextPtr;
................................................................................
    }

    /*
     * Advance to the next method implementation in the chain in the method
     * call context while we process the body. However, need to adjust the
     * argument-skip control because we're guaranteed to have a single prefix
     * arg (i.e., 'next') and not the variable amount that can happen because
     * method invocations (i.e., '$obj meth' and 'my meth'), constructors
     * (i.e., '$cls new' and '$cls create obj') and destructors (no args at
     * all) come through the same code.
     */

    contextPtr->index++;
    contextPtr->skip = skip;

................................................................................
    }

    /*
     * Advance to the next method implementation in the chain in the method
     * call context while we process the body. However, need to adjust the
     * argument-skip control because we're guaranteed to have a single prefix
     * arg (i.e., 'next') and not the variable amount that can happen because
     * method invocations (i.e., '$obj meth' and 'my meth'), constructors
     * (i.e., '$cls new' and '$cls create obj') and destructors (no args at
     * all) come through the same code.
     */

    TclNRAddCallback(interp, FinalizeNext, contextPtr,
	    INT2PTR(contextPtr->index), INT2PTR(contextPtr->skip), NULL);
    contextPtr->index++;

Changes to generic/tclOOCall.c.

49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
...
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
...
363
364
365
366
367
368
369




370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
...
432
433
434
435
436
437
438
439
440
441

442


443
444
445
446
447
448
449
...
491
492
493
494
495
496
497




498
499
500
501
502
503

504
505
506
507
508
509

510
511
512
513
514
515
516
...
577
578
579
580
581
582
583
584
585
586
587
588
589
590





591









592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

613
614








615
616









617
618
619
620
621
622
623
...
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
...
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
...
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
....
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
 * Function declarations for things defined in this file.
 */

static void		AddClassFiltersToCallContext(Object *const oPtr,
			    Class *clsPtr, struct ChainBuilder *const cbPtr,
			    Tcl_HashTable *const doneFilters, int flags);
static void		AddClassMethodNames(Class *clsPtr, const int flags,
			    Tcl_HashTable *const namesPtr);

static inline void	AddMethodToCallChain(Method *const mPtr,
			    struct ChainBuilder *const cbPtr,
			    Tcl_HashTable *const doneFilters,
			    Class *const filterDecl, int flags);
static inline void	AddSimpleChainToCallContext(Object *const oPtr,
			    Tcl_Obj *const methodNameObj,
			    struct ChainBuilder *const cbPtr,
................................................................................
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOInvokeContext --
 *
 *	Invokes a single step along a method call-chain context. Note that the
 *	invokation of a step along the chain can cause further steps along the
 *	chain to be invoked. Note that this function is written to be as light
 *	in stack usage as possible.
 *
 * ----------------------------------------------------------------------
 */

int
................................................................................
    int flags,			/* Whether we just want the public method
				 * names. */
    const char ***stringsPtr)	/* Where to write a pointer to the array of
				 * strings to. */
{
    Tcl_HashTable names;	/* Tcl_Obj* method name to "wanted in list"
				 * mapping. */




    FOREACH_HASH_DECLS;
    int i;
    Class *mixinPtr;
    Tcl_Obj *namePtr;
    Method *mPtr;
    int isWantedIn;
    void *isWanted;

    Tcl_InitObjHashTable(&names);


    /*
     * Name the bits used in the names table values.
     */
#define IN_LIST 1
#define NO_IMPLEMENTATION 2

................................................................................
    }

    /*
     * Process (normal) method names from the class hierarchy and the mixin
     * hierarchy.
     */

    AddClassMethodNames(oPtr->selfCls, flags, &names);
    FOREACH(mixinPtr, oPtr->mixins) {
	AddClassMethodNames(mixinPtr, flags|TRAVERSED_MIXIN, &names);

    }



    /*
     * See how many (visible) method names there are. If none, we do not (and
     * should not) try to sort the list of them.
     */

    i = 0;
................................................................................
    int flags,			/* Whether we just want the public method
				 * names. */
    const char ***stringsPtr)	/* Where to write a pointer to the array of
				 * strings to. */
{
    Tcl_HashTable names;	/* Tcl_Obj* method name to "wanted in list"
				 * mapping. */




    FOREACH_HASH_DECLS;
    int i;
    Tcl_Obj *namePtr;
    void *isWanted;

    Tcl_InitObjHashTable(&names);


    /*
     * Process method names from the class hierarchy and the mixin hierarchy.
     */

    AddClassMethodNames(clsPtr, flags, &names);


    /*
     * See how many (visible) method names there are. If none, we do not (and
     * should not) try to sort the list of them.
     */

    i = 0;
................................................................................
 */

static void
AddClassMethodNames(
    Class *clsPtr,		/* Class to get method names from. */
    const int flags,		/* Whether we are interested in just the
				 * public method names. */
    Tcl_HashTable *const namesPtr)
				/* Reference to the hash table to put the
				 * information in. The hash table maps the
				 * Tcl_Obj * method name to an integral value
				 * describing whether the method is wanted.
				 * This ensures that public/private override
				 * semantics are handled correctly.*/





{









    /*
     * Scope all declarations so that the compiler can stand a good chance of
     * making the recursive step highly efficient. We also hand-implement the
     * tail-recursive case using a while loop; C compilers typically cannot do
     * tail-recursion optimization usefully.
     */

    if (clsPtr->mixins.num != 0) {
	Class *mixinPtr;
	int i;

	/* TODO: Beware of infinite loops! */
	FOREACH(mixinPtr, clsPtr->mixins) {
	    AddClassMethodNames(mixinPtr, flags|TRAVERSED_MIXIN, namesPtr);
	}
    }

    while (1) {
	FOREACH_HASH_DECLS;
	Tcl_Obj *namePtr;
	Method *mPtr;


	FOREACH_HASH(namePtr, mPtr, &clsPtr->classMethods) {








	    int isNew;










	    hPtr = Tcl_CreateHashEntry(namesPtr, (char *) namePtr, &isNew);
	    if (isNew) {
		int isWanted = (!(flags & PUBLIC_METHOD)
			|| (mPtr->flags & PUBLIC_METHOD)) ? IN_LIST : 0;

		isWanted |= (mPtr->typePtr == NULL ? NO_IMPLEMENTATION : 0);
		Tcl_SetHashValue(hPtr, INT2PTR(isWanted));
................................................................................
	clsPtr = clsPtr->superclasses.list[0];
    }
    if (clsPtr->superclasses.num != 0) {
	Class *superPtr;
	int i;

	FOREACH(superPtr, clsPtr->superclasses) {
	    AddClassMethodNames(superPtr, flags, namesPtr);

	}
    }
}
 
/*
 * ----------------------------------------------------------------------
 *
................................................................................
    for (i=cbPtr->filterLength ; i<callPtr->numChain ; i++) {
	if (callPtr->chain[i].mPtr == mPtr &&
		callPtr->chain[i].isFilter == (doneFilters != NULL)) {
	    /*
	     * Call chain semantics states that methods come as *late* in the
	     * call chain as possible. This is done by copying down the
	     * following methods. Note that this does not change the number of
	     * method invokations in the call chain; it just rearranges them.
	     */

	    Class *declCls = callPtr->chain[i].filterDeclarer;

	    for (; i+1<callPtr->numChain ; i++) {
		callPtr->chain[i] = callPtr->chain[i+1];
	    }
................................................................................
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOGetCallContext --
 *
 *	Responsible for constructing the call context, an ordered list of all
 *	method implementations to be called as part of a method invokation.
 *	This method is central to the whole operation of the OO system.
 *
 * ----------------------------------------------------------------------
 */

CallContext *
TclOOGetCallContext(
................................................................................
    Tcl_IncrRefCount(methodLiteral);
    objectLiteral = Tcl_NewStringObj("object", -1);
    Tcl_IncrRefCount(objectLiteral);

    /*
     * Do the actual construction of the descriptions. They consist of a list
     * of triples that describe the details of how a method is understood. For
     * each triple, the first word is the type of invokation ("method" is
     * normal, "unknown" is special because it adds the method name as an
     * extra argument when handled by some method types, and "filter" is
     * special because it's a filter method). The second word is the name of
     * the method in question (which differs for "unknown" and "filter" types)
     * and the third word is the full name of the class that declares the
     * method (or "object" if it is declared on the instance).
     */






|
>







 







|







 







>
>
>
>









>







 







|

|
>

>
>







 







>
>
>
>






>





|
>







 







|





|
>
>
>
>
>

>
>
>
>
>
>
>
>
>







<
<
<
<
<
<
<
<
<
<




>

<
>
>
>
>
>
>
>
>
|

>
>
>
>
>
>
>
>
>







 







|
>







 







|







 







|







 







|







49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
...
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
...
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
...
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
...
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627










628
629
630
631
632
633

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
...
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
...
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
...
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
....
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
 * Function declarations for things defined in this file.
 */

static void		AddClassFiltersToCallContext(Object *const oPtr,
			    Class *clsPtr, struct ChainBuilder *const cbPtr,
			    Tcl_HashTable *const doneFilters, int flags);
static void		AddClassMethodNames(Class *clsPtr, const int flags,
			    Tcl_HashTable *const namesPtr,
			    Tcl_HashTable *const examinedClassesPtr);
static inline void	AddMethodToCallChain(Method *const mPtr,
			    struct ChainBuilder *const cbPtr,
			    Tcl_HashTable *const doneFilters,
			    Class *const filterDecl, int flags);
static inline void	AddSimpleChainToCallContext(Object *const oPtr,
			    Tcl_Obj *const methodNameObj,
			    struct ChainBuilder *const cbPtr,
................................................................................
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOInvokeContext --
 *
 *	Invokes a single step along a method call-chain context. Note that the
 *	invocation of a step along the chain can cause further steps along the
 *	chain to be invoked. Note that this function is written to be as light
 *	in stack usage as possible.
 *
 * ----------------------------------------------------------------------
 */

int
................................................................................
    int flags,			/* Whether we just want the public method
				 * names. */
    const char ***stringsPtr)	/* Where to write a pointer to the array of
				 * strings to. */
{
    Tcl_HashTable names;	/* Tcl_Obj* method name to "wanted in list"
				 * mapping. */
    Tcl_HashTable examinedClasses;
				/* Used to track what classes have been looked
				 * at. Is set-like in nature and keyed by
				 * pointer to class. */
    FOREACH_HASH_DECLS;
    int i;
    Class *mixinPtr;
    Tcl_Obj *namePtr;
    Method *mPtr;
    int isWantedIn;
    void *isWanted;

    Tcl_InitObjHashTable(&names);
    Tcl_InitHashTable(&examinedClasses, TCL_ONE_WORD_KEYS);

    /*
     * Name the bits used in the names table values.
     */
#define IN_LIST 1
#define NO_IMPLEMENTATION 2

................................................................................
    }

    /*
     * Process (normal) method names from the class hierarchy and the mixin
     * hierarchy.
     */

    AddClassMethodNames(oPtr->selfCls, flags, &names, &examinedClasses);
    FOREACH(mixinPtr, oPtr->mixins) {
	AddClassMethodNames(mixinPtr, flags|TRAVERSED_MIXIN, &names,
		&examinedClasses);
    }

    Tcl_DeleteHashTable(&examinedClasses);

    /*
     * See how many (visible) method names there are. If none, we do not (and
     * should not) try to sort the list of them.
     */

    i = 0;
................................................................................
    int flags,			/* Whether we just want the public method
				 * names. */
    const char ***stringsPtr)	/* Where to write a pointer to the array of
				 * strings to. */
{
    Tcl_HashTable names;	/* Tcl_Obj* method name to "wanted in list"
				 * mapping. */
    Tcl_HashTable examinedClasses;
				/* Used to track what classes have been looked
				 * at. Is set-like in nature and keyed by
				 * pointer to class. */
    FOREACH_HASH_DECLS;
    int i;
    Tcl_Obj *namePtr;
    void *isWanted;

    Tcl_InitObjHashTable(&names);
    Tcl_InitHashTable(&examinedClasses, TCL_ONE_WORD_KEYS);

    /*
     * Process method names from the class hierarchy and the mixin hierarchy.
     */

    AddClassMethodNames(clsPtr, flags, &names, &examinedClasses);
    Tcl_DeleteHashTable(&examinedClasses);

    /*
     * See how many (visible) method names there are. If none, we do not (and
     * should not) try to sort the list of them.
     */

    i = 0;
................................................................................
 */

static void
AddClassMethodNames(
    Class *clsPtr,		/* Class to get method names from. */
    const int flags,		/* Whether we are interested in just the
				 * public method names. */
    Tcl_HashTable *const namesPtr,
				/* Reference to the hash table to put the
				 * information in. The hash table maps the
				 * Tcl_Obj * method name to an integral value
				 * describing whether the method is wanted.
				 * This ensures that public/private override
				 * semantics are handled correctly. */
    Tcl_HashTable *const examinedClassesPtr)
				/* Hash table that tracks what classes have
				 * already been looked at. The keys are the
				 * pointers to the classes, and the values are
				 * immaterial. */
{
    /*
     * If we've already started looking at this class, stop working on it now
     * to prevent repeated work.
     */

    if (Tcl_FindHashEntry(examinedClassesPtr, (char *) clsPtr)) {
	return;
    }

    /*
     * Scope all declarations so that the compiler can stand a good chance of
     * making the recursive step highly efficient. We also hand-implement the
     * tail-recursive case using a while loop; C compilers typically cannot do
     * tail-recursion optimization usefully.
     */











    while (1) {
	FOREACH_HASH_DECLS;
	Tcl_Obj *namePtr;
	Method *mPtr;
	int isNew;


	(void) Tcl_CreateHashEntry(examinedClassesPtr, (char *) clsPtr,
		&isNew);
	if (!isNew) {
	    break;
	}

	if (clsPtr->mixins.num != 0) {
	    Class *mixinPtr;
	    int i;

	    FOREACH(mixinPtr, clsPtr->mixins) {
		if (mixinPtr != clsPtr) {
		    AddClassMethodNames(mixinPtr, flags|TRAVERSED_MIXIN,
			    namesPtr, examinedClassesPtr);
		}
	    }
	}

	FOREACH_HASH(namePtr, mPtr, &clsPtr->classMethods) {
	    hPtr = Tcl_CreateHashEntry(namesPtr, (char *) namePtr, &isNew);
	    if (isNew) {
		int isWanted = (!(flags & PUBLIC_METHOD)
			|| (mPtr->flags & PUBLIC_METHOD)) ? IN_LIST : 0;

		isWanted |= (mPtr->typePtr == NULL ? NO_IMPLEMENTATION : 0);
		Tcl_SetHashValue(hPtr, INT2PTR(isWanted));
................................................................................
	clsPtr = clsPtr->superclasses.list[0];
    }
    if (clsPtr->superclasses.num != 0) {
	Class *superPtr;
	int i;

	FOREACH(superPtr, clsPtr->superclasses) {
	    AddClassMethodNames(superPtr, flags, namesPtr,
		    examinedClassesPtr);
	}
    }
}
 
/*
 * ----------------------------------------------------------------------
 *
................................................................................
    for (i=cbPtr->filterLength ; i<callPtr->numChain ; i++) {
	if (callPtr->chain[i].mPtr == mPtr &&
		callPtr->chain[i].isFilter == (doneFilters != NULL)) {
	    /*
	     * Call chain semantics states that methods come as *late* in the
	     * call chain as possible. This is done by copying down the
	     * following methods. Note that this does not change the number of
	     * method invocations in the call chain; it just rearranges them.
	     */

	    Class *declCls = callPtr->chain[i].filterDeclarer;

	    for (; i+1<callPtr->numChain ; i++) {
		callPtr->chain[i] = callPtr->chain[i+1];
	    }
................................................................................
 
/*
 * ----------------------------------------------------------------------
 *
 * TclOOGetCallContext --
 *
 *	Responsible for constructing the call context, an ordered list of all
 *	method implementations to be called as part of a method invocation.
 *	This method is central to the whole operation of the OO system.
 *
 * ----------------------------------------------------------------------
 */

CallContext *
TclOOGetCallContext(
................................................................................
    Tcl_IncrRefCount(methodLiteral);
    objectLiteral = Tcl_NewStringObj("object", -1);
    Tcl_IncrRefCount(objectLiteral);

    /*
     * Do the actual construction of the descriptions. They consist of a list
     * of triples that describe the details of how a method is understood. For
     * each triple, the first word is the type of invocation ("method" is
     * normal, "unknown" is special because it adds the method name as an
     * extra argument when handled by some method types, and "filter" is
     * special because it's a filter method). The second word is the name of
     * the method in question (which differs for "unknown" and "filter" types)
     * and the third word is the full name of the class that declares the
     * method (or "object" if it is declared on the instance).
     */

Changes to generic/tclOOInt.h.

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
...
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
 * Now, the definition of what an object actually is.
 */

typedef struct Object {
    struct Foundation *fPtr;	/* The basis for the object system. Putting
				 * this here allows the avoidance of quite a
				 * lot of hash lookups on the critical path
				 * for object invokation and creation. */
    Tcl_Namespace *namespacePtr;/* This object's tame namespace. */
    Tcl_Command command;	/* Reference to this object's public
				 * command. */
    Tcl_Command myCommand;	/* Reference to this object's internal
				 * command. */
    struct Class *selfCls;	/* This object's class. */
    Tcl_HashTable *methodsPtr;	/* Object-local Tcl_Obj (method name) to
				 * Method* mapping. */
    LIST_STATIC(struct Class *) mixins;
				/* Classes mixed into this object. */
    LIST_STATIC(Tcl_Obj *) filters;
				/* List of filter names. */
    struct Class *classPtr;	/* All classes have this non-NULL; it points
				 * to the class structure. Everything else has
				 * this NULL. */
    int refCount;		/* Number of strong references to this object.
				 * Note that there may be many more weak
				 * references; this mechanism is there to
				 * avoid Tcl_Preserve. */
    int flags;
    int creationEpoch;		/* Unique value to make comparisons of objects
				 * easier. */
    int epoch;			/* Per-object epoch, incremented when the way
				 * an object should resolve call chains is
				 * changed. */
................................................................................
				 * destructor. */
    Tcl_Obj *clonedName;	/* Shared object containing the name of a
				 * "<cloned>" pseudo-constructor. */
    Tcl_Obj *defineName;	/* Fully qualified name of oo::define. */
} Foundation;

/*
 * A call context structure is built when a method is called. They contain the
 * chain of method implementations that are to be invoked by a particular
 * call, and the process of calling walks the chain, with the [next] command
 * proceeding to the next entry in the chain.
 */

#define CALL_CHAIN_STATIC_SIZE 4

struct MInvoke {
    Method *mPtr;		/* Reference to the method implementation
				 * record. */
    int isFilter;		/* Whether this is a filter invokation. */
    Class *filterDeclarer;	/* What class decided to add the filter; if
				 * NULL, it was added by the object. */
};

typedef struct CallChain {
    int objectCreationEpoch;	/* The object's creation epoch. Note that the
				 * object reference is not stored in the call






|
|











|
|
|


|







 







|










|







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
...
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
 * Now, the definition of what an object actually is.
 */

typedef struct Object {
    struct Foundation *fPtr;	/* The basis for the object system. Putting
				 * this here allows the avoidance of quite a
				 * lot of hash lookups on the critical path
				 * for object invocation and creation. */
    Tcl_Namespace *namespacePtr;/* This object's namespace. */
    Tcl_Command command;	/* Reference to this object's public
				 * command. */
    Tcl_Command myCommand;	/* Reference to this object's internal
				 * command. */
    struct Class *selfCls;	/* This object's class. */
    Tcl_HashTable *methodsPtr;	/* Object-local Tcl_Obj (method name) to
				 * Method* mapping. */
    LIST_STATIC(struct Class *) mixins;
				/* Classes mixed into this object. */
    LIST_STATIC(Tcl_Obj *) filters;
				/* List of filter names. */
    struct Class *classPtr;	/* This is non-NULL for all classes, and NULL
				 *  for everything else. It points to the class
				 *  structure. */
    int refCount;		/* Number of strong references to this object.
				 * Note that there may be many more weak
				 * references; this mechanism exists to
				 * avoid Tcl_Preserve. */
    int flags;
    int creationEpoch;		/* Unique value to make comparisons of objects
				 * easier. */
    int epoch;			/* Per-object epoch, incremented when the way
				 * an object should resolve call chains is
				 * changed. */
................................................................................
				 * destructor. */
    Tcl_Obj *clonedName;	/* Shared object containing the name of a
				 * "<cloned>" pseudo-constructor. */
    Tcl_Obj *defineName;	/* Fully qualified name of oo::define. */
} Foundation;

/*
 * A call context structure is built when a method is called. It contains the
 * chain of method implementations that are to be invoked by a particular
 * call, and the process of calling walks the chain, with the [next] command
 * proceeding to the next entry in the chain.
 */

#define CALL_CHAIN_STATIC_SIZE 4

struct MInvoke {
    Method *mPtr;		/* Reference to the method implementation
				 * record. */
    int isFilter;		/* Whether this is a filter invocation. */
    Class *filterDeclarer;	/* What class decided to add the filter; if
				 * NULL, it was added by the object. */
};

typedef struct CallChain {
    int objectCreationEpoch;	/* The object's creation epoch. Note that the
				 * object reference is not stored in the call

Changes to generic/tclOOMethod.c.

1310
1311
1312
1313
1314
1315
1316

1317
1318
1319
1320
1321
1322
1323
    /*
     * Must strip the internal representation in order to ensure that any
     * bound references to instance variables are removed. [Bug 3609693]
     */

    bodyObj = Tcl_DuplicateObj(pmPtr->procPtr->bodyPtr);

    TclFreeIntRep(bodyObj);

    /*
     * Create the actual copy of the method record, manufacturing a new proc
     * record.
     */







>







1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    /*
     * Must strip the internal representation in order to ensure that any
     * bound references to instance variables are removed. [Bug 3609693]
     */

    bodyObj = Tcl_DuplicateObj(pmPtr->procPtr->bodyPtr);
    Tcl_GetString(bodyObj);
    TclFreeIntRep(bodyObj);

    /*
     * Create the actual copy of the method record, manufacturing a new proc
     * record.
     */

Changes to generic/tclObj.c.

3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
....
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
	TclSetLongObj(objPtr, (long) wideValue);
    } else {
#ifndef TCL_WIDE_INT_IS_LONG
	TclSetWideIntObj(objPtr, wideValue);
#else
	mp_int big;

	TclBNInitBignumFromWideInt(&big, wideValue);
	Tcl_SetBignumObj(objPtr, &big);
#endif
    }
}
 
/*
 *----------------------------------------------------------------------
................................................................................
		if (objPtr->bytes == NULL) {
		    TclInitStringRep(objPtr, &tclEmptyString, 0);
		}
	    }
	    return TCL_OK;
	}
	if (objPtr->typePtr == &tclIntType) {
	    TclBNInitBignumFromLong(bignumValue, objPtr->internalRep.longValue);
	    return TCL_OK;
	}
#ifndef TCL_WIDE_INT_IS_LONG
	if (objPtr->typePtr == &tclWideIntType) {
	    TclBNInitBignumFromWideInt(bignumValue,
		    objPtr->internalRep.wideValue);
	    return TCL_OK;
	}
#endif
	if (objPtr->typePtr == &tclDoubleType) {
	    if (interp != NULL) {
                Tcl_SetObjResult(interp, Tcl_ObjPrintf(






|







 







|




|







3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
....
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
	TclSetLongObj(objPtr, (long) wideValue);
    } else {
#ifndef TCL_WIDE_INT_IS_LONG
	TclSetWideIntObj(objPtr, wideValue);
#else
	mp_int big;

	TclInitBignumFromWideInt(&big, wideValue);
	Tcl_SetBignumObj(objPtr, &big);
#endif
    }
}
 
/*
 *----------------------------------------------------------------------
................................................................................
		if (objPtr->bytes == NULL) {
		    TclInitStringRep(objPtr, &tclEmptyString, 0);
		}
	    }
	    return TCL_OK;
	}
	if (objPtr->typePtr == &tclIntType) {
	    TclInitBignumFromLong(bignumValue, objPtr->internalRep.longValue);
	    return TCL_OK;
	}
#ifndef TCL_WIDE_INT_IS_LONG
	if (objPtr->typePtr == &tclWideIntType) {
	    TclInitBignumFromWideInt(bignumValue,
		    objPtr->internalRep.wideValue);
	    return TCL_OK;
	}
#endif
	if (objPtr->typePtr == &tclDoubleType) {
	    if (interp != NULL) {
                Tcl_SetObjResult(interp, Tcl_ObjPrintf(

Changes to generic/tclRegexp.h.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    Tcl_Obj *globObjPtr;	/* Glob pattern rep of RE or NULL if none. */
    regmatch_t *matches;	/* Array of indices into the Tcl_UniChar
				 * representation of the last string matched
				 * with this regexp to indicate the location
				 * of subexpressions. */
    rm_detail_t details;	/* Detailed information on match (currently
				 * used only for REG_EXPECT). */
    unsigned int refCount;	/* Count of number of references to this
				 * compiled regexp. */
} TclRegexp;

#endif /* _TCLREGEXP */
 
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */






|












33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    Tcl_Obj *globObjPtr;	/* Glob pattern rep of RE or NULL if none. */
    regmatch_t *matches;	/* Array of indices into the Tcl_UniChar
				 * representation of the last string matched
				 * with this regexp to indicate the location
				 * of subexpressions. */
    rm_detail_t details;	/* Detailed information on match (currently
				 * used only for REG_EXPECT). */
    size_t refCount;		/* Count of number of references to this
				 * compiled regexp. */
} TclRegexp;

#endif /* _TCLREGEXP */
 
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */

Changes to generic/tclStrToD.c.

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
...
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
...
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
....
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
....
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
....
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
....
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
....
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
....
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
....
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
....
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
....
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
....
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
....
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
....
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
....
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
			if ((octalSignificandWide != 0)
				&& (((size_t)shift >=
					CHAR_BIT*sizeof(Tcl_WideUInt))
				|| (octalSignificandWide >
					(~(Tcl_WideUInt)0 >> shift)))) {
			    octalSignificandOverflow = 1;
			    TclBNInitBignumFromWideUInt(&octalSignificandBig,
				    octalSignificandWide);
			}
		    }
		    if (!octalSignificandOverflow) {
			octalSignificandWide =
				(octalSignificandWide << shift) + (c - '0');
		    } else {
................................................................................
		     * large shifts first.
		     */

		    if (significandWide != 0 &&
			    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
			    significandWide > (~(Tcl_WideUInt)0 >> shift))) {
			significandOverflow = 1;
			TclBNInitBignumFromWideUInt(&significandBig,
				significandWide);
		    }
		}
		if (!significandOverflow) {
		    significandWide = (significandWide << shift) + d;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
................................................................................
		     * large shifts first.
		     */

		    if (significandWide != 0 &&
			    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
			    significandWide > (~(Tcl_WideUInt)0 >> shift))) {
			significandOverflow = 1;
			TclBNInitBignumFromWideUInt(&significandBig,
				significandWide);
		    }
		}
		if (!significandOverflow) {
		    significandWide = (significandWide << shift) + 1;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
................................................................................
		    acceptState, bytes);
	case BINARY:
	    shift = numTrailZeros;
	    if (!significandOverflow && significandWide != 0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    significandWide > (MOST_BITS + signum) >> shift)) {
		significandOverflow = 1;
		TclBNInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	    if (shift) {
		if (!significandOverflow) {
		    significandWide <<= shift;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
		}
................................................................................
	     */

	    shift = 4 * numTrailZeros;
	    if (!significandOverflow && significandWide !=0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    significandWide > (MOST_BITS + signum) >> shift)) {
		significandOverflow = 1;
		TclBNInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	    if (shift) {
		if (!significandOverflow) {
		    significandWide <<= shift;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
		}
................................................................................
	     */

	    shift = 3 * numTrailZeros;
	    if (!octalSignificandOverflow && octalSignificandWide != 0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    octalSignificandWide > (MOST_BITS + signum) >> shift)) {
		octalSignificandOverflow = 1;
		TclBNInitBignumFromWideUInt(&octalSignificandBig,
			octalSignificandWide);
	    }
	    if (shift) {
		if (!octalSignificandOverflow) {
		    octalSignificandWide <<= shift;
		} else {
		    mp_mul_2d(&octalSignificandBig, shift,
................................................................................
			} else {
			    objPtr->internalRep.wideValue =
				    (Tcl_WideInt) octalSignificandWide;
			}
			break;
		    }
#endif
		    TclBNInitBignumFromWideUInt(&octalSignificandBig,
			    octalSignificandWide);
		    octalSignificandOverflow = 1;
		} else {
		    objPtr->typePtr = &tclIntType;
		    if (signum) {
			objPtr->internalRep.longValue =
				- (long) octalSignificandWide;
................................................................................

	case ZERO:
	case DECIMAL:
	    significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,
		    &significandWide, &significandBig, significandOverflow);
	    if (!significandOverflow && (significandWide > MOST_BITS+signum)){
		significandOverflow = 1;
		TclBNInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	returnInteger:
	    if (!significandOverflow) {
		if (significandWide >
			(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
#ifndef TCL_WIDE_INT_IS_LONG
		    if (significandWide <= MOST_BITS+signum) {
................................................................................
			} else {
			    objPtr->internalRep.wideValue =
				    (Tcl_WideInt) significandWide;
			}
			break;
		    }
#endif
		    TclBNInitBignumFromWideUInt(&significandBig,
			    significandWide);
		    significandOverflow = 1;
		} else {
		    objPtr->typePtr = &tclIntType;
		    if (signum) {
			objPtr->internalRep.longValue =
				- (long) significandWide;
................................................................................
	} else if (numZeros >= maxpow10_wide
		|| w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {
	    /*
	     * Wide multiplication will overflow.  Expand the number to a
	     * bignum and fall through into the bignum case.
	     */

	    TclBNInitBignumFromWideUInt(bignumRepPtr, w);
	} else {
	    /*
	     * Wide multiplication.
	     */

	    *wideRepPtr = w * pow10_wide[numZeros+1] + digit;
	    return 0;
................................................................................
    }

    /*
     * All the easy cases have failed. Promote ths significand to bignum and
     * call MakeHighPrecisionDouble to do it the hard way.
     */

    TclBNInitBignumFromWideUInt(&significandBig, significand);
    retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,
	    exponent);
    mp_clear(&significandBig);

    /*
     * Come here to return the computed value.
     */
................................................................................
    int r1;

    /*
     * b = bw * 2**b2 * 5**b5
     * mminus = 5**m5
     */

    TclBNInitBignumFromWideUInt(&b, bw);
    mp_init_set_int(&mminus, 1);
    MulPow5(&b, b5, &b);
    mp_mul_2d(&b, b2, &b);

    /*
     * Adjust if the logarithm was guessed wrong.
     */
................................................................................
    int i;			/* Index in the output buffer. */
    mp_int temp;

    /*
     * b = bw * 2**b2 * 5**b5
     */

    TclBNInitBignumFromWideUInt(&b, bw);
    MulPow5(&b, b5, &b);
    mp_mul_2d(&b, b2, &b);

    /*
     * Adjust if the logarithm was guessed wrong.
     */

................................................................................
    int r1;

    /*
     * b = bw * 2**b2 * 5**b5
     * S = 2**s2 * 5*s5
     */

    TclBNInitBignumFromWideUInt(&b, bw);
    mp_mul_2d(&b, b2, &b);
    mp_init_set_int(&S, 1);
    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);

    /*
     * Handle the case where we guess the position of the decimal point wrong.
     */
................................................................................

    /*
     * b = bw * 2**b2 * 5**b5
     * S = 2**s2 * 5*s5
     */

    mp_init_multi(&temp, &dig, NULL);
    TclBNInitBignumFromWideUInt(&b, bw);
    mp_mul_2d(&b, b2, &b);
    mp_init_set_int(&S, 1);
    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);

    /*
     * Handle the case where we guess the position of the decimal point wrong.
     */
................................................................................
    if (expt <= 0) {
	mp_init(b);
	mp_zero(b);
    } else {
	Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits);
	int shift = expt - mantBits;

	TclBNInitBignumFromWideInt(b, w);
	if (shift < 0) {
	    mp_div_2d(b, -shift, b, NULL);
	} else if (shift > 0) {
	    mp_mul_2d(b, shift, b);
	}
    }
    return TCL_OK;






|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
...
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
...
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
....
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
....
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
....
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
....
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
....
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
....
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
....
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
....
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
....
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
....
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
....
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
....
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
....
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
			if ((octalSignificandWide != 0)
				&& (((size_t)shift >=
					CHAR_BIT*sizeof(Tcl_WideUInt))
				|| (octalSignificandWide >
					(~(Tcl_WideUInt)0 >> shift)))) {
			    octalSignificandOverflow = 1;
			    TclInitBignumFromWideUInt(&octalSignificandBig,
				    octalSignificandWide);
			}
		    }
		    if (!octalSignificandOverflow) {
			octalSignificandWide =
				(octalSignificandWide << shift) + (c - '0');
		    } else {
................................................................................
		     * large shifts first.
		     */

		    if (significandWide != 0 &&
			    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
			    significandWide > (~(Tcl_WideUInt)0 >> shift))) {
			significandOverflow = 1;
			TclInitBignumFromWideUInt(&significandBig,
				significandWide);
		    }
		}
		if (!significandOverflow) {
		    significandWide = (significandWide << shift) + d;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
................................................................................
		     * large shifts first.
		     */

		    if (significandWide != 0 &&
			    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
			    significandWide > (~(Tcl_WideUInt)0 >> shift))) {
			significandOverflow = 1;
			TclInitBignumFromWideUInt(&significandBig,
				significandWide);
		    }
		}
		if (!significandOverflow) {
		    significandWide = (significandWide << shift) + 1;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
................................................................................
		    acceptState, bytes);
	case BINARY:
	    shift = numTrailZeros;
	    if (!significandOverflow && significandWide != 0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    significandWide > (MOST_BITS + signum) >> shift)) {
		significandOverflow = 1;
		TclInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	    if (shift) {
		if (!significandOverflow) {
		    significandWide <<= shift;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
		}
................................................................................
	     */

	    shift = 4 * numTrailZeros;
	    if (!significandOverflow && significandWide !=0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    significandWide > (MOST_BITS + signum) >> shift)) {
		significandOverflow = 1;
		TclInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	    if (shift) {
		if (!significandOverflow) {
		    significandWide <<= shift;
		} else {
		    mp_mul_2d(&significandBig, shift, &significandBig);
		}
................................................................................
	     */

	    shift = 3 * numTrailZeros;
	    if (!octalSignificandOverflow && octalSignificandWide != 0 &&
		    ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
		    octalSignificandWide > (MOST_BITS + signum) >> shift)) {
		octalSignificandOverflow = 1;
		TclInitBignumFromWideUInt(&octalSignificandBig,
			octalSignificandWide);
	    }
	    if (shift) {
		if (!octalSignificandOverflow) {
		    octalSignificandWide <<= shift;
		} else {
		    mp_mul_2d(&octalSignificandBig, shift,
................................................................................
			} else {
			    objPtr->internalRep.wideValue =
				    (Tcl_WideInt) octalSignificandWide;
			}
			break;
		    }
#endif
		    TclInitBignumFromWideUInt(&octalSignificandBig,
			    octalSignificandWide);
		    octalSignificandOverflow = 1;
		} else {
		    objPtr->typePtr = &tclIntType;
		    if (signum) {
			objPtr->internalRep.longValue =
				- (long) octalSignificandWide;
................................................................................

	case ZERO:
	case DECIMAL:
	    significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,
		    &significandWide, &significandBig, significandOverflow);
	    if (!significandOverflow && (significandWide > MOST_BITS+signum)){
		significandOverflow = 1;
		TclInitBignumFromWideUInt(&significandBig, significandWide);
	    }
	returnInteger:
	    if (!significandOverflow) {
		if (significandWide >
			(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
#ifndef TCL_WIDE_INT_IS_LONG
		    if (significandWide <= MOST_BITS+signum) {
................................................................................
			} else {
			    objPtr->internalRep.wideValue =
				    (Tcl_WideInt) significandWide;
			}
			break;
		    }
#endif
		    TclInitBignumFromWideUInt(&significandBig,
			    significandWide);
		    significandOverflow = 1;
		} else {
		    objPtr->typePtr = &tclIntType;
		    if (signum) {
			objPtr->internalRep.longValue =
				- (long) significandWide;
................................................................................
	} else if (numZeros >= maxpow10_wide
		|| w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {
	    /*
	     * Wide multiplication will overflow.  Expand the number to a
	     * bignum and fall through into the bignum case.
	     */

	    TclInitBignumFromWideUInt(bignumRepPtr, w);
	} else {
	    /*
	     * Wide multiplication.
	     */

	    *wideRepPtr = w * pow10_wide[numZeros+1] + digit;
	    return 0;
................................................................................
    }

    /*
     * All the easy cases have failed. Promote ths significand to bignum and
     * call MakeHighPrecisionDouble to do it the hard way.
     */

    TclInitBignumFromWideUInt(&significandBig, significand);
    retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,
	    exponent);
    mp_clear(&significandBig);

    /*
     * Come here to return the computed value.
     */
................................................................................
    int r1;

    /*
     * b = bw * 2**b2 * 5**b5
     * mminus = 5**m5
     */

    TclInitBignumFromWideUInt(&b, bw);
    mp_init_set_int(&mminus, 1);
    MulPow5(&b, b5, &b);
    mp_mul_2d(&b, b2, &b);

    /*
     * Adjust if the logarithm was guessed wrong.
     */
................................................................................
    int i;			/* Index in the output buffer. */
    mp_int temp;

    /*
     * b = bw * 2**b2 * 5**b5
     */

    TclInitBignumFromWideUInt(&b, bw);
    MulPow5(&b, b5, &b);
    mp_mul_2d(&b, b2, &b);

    /*
     * Adjust if the logarithm was guessed wrong.
     */

................................................................................
    int r1;

    /*
     * b = bw * 2**b2 * 5**b5
     * S = 2**s2 * 5*s5
     */

    TclInitBignumFromWideUInt(&b, bw);
    mp_mul_2d(&b, b2, &b);
    mp_init_set_int(&S, 1);
    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);

    /*
     * Handle the case where we guess the position of the decimal point wrong.
     */
................................................................................

    /*
     * b = bw * 2**b2 * 5**b5
     * S = 2**s2 * 5*s5
     */

    mp_init_multi(&temp, &dig, NULL);
    TclInitBignumFromWideUInt(&b, bw);
    mp_mul_2d(&b, b2, &b);
    mp_init_set_int(&S, 1);
    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);

    /*
     * Handle the case where we guess the position of the decimal point wrong.
     */
................................................................................
    if (expt <= 0) {
	mp_init(b);
	mp_zero(b);
    } else {
	Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits);
	int shift = expt - mantBits;

	TclInitBignumFromWideInt(b, w);
	if (shift < 0) {
	    mp_div_2d(b, -shift, b, NULL);
	} else if (shift > 0) {
	    mp_mul_2d(b, shift, b);
	}
    }
    return TCL_OK;

Changes to generic/tclStringObj.c.

3098
3099
3100
3101
3102
3103
3104

3105
3106
3107
3108
3109
3110
3111
....
3145
3146
3147
3148
3149
3150
3151

3152
3153
3154
3155
3156
3157
3158
....
3236
3237
3238
3239
3240
3241
3242








3243
3244
3245




3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263




3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
	    dst = Tcl_GetUnicode(objResultPtr) + start;
	} else {
	    Tcl_UniChar ch = 0;

	    /* Ugly interface! No scheme to init array size. */
	    objResultPtr = Tcl_NewUnicodeObj(&ch, 0);	/* PANIC? */
	    if (0 == Tcl_AttemptSetObjLength(objResultPtr, length)) {

		if (interp) {
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    	"concatenation failed: unable to alloc %"
			TCL_LL_MODIFIER "d bytes",
			(Tcl_WideUInt)STRING_SIZE(length)));
		    Tcl_SetErrorCode(interp, "TCL", "MEMORY", NULL);
		}
................................................................................
	    dst = Tcl_GetString(objResultPtr) + start;

	    /* assert ( length > start ) */
	    TclFreeIntRep(objResultPtr);
	} else {
	    objResultPtr = Tcl_NewObj();	/* PANIC? */
	    if (0 == Tcl_AttemptSetObjLength(objResultPtr, length)) {

		if (interp) {
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    	"concatenation failed: unable to alloc %u bytes",
			length));
		    Tcl_SetErrorCode(interp, "TCL", "MEMORY", NULL);
		}
		return TCL_ERROR;
................................................................................
		return (try - bh);
	    }
	    try++;
	}
	return -1;
    }









    lh = Tcl_GetCharLength(haystack);
    if (haystack->bytes && (lh == haystack->length)) {
	/* haystack is all single-byte chars */





	if (needle->bytes && (ln == needle->length)) {
	    /* needle is also all single-byte chars */
	    char *found = strstr(haystack->bytes + start, needle->bytes);

	    if (found) {
		return (found - haystack->bytes);
	    } else {
		return -1;
	    }
	} else {
	    /*
	     * Cannot find substring with a multi-byte char inside
	     * a string with no multi-byte chars.
	     */
	    return -1;
	}
    } else {




	Tcl_UniChar *try, *end, *uh;
	Tcl_UniChar *un = Tcl_GetUnicodeFromObj(needle, &ln);

	uh = Tcl_GetUnicodeFromObj(haystack, &lh);
	end = uh + lh;

	try = uh + start;
	while (try + ln <= end) {
	    if ((*try == *un)
		    && (0 == memcmp(try+1, un+1, (ln-1)*sizeof(Tcl_UniChar)))) {
		return (try - uh);
	    }
	    try++;
	}
	return -1;
    }
}
 
/*
 *---------------------------------------------------------------------------






>







 







>







 







>
>
>
>
>
>
>
>

|
<
>
>
>
>

<
<
|

|
|
|
<
<
<
<
<
<
<



>
>
>
>






|
<
|
|


<







3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
....
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
....
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254

3255
3256
3257
3258
3259


3260
3261
3262
3263
3264







3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278

3279
3280
3281
3282

3283
3284
3285
3286
3287
3288
3289
	    dst = Tcl_GetUnicode(objResultPtr) + start;
	} else {
	    Tcl_UniChar ch = 0;

	    /* Ugly interface! No scheme to init array size. */
	    objResultPtr = Tcl_NewUnicodeObj(&ch, 0);	/* PANIC? */
	    if (0 == Tcl_AttemptSetObjLength(objResultPtr, length)) {
		Tcl_DecrRefCount(objResultPtr);
		if (interp) {
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    	"concatenation failed: unable to alloc %"
			TCL_LL_MODIFIER "d bytes",
			(Tcl_WideUInt)STRING_SIZE(length)));
		    Tcl_SetErrorCode(interp, "TCL", "MEMORY", NULL);
		}
................................................................................
	    dst = Tcl_GetString(objResultPtr) + start;

	    /* assert ( length > start ) */
	    TclFreeIntRep(objResultPtr);
	} else {
	    objResultPtr = Tcl_NewObj();	/* PANIC? */
	    if (0 == Tcl_AttemptSetObjLength(objResultPtr, length)) {
		Tcl_DecrRefCount(objResultPtr);
		if (interp) {
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    	"concatenation failed: unable to alloc %u bytes",
			length));
		    Tcl_SetErrorCode(interp, "TCL", "MEMORY", NULL);
		}
		return TCL_ERROR;
................................................................................
		return (try - bh);
	    }
	    try++;
	}
	return -1;
    }

    /*
     * Check if we have two strings of single-byte characters. If we have, we
     * can use strstr() to do the search. Note that we can sometimes have
     * multibyte characters when the string could be minimally represented
     * using single byte characters; we can't assume that a mismatch here
     * means no match.
     */

    lh = Tcl_GetCharLength(haystack);
    if (haystack->bytes && (lh == haystack->length) && needle->bytes

		&& (ln == needle->length)) {
	/*
	 * Both haystack and needle are all single-byte chars.
	 */



	char *found = strstr(haystack->bytes + start, needle->bytes);

	if (found) {
	    return (found - haystack->bytes);
	} else {







	    return -1;
	}
    } else {
	/*
	 * Do the search on the unicode representation for simplicity.
	 */

	Tcl_UniChar *try, *end, *uh;
	Tcl_UniChar *un = Tcl_GetUnicodeFromObj(needle, &ln);

	uh = Tcl_GetUnicodeFromObj(haystack, &lh);
	end = uh + lh;

	for (try = uh + start; try + ln <= end; try++) {

	    if ((*try == *un) && (0 ==
		    memcmp(try + 1, un + 1, (ln-1) * sizeof(Tcl_UniChar)))) {
		return (try - uh);
	    }

	}
	return -1;
    }
}
 
/*
 *---------------------------------------------------------------------------

Changes to generic/tclStubInit.c.

65
66
67
68
69
70
71



72
73
74
75
76
77
78
..
99
100
101
102
103
104
105



106
107
108
109
110
111
112
...
885
886
887
888
889
890
891


892
893
894
895
896
897
898
#   define TclSetStartupScriptFileName 0
#   define TclGetStartupScriptFileName 0
#   define TclpInetNtoa 0
#   define TclWinGetServByName 0
#   define TclWinGetSockOpt 0
#   define TclWinSetSockOpt 0
#   define TclWinNToHS 0



#else
#define TclSetStartupScriptPath setStartupScriptPath
static void TclSetStartupScriptPath(Tcl_Obj *path)
{
    Tcl_SetStartupScript(path, NULL);
}
#define TclGetStartupScriptPath getStartupScriptPath
................................................................................
#if defined(_WIN32) || defined(__CYGWIN__)
#undef TclWinNToHS
#define TclWinNToHS winNToHS
static unsigned short TclWinNToHS(unsigned short ns) {
	return ntohs(ns);
}
#endif



#endif /* TCL_NO_DEPRECATED */

#ifdef _WIN32
#   define TclUnixWaitForFile 0
#   define TclUnixCopyFile 0
#   define TclUnixOpenTemporaryFile 0
#   define TclpReaddir 0
................................................................................
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */
    TclBN_mp_expt_d_ex, /* 67 */
    TclBN_mp_set_long_long, /* 68 */
    TclBN_mp_get_long_long, /* 69 */


};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};






>
>
>







 







>
>
>







 







>
>







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
...
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
#   define TclSetStartupScriptFileName 0
#   define TclGetStartupScriptFileName 0
#   define TclpInetNtoa 0
#   define TclWinGetServByName 0
#   define TclWinGetSockOpt 0
#   define TclWinSetSockOpt 0
#   define TclWinNToHS 0
#   define TclBNInitBignumFromWideUInt 0
#   define TclBNInitBignumFromWideInt 0
#   define TclBNInitBignumFromLong 0
#else
#define TclSetStartupScriptPath setStartupScriptPath
static void TclSetStartupScriptPath(Tcl_Obj *path)
{
    Tcl_SetStartupScript(path, NULL);
}
#define TclGetStartupScriptPath getStartupScriptPath
................................................................................
#if defined(_WIN32) || defined(__CYGWIN__)
#undef TclWinNToHS
#define TclWinNToHS winNToHS
static unsigned short TclWinNToHS(unsigned short ns) {
	return ntohs(ns);
}
#endif
#   define TclBNInitBignumFromWideUInt TclInitBignumFromWideUInt
#   define TclBNInitBignumFromWideInt TclInitBignumFromWideInt
#   define TclBNInitBignumFromLong TclInitBignumFromLong
#endif /* TCL_NO_DEPRECATED */

#ifdef _WIN32
#   define TclUnixWaitForFile 0
#   define TclUnixCopyFile 0
#   define TclUnixOpenTemporaryFile 0
#   define TclpReaddir 0
................................................................................
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */
    TclBN_mp_expt_d_ex, /* 67 */
    TclBN_mp_set_long_long, /* 68 */
    TclBN_mp_get_long_long, /* 69 */
    TclBN_mp_set_long, /* 70 */
    TclBN_mp_get_long, /* 71 */
};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};

Changes to generic/tclTest.c.

225
226
227
228
229
230
231



232
233
234
235
236
237
238
...
580
581
582
583
584
585
586

587
588
589
590
591
592
593
....
1984
1985
1986
1987
1988
1989
1990
1991


1992
1993

1994
1995
1996
1997
1998
1999
2000
....
5041
5042
5043
5044
5045
5046
5047


































5048
5049
5050
5051
5052
5053
5054
static void		PrintParse(Tcl_Interp *interp, Tcl_Parse *parsePtr);
static void		SpecialFree(char *blockPtr);
static int		StaticInitProc(Tcl_Interp *interp);
static int		TestasyncCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestbytestringObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,



			    Tcl_Obj *const objv[]);
static int		TestcmdinfoCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestcmdtokenCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestcmdtraceCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
................................................................................
     * Create additional commands and math functions for testing Tcl.
     */

    Tcl_CreateObjCommand(interp, "gettimes", GetTimesObjCmd, NULL, NULL);
    Tcl_CreateCommand(interp, "noop", NoopCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "noop", NoopObjCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "testbytestring", TestbytestringObjCmd, NULL, NULL);

    Tcl_CreateObjCommand(interp, "testwrongnumargs", TestWrongNumArgsObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testfilesystem", TestFilesystemObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testsimplefilesystem", TestSimpleFilesystemObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testgetindexfromobjstruct",
................................................................................
	Tcl_CreateEncoding(&type);
	break;
    }
    case ENC_DELETE:
	if (objc != 3) {
	    return TCL_ERROR;
	}
	encoding = Tcl_GetEncoding(NULL, Tcl_GetString(objv[2]));


	Tcl_FreeEncoding(encoding);
	Tcl_FreeEncoding(encoding);

	break;
    }
    return TCL_OK;
}

static int
EncodingToUtfProc(
................................................................................
    ClientData unused,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* The argument objects. */
{
    return TCL_OK;
}


































 
/*
 *----------------------------------------------------------------------
 *
 * TestbytestringObjCmd --
 *
 *	This object-based procedure constructs a string which can






>
>
>







 







>







 







|
>
>
|
|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
...
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
....
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
....
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
static void		PrintParse(Tcl_Interp *interp, Tcl_Parse *parsePtr);
static void		SpecialFree(char *blockPtr);
static int		StaticInitProc(Tcl_Interp *interp);
static int		TestasyncCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestbytestringObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
static int		TeststringbytesObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
static int		TestcmdinfoCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestcmdtokenCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
static int		TestcmdtraceCmd(ClientData dummy,
			    Tcl_Interp *interp, int argc, const char **argv);
................................................................................
     * Create additional commands and math functions for testing Tcl.
     */

    Tcl_CreateObjCommand(interp, "gettimes", GetTimesObjCmd, NULL, NULL);
    Tcl_CreateCommand(interp, "noop", NoopCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "noop", NoopObjCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "testbytestring", TestbytestringObjCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "teststringbytes", TeststringbytesObjCmd, NULL, NULL);
    Tcl_CreateObjCommand(interp, "testwrongnumargs", TestWrongNumArgsObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testfilesystem", TestFilesystemObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testsimplefilesystem", TestSimpleFilesystemObjCmd,
	    NULL, NULL);
    Tcl_CreateObjCommand(interp, "testgetindexfromobjstruct",
................................................................................
	Tcl_CreateEncoding(&type);
	break;
    }
    case ENC_DELETE:
	if (objc != 3) {
	    return TCL_ERROR;
	}
	if (TCL_OK != Tcl_GetEncodingFromObj(interp, objv[2], &encoding)) {
	    return TCL_ERROR;
	}
	Tcl_FreeEncoding(encoding);	/* Free returned reference */
	Tcl_FreeEncoding(encoding);	/* Free to match CREATE */
	TclFreeIntRep(objv[2]);		/* Free the cached ref */
	break;
    }
    return TCL_OK;
}

static int
EncodingToUtfProc(
................................................................................
    ClientData unused,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* The argument objects. */
{
    return TCL_OK;
}
 
/*
 *----------------------------------------------------------------------
 *
 * TeststringbytesObjCmd --
 *	Returns bytearray value of the bytes in argument string rep
 *
 * Results:
 *	Returns the TCL_OK result code.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

static int
TeststringbytesObjCmd(
    ClientData unused,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* The argument objects. */
{
    int n;
    const unsigned char *p;

    if (objc != 2) {
	Tcl_WrongNumArgs(interp, 1, objv, "value");
	return TCL_ERROR;
    }
    p = (const unsigned char *)Tcl_GetStringFromObj(objv[1], &n);
    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(p, n));
    return TCL_OK;
}
 
/*
 *----------------------------------------------------------------------
 *
 * TestbytestringObjCmd --
 *
 *	This object-based procedure constructs a string which can

Changes to generic/tclTomMath.decls.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
...
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246






247
248
249
250
    int TclBN_epoch(void)
}
declare 1 {
    int TclBN_revision(void)
}

declare 2 {
    int TclBN_mp_add(mp_int *a, mp_int *b, mp_int *c)
}
declare 3 {
    int TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 4 {
    int TclBN_mp_and(mp_int *a, mp_int *b, mp_int *c)
}
declare 5 {
    void TclBN_mp_clamp(mp_int *a)
}
declare 6 {
    void TclBN_mp_clear(mp_int *a)
}
................................................................................
declare 11 {
    int TclBN_mp_copy(const mp_int *a, mp_int *b)
}
declare 12 {
    int TclBN_mp_count_bits(const mp_int *a)
}
declare 13 {
    int TclBN_mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
}
declare 14 {
    int TclBN_mp_div_d(mp_int *a, mp_digit b, mp_int *q, mp_digit *r)
}
declare 15 {
    int TclBN_mp_div_2(const mp_int *a, mp_int *q)
}
declare 16 {
    int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r)
}
declare 17 {
    int TclBN_mp_div_3(mp_int *a, mp_int *q, mp_digit *r)
}
declare 18 {
    void TclBN_mp_exch(mp_int *a, mp_int *b)
}
declare 19 {
    int TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
................................................................................
declare 25 {
    int TclBN_mp_init_size(mp_int *a, int size)
}
declare 26 {
    int TclBN_mp_lshd(mp_int *a, int shift)
}
declare 27 {
    int TclBN_mp_mod(mp_int *a, mp_int *b, mp_int *r)
}
declare 28 {
    int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r)
}
declare 29 {
    int TclBN_mp_mul(mp_int *a, mp_int *b, mp_int *p)
}
declare 30 {
    int TclBN_mp_mul_d(mp_int *a, mp_digit b, mp_int *p)
}
declare 31 {
    int TclBN_mp_mul_2(const mp_int *a, mp_int *p)
}
declare 32 {
    int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p)
}
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(const mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
................................................................................
declare 38 {
    int TclBN_mp_shrink(mp_int *a)
}
declare 39 {
    void TclBN_mp_set(mp_int *a, mp_digit b)
}
declare 40 {
    int TclBN_mp_sqr(mp_int *a, mp_int *b)
}
declare 41 {
    int TclBN_mp_sqrt(mp_int *a, mp_int *b)
}
declare 42 {
    int TclBN_mp_sub(mp_int *a, mp_int *b, mp_int *c)
}
declare 43 {
    int TclBN_mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 44 {
    int TclBN_mp_to_unsigned_bin(mp_int *a, unsigned char *b)
}
declare 45 {
    int TclBN_mp_to_unsigned_bin_n(mp_int *a, unsigned char *b,
	    unsigned long *outlen)
}
declare 46 {
    int TclBN_mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
}
declare 47 {
    int TclBN_mp_unsigned_bin_size(mp_int *a)
}
declare 48 {
    int TclBN_mp_xor(mp_int *a, mp_int *b, mp_int *c)
}
declare 49 {
    void TclBN_mp_zero(mp_int *a)
}

# internal routines to libtommath - should not be called but must be
# exported to accommodate the "tommath" extension

declare 50 {
    void TclBN_reverse(unsigned char *s, int len)
}
declare 51 {
    int TclBN_fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
declare 52 {
    int TclBN_fast_s_mp_sqr(mp_int *a, mp_int *b)
}
declare 53 {
    int TclBN_mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
}
declare 54 {
    int TclBN_mp_karatsuba_sqr(mp_int *a, mp_int *b)
}
declare 55 {
    int TclBN_mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
}
declare 56 {
    int TclBN_mp_toom_sqr(mp_int *a, mp_int *b)
}
declare 57 {
    int TclBN_s_mp_add(mp_int *a, mp_int *b, mp_int *c)
}
declare 58 {
    int TclBN_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
declare 59 {
    int TclBN_s_mp_sqr(mp_int *a, mp_int *b)
}
declare 60 {
    int TclBN_s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
}
declare 61 {
    int TclBN_mp_init_set_int(mp_int *a, unsigned long i)
}
declare 62 {
    int TclBN_mp_set_int(mp_int *a, unsigned long i)
}
declare 63 {
    int TclBN_mp_cnt_lsb(const mp_int *a)
}

# Formerly internal API to allow initialisation of bignums without knowing the
# typedefs of how a bignum works internally.
declare 64 {
    void TclBNInitBignumFromLong(mp_int *bignum, long initVal)
}
declare 65 {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}

# Added in libtommath 1.0
declare 67 {
    int TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
# Added in libtommath 1.0.1
declare 68 {
    int TclBN_mp_set_long_long(mp_int *a, Tcl_WideUInt i)
}
declare 69 {
    Tcl_WideUInt TclBN_mp_get_long_long(const mp_int *a)
}







# Local Variables:
# mode: tcl
# End:






|


|


|







 







|


|








|





|







 







|





|


|











|







 







|


|


|


|


|


|



|


|


|












|


|


|


|


|


|


|


|


|


|













|


|


|





|








>
>
>
>
>
>




26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
...
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    int TclBN_epoch(void)
}
declare 1 {
    int TclBN_revision(void)
}

declare 2 {
    int TclBN_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 3 {
    int TclBN_mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 4 {
    int TclBN_mp_and(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 5 {
    void TclBN_mp_clamp(mp_int *a)
}
declare 6 {
    void TclBN_mp_clear(mp_int *a)
}
................................................................................
declare 11 {
    int TclBN_mp_copy(const mp_int *a, mp_int *b)
}
declare 12 {
    int TclBN_mp_count_bits(const mp_int *a)
}
declare 13 {
    int TclBN_mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
}
declare 14 {
    int TclBN_mp_div_d(const mp_int *a, mp_digit b, mp_int *q, mp_digit *r)
}
declare 15 {
    int TclBN_mp_div_2(const mp_int *a, mp_int *q)
}
declare 16 {
    int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r)
}
declare 17 {
    int TclBN_mp_div_3(const mp_int *a, mp_int *q, mp_digit *r)
}
declare 18 {
    void TclBN_mp_exch(mp_int *a, mp_int *b)
}
declare 19 {
    int TclBN_mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
................................................................................
declare 25 {
    int TclBN_mp_init_size(mp_int *a, int size)
}
declare 26 {
    int TclBN_mp_lshd(mp_int *a, int shift)
}
declare 27 {
    int TclBN_mp_mod(const mp_int *a, const mp_int *b, mp_int *r)
}
declare 28 {
    int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r)
}
declare 29 {
    int TclBN_mp_mul(const mp_int *a, const mp_int *b, mp_int *p)
}
declare 30 {
    int TclBN_mp_mul_d(const mp_int *a, mp_digit b, mp_int *p)
}
declare 31 {
    int TclBN_mp_mul_2(const mp_int *a, mp_int *p)
}
declare 32 {
    int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p)
}
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(const mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
................................................................................
declare 38 {
    int TclBN_mp_shrink(mp_int *a)
}
declare 39 {
    void TclBN_mp_set(mp_int *a, mp_digit b)
}
declare 40 {
    int TclBN_mp_sqr(const mp_int *a, mp_int *b)
}
declare 41 {
    int TclBN_mp_sqrt(const mp_int *a, mp_int *b)
}
declare 42 {
    int TclBN_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 43 {
    int TclBN_mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 44 {
    int TclBN_mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
}
declare 45 {
    int TclBN_mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b,
	    unsigned long *outlen)
}
declare 46 {
    int TclBN_mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
}
declare 47 {
    int TclBN_mp_unsigned_bin_size(const mp_int *a)
}
declare 48 {
    int TclBN_mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 49 {
    void TclBN_mp_zero(mp_int *a)
}

# internal routines to libtommath - should not be called but must be
# exported to accommodate the "tommath" extension

declare 50 {
    void TclBN_reverse(unsigned char *s, int len)
}
declare 51 {
    int TclBN_fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
}
declare 52 {
    int TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b)
}
declare 53 {
    int TclBN_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 54 {
    int TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b)
}
declare 55 {
    int TclBN_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 56 {
    int TclBN_mp_toom_sqr(const mp_int *a, mp_int *b)
}
declare 57 {
    int TclBN_s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 58 {
    int TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
}
declare 59 {
    int TclBN_s_mp_sqr(const mp_int *a, mp_int *b)
}
declare 60 {
    int TclBN_s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 61 {
    int TclBN_mp_init_set_int(mp_int *a, unsigned long i)
}
declare 62 {
    int TclBN_mp_set_int(mp_int *a, unsigned long i)
}
declare 63 {
    int TclBN_mp_cnt_lsb(const mp_int *a)
}

# Formerly internal API to allow initialisation of bignums without knowing the
# typedefs of how a bignum works internally.
declare 64 {deprecated {Use mp_init() + mp_set_long_long()}} {
    void TclBNInitBignumFromLong(mp_int *bignum, long initVal)
}
declare 65 {deprecated {Use mp_init() + mp_set_long_long()}} {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {deprecated {Use mp_init() + mp_set_long_long()}} {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}

# Added in libtommath 1.0
declare 67 {
    int TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
}
# Added in libtommath 1.0.1
declare 68 {
    int TclBN_mp_set_long_long(mp_int *a, Tcl_WideUInt i)
}
declare 69 {
    Tcl_WideUInt TclBN_mp_get_long_long(const mp_int *a)
}
declare 70 {
    int TclBN_mp_set_long(mp_int *a, unsigned long i)
}
declare 71 {
    unsigned long TclBN_mp_get_long(const mp_int *a)
}

# Local Variables:
# mode: tcl
# End:

Changes to generic/tclTomMath.h.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
...
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
...
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
...
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
...
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
...
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
...
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
...
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

#ifdef __cplusplus
extern "C" {
#endif

/* detect 64-bit mode if possible */
#if defined(NEVER) /* 128-bit ints fail in too many places */
   #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
      #define MP_64BIT
   #endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
   typedef uint8_t              mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
   typedef uint16_t             mp_word;
#define MP_WORD_DECLARED
#endif
#define MP_SIZEOF_MP_DIGIT      1
#ifdef DIGIT_BIT
#error You must not define DIGIT_BIT when using MP_8BIT
#endif
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
   typedef uint16_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
   typedef uint32_t             mp_word;
#define MP_WORD_DECLARED
#endif
#define MP_SIZEOF_MP_DIGIT      2
#ifdef DIGIT_BIT
#error You must not define DIGIT_BIT when using MP_16BIT
#endif
#elif defined(MP_64BIT)
   /* for GCC only on supported platforms */
#ifndef MP_DIGIT_DECLARED
   typedef uint64_t mp_digit;
#define MP_DIGIT_DECLARED
#endif
#if defined(_WIN32)
#ifndef MP_WORD_DECLARED
   typedef unsigned __int128    mp_word;
#define MP_WORD_DECLARED
#endif
#elif defined(__GNUC__)
   typedef unsigned long        mp_word __attribute__ ((mode(TI)));
#else
   /* it seems you have a problem
    * but we assume you can somewhere define your own uint128_t */
#ifndef MP_WORD_DECLARED
   typedef uint128_t            mp_word;
#define MP_WORD_DECLARED
#endif
#endif

   #define DIGIT_BIT            60
#else
   /* this is the default case, 28-bit digits */

   /* this is to make porting into LibTomCrypt easier :-) */
#ifndef MP_DIGIT_DECLARED
   typedef uint32_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
   typedef uint64_t             mp_word;
#define MP_WORD_DECLARED
#endif

#ifdef MP_31BIT
   /* this is an extension that uses 31-bit digits */
   #define DIGIT_BIT            31
#else
   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
   #define DIGIT_BIT            28
   #define MP_28BIT
#endif
#endif

/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
   #define DIGIT_BIT     (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
   typedef uint_least32_t mp_min_u32;
#else
   typedef mp_digit mp_min_u32;
#endif

/* use arc4random on platforms that support it */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
    #define MP_GEN_RANDOM()    arc4random()
    #define MP_GEN_RANDOM_MAX  0xffffffff
#endif

/* use rand() as fall-back if there's no better rand function */
#ifndef MP_GEN_RANDOM
    #define MP_GEN_RANDOM()    rand()
    #define MP_GEN_RANDOM_MAX  RAND_MAX
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
           KARATSUBA_SQR_CUTOFF,
           TOOM_MUL_CUTOFF,
           TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
   #ifndef MP_LOW_MEM
      #define MP_PREC                 32     /* default digits of precision */
   #else
      #define MP_PREC                 8      /* default digits of precision */
   #endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
    int used, alloc, sign;
    mp_digit *dp;
};

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */
const char *mp_error_to_string(int code);

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
................................................................................
/* set a platform dependent unsigned long value */
/*
int mp_set_long(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long long value */
/*
int mp_set_long_long(mp_int *a, Tcl_WideUInt b);
*/

/* get a 32-bit value */
/*
unsigned long mp_get_int(const mp_int * a);
*/

/* get a platform dependent unsigned long value */
/*
unsigned long mp_get_long(const mp_int * a);
*/

/* get a platform dependent unsigned long long value */
/*
Tcl_WideUInt mp_get_long_long(const mp_int * a);
*/

/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/

/* initialize and set 32-bit value */
/*
int mp_init_set_int (mp_int * a, unsigned long b);
*/

/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

................................................................................
/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/

/* import binary data */
/*
int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op);
*/

/* export binary data */
/*
int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op);
*/

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
................................................................................
/*
int mp_rand(mp_int *a, int digits);
*/

/* ---> binary operations <--- */
/* c = a XOR b  */
/*
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a OR b */
/*
int mp_or(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a AND b */
/*
int mp_and(mp_int *a, mp_int *b, mp_int *c);
*/

/* ---> Basic arithmetic <--- */

/* b = -a */
/*
int mp_neg(const mp_int *a, mp_int *b);
*/

/* b = |a| */
/*
int mp_abs(mp_int *a, mp_int *b);
*/

/* compare a to b */
/*
int mp_cmp(const mp_int *a, const mp_int *b);
*/

................................................................................
/* compare |a| to |b| */
/*
int mp_cmp_mag(const mp_int *a, const mp_int *b);
*/

/* c = a + b */
/*
int mp_add(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
*/

/* b = a*a  */
/*
int mp_sqr(mp_int *a, mp_int *b);
*/

/* a/b => cb + d == a */
/*
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
*/

/* ---> single digit functions <--- */

/* compare against a single digit */
/*
int mp_cmp_d(const mp_int *a, mp_digit b);
*/

/* c = a + b */
/*
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* a/b => cb + d == a */
/*
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/

/* a/3 => 3c + d == a */
/*
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */

/* d = a + b (mod c) */
/*
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a - b (mod c) */
/*
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a * b (mod c) */
/*
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a * a (mod b) */
/*
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = 1/a (mod b) */
/*
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = (a, b) */
/*
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
*/

/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/

/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
*/

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
*/

/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);
*/

/* special sqrt (mod prime) */
/*
int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
*/

/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
/*
int mp_jacobi(mp_int *a, mp_int *n, int *c);
*/

/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, mp_int *b);
*/

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 */
/*
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
*/

/* setups the montgomery reduction */
/*
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
*/

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
/*
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
*/

/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/

/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(mp_int *a);
*/

/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
*/

/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
*/

/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
*/

/* d = a**b (mod c) */
/*
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIME_SIZE      31
#else
#  define PRIME_SIZE      256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
*/

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
/*
int mp_prime_rabin_miller_trials(int size);
................................................................................
 * t prime bases.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
/*
int mp_prime_is_prime(mp_int *a, int t, int *result);
*/

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
................................................................................

/* ---> radix conversion <--- */
/*
int mp_count_bits(const mp_int *a);
*/

/*
int mp_unsigned_bin_size(mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_signed_bin_size(mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(mp_int *a,  unsigned char *b);
*/
/*
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(const mp_int *a, int radix, int *size);
*/

#ifndef LTM_NO_FILE
/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/
#endif

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
................................................................................

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

#ifdef __cplusplus
   }
#endif

#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|
|
|
|












|



|


|
|
|
|


|



|


|
|
|
|

|

|


|

|


|
|
|
|
|

|


|

|

|

|

|



|



|
|
|
|
|
|
|
|




|
|

|




|
|




|
|







 







|
|
|







|
|
|
|
|











|
|






|
|
|







 







|




|




|




|




|




|







 







|




|







 







|




|




|











|







 







|




|




|




|




|




|











|




|




|




|




|




|


|




|






|




|




|




|




|




|




|




|







|


|




|




|




|




|




|








|




|






|




|




|




|




|




|




|




|




|




|




|




|






|

|









|






|






|







 







|







 







|





|


|



|





|


|






|


|










|







 







|









23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
...
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
...
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
...
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
...
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
...
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
...
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
...
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

#ifdef __cplusplus
extern "C" {
#endif

/* detect 64-bit mode if possible */
#if defined(NEVER)  /* 128-bit ints fail in too many places */
#   if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
#      define MP_64BIT
#   endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
typedef uint8_t              mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
typedef uint16_t             mp_word;
#define MP_WORD_DECLARED
#endif
#   define MP_SIZEOF_MP_DIGIT 1
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_8BIT
#   endif
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
typedef uint16_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
typedef uint32_t             mp_word;
#define MP_WORD_DECLARED
#endif
#   define MP_SIZEOF_MP_DIGIT 2
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_16BIT
#   endif
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
#ifndef MP_DIGIT_DECLARED
typedef uint64_t mp_digit;
#define MP_DIGIT_DECLARED
#endif
#   if defined(_WIN32)
#ifndef MP_WORD_DECLARED
typedef unsigned __int128    mp_word;
#define MP_WORD_DECLARED
#endif
#   elif defined(__GNUC__)
typedef unsigned long        mp_word __attribute__((mode(TI)));
#   else
/* it seems you have a problem
 * but we assume you can somewhere define your own uint128_t */
#ifndef MP_WORD_DECLARED
typedef uint128_t            mp_word;
#define MP_WORD_DECLARED
#endif
#   endif

#   define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */

/* this is to make porting into LibTomCrypt easier :-) */
#ifndef MP_DIGIT_DECLARED
typedef uint32_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
typedef uint64_t             mp_word;
#define MP_WORD_DECLARED
#endif

#   ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
#      define DIGIT_BIT 31
#   else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#      define DIGIT_BIT 28
#      define MP_28BIT
#   endif
#endif

/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
#   define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
typedef uint_least32_t mp_min_u32;
#else
typedef mp_digit mp_min_u32;
#endif

/* use arc4random on platforms that support it */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#   define MP_GEN_RANDOM()    arc4random()
#   define MP_GEN_RANDOM_MAX  0xffffffff
#endif

/* use rand() as fall-back if there's no better rand function */
#ifndef MP_GEN_RANDOM
#   define MP_GEN_RANDOM()    rand()
#   define MP_GEN_RANDOM_MAX  RAND_MAX
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
       KARATSUBA_SQR_CUTOFF,
       TOOM_MUL_CUTOFF,
       TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#   ifndef MP_LOW_MEM
#      define MP_PREC 32        /* default digits of precision */
#   else
#      define MP_PREC 8         /* default digits of precision */
#   endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
   int used, alloc, sign;
   mp_digit *dp;
};

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)     ((m)->used)
#define DIGIT(m, k) ((m)->dp[(k)])
#define SIGN(m)     ((m)->sign)

/* error code to char* string */
const char *mp_error_to_string(int code);

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
................................................................................
/* set a platform dependent unsigned long value */
/*
int mp_set_long(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long long value */
/*
int mp_set_long_long(mp_int *a, unsigned long long b);
*/

/* get a 32-bit value */
/*
unsigned long mp_get_int(const mp_int *a);
*/

/* get a platform dependent unsigned long value */
/*
unsigned long mp_get_long(const mp_int *a);
*/

/* get a platform dependent unsigned long long value */
/*
unsigned long long mp_get_long_long(const mp_int *a);
*/

/* initialize and set a digit */
/*
int mp_init_set(mp_int *a, mp_digit b);
*/

/* initialize and set 32-bit value */
/*
int mp_init_set_int(mp_int *a, unsigned long b);
*/

/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

................................................................................
/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/

/* import binary data */
/*
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
*/

/* export binary data */
/*
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
*/

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
................................................................................
/*
int mp_rand(mp_int *a, int digits);
*/

/* ---> binary operations <--- */
/* c = a XOR b  */
/*
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a OR b */
/*
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a AND b */
/*
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* ---> Basic arithmetic <--- */

/* b = -a */
/*
int mp_neg(const mp_int *a, mp_int *b);
*/

/* b = |a| */
/*
int mp_abs(const mp_int *a, mp_int *b);
*/

/* compare a to b */
/*
int mp_cmp(const mp_int *a, const mp_int *b);
*/

................................................................................
/* compare |a| to |b| */
/*
int mp_cmp_mag(const mp_int *a, const mp_int *b);
*/

/* c = a + b */
/*
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* b = a*a  */
/*
int mp_sqr(const mp_int *a, mp_int *b);
*/

/* a/b => cb + d == a */
/*
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* ---> single digit functions <--- */

/* compare against a single digit */
/*
int mp_cmp_d(const mp_int *a, mp_digit b);
*/

/* c = a + b */
/*
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* a/b => cb + d == a */
/*
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/

/* a/3 => 3c + d == a */
/*
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */

/* d = a + b (mod c) */
/*
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* d = a - b (mod c) */
/*
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* d = a * b (mod c) */
/*
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* c = a * a (mod b) */
/*
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = 1/a (mod b) */
/*
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = (a, b) */
/*
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/

/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
*/

/* special sqrt algo */
/*
int mp_sqrt(const mp_int *arg, mp_int *ret);
*/

/* special sqrt (mod prime) */
/*
int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
*/

/* is number a square? */
/*
int mp_is_square(const mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
/*
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
*/

/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, const mp_int *b);
*/

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 */
/*
int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
*/

/* setups the montgomery reduction */
/*
int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
*/

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
/*
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
*/

/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
*/

/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(const mp_int *a);
*/

/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(const mp_int *a, mp_digit *d);
*/

/* reduces a modulo b using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
*/

/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(const mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
*/

/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(const mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
*/

/* d = a**b (mod c) */
/*
int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIME_SIZE 31
#else
#  define PRIME_SIZE 256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(const mp_int *a, int *result);
*/

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
*/

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
/*
int mp_prime_rabin_miller_trials(int size);
................................................................................
 * t prime bases.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
/*
int mp_prime_is_prime(const mp_int *a, int t, int *result);
*/

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
................................................................................

/* ---> radix conversion <--- */
/*
int mp_count_bits(const mp_int *a);
*/

/*
int mp_unsigned_bin_size(const mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_signed_bin_size(const mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(const mp_int *a,  unsigned char *b);
*/
/*
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(const mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(const mp_int *a, int radix, int *size);
*/

#ifndef LTM_NO_FILE
/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
*/
#endif

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
................................................................................

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

#ifdef __cplusplus
}
#endif

#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to generic/tclTomMathDecls.h.

71
72
73
74
75
76
77

78
79
80
81
82
83
84
..
96
97
98
99
100
101
102

103
104
105
106
107
108
109
...
147
148
149
150
151
152
153
154

155
156

157
158

159
160
161
162
163
164
165
...
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191

192
193
194
195
196
197
198
...
200
201
202
203
204
205
206
207

208
209
210
211

212
213

214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241

242
243

244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273

274
275
276
277
278
279
280

281
282
283
284
285
286
287

288
289

290
291
292

293
294
295
296
297
298
299
300
301




302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376


377
378
379
380
381
382
383
...
524
525
526
527
528
529
530




531
532
533
534
535
536
537
538
539
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d
#define mp_expt_d_ex TclBN_mp_expt_d_ex
#define mp_get_int TclBN_mp_get_int

#define mp_get_long_long TclBN_mp_get_long_long
#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
................................................................................
#define mp_or TclBN_mp_or
#define mp_radix_size TclBN_mp_radix_size
#define mp_read_radix TclBN_mp_read_radix
#define mp_rshd TclBN_mp_rshd
#define mp_s_rmap TclBNMpSRmap
#define mp_set TclBN_mp_set
#define mp_set_int TclBN_mp_set_int

#define mp_set_long_long TclBN_mp_set_long_long
#define mp_shrink TclBN_mp_shrink
#define mp_sqr TclBN_mp_sqr
#define mp_sqrt TclBN_mp_sqrt
#define mp_sub TclBN_mp_sub
#define mp_sub_d TclBN_mp_sub_d
#define mp_to_unsigned_bin TclBN_mp_to_unsigned_bin
................................................................................
 */

/* 0 */
EXTERN int		TclBN_epoch(void);
/* 1 */
EXTERN int		TclBN_revision(void);
/* 2 */
EXTERN int		TclBN_mp_add(mp_int *a, mp_int *b, mp_int *c);

/* 3 */
EXTERN int		TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c);

/* 4 */
EXTERN int		TclBN_mp_and(mp_int *a, mp_int *b, mp_int *c);

/* 5 */
EXTERN void		TclBN_mp_clamp(mp_int *a);
/* 6 */
EXTERN void		TclBN_mp_clear(mp_int *a);
/* 7 */
EXTERN void		TclBN_mp_clear_multi(mp_int *a, ...);
/* 8 */
................................................................................
/* 10 */
EXTERN int		TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b);
/* 11 */
EXTERN int		TclBN_mp_copy(const mp_int *a, mp_int *b);
/* 12 */
EXTERN int		TclBN_mp_count_bits(const mp_int *a);
/* 13 */
EXTERN int		TclBN_mp_div(mp_int *a, mp_int *b, mp_int *q,
				mp_int *r);
/* 14 */
EXTERN int		TclBN_mp_div_d(mp_int *a, mp_digit b, mp_int *q,
				mp_digit *r);
/* 15 */
EXTERN int		TclBN_mp_div_2(const mp_int *a, mp_int *q);
/* 16 */
EXTERN int		TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q,
				mp_int *r);
/* 17 */
EXTERN int		TclBN_mp_div_3(mp_int *a, mp_int *q, mp_digit *r);

/* 18 */
EXTERN void		TclBN_mp_exch(mp_int *a, mp_int *b);
/* 19 */
EXTERN int		TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c);

/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, const mp_int *b);
/* 23 */
................................................................................
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
EXTERN int		TclBN_mp_lshd(mp_int *a, int shift);
/* 27 */
EXTERN int		TclBN_mp_mod(mp_int *a, mp_int *b, mp_int *r);

/* 28 */
EXTERN int		TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r);
/* 29 */
EXTERN int		TclBN_mp_mul(mp_int *a, mp_int *b, mp_int *p);

/* 30 */
EXTERN int		TclBN_mp_mul_d(mp_int *a, mp_digit b, mp_int *p);

/* 31 */
EXTERN int		TclBN_mp_mul_2(const mp_int *a, mp_int *p);
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c);

/* 35 */
EXTERN int		TclBN_mp_radix_size(const mp_int *a, int radix,
				int *size);
/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
/* 39 */
EXTERN void		TclBN_mp_set(mp_int *a, mp_digit b);
/* 40 */
EXTERN int		TclBN_mp_sqr(mp_int *a, mp_int *b);
/* 41 */
EXTERN int		TclBN_mp_sqrt(mp_int *a, mp_int *b);
/* 42 */
EXTERN int		TclBN_mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* 43 */
EXTERN int		TclBN_mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

/* 44 */
EXTERN int		TclBN_mp_to_unsigned_bin(mp_int *a, unsigned char *b);

/* 45 */
EXTERN int		TclBN_mp_to_unsigned_bin_n(mp_int *a,
				unsigned char *b, unsigned long *outlen);
/* 46 */
EXTERN int		TclBN_mp_toradix_n(mp_int *a, char *str, int radix,
				int maxlen);
/* 47 */
EXTERN int		TclBN_mp_unsigned_bin_size(mp_int *a);
/* 48 */
EXTERN int		TclBN_mp_xor(mp_int *a, mp_int *b, mp_int *c);

/* 49 */
EXTERN void		TclBN_mp_zero(mp_int *a);
/* 50 */
EXTERN void		TclBN_reverse(unsigned char *s, int len);
/* 51 */
EXTERN int		TclBN_fast_s_mp_mul_digs(mp_int *a, mp_int *b,
				mp_int *c, int digs);
/* 52 */
EXTERN int		TclBN_fast_s_mp_sqr(mp_int *a, mp_int *b);
/* 53 */
EXTERN int		TclBN_mp_karatsuba_mul(mp_int *a, mp_int *b,
				mp_int *c);
/* 54 */
EXTERN int		TclBN_mp_karatsuba_sqr(mp_int *a, mp_int *b);
/* 55 */
EXTERN int		TclBN_mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);

/* 56 */
EXTERN int		TclBN_mp_toom_sqr(mp_int *a, mp_int *b);
/* 57 */
EXTERN int		TclBN_s_mp_add(mp_int *a, mp_int *b, mp_int *c);

/* 58 */
EXTERN int		TclBN_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c,
				int digs);
/* 59 */
EXTERN int		TclBN_s_mp_sqr(mp_int *a, mp_int *b);
/* 60 */
EXTERN int		TclBN_s_mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* 61 */
EXTERN int		TclBN_mp_init_set_int(mp_int *a, unsigned long i);
/* 62 */
EXTERN int		TclBN_mp_set_int(mp_int *a, unsigned long i);
/* 63 */
EXTERN int		TclBN_mp_cnt_lsb(const mp_int *a);
/* 64 */

EXTERN void		TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */

EXTERN void		TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */

EXTERN void		TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);
/* 67 */
EXTERN int		TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c,
				int fast);
/* 68 */
EXTERN int		TclBN_mp_set_long_long(mp_int *a, Tcl_WideUInt i);
/* 69 */
EXTERN Tcl_WideUInt	TclBN_mp_get_long_long(const mp_int *a);





typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
    int (*tclBN_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 2 */
    int (*tclBN_mp_add_d) (mp_int *a, mp_digit b, mp_int *c); /* 3 */
    int (*tclBN_mp_and) (mp_int *a, mp_int *b, mp_int *c); /* 4 */
    void (*tclBN_mp_clamp) (mp_int *a); /* 5 */
    void (*tclBN_mp_clear) (mp_int *a); /* 6 */
    void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */
    int (*tclBN_mp_cmp) (const mp_int *a, const mp_int *b); /* 8 */
    int (*tclBN_mp_cmp_d) (const mp_int *a, mp_digit b); /* 9 */
    int (*tclBN_mp_cmp_mag) (const mp_int *a, const mp_int *b); /* 10 */
    int (*tclBN_mp_copy) (const mp_int *a, mp_int *b); /* 11 */
    int (*tclBN_mp_count_bits) (const mp_int *a); /* 12 */
    int (*tclBN_mp_div) (mp_int *a, mp_int *b, mp_int *q, mp_int *r); /* 13 */
    int (*tclBN_mp_div_d) (mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */
    int (*tclBN_mp_div_2) (const mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (const mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (mp_int *a, mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 42 */
    int (*tclBN_mp_sub_d) (mp_int *a, mp_digit b, mp_int *c); /* 43 */
    int (*tclBN_mp_to_unsigned_bin) (mp_int *a, unsigned char *b); /* 44 */
    int (*tclBN_mp_to_unsigned_bin_n) (mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */
    int (*tclBN_mp_toradix_n) (mp_int *a, char *str, int radix, int maxlen); /* 46 */
    int (*tclBN_mp_unsigned_bin_size) (mp_int *a); /* 47 */
    int (*tclBN_mp_xor) (mp_int *a, mp_int *b, mp_int *c); /* 48 */
    void (*tclBN_mp_zero) (mp_int *a); /* 49 */
    void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */
    int (*tclBN_fast_s_mp_mul_digs) (mp_int *a, mp_int *b, mp_int *c, int digs); /* 51 */
    int (*tclBN_fast_s_mp_sqr) (mp_int *a, mp_int *b); /* 52 */
    int (*tclBN_mp_karatsuba_mul) (mp_int *a, mp_int *b, mp_int *c); /* 53 */
    int (*tclBN_mp_karatsuba_sqr) (mp_int *a, mp_int *b); /* 54 */
    int (*tclBN_mp_toom_mul) (mp_int *a, mp_int *b, mp_int *c); /* 55 */
    int (*tclBN_mp_toom_sqr) (mp_int *a, mp_int *b); /* 56 */
    int (*tclBN_s_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 57 */
    int (*tclBN_s_mp_mul_digs) (mp_int *a, mp_int *b, mp_int *c, int digs); /* 58 */
    int (*tclBN_s_mp_sqr) (mp_int *a, mp_int *b); /* 59 */
    int (*tclBN_s_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */
    int (*tclBN_mp_expt_d_ex) (mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */
    int (*tclBN_mp_set_long_long) (mp_int *a, Tcl_WideUInt i); /* 68 */
    Tcl_WideUInt (*tclBN_mp_get_long_long) (const mp_int *a); /* 69 */


} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */
#define TclBN_mp_expt_d_ex \
	(tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */
#define TclBN_mp_set_long_long \
	(tclTomMathStubsPtr->tclBN_mp_set_long_long) /* 68 */
#define TclBN_mp_get_long_long \
	(tclTomMathStubsPtr->tclBN_mp_get_long_long) /* 69 */





#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */






>







 







>







 







|
>

|
>

|
>







 







|
|

|
|






|
>



|
>







 







|
>



|
>

|
>







|
>













|

|

|
>

|
>

|
>

|


|
|

|

|
>





|
|

|

|
|

|

|
>

|

|
>

|
|

|

|
>







>
|

>
|


>
|


|
|




>
>
>
>







|
|
|








|
|


|

|







|

|
|



|





|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|



|
|
|
|


>
>







 







>
>
>
>









71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
..
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
...
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
...
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
...
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
...
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d
#define mp_expt_d_ex TclBN_mp_expt_d_ex
#define mp_get_int TclBN_mp_get_int
#define mp_get_long TclBN_mp_get_long
#define mp_get_long_long TclBN_mp_get_long_long
#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
................................................................................
#define mp_or TclBN_mp_or
#define mp_radix_size TclBN_mp_radix_size
#define mp_read_radix TclBN_mp_read_radix
#define mp_rshd TclBN_mp_rshd
#define mp_s_rmap TclBNMpSRmap
#define mp_set TclBN_mp_set
#define mp_set_int TclBN_mp_set_int
#define mp_set_long TclBN_mp_set_long
#define mp_set_long_long TclBN_mp_set_long_long
#define mp_shrink TclBN_mp_shrink
#define mp_sqr TclBN_mp_sqr
#define mp_sqrt TclBN_mp_sqrt
#define mp_sub TclBN_mp_sub
#define mp_sub_d TclBN_mp_sub_d
#define mp_to_unsigned_bin TclBN_mp_to_unsigned_bin
................................................................................
 */

/* 0 */
EXTERN int		TclBN_epoch(void);
/* 1 */
EXTERN int		TclBN_revision(void);
/* 2 */
EXTERN int		TclBN_mp_add(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 3 */
EXTERN int		TclBN_mp_add_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 4 */
EXTERN int		TclBN_mp_and(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 5 */
EXTERN void		TclBN_mp_clamp(mp_int *a);
/* 6 */
EXTERN void		TclBN_mp_clear(mp_int *a);
/* 7 */
EXTERN void		TclBN_mp_clear_multi(mp_int *a, ...);
/* 8 */
................................................................................
/* 10 */
EXTERN int		TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b);
/* 11 */
EXTERN int		TclBN_mp_copy(const mp_int *a, mp_int *b);
/* 12 */
EXTERN int		TclBN_mp_count_bits(const mp_int *a);
/* 13 */
EXTERN int		TclBN_mp_div(const mp_int *a, const mp_int *b,
				mp_int *q, mp_int *r);
/* 14 */
EXTERN int		TclBN_mp_div_d(const mp_int *a, mp_digit b,
				mp_int *q, mp_digit *r);
/* 15 */
EXTERN int		TclBN_mp_div_2(const mp_int *a, mp_int *q);
/* 16 */
EXTERN int		TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q,
				mp_int *r);
/* 17 */
EXTERN int		TclBN_mp_div_3(const mp_int *a, mp_int *q,
				mp_digit *r);
/* 18 */
EXTERN void		TclBN_mp_exch(mp_int *a, mp_int *b);
/* 19 */
EXTERN int		TclBN_mp_expt_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, const mp_int *b);
/* 23 */
................................................................................
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
EXTERN int		TclBN_mp_lshd(mp_int *a, int shift);
/* 27 */
EXTERN int		TclBN_mp_mod(const mp_int *a, const mp_int *b,
				mp_int *r);
/* 28 */
EXTERN int		TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r);
/* 29 */
EXTERN int		TclBN_mp_mul(const mp_int *a, const mp_int *b,
				mp_int *p);
/* 30 */
EXTERN int		TclBN_mp_mul_d(const mp_int *a, mp_digit b,
				mp_int *p);
/* 31 */
EXTERN int		TclBN_mp_mul_2(const mp_int *a, mp_int *p);
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 35 */
EXTERN int		TclBN_mp_radix_size(const mp_int *a, int radix,
				int *size);
/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
/* 39 */
EXTERN void		TclBN_mp_set(mp_int *a, mp_digit b);
/* 40 */
EXTERN int		TclBN_mp_sqr(const mp_int *a, mp_int *b);
/* 41 */
EXTERN int		TclBN_mp_sqrt(const mp_int *a, mp_int *b);
/* 42 */
EXTERN int		TclBN_mp_sub(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 43 */
EXTERN int		TclBN_mp_sub_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 44 */
EXTERN int		TclBN_mp_to_unsigned_bin(const mp_int *a,
				unsigned char *b);
/* 45 */
EXTERN int		TclBN_mp_to_unsigned_bin_n(const mp_int *a,
				unsigned char *b, unsigned long *outlen);
/* 46 */
EXTERN int		TclBN_mp_toradix_n(const mp_int *a, char *str,
				int radix, int maxlen);
/* 47 */
EXTERN int		TclBN_mp_unsigned_bin_size(const mp_int *a);
/* 48 */
EXTERN int		TclBN_mp_xor(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 49 */
EXTERN void		TclBN_mp_zero(mp_int *a);
/* 50 */
EXTERN void		TclBN_reverse(unsigned char *s, int len);
/* 51 */
EXTERN int		TclBN_fast_s_mp_mul_digs(const mp_int *a,
				const mp_int *b, mp_int *c, int digs);
/* 52 */
EXTERN int		TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b);
/* 53 */
EXTERN int		TclBN_mp_karatsuba_mul(const mp_int *a,
				const mp_int *b, mp_int *c);
/* 54 */
EXTERN int		TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b);
/* 55 */
EXTERN int		TclBN_mp_toom_mul(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 56 */
EXTERN int		TclBN_mp_toom_sqr(const mp_int *a, mp_int *b);
/* 57 */
EXTERN int		TclBN_s_mp_add(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 58 */
EXTERN int		TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b,
				mp_int *c, int digs);
/* 59 */
EXTERN int		TclBN_s_mp_sqr(const mp_int *a, mp_int *b);
/* 60 */
EXTERN int		TclBN_s_mp_sub(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 61 */
EXTERN int		TclBN_mp_init_set_int(mp_int *a, unsigned long i);
/* 62 */
EXTERN int		TclBN_mp_set_int(mp_int *a, unsigned long i);
/* 63 */
EXTERN int		TclBN_mp_cnt_lsb(const mp_int *a);
/* 64 */
TCL_DEPRECATED("Use mp_init() + mp_set_long_long()")
void			TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */
TCL_DEPRECATED("Use mp_init() + mp_set_long_long()")
void			TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */
TCL_DEPRECATED("Use mp_init() + mp_set_long_long()")
void			TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);
/* 67 */
EXTERN int		TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b,
				mp_int *c, int fast);
/* 68 */
EXTERN int		TclBN_mp_set_long_long(mp_int *a, Tcl_WideUInt i);
/* 69 */
EXTERN Tcl_WideUInt	TclBN_mp_get_long_long(const mp_int *a);
/* 70 */
EXTERN int		TclBN_mp_set_long(mp_int *a, unsigned long i);
/* 71 */
EXTERN unsigned long	TclBN_mp_get_long(const mp_int *a);

typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
    int (*tclBN_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 2 */
    int (*tclBN_mp_add_d) (const mp_int *a, mp_digit b, mp_int *c); /* 3 */
    int (*tclBN_mp_and) (const mp_int *a, const mp_int *b, mp_int *c); /* 4 */
    void (*tclBN_mp_clamp) (mp_int *a); /* 5 */
    void (*tclBN_mp_clear) (mp_int *a); /* 6 */
    void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */
    int (*tclBN_mp_cmp) (const mp_int *a, const mp_int *b); /* 8 */
    int (*tclBN_mp_cmp_d) (const mp_int *a, mp_digit b); /* 9 */
    int (*tclBN_mp_cmp_mag) (const mp_int *a, const mp_int *b); /* 10 */
    int (*tclBN_mp_copy) (const mp_int *a, mp_int *b); /* 11 */
    int (*tclBN_mp_count_bits) (const mp_int *a); /* 12 */
    int (*tclBN_mp_div) (const mp_int *a, const mp_int *b, mp_int *q, mp_int *r); /* 13 */
    int (*tclBN_mp_div_d) (const mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */
    int (*tclBN_mp_div_2) (const mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (const mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (const mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (const mp_int *a, const mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (const mp_int *a, const mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (const mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (const mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (const mp_int *a, const mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (const mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (const mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 42 */
    int (*tclBN_mp_sub_d) (const mp_int *a, mp_digit b, mp_int *c); /* 43 */
    int (*tclBN_mp_to_unsigned_bin) (const mp_int *a, unsigned char *b); /* 44 */
    int (*tclBN_mp_to_unsigned_bin_n) (const mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */
    int (*tclBN_mp_toradix_n) (const mp_int *a, char *str, int radix, int maxlen); /* 46 */
    int (*tclBN_mp_unsigned_bin_size) (const mp_int *a); /* 47 */
    int (*tclBN_mp_xor) (const mp_int *a, const mp_int *b, mp_int *c); /* 48 */
    void (*tclBN_mp_zero) (mp_int *a); /* 49 */
    void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */
    int (*tclBN_fast_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 51 */
    int (*tclBN_fast_s_mp_sqr) (const mp_int *a, mp_int *b); /* 52 */
    int (*tclBN_mp_karatsuba_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 53 */
    int (*tclBN_mp_karatsuba_sqr) (const mp_int *a, mp_int *b); /* 54 */
    int (*tclBN_mp_toom_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 55 */
    int (*tclBN_mp_toom_sqr) (const mp_int *a, mp_int *b); /* 56 */
    int (*tclBN_s_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 57 */
    int (*tclBN_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 58 */
    int (*tclBN_s_mp_sqr) (const mp_int *a, mp_int *b); /* 59 */
    int (*tclBN_s_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    TCL_DEPRECATED_API("Use mp_init() + mp_set_long_long()") void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    TCL_DEPRECATED_API("Use mp_init() + mp_set_long_long()") void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    TCL_DEPRECATED_API("Use mp_init() + mp_set_long_long()") void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */
    int (*tclBN_mp_expt_d_ex) (const mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */
    int (*tclBN_mp_set_long_long) (mp_int *a, Tcl_WideUInt i); /* 68 */
    Tcl_WideUInt (*tclBN_mp_get_long_long) (const mp_int *a); /* 69 */
    int (*tclBN_mp_set_long) (mp_int *a, unsigned long i); /* 70 */
    unsigned long (*tclBN_mp_get_long) (const mp_int *a); /* 71 */
} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */
#define TclBN_mp_expt_d_ex \
	(tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */
#define TclBN_mp_set_long_long \
	(tclTomMathStubsPtr->tclBN_mp_set_long_long) /* 68 */
#define TclBN_mp_get_long_long \
	(tclTomMathStubsPtr->tclBN_mp_get_long_long) /* 69 */
#define TclBN_mp_set_long \
	(tclTomMathStubsPtr->tclBN_mp_set_long) /* 70 */
#define TclBN_mp_get_long \
	(tclTomMathStubsPtr->tclBN_mp_get_long) /* 71 */

#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */

Changes to generic/tclTomMathInterface.c.

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209



210
211
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
...
236
237
238
239
240
241
242
243
244
245
246
247



248
249
250
251
252
253
254
255
256
257
258
259
...
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
 */

int
TclBN_revision(void)
{
    return TCLTOMMATH_REVISION;
}
#if 0
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNAlloc --
 *
 *	Allocate memory for libtommath.
 *
 * Results:
 *	Returns a pointer to the allocated block.
 *
 * This procedure is a wrapper around Tcl_Alloc, needed because of a
 * mismatched type signature between Tcl_Alloc and malloc.
 *
 *----------------------------------------------------------------------
 */

extern void *
TclBNAlloc(
    size_t x)
{
    return (void *) ckalloc((unsigned int) x);
}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNRealloc --
 *
 *	Change the size of an allocated block of memory in libtommath
 *
 * Results:
 *	Returns a pointer to the allocated block.
 *
 * This procedure is a wrapper around Tcl_Realloc, needed because of a
 * mismatched type signature between Tcl_Realloc and realloc.
 *
 *----------------------------------------------------------------------
 */

void *
TclBNRealloc(
    void *p,
    size_t s)
{
    return (void *) ckrealloc((char *) p, (unsigned int) s);
}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNFree --
 *
 *	Free allocated memory in libtommath.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Memory is freed.
 *
 * This function is simply a wrapper around Tcl_Free, needed in libtommath
 * because of a type mismatch between free and Tcl_Free.
 *
 *----------------------------------------------------------------------
 */

extern void
TclBNFree(
    void *p)
{
    ckree((char *) p);
}
#endif
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNInitBignumFromLong --
 *
 *	Allocate and initialize a 'bignum' from a native 'long'.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

extern void
TclBNInitBignumFromLong(
    mp_int *a,
    long initVal)
{
    int status;
    unsigned long v;
    mp_digit *p;

    /*
     * Allocate enough memory to hold the largest possible long
     */

    status = mp_init_size(a,
	    (CHAR_BIT * sizeof(long) + DIGIT_BIT - 1) / DIGIT_BIT);
    if (status != MP_OKAY) {
	Tcl_Panic("initialization failure in TclBNInitBignumFromLong");
    }

    /*
     * Convert arg to sign and magnitude.
     */

    if (initVal < 0) {
	a->sign = MP_NEG;
	v = -initVal;



    } else {
	a->sign = MP_ZPOS;
	v = initVal;

    }

    /*
     * Store the magnitude in the bignum.
     */

    p = a->dp;
    while (v) {
	*p++ = (mp_digit) (v & MP_MASK);
	v >>= MP_DIGIT_BIT;
    }
    a->used = p - a->dp;
}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNInitBignumFromWideInt --
 *
................................................................................
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

extern void
TclBNInitBignumFromWideInt(
    mp_int *a,			/* Bignum to initialize */
    Tcl_WideInt v)		/* Initial value */
{



    if (v < (Tcl_WideInt)0) {
	TclBNInitBignumFromWideUInt(a, (Tcl_WideUInt)(-v));
	mp_neg(a, a);
    } else {
	TclBNInitBignumFromWideUInt(a, (Tcl_WideUInt)v);
    }
}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNInitBignumFromWideUInt --
................................................................................
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

extern void
TclBNInitBignumFromWideUInt(
    mp_int *a,			/* Bignum to initialize */
    Tcl_WideUInt v)		/* Initial value */
{
    int status;
    mp_digit *p;

    /*
     * Allocate enough memory to hold the largest possible Tcl_WideUInt.
     */

    status = mp_init_size(a,
	    (CHAR_BIT * sizeof(Tcl_WideUInt) + DIGIT_BIT - 1) / DIGIT_BIT);
    if (status != MP_OKAY) {
	Tcl_Panic("initialization failure in TclBNInitBignumFromWideUInt");
    }

    a->sign = MP_ZPOS;

    /*
     * Store the magnitude in the bignum.
     */

    p = a->dp;
    while (v) {
	*p++ = (mp_digit) (v & MP_MASK);
	v >>= MP_DIGIT_BIT;
    }
    a->used = p - a->dp;

}
 
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */






<




<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|












|
|

<
<
<
|
<
|
<
<
<
<
<
|
<
|

<
<
<
<
<
<
<
<
>
>
>

<
<
>

<
<
<
<
<
<
<
<
<
<
<







 







|
|



>
>
>

|


|







 







|
|



<
<
<
<
<
<
<
<
|
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
>









85
86
87
88
89
90
91

92
93
94
95










































































96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111



112

113





114

115
116








117
118
119
120


121
122











123
124
125
126
127
128
129
...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
...
166
167
168
169
170
171
172
173
174
175
176
177








178

179
180













181
182
183
184
185
186
187
188
189
190
 */

int
TclBN_revision(void)
{
    return TCLTOMMATH_REVISION;
}

 
/*
 *----------------------------------------------------------------------
 *










































































 * TclInitBignumFromLong --
 *
 *	Allocate and initialize a 'bignum' from a native 'long'.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

void
TclInitBignumFromLong(
    mp_int *a,



    long v)

{





    if (mp_init_size(a, (CHAR_BIT * sizeof(long) + DIGIT_BIT - 1) / DIGIT_BIT) != MP_OKAY) {

	Tcl_Panic("initialization failure in TclInitBignumFromLong");
    }








    if (v < (long)0) {
	mp_set_long_long(a, (Tcl_WideUInt)(-(Tcl_WideInt)v));
	mp_neg(a, a);
    } else {


	mp_set_long_long(a, (Tcl_WideUInt)v);
    }











}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNInitBignumFromWideInt --
 *
................................................................................
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

void
TclInitBignumFromWideInt(
    mp_int *a,			/* Bignum to initialize */
    Tcl_WideInt v)		/* Initial value */
{
	if (mp_init_size(a, (CHAR_BIT * sizeof(Tcl_WideUInt) + DIGIT_BIT - 1) / DIGIT_BIT) != MP_OKAY) {
		Tcl_Panic("initialization failure in TclInitBignumFromWideInt");
	}
    if (v < (Tcl_WideInt)0) {
	mp_set_long_long(a, (Tcl_WideUInt)(-v));
	mp_neg(a, a);
    } else {
	mp_set_long_long(a, (Tcl_WideUInt)v);
    }
}
 
/*
 *----------------------------------------------------------------------
 *
 * TclBNInitBignumFromWideUInt --
................................................................................
 *
 * Side effects:
 *	The 'bignum' is constructed.
 *
 *----------------------------------------------------------------------
 */

void
TclInitBignumFromWideUInt(
    mp_int *a,			/* Bignum to initialize */
    Tcl_WideUInt v)		/* Initial value */
{








	if (mp_init_size(a, (CHAR_BIT * sizeof(Tcl_WideUInt) + DIGIT_BIT - 1) / DIGIT_BIT) != MP_OKAY) {

	    Tcl_Panic("initialization failure in TclInitBignumFromWideUInt");
	}













	mp_set_long_long(a, v);
}
 
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */

Changes to library/init.tcl.

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#
# Arguments:
# name -			Name of a command.

if {$tcl_platform(platform) eq "windows"} {
# Windows version.
#
# Note that info executable doesn't work under Windows, so we have to
# look for files with .exe, .com, or .bat extensions.  Also, the path
# may be in the Path or PATH environment variables, and path
# components are separated with semicolons, not colons as under Unix.
#
proc auto_execok name {
    global auto_execs env tcl_platform







|







642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#
# Arguments:
# name -			Name of a command.

if {$tcl_platform(platform) eq "windows"} {
# Windows version.
#
# Note that file executable doesn't work under Windows, so we have to
# look for files with .exe, .com, or .bat extensions.  Also, the path
# may be in the Path or PATH environment variables, and path
# components are separated with semicolons, not colons as under Unix.
#
proc auto_execok name {
    global auto_execs env tcl_platform

Changes to library/opt/optparse.tcl.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#       Primarily used internally by the safe:: code.
#
#	WARNING: This code will go away in a future release
#	of Tcl.  It is NOT supported and you should not rely
#	on it.  If your code does rely on this package you
#	may directly incorporate this code into your application.

package require Tcl 8.2
# When this version number changes, update the pkgIndex.tcl file
# and the install directory in the Makefiles.
package provide opt 0.4.6

namespace eval ::tcl {

    # Exported APIs
    namespace export OptKeyRegister OptKeyDelete OptKeyError OptKeyParse \
             OptProc OptProcArgGiven OptParse \
	     Lempty Lget \






|


|







4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#       Primarily used internally by the safe:: code.
#
#	WARNING: This code will go away in a future release
#	of Tcl.  It is NOT supported and you should not rely
#	on it.  If your code does rely on this package you
#	may directly incorporate this code into your application.

package require Tcl 8.5-
# When this version number changes, update the pkgIndex.tcl file
# and the install directory in the Makefiles.
package provide opt 0.4.7

namespace eval ::tcl {

    # Exported APIs
    namespace export OptKeyRegister OptKeyDelete OptKeyError OptKeyParse \
             OptProc OptProcArgGiven OptParse \
	     Lempty Lget \

Changes to library/opt/pkgIndex.tcl.

4
5
6
7
8
9
10
11
12
# by a "package unknown" script.  It invokes the
# "package ifneeded" command to set up package-related
# information so that packages will be loaded automatically
# in response to "package require" commands.  When this
# script is sourced, the variable $dir must contain the
# full path name of this file's directory.

if {![package vsatisfies [package provide Tcl] 8.2]} {return}
package ifneeded opt 0.4.6 [list source [file join $dir optparse.tcl]]






|
|
4
5
6
7
8
9
10
11
12
# by a "package unknown" script.  It invokes the
# "package ifneeded" command to set up package-related
# information so that packages will be loaded automatically
# in response to "package require" commands.  When this
# script is sourced, the variable $dir must contain the
# full path name of this file's directory.

if {![package vsatisfies [package provide Tcl] 8.5-]} {return}
package ifneeded opt 0.4.7 [list source [file join $dir optparse.tcl]]

Changes to library/tcltest/pkgIndex.tcl.

4
5
6
7
8
9
10
11
12
# by a "package unknown" script.  It invokes the
# "package ifneeded" command to set up package-related
# information so that packages will be loaded automatically
# in response to "package require" commands.  When this
# script is sourced, the variable $dir must contain the
# full path name of this file's directory.

if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded tcltest 2.4.0 [list source [file join $dir tcltest.tcl]]






|
|
4
5
6
7
8
9
10
11
12
# by a "package unknown" script.  It invokes the
# "package ifneeded" command to set up package-related
# information so that packages will be loaded automatically
# in response to "package require" commands.  When this
# script is sourced, the variable $dir must contain the
# full path name of this file's directory.

if {![package vsatisfies [package provide Tcl] 8.5-]} {return}
package ifneeded tcltest 2.4.1 [list source [file join $dir tcltest.tcl]]

Changes to library/tcltest/tcltest.tcl.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
package require Tcl 8.5-		;# -verbose line uses [info frame]
namespace eval tcltest {

    # When the version number changes, be sure to update the pkgIndex.tcl file,
    # and the install directory in the Makefiles.  When the minor version
    # changes (new feature) be sure to update the man page as well.
    variable Version 2.4.0

    # Compatibility support for dumb variables defined in tcltest 1
    # Do not use these.  Call [package provide Tcl] and [info patchlevel]
    # yourself.  You don't need tcltest to wrap it for you.
    variable version [package provide Tcl]
    variable patchLevel [info patchlevel]







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
package require Tcl 8.5-		;# -verbose line uses [info frame]
namespace eval tcltest {

    # When the version number changes, be sure to update the pkgIndex.tcl file,
    # and the install directory in the Makefiles.  When the minor version
    # changes (new feature) be sure to update the man page as well.
    variable Version 2.4.1

    # Compatibility support for dumb variables defined in tcltest 1
    # Do not use these.  Call [package provide Tcl] and [info patchlevel]
    # yourself.  You don't need tcltest to wrap it for you.
    variable version [package provide Tcl]
    variable patchLevel [info patchlevel]

Changes to library/tzdata/Africa/Juba.

1
2
3
4
5




































# created by tools/tclZIC.tcl - do not edit
if {![info exists TZData(Africa/Khartoum)]} {
    LoadTimeZoneFile Africa/Khartoum
}
set TZData(:Africa/Juba) $TZData(:Africa/Khartoum)




































<
<
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1


2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# created by tools/tclZIC.tcl - do not edit



set TZData(:Africa/Juba) {
    {-9223372036854775808 7588 0 LMT}
    {-1230775588 7200 0 CAT}
    {10360800 10800 1 CAST}
    {24786000 7200 0 CAT}
    {41810400 10800 1 CAST}
    {56322000 7200 0 CAT}
    {73432800 10800 1 CAST}
    {87944400 7200 0 CAT}
    {104882400 10800 1 CAST}
    {119480400 7200 0 CAT}
    {136332000 10800 1 CAST}
    {151016400 7200 0 CAT}
    {167781600 10800 1 CAST}
    {182552400 7200 0 CAT}
    {199231200 10800 1 CAST}
    {214174800 7200 0 CAT}
    {230680800 10800 1 CAST}
    {245710800 7200 0 CAT}
    {262735200 10800 1 CAST}
    {277246800 7200 0 CAT}
    {294184800 10800 1 CAST}
    {308782800 7200 0 CAT}
    {325634400 10800 1 CAST}
    {340405200 7200 0 CAT}
    {357084000 10800 1 CAST}
    {371941200 7200 0 CAT}
    {388533600 10800 1 CAST}
    {403477200 7200 0 CAT}
    {419983200 10800 1 CAST}
    {435013200 7200 0 CAT}
    {452037600 10800 1 CAST}
    {466635600 7200 0 CAT}
    {483487200 10800 1 CAST}
    {498171600 7200 0 CAT}
    {947930400 10800 0 EAT}
}

Changes to library/tzdata/Africa/Khartoum.

32
33
34
35
36
37
38

39
    {419983200 10800 1 CAST}
    {435013200 7200 0 CAT}
    {452037600 10800 1 CAST}
    {466635600 7200 0 CAT}
    {483487200 10800 1 CAST}
    {498171600 7200 0 CAT}
    {947930400 10800 0 EAT}

}






>

32
33
34
35
36
37
38
39
40
    {419983200 10800 1 CAST}
    {435013200 7200 0 CAT}
    {452037600 10800 1 CAST}
    {466635600 7200 0 CAT}
    {483487200 10800 1 CAST}
    {498171600 7200 0 CAT}
    {947930400 10800 0 EAT}
    {1509483600 7200 0 CAT}
}

Changes to library/tzdata/Africa/Windhoek.

3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
..
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
set TZData(:Africa/Windhoek) {
    {-9223372036854775808 4104 0 LMT}
    {-2458170504 5400 0 +0130}
    {-2109288600 7200 0 SAST}
    {-860976000 10800 1 SAST}
    {-845254800 7200 0 SAST}
    {637970400 7200 0 CAT}
    {765324000 3600 0 WAT}

    {778640400 7200 1 WAST}
    {796780800 3600 0 WAT}
    {810090000 7200 1 WAST}
    {828835200 3600 0 WAT}
    {841539600 7200 1 WAST}
    {860284800 3600 0 WAT}
    {873594000 7200 1 WAST}
................................................................................
    {1396742400 3600 0 WAT}
    {1410051600 7200 1 WAST}
    {1428192000 3600 0 WAT}
    {1441501200 7200 1 WAST}
    {1459641600 3600 0 WAT}
    {1472950800 7200 1 WAST}
    {1491091200 3600 0 WAT}
    {1504400400 7200 1 WAST}
    {1522540800 3600 0 WAT}
    {1535850000 7200 1 WAST}
    {1554595200 3600 0 WAT}
    {1567299600 7200 1 WAST}
    {1586044800 3600 0 WAT}
    {1599354000 7200 1 WAST}
    {1617494400 3600 0 WAT}
    {1630803600 7200 1 WAST}
    {1648944000 3600 0 WAT}
    {1662253200 7200 1 WAST}
    {1680393600 3600 0 WAT}
    {1693702800 7200 1 WAST}
    {1712448000 3600 0 WAT}
    {1725152400 7200 1 WAST}
    {1743897600 3600 0 WAT}
    {1757206800 7200 1 WAST}
    {1775347200 3600 0 WAT}
    {1788656400 7200 1 WAST}
    {1806796800 3600 0 WAT}
    {1820106000 7200 1 WAST}
    {1838246400 3600 0 WAT}
    {1851555600 7200 1 WAST}
    {1869696000 3600 0 WAT}
    {1883005200 7200 1 WAST}
    {1901750400 3600 0 WAT}
    {1914454800 7200 1 WAST}
    {1933200000 3600 0 WAT}
    {1946509200 7200 1 WAST}
    {1964649600 3600 0 WAT}
    {1977958800 7200 1 WAST}
    {1996099200 3600 0 WAT}
    {2009408400 7200 1 WAST}
    {2027548800 3600 0 WAT}
    {2040858000 7200 1 WAST}
    {2058998400 3600 0 WAT}
    {2072307600 7200 1 WAST}
    {2091052800 3600 0 WAT}
    {2104362000 7200 1 WAST}
    {2122502400 3600 0 WAT}
    {2135811600 7200 1 WAST}
    {2153952000 3600 0 WAT}
    {2167261200 7200 1 WAST}
    {2185401600 3600 0 WAT}
    {2198710800 7200 1 WAST}
    {2216851200 3600 0 WAT}
    {2230160400 7200 1 WAST}
    {2248905600 3600 0 WAT}
    {2261610000 7200 1 WAST}
    {2280355200 3600 0 WAT}
    {2293664400 7200 1 WAST}
    {2311804800 3600 0 WAT}
    {2325114000 7200 1 WAST}
    {2343254400 3600 0 WAT}
    {2356563600 7200 1 WAST}
    {2374704000 3600 0 WAT}
    {2388013200 7200 1 WAST}
    {2406153600 3600 0 WAT}
    {2419462800 7200 1 WAST}
    {2438208000 3600 0 WAT}
    {2450912400 7200 1 WAST}
    {2469657600 3600 0 WAT}
    {2482966800 7200 1 WAST}
    {2501107200 3600 0 WAT}
    {2514416400 7200 1 WAST}
    {2532556800 3600 0 WAT}
    {2545866000 7200 1 WAST}
    {2564006400 3600 0 WAT}
    {2577315600 7200 1 WAST}
    {2596060800 3600 0 WAT}
    {2608765200 7200 1 WAST}
    {2627510400 3600 0 WAT}
    {2640819600 7200 1 WAST}
    {2658960000 3600 0 WAT}
    {2672269200 7200 1 WAST}
    {2690409600 3600 0 WAT}
    {2703718800 7200 1 WAST}
    {2721859200 3600 0 WAT}
    {2735168400 7200 1 WAST}
    {2753308800 3600 0 WAT}
    {2766618000 7200 1 WAST}
    {2785363200 3600 0 WAT}
    {2798067600 7200 1 WAST}
    {2816812800 3600 0 WAT}
    {2830122000 7200 1 WAST}
    {2848262400 3600 0 WAT}
    {2861571600 7200 1 WAST}
    {2879712000 3600 0 WAT}
    {2893021200 7200 1 WAST}
    {2911161600 3600 0 WAT}
    {2924470800 7200 1 WAST}
    {2942611200 3600 0 WAT}
    {2955920400 7200 1 WAST}
    {2974665600 3600 0 WAT}
    {2987974800 7200 1 WAST}
    {3006115200 3600 0 WAT}
    {3019424400 7200 1 WAST}
    {3037564800 3600 0 WAT}
    {3050874000 7200 1 WAST}
    {3069014400 3600 0 WAT}
    {3082323600 7200 1 WAST}
    {3100464000 3600 0 WAT}
    {3113773200 7200 1 WAST}
    {3132518400 3600 0 WAT}
    {3145222800 7200 1 WAST}
    {3163968000 3600 0 WAT}
    {3177277200 7200 1 WAST}
    {3195417600 3600 0 WAT}
    {3208726800 7200 1 WAST}
    {3226867200 3600 0 WAT}
    {3240176400 7200 1 WAST}
    {3258316800 3600 0 WAT}
    {3271626000 7200 1 WAST}
    {3289766400 3600 0 WAT}
    {3303075600 7200 1 WAST}
    {3321820800 3600 0 WAT}
    {3334525200 7200 1 WAST}
    {3353270400 3600 0 WAT}
    {3366579600 7200 1 WAST}
    {3384720000 3600 0 WAT}
    {3398029200 7200 1 WAST}
    {3416169600 3600 0 WAT}
    {3429478800 7200 1 WAST}
    {3447619200 3600 0 WAT}
    {3460928400 7200 1 WAST}
    {3479673600 3600 0 WAT}
    {3492378000 7200 1 WAST}
    {3511123200 3600 0 WAT}
    {3524432400 7200 1 WAST}
    {3542572800 3600 0 WAT}
    {3555882000 7200 1 WAST}
    {3574022400 3600 0 WAT}
    {3587331600 7200 1 WAST}
    {3605472000 3600 0 WAT}
    {3618781200 7200 1 WAST}
    {3636921600 3600 0 WAT}
    {3650230800 7200 1 WAST}
    {3668976000 3600 0 WAT}
    {3681680400 7200 1 WAST}
    {3700425600 3600 0 WAT}
    {3713734800 7200 1 WAST}
    {3731875200 3600 0 WAT}
    {3745184400 7200 1 WAST}
    {3763324800 3600 0 WAT}
    {3776634000 7200 1 WAST}
    {3794774400 3600 0 WAT}
    {3808083600 7200 1 WAST}
    {3826224000 3600 0 WAT}
    {3839533200 7200 1 WAST}
    {3858278400 3600 0 WAT}
    {3871587600 7200 1 WAST}
    {3889728000 3600 0 WAT}
    {3903037200 7200 1 WAST}
    {3921177600 3600 0 WAT}
    {3934486800 7200 1 WAST}
    {3952627200 3600 0 WAT}
    {3965936400 7200 1 WAST}
    {3984076800 3600 0 WAT}
    {3997386000 7200 1 WAST}
    {4016131200 3600 0 WAT}
    {4028835600 7200 1 WAST}
    {4047580800 3600 0 WAT}
    {4060890000 7200 1 WAST}
    {4079030400 3600 0 WAT}
    {4092339600 7200 1 WAST}
}






|
>







 







|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
..
51
52
53
54
55
56
57
58




































































































































































59
set TZData(:Africa/Windhoek) {
    {-9223372036854775808 4104 0 LMT}
    {-2458170504 5400 0 +0130}
    {-2109288600 7200 0 SAST}
    {-860976000 10800 1 SAST}
    {-845254800 7200 0 SAST}
    {637970400 7200 0 CAT}
    {764200800 3600 0 WAT}
    {764204400 3600 0 WAT}
    {778640400 7200 1 WAST}
    {796780800 3600 0 WAT}
    {810090000 7200 1 WAST}
    {828835200 3600 0 WAT}
    {841539600 7200 1 WAST}
    {860284800 3600 0 WAT}
    {873594000 7200 1 WAST}
................................................................................
    {1396742400 3600 0 WAT}
    {1410051600 7200 1 WAST}
    {1428192000 3600 0 WAT}
    {1441501200 7200 1 WAST}
    {1459641600 3600 0 WAT}
    {1472950800 7200 1 WAST}
    {1491091200 3600 0 WAT}
    {1504400400 7200 0 CAT}




































































































































































}

Changes to library/tzdata/America/Adak.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Adak) {
    {-9223372036854775808 44001 0 LMT}
    {-3225356001 -42398 0 LMT}
    {-2188944802 -39600 0 NST}
    {-883573200 -39600 0 NST}
    {-880196400 -36000 1 NWT}
    {-769395600 -36000 1 NPT}
    {-765374400 -39600 0 NST}
    {-757342800 -39600 0 NST}
    {-86878800 -39600 0 BST}


|
|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Adak) {
    {-9223372036854775808 44002 0 LMT}
    {-3225223727 -42398 0 LMT}
    {-2188944802 -39600 0 NST}
    {-883573200 -39600 0 NST}
    {-880196400 -36000 1 NWT}
    {-769395600 -36000 1 NPT}
    {-765374400 -39600 0 NST}
    {-757342800 -39600 0 NST}
    {-86878800 -39600 0 BST}

Changes to library/tzdata/America/Anchorage.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Anchorage) {
    {-9223372036854775808 50424 0 LMT}
    {-3225362424 -35976 0 LMT}
    {-2188951224 -36000 0 AST}
    {-883576800 -36000 0 AST}
    {-880200000 -32400 1 AWT}
    {-769395600 -32400 1 APT}
    {-765378000 -36000 0 AST}
    {-86882400 -36000 0 AHST}
    {-31500000 -36000 0 AHST}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Anchorage) {
    {-9223372036854775808 50424 0 LMT}
    {-3225223727 -35976 0 LMT}
    {-2188951224 -36000 0 AST}
    {-883576800 -36000 0 AST}
    {-880200000 -32400 1 AWT}
    {-769395600 -32400 1 APT}
    {-765378000 -36000 0 AST}
    {-86882400 -36000 0 AHST}
    {-31500000 -36000 0 AHST}

Changes to library/tzdata/America/Detroit.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
    {-883594800 -18000 0 EST}
    {-880218000 -14400 1 EWT}
    {-769395600 -14400 1 EPT}
    {-765396000 -18000 0 EST}
    {-757364400 -18000 0 EST}
    {-684349200 -14400 1 EDT}
    {-671047200 -18000 0 EST}
    {-80499600 -14400 1 EDT}
    {-68666400 -18000 0 EST}
    {94712400 -18000 0 EST}
    {104914800 -14400 1 EDT}
    {120636000 -18000 0 EST}
    {126687600 -14400 1 EDT}
    {152085600 -18000 0 EST}
    {157784400 -18000 0 EST}
    {167814000 -14400 0 EDT}






<
<







7
8
9
10
11
12
13


14
15
16
17
18
19
20
    {-883594800 -18000 0 EST}
    {-880218000 -14400 1 EWT}
    {-769395600 -14400 1 EPT}
    {-765396000 -18000 0 EST}
    {-757364400 -18000 0 EST}
    {-684349200 -14400 1 EDT}
    {-671047200 -18000 0 EST}


    {94712400 -18000 0 EST}
    {104914800 -14400 1 EDT}
    {120636000 -18000 0 EST}
    {126687600 -14400 1 EDT}
    {152085600 -18000 0 EST}
    {157784400 -18000 0 EST}
    {167814000 -14400 0 EDT}

Changes to library/tzdata/America/Grand_Turk.

75
76
77
78
79
80
81




































































































































































82
    {1352008800 -18000 0 EST}
    {1362898800 -14400 1 EDT}
    {1383458400 -18000 0 EST}
    {1394348400 -14400 1 EDT}
    {1414908000 -18000 0 EST}
    {1425798000 -14400 1 EDT}
    {1446361200 -14400 0 AST}




































































































































































}






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    {1352008800 -18000 0 EST}
    {1362898800 -14400 1 EDT}
    {1383458400 -18000 0 EST}
    {1394348400 -14400 1 EDT}
    {1414908000 -18000 0 EST}
    {1425798000 -14400 1 EDT}
    {1446361200 -14400 0 AST}
    {1520751600 -14400 0 EDT}
    {1541311200 -18000 0 EST}
    {1552201200 -14400 1 EDT}
    {1572760800 -18000 0 EST}
    {1583650800 -14400 1 EDT}
    {1604210400 -18000 0 EST}
    {1615705200 -14400 1 EDT}
    {1636264800 -18000 0 EST}
    {1647154800 -14400 1 EDT}
    {1667714400 -18000 0 EST}
    {1678604400 -14400 1 EDT}
    {1699164000 -18000 0 EST}
    {1710054000 -14400 1 EDT}
    {1730613600 -18000 0 EST}
    {1741503600 -14400 1 EDT}
    {1762063200 -18000 0 EST}
    {1772953200 -14400 1 EDT}
    {1793512800 -18000 0 EST}
    {1805007600 -14400 1 EDT}
    {1825567200 -18000 0 EST}
    {1836457200 -14400 1 EDT}
    {1857016800 -18000 0 EST}
    {1867906800 -14400 1 EDT}
    {1888466400 -18000 0 EST}
    {1899356400 -14400 1 EDT}
    {1919916000 -18000 0 EST}
    {1930806000 -14400 1 EDT}
    {1951365600 -18000 0 EST}
    {1962860400 -14400 1 EDT}
    {1983420000 -18000 0 EST}
    {1994310000 -14400 1 EDT}
    {2014869600 -18000 0 EST}
    {2025759600 -14400 1 EDT}
    {2046319200 -18000 0 EST}
    {2057209200 -14400 1 EDT}
    {2077768800 -18000 0 EST}
    {2088658800 -14400 1 EDT}
    {2109218400 -18000 0 EST}
    {2120108400 -14400 1 EDT}
    {2140668000 -18000 0 EST}
    {2152162800 -14400 1 EDT}
    {2172722400 -18000 0 EST}
    {2183612400 -14400 1 EDT}
    {2204172000 -18000 0 EST}
    {2215062000 -14400 1 EDT}
    {2235621600 -18000 0 EST}
    {2246511600 -14400 1 EDT}
    {2267071200 -18000 0 EST}
    {2277961200 -14400 1 EDT}
    {2298520800 -18000 0 EST}
    {2309410800 -14400 1 EDT}
    {2329970400 -18000 0 EST}
    {2341465200 -14400 1 EDT}
    {2362024800 -18000 0 EST}
    {2372914800 -14400 1 EDT}
    {2393474400 -18000 0 EST}
    {2404364400 -14400 1 EDT}
    {2424924000 -18000 0 EST}
    {2435814000 -14400 1 EDT}
    {2456373600 -18000 0 EST}
    {2467263600 -14400 1 EDT}
    {2487823200 -18000 0 EST}
    {2499318000 -14400 1 EDT}
    {2519877600 -18000 0 EST}
    {2530767600 -14400 1 EDT}
    {2551327200 -18000 0 EST}
    {2562217200 -14400 1 EDT}
    {2582776800 -18000 0 EST}
    {2593666800 -14400 1 EDT}
    {2614226400 -18000 0 EST}
    {2625116400 -14400 1 EDT}
    {2645676000 -18000 0 EST}
    {2656566000 -14400 1 EDT}
    {2677125600 -18000 0 EST}
    {2688620400 -14400 1 EDT}
    {2709180000 -18000 0 EST}
    {2720070000 -14400 1 EDT}
    {2740629600 -18000 0 EST}
    {2751519600 -14400 1 EDT}
    {2772079200 -18000 0 EST}
    {2782969200 -14400 1 EDT}
    {2803528800 -18000 0 EST}
    {2814418800 -14400 1 EDT}
    {2834978400 -18000 0 EST}
    {2846473200 -14400 1 EDT}
    {2867032800 -18000 0 EST}
    {2877922800 -14400 1 EDT}
    {2898482400 -18000 0 EST}
    {2909372400 -14400 1 EDT}
    {2929932000 -18000 0 EST}
    {2940822000 -14400 1 EDT}
    {2961381600 -18000 0 EST}
    {2972271600 -14400 1 EDT}
    {2992831200 -18000 0 EST}
    {3003721200 -14400 1 EDT}
    {3024280800 -18000 0 EST}
    {3035775600 -14400 1 EDT}
    {3056335200 -18000 0 EST}
    {3067225200 -14400 1 EDT}
    {3087784800 -18000 0 EST}
    {3098674800 -14400 1 EDT}
    {3119234400 -18000 0 EST}
    {3130124400 -14400 1 EDT}
    {3150684000 -18000 0 EST}
    {3161574000 -14400 1 EDT}
    {3182133600 -18000 0 EST}
    {3193023600 -14400 1 EDT}
    {3213583200 -18000 0 EST}
    {3225078000 -14400 1 EDT}
    {3245637600 -18000 0 EST}
    {3256527600 -14400 1 EDT}
    {3277087200 -18000 0 EST}
    {3287977200 -14400 1 EDT}
    {3308536800 -18000 0 EST}
    {3319426800 -14400 1 EDT}
    {3339986400 -18000 0 EST}
    {3350876400 -14400 1 EDT}
    {3371436000 -18000 0 EST}
    {3382930800 -14400 1 EDT}
    {3403490400 -18000 0 EST}
    {3414380400 -14400 1 EDT}
    {3434940000 -18000 0 EST}
    {3445830000 -14400 1 EDT}
    {3466389600 -18000 0 EST}
    {3477279600 -14400 1 EDT}
    {3497839200 -18000 0 EST}
    {3508729200 -14400 1 EDT}
    {3529288800 -18000 0 EST}
    {3540178800 -14400 1 EDT}
    {3560738400 -18000 0 EST}
    {3572233200 -14400 1 EDT}
    {3592792800 -18000 0 EST}
    {3603682800 -14400 1 EDT}
    {3624242400 -18000 0 EST}
    {3635132400 -14400 1 EDT}
    {3655692000 -18000 0 EST}
    {3666582000 -14400 1 EDT}
    {3687141600 -18000 0 EST}
    {3698031600 -14400 1 EDT}
    {3718591200 -18000 0 EST}
    {3730086000 -14400 1 EDT}
    {3750645600 -18000 0 EST}
    {3761535600 -14400 1 EDT}
    {3782095200 -18000 0 EST}
    {3792985200 -14400 1 EDT}
    {3813544800 -18000 0 EST}
    {3824434800 -14400 1 EDT}
    {3844994400 -18000 0 EST}
    {3855884400 -14400 1 EDT}
    {3876444000 -18000 0 EST}
    {3887334000 -14400 1 EDT}
    {3907893600 -18000 0 EST}
    {3919388400 -14400 1 EDT}
    {3939948000 -18000 0 EST}
    {3950838000 -14400 1 EDT}
    {3971397600 -18000 0 EST}
    {3982287600 -14400 1 EDT}
    {4002847200 -18000 0 EST}
    {4013737200 -14400 1 EDT}
    {4034296800 -18000 0 EST}
    {4045186800 -14400 1 EDT}
    {4065746400 -18000 0 EST}
    {4076636400 -14400 1 EDT}
    {4097196000 -18000 0 EST}
}

Changes to library/tzdata/America/Juneau.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Juneau) {
    {-9223372036854775808 54139 0 LMT}
    {-3225366139 -32261 0 LMT}
    {-2188954939 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Juneau) {
    {-9223372036854775808 54139 0 LMT}
    {-3225223727 -32261 0 LMT}
    {-2188954939 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}

Changes to library/tzdata/America/Metlakatla.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Metlakatla) {
    {-9223372036854775808 54822 0 LMT}
    {-3225366822 -31578 0 LMT}
    {-2188955622 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Metlakatla) {
    {-9223372036854775808 54822 0 LMT}
    {-3225223727 -31578 0 LMT}
    {-2188955622 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}

Changes to library/tzdata/America/Nome.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Nome) {
    {-9223372036854775808 46701 0 LMT}
    {-3225358701 -39698 0 LMT}
    {-2188947502 -39600 0 NST}
    {-883573200 -39600 0 NST}
    {-880196400 -36000 1 NWT}
    {-769395600 -36000 1 NPT}
    {-765374400 -39600 0 NST}
    {-757342800 -39600 0 NST}
    {-86878800 -39600 0 BST}


|
|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Nome) {
    {-9223372036854775808 46702 0 LMT}
    {-3225223727 -39698 0 LMT}
    {-2188947502 -39600 0 NST}
    {-883573200 -39600 0 NST}
    {-880196400 -36000 1 NWT}
    {-769395600 -36000 1 NPT}
    {-765374400 -39600 0 NST}
    {-757342800 -39600 0 NST}
    {-86878800 -39600 0 BST}

Changes to library/tzdata/America/Sitka.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Sitka) {
    {-9223372036854775808 53927 0 LMT}
    {-3225365927 -32473 0 LMT}
    {-2188954727 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Sitka) {
    {-9223372036854775808 53927 0 LMT}
    {-3225223727 -32473 0 LMT}
    {-2188954727 -28800 0 PST}
    {-883584000 -28800 0 PST}
    {-880207200 -25200 1 PWT}
    {-769395600 -25200 1 PPT}
    {-765385200 -28800 0 PST}
    {-757353600 -28800 0 PST}
    {-31507200 -28800 0 PST}

Changes to library/tzdata/America/Yakutat.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Yakutat) {
    {-9223372036854775808 52865 0 LMT}
    {-3225364865 -33535 0 LMT}
    {-2188953665 -32400 0 YST}
    {-883580400 -32400 0 YST}
    {-880203600 -28800 1 YWT}
    {-769395600 -28800 1 YPT}
    {-765381600 -32400 0 YST}
    {-757350000 -32400 0 YST}
    {-31503600 -32400 0 YST}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:America/Yakutat) {
    {-9223372036854775808 52865 0 LMT}
    {-3225223727 -33535 0 LMT}
    {-2188953665 -32400 0 YST}
    {-883580400 -32400 0 YST}
    {-880203600 -28800 1 YWT}
    {-769395600 -28800 1 YPT}
    {-765381600 -32400 0 YST}
    {-757350000 -32400 0 YST}
    {-31503600 -32400 0 YST}

Changes to library/tzdata/Asia/Famagusta.

84
85
86
87
88
89
90





































































































































































91
    {1382835600 7200 0 EET}
    {1396141200 10800 1 EEST}
    {1414285200 7200 0 EET}
    {1427590800 10800 1 EEST}
    {1445734800 7200 0 EET}
    {1459040400 10800 1 EEST}
    {1473285600 10800 0 +03}





































































































































































}






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    {1382835600 7200 0 EET}
    {1396141200 10800 1 EEST}
    {1414285200 7200 0 EET}
    {1427590800 10800 1 EEST}
    {1445734800 7200 0 EET}
    {1459040400 10800 1 EEST}
    {1473285600 10800 0 +03}
    {1509238800 7200 0 EET}
    {1521939600 10800 1 EEST}
    {1540688400 7200 0 EET}
    {1553994000 10800 1 EEST}
    {1572138000 7200 0 EET}
    {1585443600 10800 1 EEST}
    {1603587600 7200 0 EET}
    {1616893200 10800 1 EEST}
    {1635642000 7200 0 EET}
    {1648342800 10800 1 EEST}
    {1667091600 7200 0 EET}
    {1679792400 10800 1 EEST}
    {1698541200 7200 0 EET}
    {1711846800 10800 1 EEST}
    {1729990800 7200 0 EET}
    {1743296400 10800 1 EEST}
    {1761440400 7200 0 EET}
    {1774746000 10800 1 EEST}
    {1792890000 7200 0 EET}
    {1806195600 10800 1 EEST}
    {1824944400 7200 0 EET}
    {1837645200 10800 1 EEST}
    {1856394000 7200 0 EET}
    {1869094800 10800 1 EEST}
    {1887843600 7200 0 EET}
    {1901149200 10800 1 EEST}
    {1919293200 7200 0 EET}
    {1932598800 10800 1 EEST}
    {1950742800 7200 0 EET}
    {1964048400 10800 1 EEST}
    {1982797200 7200 0 EET}
    {1995498000 10800 1 EEST}
    {2014246800 7200 0 EET}
    {2026947600 10800 1 EEST}
    {2045696400 7200 0 EET}
    {2058397200 10800 1 EEST}
    {2077146000 7200 0 EET}
    {2090451600 10800 1 EEST}
    {2108595600 7200 0 EET}
    {2121901200 10800 1 EEST}
    {2140045200 7200 0 EET}
    {2153350800 10800 1 EEST}
    {2172099600 7200 0 EET}
    {2184800400 10800 1 EEST}
    {2203549200 7200 0 EET}
    {2216250000 10800 1 EEST}
    {2234998800 7200 0 EET}
    {2248304400 10800 1 EEST}
    {2266448400 7200 0 EET}
    {2279754000 10800 1 EEST}
    {2297898000 7200 0 EET}
    {2311203600 10800 1 EEST}
    {2329347600 7200 0 EET}
    {2342653200 10800 1 EEST}
    {2361402000 7200 0 EET}
    {2374102800 10800 1 EEST}
    {2392851600 7200 0 EET}
    {2405552400 10800 1 EEST}
    {2424301200 7200 0 EET}
    {2437606800 10800 1 EEST}
    {2455750800 7200 0 EET}
    {2469056400 10800 1 EEST}
    {2487200400 7200 0 EET}
    {2500506000 10800 1 EEST}
    {2519254800 7200 0 EET}
    {2531955600 10800 1 EEST}
    {2550704400 7200 0 EET}
    {2563405200 10800 1 EEST}
    {2582154000 7200 0 EET}
    {2595459600 10800 1 EEST}
    {2613603600 7200 0 EET}
    {2626909200 10800 1 EEST}
    {2645053200 7200 0 EET}
    {2658358800 10800 1 EEST}
    {2676502800 7200 0 EET}
    {2689808400 10800 1 EEST}
    {2708557200 7200 0 EET}
    {2721258000 10800 1 EEST}
    {2740006800 7200 0 EET}
    {2752707600 10800 1 EEST}
    {2771456400 7200 0 EET}
    {2784762000 10800 1 EEST}
    {2802906000 7200 0 EET}
    {2816211600 10800 1 EEST}
    {2834355600 7200 0 EET}
    {2847661200 10800 1 EEST}
    {2866410000 7200 0 EET}
    {2879110800 10800 1 EEST}
    {2897859600 7200 0 EET}
    {2910560400 10800 1 EEST}
    {2929309200 7200 0 EET}
    {2942010000 10800 1 EEST}
    {2960758800 7200 0 EET}
    {2974064400 10800 1 EEST}
    {2992208400 7200 0 EET}
    {3005514000 10800 1 EEST}
    {3023658000 7200 0 EET}
    {3036963600 10800 1 EEST}
    {3055712400 7200 0 EET}
    {3068413200 10800 1 EEST}
    {3087162000 7200 0 EET}
    {3099862800 10800 1 EEST}
    {3118611600 7200 0 EET}
    {3131917200 10800 1 EEST}
    {3150061200 7200 0 EET}
    {3163366800 10800 1 EEST}
    {3181510800 7200 0 EET}
    {3194816400 10800 1 EEST}
    {3212960400 7200 0 EET}
    {3226266000 10800 1 EEST}
    {3245014800 7200 0 EET}
    {3257715600 10800 1 EEST}
    {3276464400 7200 0 EET}
    {3289165200 10800 1 EEST}
    {3307914000 7200 0 EET}
    {3321219600 10800 1 EEST}
    {3339363600 7200 0 EET}
    {3352669200 10800 1 EEST}
    {3370813200 7200 0 EET}
    {3384118800 10800 1 EEST}
    {3402867600 7200 0 EET}
    {3415568400 10800 1 EEST}
    {3434317200 7200 0 EET}
    {3447018000 10800 1 EEST}
    {3465766800 7200 0 EET}
    {3479072400 10800 1 EEST}
    {3497216400 7200 0 EET}
    {3510522000 10800 1 EEST}
    {3528666000 7200 0 EET}
    {3541971600 10800 1 EEST}
    {3560115600 7200 0 EET}
    {3573421200 10800 1 EEST}
    {3592170000 7200 0 EET}
    {3604870800 10800 1 EEST}
    {3623619600 7200 0 EET}
    {3636320400 10800 1 EEST}
    {3655069200 7200 0 EET}
    {3668374800 10800 1 EEST}
    {3686518800 7200 0 EET}
    {3699824400 10800 1 EEST}
    {3717968400 7200 0 EET}
    {3731274000 10800 1 EEST}
    {3750022800 7200 0 EET}
    {3762723600 10800 1 EEST}
    {3781472400 7200 0 EET}
    {3794173200 10800 1 EEST}
    {3812922000 7200 0 EET}
    {3825622800 10800 1 EEST}
    {3844371600 7200 0 EET}
    {3857677200 10800 1 EEST}
    {3875821200 7200 0 EET}
    {3889126800 10800 1 EEST}
    {3907270800 7200 0 EET}
    {3920576400 10800 1 EEST}
    {3939325200 7200 0 EET}
    {3952026000 10800 1 EEST}
    {3970774800 7200 0 EET}
    {3983475600 10800 1 EEST}
    {4002224400 7200 0 EET}
    {4015530000 10800 1 EEST}
    {4033674000 7200 0 EET}
    {4046979600 10800 1 EEST}
    {4065123600 7200 0 EET}
    {4078429200 10800 1 EEST}
    {4096573200 7200 0 EET}
}

Changes to library/tzdata/Asia/Kolkata.

1
2
3
4
5
6


7
8
9
10
# created by tools/tclZIC.tcl - do not edit

set TZData(:Asia/Kolkata) {
    {-9223372036854775808 21208 0 LMT}
    {-2840162008 21200 0 HMT}
    {-891582800 23400 0 +0630}


    {-872058600 19800 0 IST}
    {-862637400 23400 1 +0630}
    {-764145000 19800 0 IST}
}



|
|
>
>




1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:Asia/Kolkata) {
    {-9223372036854775808 21208 0 LMT}
    {-3645237208 21200 0 HMT}
    {-3155694800 19270 0 MMT}
    {-2019705670 19800 0 IST}
    {-891581400 23400 1 +0630}
    {-872058600 19800 0 IST}
    {-862637400 23400 1 +0630}
    {-764145000 19800 0 IST}
}

Changes to library/tzdata/Asia/Yangon.

1
2
3
4
5
6
7
8
9
# created by tools/tclZIC.tcl - do not edit

set TZData(:Asia/Yangon) {
    {-9223372036854775808 23080 0 LMT}
    {-2840163880 23080 0 RMT}
    {-1577946280 23400 0 +0630}
    {-873268200 32400 0 +09}
    {-778410000 23400 0 +0630}
}


|
|
|



1
2
3
4
5
6
7
8
9
# created by tools/tclZIC.tcl - do not edit

set TZData(:Asia/Yangon) {
    {-9223372036854775808 23087 0 LMT}
    {-2840163887 23087 0 RMT}
    {-1577946287 23400 0 +0630}
    {-873268200 32400 0 +09}
    {-778410000 23400 0 +0630}
}

Changes to library/tzdata/Asia/Yerevan.

60
61
62
63
64
65
66

67
68
69
    {1193522400 14400 0 +04}
    {1206828000 18000 1 +05}
    {1224972000 14400 0 +04}
    {1238277600 18000 1 +05}
    {1256421600 14400 0 +04}
    {1269727200 18000 1 +05}
    {1288476000 14400 0 +04}

    {1301176800 18000 1 +05}
    {1319925600 14400 0 +04}
}






>



60
61
62
63
64
65
66
67
68
69
70
    {1193522400 14400 0 +04}
    {1206828000 18000 1 +05}
    {1224972000 14400 0 +04}
    {1238277600 18000 1 +05}
    {1256421600 14400 0 +04}
    {1269727200 18000 1 +05}
    {1288476000 14400 0 +04}
    {1293825600 14400 0 +04}
    {1301176800 18000 1 +05}
    {1319925600 14400 0 +04}
}

Changes to library/tzdata/Europe/Dublin.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    {-1049061600 0 0 IST}
    {-1032127200 3600 1 IST}
    {-1017612000 0 0 IST}
    {-1001282400 3600 1 IST}
    {-986162400 0 0 IST}
    {-969228000 3600 1 IST}
    {-950479200 0 0 IST}
    {-942015600 3600 1 IST}
    {-733359600 0 0 GMT}
    {-719445600 3600 1 IST}
    {-699490800 0 0 GMT}
    {-684972000 3600 0 IST}
    {-668037600 0 0 IST}
    {-654732000 3600 1 IST}
    {-636588000 0 0 IST}
    {-622072800 3600 1 IST}
    {-605743200 0 0 IST}
    {-590623200 3600 1 IST}






|
|

|







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    {-1049061600 0 0 IST}
    {-1032127200 3600 1 IST}
    {-1017612000 0 0 IST}
    {-1001282400 3600 1 IST}
    {-986162400 0 0 IST}
    {-969228000 3600 1 IST}
    {-950479200 0 0 IST}
    {-942012000 3600 1 IST}
    {-733356000 0 0 GMT}
    {-719445600 3600 1 IST}
    {-699487200 0 0 GMT}
    {-684972000 3600 0 IST}
    {-668037600 0 0 IST}
    {-654732000 3600 1 IST}
    {-636588000 0 0 IST}
    {-622072800 3600 1 IST}
    {-605743200 0 0 IST}
    {-590623200 3600 1 IST}

Changes to library/tzdata/Pacific/Apia.

1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:Pacific/Apia) {
    {-9223372036854775808 45184 0 LMT}
    {-2855737984 -41216 0 LMT}
    {-1861878784 -41400 0 -1130}
    {-631110600 -39600 0 -10}
    {1285498800 -36000 1 -10}
    {1301752800 -39600 0 -10}
    {1316872800 -36000 1 -10}
    {1325239200 50400 0 +14}
    {1333202400 46800 0 +14}



|







1
2
3
4
5
6
7
8
9
10
11
12
# created by tools/tclZIC.tcl - do not edit

set TZData(:Pacific/Apia) {
    {-9223372036854775808 45184 0 LMT}
    {-2445424384 -41216 0 LMT}
    {-1861878784 -41400 0 -1130}
    {-631110600 -39600 0 -10}
    {1285498800 -36000 1 -10}
    {1301752800 -39600 0 -10}
    {1316872800 -36000 1 -10}
    {1325239200 50400 0 +14}
    {1333202400 46800 0 +14}

Changes to library/tzdata/Pacific/Fiji.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
..
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
...
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    {1414850400 46800 1 +13}
    {1421503200 43200 0 +12}
    {1446300000 46800 1 +13}
    {1452952800 43200 0 +12}
    {1478354400 46800 1 +13}
    {1484402400 43200 0 +12}
    {1509804000 46800 1 +13}
    {1516456800 43200 0 +12}
    {1541253600 46800 1 +13}
    {1547906400 43200 0 +12}
    {1572703200 46800 1 +13}
    {1579356000 43200 0 +12}
    {1604152800 46800 1 +13}
    {1610805600 43200 0 +12}
    {1636207200 46800 1 +13}
    {1642255200 43200 0 +12}
    {1667656800 46800 1 +13}
    {1673704800 43200 0 +12}
    {1699106400 46800 1 +13}
    {1705759200 43200 0 +12}
    {1730556000 46800 1 +13}
    {1737208800 43200 0 +12}
    {1762005600 46800 1 +13}
    {1768658400 43200 0 +12}
    {1793455200 46800 1 +13}
    {1800108000 43200 0 +12}
    {1825509600 46800 1 +13}
    {1831557600 43200 0 +12}
    {1856959200 46800 1 +13}
    {1863612000 43200 0 +12}
    {1888408800 46800 1 +13}
    {1895061600 43200 0 +12}
    {1919858400 46800 1 +13}
    {1926511200 43200 0 +12}
    {1951308000 46800 1 +13}
    {1957960800 43200 0 +12}
    {1983362400 46800 1 +13}
    {1989410400 43200 0 +12}
    {2014812000 46800 1 +13}
    {2020860000 43200 0 +12}
    {2046261600 46800 1 +13}
    {2052914400 43200 0 +12}
    {2077711200 46800 1 +13}
    {2084364000 43200 0 +12}
    {2109160800 46800 1 +13}
    {2115813600 43200 0 +12}
    {2140610400 46800 1 +13}
    {2147263200 43200 0 +12}
    {2172664800 46800 1 +13}
................................................................................
    {2298463200 46800 1 +13}
    {2305116000 43200 0 +12}
    {2329912800 46800 1 +13}
    {2336565600 43200 0 +12}
    {2361967200 46800 1 +13}
    {2368015200 43200 0 +12}
    {2393416800 46800 1 +13}
    {2400069600 43200 0 +12}
    {2424866400 46800 1 +13}
    {2431519200 43200 0 +12}
    {2456316000 46800 1 +13}
    {2462968800 43200 0 +12}
    {2487765600 46800 1 +13}
    {2494418400 43200 0 +12}
    {2519820000 46800 1 +13}
    {2525868000 43200 0 +12}
    {2551269600 46800 1 +13}
    {2557317600 43200 0 +12}
    {2582719200 46800 1 +13}
    {2589372000 43200 0 +12}
    {2614168800 46800 1 +13}
    {2620821600 43200 0 +12}
    {2645618400 46800 1 +13}
    {2652271200 43200 0 +12}
    {2677068000 46800 1 +13}
    {2683720800 43200 0 +12}
    {2709122400 46800 1 +13}
    {2715170400 43200 0 +12}
    {2740572000 46800 1 +13}
    {2747224800 43200 0 +12}
    {2772021600 46800 1 +13}
    {2778674400 43200 0 +12}
    {2803471200 46800 1 +13}
    {2810124000 43200 0 +12}
    {2834920800 46800 1 +13}
    {2841573600 43200 0 +12}
    {2866975200 46800 1 +13}
    {2873023200 43200 0 +12}
    {2898424800 46800 1 +13}
    {2904472800 43200 0 +12}
    {2929874400 46800 1 +13}
    {2936527200 43200 0 +12}
    {2961324000 46800 1 +13}
    {2967976800 43200 0 +12}
    {2992773600 46800 1 +13}
    {2999426400 43200 0 +12}
    {3024223200 46800 1 +13}
    {3030876000 43200 0 +12}
    {3056277600 46800 1 +13}
................................................................................
    {3182076000 46800 1 +13}
    {3188728800 43200 0 +12}
    {3213525600 46800 1 +13}
    {3220178400 43200 0 +12}
    {3245580000 46800 1 +13}
    {3251628000 43200 0 +12}
    {3277029600 46800 1 +13}
    {3283682400 43200 0 +12}
    {3308479200 46800 1 +13}
    {3315132000 43200 0 +12}
    {3339928800 46800 1 +13}
    {3346581600 43200 0 +12}
    {3371378400 46800 1 +13}
    {3378031200 43200 0 +12}
    {3403432800 46800 1 +13}
    {3409480800 43200 0 +12}
    {3434882400 46800 1 +13}
    {3440930400 43200 0 +12}
    {3466332000 46800 1 +13}
    {3472984800 43200 0 +12}
    {3497781600 46800 1 +13}
    {3504434400 43200 0 +12}
    {3529231200 46800 1 +13}
    {3535884000 43200 0 +12}
    {3560680800 46800 1 +13}
    {3567333600 43200 0 +12}
    {3592735200 46800 1 +13}
    {3598783200 43200 0 +12}
    {3624184800 46800 1 +13}
    {3630837600 43200 0 +12}
    {3655634400 46800 1 +13}
    {3662287200 43200 0 +12}
    {3687084000 46800 1 +13}
    {3693736800 43200 0 +12}
    {3718533600 46800 1 +13}
    {3725186400 43200 0 +12}
    {3750588000 46800 1 +13}
    {3756636000 43200 0 +12}
    {3782037600 46800 1 +13}
    {3788085600 43200 0 +12}
    {3813487200 46800 1 +13}
    {3820140000 43200 0 +12}
    {3844936800 46800 1 +13}
    {3851589600 43200 0 +12}
    {3876386400 46800 1 +13}
    {3883039200 43200 0 +12}
    {3907836000 46800 1 +13}
    {3914488800 43200 0 +12}
    {3939890400 46800 1 +13}






|











|









|











|







 







|











|









|











|







 







|











|









|











|







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
..
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
...
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    {1414850400 46800 1 +13}
    {1421503200 43200 0 +12}
    {1446300000 46800 1 +13}
    {1452952800 43200 0 +12}
    {1478354400 46800 1 +13}
    {1484402400 43200 0 +12}
    {1509804000 46800 1 +13}
    {1515852000 43200 0 +12}
    {1541253600 46800 1 +13}
    {1547906400 43200 0 +12}
    {1572703200 46800 1 +13}
    {1579356000 43200 0 +12}
    {1604152800 46800 1 +13}
    {1610805600 43200 0 +12}
    {1636207200 46800 1 +13}
    {1642255200 43200 0 +12}
    {1667656800 46800 1 +13}
    {1673704800 43200 0 +12}
    {1699106400 46800 1 +13}
    {1705154400 43200 0 +12}
    {1730556000 46800 1 +13}
    {1737208800 43200 0 +12}
    {1762005600 46800 1 +13}
    {1768658400 43200 0 +12}
    {1793455200 46800 1 +13}
    {1800108000 43200 0 +12}
    {1825509600 46800 1 +13}
    {1831557600 43200 0 +12}
    {1856959200 46800 1 +13}
    {1863007200 43200 0 +12}
    {1888408800 46800 1 +13}
    {1895061600 43200 0 +12}
    {1919858400 46800 1 +13}
    {1926511200 43200 0 +12}
    {1951308000 46800 1 +13}
    {1957960800 43200 0 +12}
    {1983362400 46800 1 +13}
    {1989410400 43200 0 +12}
    {2014812000 46800 1 +13}
    {2020860000 43200 0 +12}
    {2046261600 46800 1 +13}
    {2052309600 43200 0 +12}
    {2077711200 46800 1 +13}
    {2084364000 43200 0 +12}
    {2109160800 46800 1 +13}
    {2115813600 43200 0 +12}
    {2140610400 46800 1 +13}
    {2147263200 43200 0 +12}
    {2172664800 46800 1 +13}
................................................................................
    {2298463200 46800 1 +13}
    {2305116000 43200 0 +12}
    {2329912800 46800 1 +13}
    {2336565600 43200 0 +12}
    {2361967200 46800 1 +13}
    {2368015200 43200 0 +12}
    {2393416800 46800 1 +13}
    {2399464800 43200 0 +12}
    {2424866400 46800 1 +13}
    {2431519200 43200 0 +12}
    {2456316000 46800 1 +13}
    {2462968800 43200 0 +12}
    {2487765600 46800 1 +13}
    {2494418400 43200 0 +12}
    {2519820000 46800 1 +13}
    {2525868000 43200 0 +12}
    {2551269600 46800 1 +13}
    {2557317600 43200 0 +12}
    {2582719200 46800 1 +13}
    {2588767200 43200 0 +12}
    {2614168800 46800 1 +13}
    {2620821600 43200 0 +12}
    {2645618400 46800 1 +13}
    {2652271200 43200 0 +12}
    {2677068000 46800 1 +13}
    {2683720800 43200 0 +12}
    {2709122400 46800 1 +13}
    {2715170400 43200 0 +12}
    {2740572000 46800 1 +13}
    {2746620000 43200 0 +12}
    {2772021600 46800 1 +13}
    {2778674400 43200 0 +12}
    {2803471200 46800 1 +13}
    {2810124000 43200 0 +12}
    {2834920800 46800 1 +13}
    {2841573600 43200 0 +12}
    {2866975200 46800 1 +13}
    {2873023200 43200 0 +12}
    {2898424800 46800 1 +13}
    {2904472800 43200 0 +12}
    {2929874400 46800 1 +13}
    {2935922400 43200 0 +12}
    {2961324000 46800 1 +13}
    {2967976800 43200 0 +12}
    {2992773600 46800 1 +13}
    {2999426400 43200 0 +12}
    {3024223200 46800 1 +13}
    {3030876000 43200 0 +12}
    {3056277600 46800 1 +13}
................................................................................
    {3182076000 46800 1 +13}
    {3188728800 43200 0 +12}
    {3213525600 46800 1 +13}
    {3220178400 43200 0 +12}
    {3245580000 46800 1 +13}
    {3251628000 43200 0 +12}
    {3277029600 46800 1 +13}
    {3283077600 43200 0 +12}
    {3308479200 46800 1 +13}
    {3315132000 43200 0 +12}
    {3339928800 46800 1 +13}
    {3346581600 43200 0 +12}
    {3371378400 46800 1 +13}
    {3378031200 43200 0 +12}
    {3403432800 46800 1 +13}
    {3409480800 43200 0 +12}
    {3434882400 46800 1 +13}
    {3440930400 43200 0 +12}
    {3466332000 46800 1 +13}
    {3472380000 43200 0 +12}
    {3497781600 46800 1 +13}
    {3504434400 43200 0 +12}
    {3529231200 46800 1 +13}
    {3535884000 43200 0 +12}
    {3560680800 46800 1 +13}
    {3567333600 43200 0 +12}
    {3592735200 46800 1 +13}
    {3598783200 43200 0 +12}
    {3624184800 46800 1 +13}
    {3630232800 43200 0 +12}
    {3655634400 46800 1 +13}
    {3662287200 43200 0 +12}
    {3687084000 46800 1 +13}
    {3693736800 43200 0 +12}
    {3718533600 46800 1 +13}
    {3725186400 43200 0 +12}
    {3750588000 46800 1 +13}
    {3756636000 43200 0 +12}
    {3782037600 46800 1 +13}
    {3788085600 43200 0 +12}
    {3813487200 46800 1 +13}
    {3819535200 43200 0 +12}
    {3844936800 46800 1 +13}
    {3851589600 43200 0 +12}
    {3876386400 46800 1 +13}
    {3883039200 43200 0 +12}
    {3907836000 46800 1 +13}
    {3914488800 43200 0 +12}
    {3939890400 46800 1 +13}

Changes to library/tzdata/Pacific/Pago_Pago.

1
2
3
4
5
6
7
# created by tools/tclZIC.tcl - do not edit

set TZData(:Pacific/Pago_Pago) {
    {-9223372036854775808 45432 0 LMT}
    {-2855738232 -40968 0 LMT}
    {-1861879032 -39600 0 SST}
}



|


1
2
3
4
5
6
7
# created by tools/tclZIC.tcl - do not edit

set TZData(:Pacific/Pago_Pago) {
    {-9223372036854775808 45432 0 LMT}
    {-2445424632 -40968 0 LMT}
    {-1861879032 -39600 0 SST}
}

Changes to library/tzdata/Pacific/Tongatapu.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    {953384400 46800 0 +13}
    {973342800 50400 1 +14}
    {980596800 46800 0 +13}
    {1004792400 50400 1 +14}
    {1012046400 46800 0 +13}
    {1478350800 50400 1 +14}
    {1484398800 46800 0 +13}
    {1509800400 50400 1 +14}
    {1516453200 46800 0 +13}
    {1541250000 50400 1 +14}
    {1547902800 46800 0 +13}
    {1572699600 50400 1 +14}
    {1579352400 46800 0 +13}
    {1604149200 50400 1 +14}
    {1610802000 46800 0 +13}
    {1636203600 50400 1 +14}
    {1642251600 46800 0 +13}
    {1667653200 50400 1 +14}
    {1673701200 46800 0 +13}
    {1699102800 50400 1 +14}
    {1705755600 46800 0 +13}
    {1730552400 50400 1 +14}
    {1737205200 46800 0 +13}
    {1762002000 50400 1 +14}
    {1768654800 46800 0 +13}
    {1793451600 50400 1 +14}
    {1800104400 46800 0 +13}
    {1825506000 50400 1 +14}
    {1831554000 46800 0 +13}
    {1856955600 50400 1 +14}
    {1863608400 46800 0 +13}
    {1888405200 50400 1 +14}
    {1895058000 46800 0 +13}
    {1919854800 50400 1 +14}
    {1926507600 46800 0 +13}
    {1951304400 50400 1 +14}
    {1957957200 46800 0 +13}
    {1983358800 50400 1 +14}
    {1989406800 46800 0 +13}
    {2014808400 50400 1 +14}
    {2020856400 46800 0 +13}
    {2046258000 50400 1 +14}
    {2052910800 46800 0 +13}
    {2077707600 50400 1 +14}
    {2084360400 46800 0 +13}
    {2109157200 50400 1 +14}
    {2115810000 46800 0 +13}
    {2140606800 50400 1 +14}
    {2147259600 46800 0 +13}
    {2172661200 50400 1 +14}
    {2178709200 46800 0 +13}
    {2204110800 50400 1 +14}
    {2210158800 46800 0 +13}
    {2235560400 50400 1 +14}
    {2242213200 46800 0 +13}
    {2267010000 50400 1 +14}
    {2273662800 46800 0 +13}
    {2298459600 50400 1 +14}
    {2305112400 46800 0 +13}
    {2329909200 50400 1 +14}
    {2336562000 46800 0 +13}
    {2361963600 50400 1 +14}
    {2368011600 46800 0 +13}
    {2393413200 50400 1 +14}
    {2400066000 46800 0 +13}
    {2424862800 50400 1 +14}
    {2431515600 46800 0 +13}
    {2456312400 50400 1 +14}
    {2462965200 46800 0 +13}
    {2487762000 50400 1 +14}
    {2494414800 46800 0 +13}
    {2519816400 50400 1 +14}
    {2525864400 46800 0 +13}
    {2551266000 50400 1 +14}
    {2557314000 46800 0 +13}
    {2582715600 50400 1 +14}
    {2589368400 46800 0 +13}
    {2614165200 50400 1 +14}
    {2620818000 46800 0 +13}
    {2645614800 50400 1 +14}
    {2652267600 46800 0 +13}
    {2677064400 50400 1 +14}
    {2683717200 46800 0 +13}
    {2709118800 50400 1 +14}
    {2715166800 46800 0 +13}
    {2740568400 50400 1 +14}
    {2747221200 46800 0 +13}
    {2772018000 50400 1 +14}
    {2778670800 46800 0 +13}
    {2803467600 50400 1 +14}
    {2810120400 46800 0 +13}
    {2834917200 50400 1 +14}
    {2841570000 46800 0 +13}
    {2866971600 50400 1 +14}
    {2873019600 46800 0 +13}
    {2898421200 50400 1 +14}
    {2904469200 46800 0 +13}
    {2929870800 50400 1 +14}
    {2936523600 46800 0 +13}
    {2961320400 50400 1 +14}
    {2967973200 46800 0 +13}
    {2992770000 50400 1 +14}
    {2999422800 46800 0 +13}
    {3024219600 50400 1 +14}
    {3030872400 46800 0 +13}
    {3056274000 50400 1 +14}
    {3062322000 46800 0 +13}
    {3087723600 50400 1 +14}
    {3093771600 46800 0 +13}
    {3119173200 50400 1 +14}
    {3125826000 46800 0 +13}
    {3150622800 50400 1 +14}
    {3157275600 46800 0 +13}
    {3182072400 50400 1 +14}
    {3188725200 46800 0 +13}
    {3213522000 50400 1 +14}
    {3220174800 46800 0 +13}
    {3245576400 50400 1 +14}
    {3251624400 46800 0 +13}
    {3277026000 50400 1 +14}
    {3283678800 46800 0 +13}
    {3308475600 50400 1 +14}
    {3315128400 46800 0 +13}
    {3339925200 50400 1 +14}
    {3346578000 46800 0 +13}
    {3371374800 50400 1 +14}
    {3378027600 46800 0 +13}
    {3403429200 50400 1 +14}
    {3409477200 46800 0 +13}
    {3434878800 50400 1 +14}
    {3440926800 46800 0 +13}
    {3466328400 50400 1 +14}
    {3472981200 46800 0 +13}
    {3497778000 50400 1 +14}
    {3504430800 46800 0 +13}
    {3529227600 50400 1 +14}
    {3535880400 46800 0 +13}
    {3560677200 50400 1 +14}
    {3567330000 46800 0 +13}
    {3592731600 50400 1 +14}
    {3598779600 46800 0 +13}
    {3624181200 50400 1 +14}
    {3630834000 46800 0 +13}
    {3655630800 50400 1 +14}
    {3662283600 46800 0 +13}
    {3687080400 50400 1 +14}
    {3693733200 46800 0 +13}
    {3718530000 50400 1 +14}
    {3725182800 46800 0 +13}
    {3750584400 50400 1 +14}
    {3756632400 46800 0 +13}
    {3782034000 50400 1 +14}
    {3788082000 46800 0 +13}
    {3813483600 50400 1 +14}
    {3820136400 46800 0 +13}
    {3844933200 50400 1 +14}
    {3851586000 46800 0 +13}
    {3876382800 50400 1 +14}
    {3883035600 46800 0 +13}
    {3907832400 50400 1 +14}
    {3914485200 46800 0 +13}
    {3939886800 50400 1 +14}
    {3945934800 46800 0 +13}
    {3971336400 50400 1 +14}
    {3977384400 46800 0 +13}
    {4002786000 50400 1 +14}
    {4009438800 46800 0 +13}
    {4034235600 50400 1 +14}
    {4040888400 46800 0 +13}
    {4065685200 50400 1 +14}
    {4072338000 46800 0 +13}
    {4097134800 50400 1 +14}
}






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

9
10
11
12
13
14
15





































































































































































16
    {953384400 46800 0 +13}
    {973342800 50400 1 +14}
    {980596800 46800 0 +13}
    {1004792400 50400 1 +14}
    {1012046400 46800 0 +13}
    {1478350800 50400 1 +14}
    {1484398800 46800 0 +13}





































































































































































}

Added libtommath/astylerc.






















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Artistic Style, see http://astyle.sourceforge.net/
# full documentation, see: http://astyle.sourceforge.net/astyle.html
#
# usage:
#       astyle --options=astylerc *.[ch]

## Bracket Style Options
style=kr

## Tab Options
indent=spaces=3

## Bracket Modify Options

## Indentation Options
min-conditional-indent=0

## Padding Options
pad-header
unpad-paren
align-pointer=name

## Formatting Options
break-after-logical
max-code-length=120
convert-tabs
mode=c

Changes to libtommath/bn_error.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

static const struct {
     int code;
     const char *msg;
} msgs[] = {
     { MP_OKAY, "Successful" },
     { MP_MEM,  "Out of heap" },
     { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
   int x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
       if (msgs[x].code == code) {
          return msgs[x].msg;
       }
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|

|
|
|









|
|
|











12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

static const struct {
   int code;
   const char *msg;
} msgs[] = {
   { MP_OKAY, "Successful" },
   { MP_MEM,  "Out of heap" },
   { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
   int x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
      if (msgs[x].code == code) {
         return msgs[x].msg;
      }
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_mp_invmod.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == MP_YES) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x == modulus, y == value to invert */
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* we need y = |a| */
  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == MP_YES) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == MP_YES) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }
  mp_exch (&D, c);
  c->sign = neg;
  res = MP_OKAY;


LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|

|


|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

>
|
|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes the modular inverse via binary extended euclidean algorithm,
 * that is c = 1/a mod b
 *
 * Based on slow invmod except this is optimized for the case where b is
 * odd as per HAC Note 14.64 on pp. 610
 */
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, B, D;
   int     res, neg;

   /* 2. [modified] b must be odd   */
   if (mp_iseven(b) == MP_YES) {
      return MP_VAL;
   }

   /* init all our temps */
   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x == modulus, y == value to invert */
   if ((res = mp_copy(b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* we need y = |a| */
   if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&D, 1);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if B is odd then */
      if (mp_isodd(&B) == MP_YES) {
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* B = B/2 */
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if D is odd then */
      if (mp_isodd(&D) == MP_YES) {
         /* D = (D-x)/2 */
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* D = D/2 */
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO) {
      goto top;
   }

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* b is now the inverse */
   neg = a->sign;
   while (D.sign == MP_NEG) {
      if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }
   mp_exch(&D, c);
   c->sign = neg;
   res = MP_OKAY;

LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_mp_montgomery_reduce.c.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
  int     ix, res, olduse;
  mp_word W[MP_WARRAY];

  /* get old used count */
  olduse = x->used;

  /* grow a as required */
  if (x->alloc < (n->used + 1)) {
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* first we have to get the digits of the input into
   * an array of double precision words W[...]
   */
  {
    mp_word *_W;
    mp_digit *tmpx;

    /* alias for the W[] array */
    _W   = W;

    /* alias for the digits of  x*/
    tmpx = x->dp;

    /* copy the digits of a into W[0..a->used-1] */
    for (ix = 0; ix < x->used; ix++) {
      *_W++ = *tmpx++;
    }

    /* zero the high words of W[a->used..m->used*2] */
    for (; ix < ((n->used * 2) + 1); ix++) {
      *_W++ = 0;
    }
  }

  /* now we proceed to zero successive digits
   * from the least significant upwards
   */
  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * m' mod b
     *
     * We avoid a double precision multiplication (which isn't required)
     * by casting the value down to a mp_digit.  Note this requires
     * that W[ix-1] have  the carry cleared (see after the inner loop)
     */
    mp_digit mu;
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

    /* a = a + mu * m * b**i
     *
     * This is computed in place and on the fly.  The multiplication
     * by b**i is handled by offseting which columns the results
     * are added to.
     *
     * Note the comba method normally doesn't handle carries in the
     * inner loop In this case we fix the carry from the previous
     * column since the Montgomery reduction requires digits of the
     * result (so far) [see above] to work.  This is
     * handled by fixing up one carry after the inner loop.  The
     * carry fixups are done in order so after these loops the
     * first m->used words of W[] have the carries fixed
     */
    {
      int iy;
      mp_digit *tmpn;
      mp_word *_W;

      /* alias for the digits of the modulus */
      tmpn = n->dp;

      /* Alias for the columns set by an offset of ix */
      _W = W + ix;

      /* inner loop */
      for (iy = 0; iy < n->used; iy++) {
          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
      }
    }

    /* now fix carry for next digit, W[ix+1] */
    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
  }

  /* now we have to propagate the carries and
   * shift the words downward [all those least
   * significant digits we zeroed].
   */
  {
    mp_digit *tmpx;
    mp_word *_W, *_W1;

    /* nox fix rest of carries */

    /* alias for current word */
    _W1 = W + ix;

    /* alias for next word, where the carry goes */
    _W = W + ++ix;

    for (; ix <= ((n->used * 2) + 1); ix++) {
      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    }

    /* copy out, A = A/b**n
     *
     * The result is A/b**n but instead of converting from an
     * array of mp_word to mp_digit than calling mp_rshd
     * we just copy them in the right order
     */

    /* alias for destination word */
    tmpx = x->dp;

    /* alias for shifted double precision result */
    _W = W + n->used;

    for (ix = 0; ix < (n->used + 1); ix++) {
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
    }

    /* zero oldused digits, if the input a was larger than
     * m->used+1 we'll have to clear the digits
     */
    for (; ix < olduse; ix++) {
      *tmpx++ = 0;
    }
  }

  /* set the max used and clamp */
  x->used = n->used + 1;
  mp_clamp (x);

  /* if A >= m then A = A - m */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|






19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int     ix, res, olduse;
   mp_word W[MP_WARRAY];

   /* get old used count */
   olduse = x->used;

   /* grow a as required */
   if (x->alloc < (n->used + 1)) {
      if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* first we have to get the digits of the input into
    * an array of double precision words W[...]
    */
   {
      mp_word *_W;
      mp_digit *tmpx;

      /* alias for the W[] array */
      _W   = W;

      /* alias for the digits of  x*/
      tmpx = x->dp;

      /* copy the digits of a into W[0..a->used-1] */
      for (ix = 0; ix < x->used; ix++) {
         *_W++ = *tmpx++;
      }

      /* zero the high words of W[a->used..m->used*2] */
      for (; ix < ((n->used * 2) + 1); ix++) {
         *_W++ = 0;
      }
   }

   /* now we proceed to zero successive digits
    * from the least significant upwards
    */
   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * m' mod b
       *
       * We avoid a double precision multiplication (which isn't required)
       * by casting the value down to a mp_digit.  Note this requires
       * that W[ix-1] have  the carry cleared (see after the inner loop)
       */
      mp_digit mu;
      mu = (mp_digit)(((W[ix] & MP_MASK) * rho) & MP_MASK);

      /* a = a + mu * m * b**i
       *
       * This is computed in place and on the fly.  The multiplication
       * by b**i is handled by offseting which columns the results
       * are added to.
       *
       * Note the comba method normally doesn't handle carries in the
       * inner loop In this case we fix the carry from the previous
       * column since the Montgomery reduction requires digits of the
       * result (so far) [see above] to work.  This is
       * handled by fixing up one carry after the inner loop.  The
       * carry fixups are done in order so after these loops the
       * first m->used words of W[] have the carries fixed
       */
      {
         int iy;
         mp_digit *tmpn;
         mp_word *_W;

         /* alias for the digits of the modulus */
         tmpn = n->dp;

         /* Alias for the columns set by an offset of ix */
         _W = W + ix;

         /* inner loop */
         for (iy = 0; iy < n->used; iy++) {
            *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
         }
      }

      /* now fix carry for next digit, W[ix+1] */
      W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
   }

   /* now we have to propagate the carries and
    * shift the words downward [all those least
    * significant digits we zeroed].
    */
   {
      mp_digit *tmpx;
      mp_word *_W, *_W1;

      /* nox fix rest of carries */

      /* alias for current word */
      _W1 = W + ix;

      /* alias for next word, where the carry goes */
      _W = W + ++ix;

      for (; ix <= ((n->used * 2) + 1); ix++) {
         *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
      }

      /* copy out, A = A/b**n
       *
       * The result is A/b**n but instead of converting from an
       * array of mp_word to mp_digit than calling mp_rshd
       * we just copy them in the right order
       */

      /* alias for destination word */
      tmpx = x->dp;

      /* alias for shifted double precision result */
      _W = W + n->used;

      for (ix = 0; ix < (n->used + 1); ix++) {
         *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
      }

      /* zero oldused digits, if the input a was larger than
       * m->used+1 we'll have to clear the digits
       */
      for (; ix < olduse; ix++) {
         *tmpx++ = 0;
      }
   }

   /* set the max used and clamp */
   x->used = n->used + 1;
   mp_clamp(x);

   /* if A >= m then A = A - m */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_mul_digs.c.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of 
 * digits of output so if say only a half-product is required 
 * you don't have to compute the upper half (a feature 
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  mp_word  _W;

  /* grow the destination as required */
  if (c->alloc < digs) {
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = MIN(digs, a->used + b->used);

  /* clear the carry */
  _W = 0;
  for (ix = 0; ix < pa; ix++) { 
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially 
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    mp_digit *tmpc;
    tmpc = c->dp;
    for (ix = 0; ix < (pa + 1); ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
|



|
|
|





|

|
|
|

|
|
|
|
|
|

|
|

|
|
|












|







 







|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|






13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((res = mp_grow(c, digs)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < (pa + 1); ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_mul_high_digs.c.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
..
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  mp_word  _W;

  /* grow the destination as required */
  pa = a->used + b->used;
  if (c->alloc < pa) {
    if ((res = mp_grow (c, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = a->used + b->used;
  _W = 0;
  for (ix = digs; ix < pa; ix++) { 
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its 
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }
  
  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    mp_digit *tmpc;

    tmpc = c->dp + digs;
    for (ix = digs; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|

|
|
|
|
|
|
|

|
|
|
|











|







 







|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|






20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
..
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   pa = a->used + b->used;
   if (c->alloc < pa) {
      if ((res = mp_grow(c, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = a->used + b->used;
   _W = 0;
   for (ix = digs; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;

      tmpc = c->dp + digs;
      for (ix = digs; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_sqr.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that 
 * starts closer to zero] can't equal the offset of tmpy.  
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those 
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
  int       olduse, res, pa, ix, iz;
  mp_digit   W[MP_WARRAY], *tmpx;
  mp_word   W1;

  /* grow the destination as required */
  pa = a->used + a->used;
  if (b->alloc < pa) {
    if ((res = mp_grow (b, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  W1 = 0;
  for (ix = 0; ix < pa; ix++) { 
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

................................................................................
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty 
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
................................................................................
      }

      /* store it */
      W[ix] = (mp_digit)(_W & MP_MASK);

      /* make next carry */
      W1 = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = b->used;
  b->used = a->used+a->used;

  {
    mp_digit *tmpb;
    tmpb = b->dp;
    for (ix = 0; ix < pa; ix++) {
      *tmpb++ = W[ix] & MP_MASK;
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpb++ = 0;
    }
  }
  mp_clamp (b);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|

|





|

|
|
|

|
|
|
|
|
|
|

|
|
|







 







|







 







|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that
 * starts closer to zero] can't equal the offset of tmpy.
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
   int       olduse, res, pa, ix, iz;
   mp_digit   W[MP_WARRAY], *tmpx;
   mp_word   W1;

   /* grow the destination as required */
   pa = a->used + a->used;
   if (b->alloc < pa) {
      if ((res = mp_grow(b, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   W1 = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

................................................................................
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
................................................................................
      }

      /* store it */
      W[ix] = (mp_digit)(_W & MP_MASK);

      /* make next carry */
      W1 = _W >> ((mp_word)DIGIT_BIT);
   }

   /* setup dest */
   olduse  = b->used;
   b->used = a->used+a->used;

   {
      mp_digit *tmpb;
      tmpb = b->dp;
      for (ix = 0; ix < pa; ix++) {
         *tmpb++ = W[ix] & MP_MASK;
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpb++ = 0;
      }
   }
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_2expt.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
int
mp_2expt (mp_int * a, int b)
{
  int     res;

  /* zero a as per default */
  mp_zero (a);

  /* grow a to accomodate the single bit */
  if ((res = mp_grow (a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
    return res;
  }

  /* set the used count of where the bit will go */
  a->used = (b / DIGIT_BIT) + 1;

  /* put the single bit in its place */
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|




|
<

|

|
|

|
|
|
|

|
|

|
|

|






11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes a = 2**b
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
int mp_2expt(mp_int *a, int b)

{
   int     res;

   /* zero a as per default */
   mp_zero(a);

   /* grow a to accomodate the single bit */
   if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
      return res;
   }

   /* set the used count of where the bit will go */
   a->used = (b / DIGIT_BIT) + 1;

   /* put the single bit in its place */
   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_abs.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = |a| 
 *
 * Simple function copies the input and fixes the sign to positive
 */
int
mp_abs (mp_int * a, mp_int * b)
{
  int     res;

  /* copy a to b */
  if (a != b) {
     if ((res = mp_copy (a, b)) != MP_OKAY) {
       return res;
     }
  }

  /* force the sign of b to positive */
  b->sign = MP_ZPOS;

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|
<

|

|
|
|
|
|
|

|
|

|






11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = |a|
 *
 * Simple function copies the input and fixes the sign to positive
 */
int mp_abs(const mp_int *a, mp_int *b)

{
   int     res;

   /* copy a to b */
   if (a != b) {
      if ((res = mp_copy(a, b)) != MP_OKAY) {
         return res;
      }
   }

   /* force the sign of b to positive */
   b->sign = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_add.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

  /* get sign of both inputs */
  sa = a->sign;
  sb = b->sign;

  /* handle two cases, not four */
  if (sa == sb) {
    /* both positive or both negative */
    /* add their magnitudes, copy the sign */
    c->sign = sa;
    res = s_mp_add (a, b, c);
  } else {
    /* one positive, the other negative */
    /* subtract the one with the greater magnitude from */
    /* the one of the lesser magnitude.  The result gets */
    /* the sign of the one with the greater magnitude. */
    if (mp_cmp_mag (a, b) == MP_LT) {
      c->sign = sb;
      res = s_mp_sub (b, a, c);
    } else {
      c->sign = sa;
      res = s_mp_sub (a, b, c);
    }
  }
  return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level addition (handles signs) */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     sa, sb, res;

   /* get sign of both inputs */
   sa = a->sign;
   sb = b->sign;

   /* handle two cases, not four */
   if (sa == sb) {
      /* both positive or both negative */
      /* add their magnitudes, copy the sign */
      c->sign = sa;
      res = s_mp_add(a, b, c);
   } else {
      /* one positive, the other negative */
      /* subtract the one with the greater magnitude from */
      /* the one of the lesser magnitude.  The result gets */
      /* the sign of the one with the greater magnitude. */
      if (mp_cmp_mag(a, b) == MP_LT) {
         c->sign = sb;
         res = s_mp_sub(b, a, c);
      } else {
         c->sign = sa;
         res = s_mp_sub(a, b, c);
      }
   }
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_add_d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* single digit addition */
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, ix, oldused;
  mp_digit *tmpa, *tmpc, mu;

  /* grow c as required */
  if (c->alloc < (a->used + 1)) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative and |a| >= b, call c = |a| - b */
  if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {

     /* temporarily fix sign of a */
     a->sign = MP_ZPOS;

     /* c = |a| - b */
     res = mp_sub_d(a, b, c);

     /* fix sign  */
     a->sign = c->sign = MP_NEG;

     /* clamp */
     mp_clamp(c);

     return res;
  }

  /* old number of used digits in c */
  oldused = c->used;

  /* source alias */
  tmpa    = a->dp;

  /* destination alias */
  tmpc    = c->dp;

  /* if a is positive */
  if (a->sign == MP_ZPOS) {
     /* add digit, after this we're propagating
      * the carry.
      */
     *tmpc   = *tmpa++ + b;
     mu      = *tmpc >> DIGIT_BIT;
     *tmpc++ &= MP_MASK;

     /* now handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc   = *tmpa++ + mu;
        mu      = *tmpc >> DIGIT_BIT;
        *tmpc++ &= MP_MASK;
     }
     /* set final carry */
     ix++;
     *tmpc++  = mu;

     /* setup size */
     c->used = a->used + 1;
  } else {
     /* a was negative and |a| < b */
     c->used  = 1;

     /* the result is a single digit */
     if (a->used == 1) {
        *tmpc++  =  b - a->dp[0];
     } else {
        *tmpc++  =  b;
     }

     /* setup count so the clearing of oldused
      * can fall through correctly
      */
     ix       = 1;
  }

  /* sign always positive */
  c->sign = MP_ZPOS;

  /* now zero to oldused */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);

  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|

|
|
|
|
|
|

|
|
>
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|







12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* single digit addition */

int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
   int     res, ix, oldused;
   mp_digit *tmpa, *tmpc, mu;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* if a is negative and |a| >= b, call c = |a| - b */
   if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
      mp_int a_ = *a;
      /* temporarily fix sign of a */
      a_.sign = MP_ZPOS;

      /* c = |a| - b */
      res = mp_sub_d(&a_, b, c);

      /* fix sign  */
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return res;
   }

   /* old number of used digits in c */
   oldused = c->used;

   /* source alias */
   tmpa    = a->dp;

   /* destination alias */
   tmpc    = c->dp;

   /* if a is positive */
   if (a->sign == MP_ZPOS) {
      /* add digit, after this we're propagating
       * the carry.
       */
      *tmpc   = *tmpa++ + b;
      mu      = *tmpc >> DIGIT_BIT;
      *tmpc++ &= MP_MASK;

      /* now handle rest of the digits */
      for (ix = 1; ix < a->used; ix++) {
         *tmpc   = *tmpa++ + mu;
         mu      = *tmpc >> DIGIT_BIT;
         *tmpc++ &= MP_MASK;
      }
      /* set final carry */
      ix++;
      *tmpc++  = mu;

      /* setup size */
      c->used = a->used + 1;
   } else {
      /* a was negative and |a| < b */
      c->used  = 1;

      /* the result is a single digit */
      if (a->used == 1) {
         *tmpc++  =  b - a->dp[0];
      } else {
         *tmpc++  =  b;
      }

      /* setup count so the clearing of oldused
       * can fall through correctly
       */
      ix       = 1;
   }

   /* sign always positive */
   c->sign = MP_ZPOS;

   /* now zero to oldused */
   while (ix++ < oldused) {
      *tmpc++ = 0;
   }
   mp_clamp(c);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_addmod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a + b (mod c) */
int
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_add (a, b, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|

|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)

{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_add(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_and.c.

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* AND two ints together */
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;


  if (a->used > b->used) {
    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
      return res;
    }
    px = b->used;
    x = b;
  } else {
    if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
      return res;
    }
    px = a->used;
    x = a;
  }

  for (ix = 0; ix < px; ix++) {
    t.dp[ix] &= x->dp[ix];
  }

  /* zero digits above the last from the smallest mp_int */
  for (; ix < t.used; ix++) {
    t.dp[ix] = 0;
  }

  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|
>

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* AND two ints together */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;

   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }
      px = b->used;
      x = b;
   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;
      x = a;
   }

   for (ix = 0; ix < px; ix++) {
      t.dp[ix] &= x->dp[ix];
   }

   /* zero digits above the last from the smallest mp_int */
   for (; ix < t.used; ix++) {
      t.dp[ix] = 0;
   }

   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clamp.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */
void
mp_clamp (mp_int * a)
{
  /* decrease used while the most significant digit is
   * zero.
   */
  while ((a->used > 0) && (a->dp[a->used - 1] == 0)) {
    --(a->used);
  }

  /* reset the sign flag if used == 0 */
  if (a->used == 0) {
    a->sign = MP_ZPOS;
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|






<
|

|
|
|
|
|
|

|
|
|
|






11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* trim unused digits
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */

void mp_clamp(mp_int *a)
{
   /* decrease used while the most significant digit is
    * zero.
    */
   while ((a->used > 0) && (a->dp[a->used - 1] == 0)) {
      --(a->used);
   }

   /* reset the sign flag if used == 0 */
   if (a->used == 0) {
      a->sign = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clear.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* clear one (frees)  */
void
mp_clear (mp_int * a)
{
  int i;

  /* only do anything if a hasn't been freed previously */
  if (a->dp != NULL) {
    /* first zero the digits */
    for (i = 0; i < a->used; i++) {
        a->dp[i] = 0;
    }

    /* free ram */
    XFREE(a->dp);

    /* reset members to make debugging easier */
    a->dp    = NULL;
    a->alloc = a->used = 0;
    a->sign  = MP_ZPOS;
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* clear one (frees)  */

void mp_clear(mp_int *a)
{
   int i;

   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {
      /* first zero the digits */
      for (i = 0; i < a->used; i++) {
         a->dp[i] = 0;
      }

      /* free ram */
      XFREE(a->dp);

      /* reset members to make debugging easier */
      a->dp    = NULL;
      a->alloc = a->used = 0;
      a->sign  = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clear_multi.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...) 
{
    mp_int* next_mp = mp;
    va_list args;
    va_start(args, mp);
    while (next_mp != NULL) {
        mp_clear(next_mp);
        next_mp = va_arg(args, mp_int*);
    }
    va_end(args);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...)
{
   mp_int *next_mp = mp;
   va_list args;
   va_start(args, mp);
   while (next_mp != NULL) {
      mp_clear(next_mp);
      next_mp = va_arg(args, mp_int *);
   }
   va_end(args);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare two ints (signed)*/
int
mp_cmp (const mp_int * a, const mp_int * b)
{
  /* compare based on sign */
  if (a->sign != b->sign) {
     if (a->sign == MP_NEG) {
        return MP_LT;
     } else {
        return MP_GT;
     }
  }
  
  /* compare digits */
  if (a->sign == MP_NEG) {
     /* if negative compare opposite direction */
     return mp_cmp_mag(b, a);
  } else {
     return mp_cmp_mag(a, b);
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare two ints (signed)*/

int mp_cmp(const mp_int *a, const mp_int *b)
{
   /* compare based on sign */
   if (a->sign != b->sign) {
      if (a->sign == MP_NEG) {
         return MP_LT;
      } else {
         return MP_GT;
      }
   }

   /* compare digits */
   if (a->sign == MP_NEG) {
      /* if negative compare opposite direction */
      return mp_cmp_mag(b, a);
   } else {
      return mp_cmp_mag(a, b);
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp_d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare a digit */
int mp_cmp_d(const mp_int * a, mp_digit b)
{
  /* compare based on sign */
  if (a->sign == MP_NEG) {
    return MP_LT;
  }

  /* compare based on magnitude */
  if (a->used > 1) {
    return MP_GT;
  }

  /* compare the only digit of a to b */
  if (a->dp[0] > b) {
    return MP_GT;
  } else if (a->dp[0] < b) {
    return MP_LT;
  } else {
    return MP_EQ;
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare a digit */
int mp_cmp_d(const mp_int *a, mp_digit b)
{
   /* compare based on sign */
   if (a->sign == MP_NEG) {
      return MP_LT;
   }

   /* compare based on magnitude */
   if (a->used > 1) {
      return MP_GT;
   }

   /* compare the only digit of a to b */
   if (a->dp[0] > b) {
      return MP_GT;
   } else if (a->dp[0] < b) {
      return MP_LT;
   } else {
      return MP_EQ;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp_mag.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (const mp_int * a, const mp_int * b)
{
  int     n;
  mp_digit *tmpa, *tmpb;

  /* compare based on # of non-zero digits */
  if (a->used > b->used) {
    return MP_GT;
  }
  
  if (a->used < b->used) {
    return MP_LT;
  }

  /* alias for a */
  tmpa = a->dp + (a->used - 1);

  /* alias for b */
  tmpb = b->dp + (a->used - 1);

  /* compare based on digits  */
  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
    if (*tmpa > *tmpb) {
      return MP_GT;
    }

    if (*tmpa < *tmpb) {
      return MP_LT;
    }
  }
  return MP_EQ;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag(const mp_int *a, const mp_int *b)
{
   int     n;
   mp_digit *tmpa, *tmpb;

   /* compare based on # of non-zero digits */
   if (a->used > b->used) {
      return MP_GT;
   }

   if (a->used < b->used) {
      return MP_LT;
   }

   /* alias for a */
   tmpa = a->dp + (a->used - 1);

   /* alias for b */
   tmpb = b->dp + (a->used - 1);

   /* compare based on digits  */
   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
      if (*tmpa > *tmpb) {
         return MP_GT;
      }

      if (*tmpa < *tmpb) {
         return MP_LT;
      }
   }
   return MP_EQ;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cnt_lsb.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

static const int lnz[16] = { 
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;






|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

static const int lnz[16] = {
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;

Changes to libtommath/bn_mp_copy.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
  int     res, n;

  /* if dst == src do nothing */
  if (a == b) {
    return MP_OKAY;
  }

  /* grow dest */
  if (b->alloc < a->used) {
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
     }
  }

  /* zero b and copy the parameters over */
  {
    mp_digit *tmpa, *tmpb;

    /* pointer aliases */

    /* source */
    tmpa = a->dp;

    /* destination */
    tmpb = b->dp;

    /* copy all the digits */
    for (n = 0; n < a->used; n++) {
      *tmpb++ = *tmpa++;
    }

    /* clear high digits */
    for (; n < b->used; n++) {
      *tmpb++ = 0;
    }
  }

  /* copy used count and sign */
  b->used = a->used;
  b->sign = a->sign;
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* copy, b = a */

int mp_copy(const mp_int *a, mp_int *b)
{
   int     res, n;

   /* if dst == src do nothing */
   if (a == b) {
      return MP_OKAY;
   }

   /* grow dest */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   /* zero b and copy the parameters over */
   {
      mp_digit *tmpa, *tmpb;

      /* pointer aliases */

      /* source */
      tmpa = a->dp;

      /* destination */
      tmpb = b->dp;

      /* copy all the digits */
      for (n = 0; n < a->used; n++) {
         *tmpb++ = *tmpa++;
      }

      /* clear high digits */
      for (; n < b->used; n++) {
         *tmpb++ = 0;
      }
   }

   /* copy used count and sign */
   b->used = a->used;
   b->sign = a->sign;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_count_bits.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* returns the number of bits in an int */
int
mp_count_bits (const mp_int * a)
{
  int     r;
  mp_digit q;

  /* shortcut */
  if (a->used == 0) {
    return 0;
  }

  /* get number of digits and add that */
  r = (a->used - 1) * DIGIT_BIT;
  
  /* take the last digit and count the bits in it */
  q = a->dp[a->used - 1];
  while (q > ((mp_digit) 0)) {
    ++r;
    q >>= ((mp_digit) 1);
  }
  return r;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* returns the number of bits in an int */

int mp_count_bits(const mp_int *a)
{
   int     r;
   mp_digit q;

   /* shortcut */
   if (a->used == 0) {
      return 0;
   }

   /* get number of digits and add that */
   r = (a->used - 1) * DIGIT_BIT;

   /* take the last digit and count the bits in it */
   q = a->dp[a->used - 1];
   while (q > ((mp_digit) 0)) {
      ++r;
      q >>= ((mp_digit) 1);
   }
   return r;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
..
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281

282
283

284


285
286
287
288
289
290
291
292
293
294
295
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

  /* is divisor zero ? */
  if (mp_iszero (b) == MP_YES) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  /* init our temps */
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
     return res;
  }


  mp_set(&tq, 1);
  n = mp_count_bits(a) - mp_count_bits(b);
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
      ((res = mp_abs(b, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
  }

  while (n-- >= 0) {
     if (mp_cmp(&tb, &ta) != MP_GT) {
        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
           goto LBL_ERR;
        }
     }
     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
           goto LBL_ERR;
     }
  }

  /* now q == quotient and ta == remainder */
  n  = a->sign;
  n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  if (c != NULL) {
     mp_exch(c, &q);
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
  }
  if (d != NULL) {
     mp_exch(d, &ta);
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
  }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

................................................................................
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == MP_YES) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    return res;
  }
  q.used = a->used + 2;

  if ((res = mp_init (&t1)) != MP_OKAY) {
    goto LBL_Q;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
    goto LBL_T2;
  }

  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
    goto LBL_X;
  }

  /* fix the sign */
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  x.sign = y.sign = MP_ZPOS;

  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
  norm = mp_count_bits(&y) % DIGIT_BIT;
  if (norm < (int)(DIGIT_BIT-1)) {
     norm = (DIGIT_BIT-1) - norm;
     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
       goto LBL_Y;
     }
     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
       goto LBL_Y;
     }
  } else {
     norm = 0;
  }

  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
  n = x.used - 1;
  t = y.used - 1;

  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
    goto LBL_Y;
  }

  while (mp_cmp (&x, &y) != MP_LT) {
    ++(q.dp[n - t]);
    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
      goto LBL_Y;
    }
  }

  /* reset y by shifting it back down */
  mp_rshd (&y, n - t);

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK) {
        tmp = MP_MASK;
      }
      q.dp[(i - t) - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }

    /* while (q{i-t-1} * (yt * b + y{t-1})) >
             xi * b**2 + xi-1 * b + xi-2

       do q{i-t-1} -= 1;
    */
    q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK;
    do {
      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK;

      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1];
      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
        goto LBL_Y;
      }

      /* find right hand */
      t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1];
      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
      goto LBL_Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
        goto LBL_Y;
      }

      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK;
    }
  }

  /* now q is the quotient and x is the remainder
   * [which we have to normalize]
   */

  /* get sign before writing to c */
  x.sign = (x.used == 0) ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_exch (&q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
      goto LBL_Y;
    }
    mp_exch (&x, d);
  }

  res = MP_OKAY;


LBL_Y:mp_clear (&y);

LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);

LBL_T1:mp_clear (&t1);


LBL_Q:mp_clear (&q);
  return res;
}

#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|




|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|


|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|







 







|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

>
|
>
|
|
>
|
>
>
|
|









14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
..
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   /* init our temps */
   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return res;
   }


   mp_set(&tq, 1);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
   }

   while (n-- >= 0) {
      if (mp_cmp(&tb, &ta) != MP_GT) {
         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
         }
      }
      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
         goto LBL_ERR;
      }
   }

   /* now q == quotient and ta == remainder */
   n  = a->sign;
   n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   if (c != NULL) {
      mp_exch(c, &q);
      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
   }
   if (d != NULL) {
      mp_exch(d, &ta);
      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
   }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

................................................................................
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return res;
   }
   q.used = a->used + 2;

   if ((res = mp_init(&t1)) != MP_OKAY) {
      goto LBL_Q;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
      goto LBL_T2;
   }

   if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
      goto LBL_X;
   }

   /* fix the sign */
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
   norm = mp_count_bits(&y) % DIGIT_BIT;
   if (norm < (int)(DIGIT_BIT-1)) {
      norm = (DIGIT_BIT-1) - norm;
      if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
      if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
         goto LBL_Y;
      }
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
      goto LBL_Y;
   }

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
      } else {
         mp_word tmp;
         tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
         tmp |= ((mp_word) x.dp[i - 1]);
         tmp /= ((mp_word) y.dp[t]);
         if (tmp > (mp_word) MP_MASK) {
            tmp = MP_MASK;
         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)(MP_MASK));
      }

      /* while (q{i-t-1} * (yt * b + y{t-1})) >
               xi * b**2 + xi-1 * b + xi-2

         do q{i-t-1} -= 1;
      */
      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK;
      do {
         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK;

         /* find left hand */
         mp_zero(&t1);
         t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;
         if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* find right hand */
         t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2];
         t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1];
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (x.sign == MP_NEG) {
         if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
            goto LBL_Y;
         }

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK;
      }
   }

   /* now q is the quotient and x is the remainder
    * [which we have to normalize]
    */

   /* get sign before writing to c */
   x.sign = (x.used == 0) ? MP_ZPOS : a->sign;

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = neg;
   }

   if (d != NULL) {
      if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
         goto LBL_Y;
      }
      mp_exch(&x, d);
   }

   res = MP_OKAY;

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return res;
}

#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_2.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = a/2 */
int mp_div_2(const mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* copy */
  if (b->alloc < a->used) {
    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;
  {
    mp_digit r, rr, *tmpa, *tmpb;

    /* source alias */
    tmpa = a->dp + b->used - 1;

    /* dest alias */
    tmpb = b->dp + b->used - 1;

    /* carry */
    r = 0;
    for (x = b->used - 1; x >= 0; x--) {
      /* get the carry for the next iteration */
      rr = *tmpa & 1;

      /* shift the current digit, add in carry and store */
      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

      /* forward carry to next iteration */
      r = rr;
    }

    /* zero excess digits */
    tmpb = b->dp + b->used;
    for (x = b->used; x < oldused; x++) {
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  mp_clamp (b);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b)
{
   int     x, res, oldused;

   /* copy */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   oldused = b->used;
   b->used = a->used;
   {
      mp_digit r, rr, *tmpa, *tmpb;

      /* source alias */
      tmpa = a->dp + b->used - 1;

      /* dest alias */
      tmpb = b->dp + b->used - 1;

      /* carry */
      r = 0;
      for (x = b->used - 1; x >= 0; x--) {
         /* get the carry for the next iteration */
         rr = *tmpa & 1;

         /* shift the current digit, add in carry and store */
         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

         /* forward carry to next iteration */
         r = rr;
      }

      /* zero excess digits */
      tmpb = b->dp + b->used;
      for (x = b->used; x < oldused; x++) {
         *tmpb++ = 0;
      }
   }
   b->sign = a->sign;
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_2d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
  mp_digit D, r, rr;
  int     x, res;

  /* if the shift count is <= 0 then we do no work */
  if (b <= 0) {
    res = mp_copy (a, c);
    if (d != NULL) {
      mp_zero (d);
    }
    return res;
  }

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    return res;
  }
  /* 'a' should not be used after here - it might be the same as d */

  /* get the remainder */
  if (d != NULL) {
    if ((res = mp_mod_2d (a, b, d)) != MP_OKAY) {
      return res;
    }
  }

  /* shift by as many digits in the bit count */
  if (b >= (int)DIGIT_BIT) {
    mp_rshd (c, b / DIGIT_BIT);
  }

  /* shift any bit count < DIGIT_BIT */
  D = (mp_digit) (b % DIGIT_BIT);
  if (D != 0) {
    mp_digit *tmpc, mask, shift;

    /* mask */
    mask = (((mp_digit)1) << D) - 1;

    /* shift for lsb */
    shift = DIGIT_BIT - D;

    /* alias */
    tmpc = c->dp + (c->used - 1);

    /* carry */
    r = 0;
    for (x = c->used - 1; x >= 0; x--) {
      /* get the lower  bits of this word in a temp */
      rr = *tmpc & mask;

      /* shift the current word and mix in the carry bits from the previous word */
      *tmpc = (*tmpc >> D) | (r << shift);
      --tmpc;

      /* set the carry to the carry bits of the current word found above */
      r = rr;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
{
   mp_digit D, r, rr;
   int     x, res;

   /* if the shift count is <= 0 then we do no work */
   if (b <= 0) {
      res = mp_copy(a, c);
      if (d != NULL) {
         mp_zero(d);
      }
      return res;
   }

   /* copy */
   if ((res = mp_copy(a, c)) != MP_OKAY) {
      return res;
   }
   /* 'a' should not be used after here - it might be the same as d */

   /* get the remainder */
   if (d != NULL) {
      if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) {
         return res;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= (int)DIGIT_BIT) {
      mp_rshd(c, b / DIGIT_BIT);
   }

   /* shift any bit count < DIGIT_BIT */
   D = (mp_digit)(b % DIGIT_BIT);
   if (D != 0) {
      mp_digit *tmpc, mask, shift;

      /* mask */
      mask = (((mp_digit)1) << D) - 1;

      /* shift for lsb */
      shift = DIGIT_BIT - D;

      /* alias */
      tmpc = c->dp + (c->used - 1);

      /* carry */
      r = 0;
      for (x = c->used - 1; x >= 0; x--) {
         /* get the lower  bits of this word in a temp */
         rr = *tmpc & mask;

         /* shift the current word and mix in the carry bits from the previous word */
         *tmpc = (*tmpc >> D) | (r << shift);
         --tmpc;

         /* set the carry to the carry bits of the current word found above */
         r = rr;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_3.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
  mp_int   q;
  mp_word  w, t;
  mp_digit b;
  int      res, ix;
  
  /* b = 2**DIGIT_BIT / 3 */
  b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);

  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
     return res;
  }
  
  q.used = a->used;
  q.sign = a->sign;
  w = 0;
  for (ix = a->used - 1; ix >= 0; ix--) {
     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

     if (w >= 3) {
        /* multiply w by [1/3] */
        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);

        /* now subtract 3 * [w/3] from w, to get the remainder */
        w -= t+t+t;

        /* fixup the remainder as required since
         * the optimization is not exact.
         */
        while (w >= 3) {
           t += 1;
           w -= 3;
        }
      } else {
        t = 0;
      }
      q.dp[ix] = (mp_digit)t;
  }

  /* [optional] store the remainder */
  if (d != NULL) {
     *d = (mp_digit)w;
  }

  /* [optional] store the quotient */
  if (c != NULL) {
     mp_clamp(&q);
     mp_exch(&q, c);
  }
  mp_clear(&q);
  
  return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|


|

|
|
|
|

|
|
|
|
|
|
|
|







12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* divide by three (based on routine from MPI and the GMP manual) */

int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
   mp_int   q;
   mp_word  w, t;
   mp_digit b;
   int      res, ix;

   /* b = 2**DIGIT_BIT / 3 */
   b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);

   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

      if (w >= 3) {
         /* multiply w by [1/3] */
         t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);

         /* now subtract 3 * [w/3] from w, to get the remainder */
         w -= t+t+t;

         /* fixup the remainder as required since
          * the optimization is not exact.
          */
         while (w >= 3) {
            t += 1;
            w -= 3;
         }
      } else {
         t = 0;
      }
      q.dp[ix] = (mp_digit)t;
   }

   /* [optional] store the remainder */
   if (d != NULL) {
      *d = (mp_digit)w;
   }

   /* [optional] store the quotient */
   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_d.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60






61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   /* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */
   if ((b == 0) || ((b & (b-1)) != 0)) {
       return 0;
   }
   for (x = 1; x < DIGIT_BIT; x++) {
      if (b == (((mp_digit)1)<<x)) {
         *p = x;
         return 1;
      }
   }
   return 0;
}

/* single digit division (based on routine from MPI) */
int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)

{
  mp_int  q;
  mp_word w;
  mp_digit t;
  int     res, ix;

  /* cannot divide by zero */
  if (b == 0) {
     return MP_VAL;
  }

  /* quick outs */
  if ((b == 1) || (mp_iszero(a) == MP_YES)) {
     if (d != NULL) {
        *d = 0;
     }
     if (c != NULL) {
        return mp_copy(a, c);
     }
     return MP_OKAY;
  }

  /* power of two ? */
  if (s_is_power_of_two(b, &ix) == 1) {






     if (d != NULL) {
        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
     }
     if (c != NULL) {
        return mp_div_2d(a, ix, c, NULL);
     }
     return MP_OKAY;
  }

#ifdef BN_MP_DIV_3_C
  /* three? */
  if (b == 3) {
     return mp_div_3(a, c, d);
  }
#endif

  /* no easy answer [c'est la vie].  Just division */
  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
     return res;
  }
  
  q.used = a->used;
  q.sign = a->sign;
  w = 0;
  for (ix = a->used - 1; ix >= 0; ix--) {
     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
     
     if (w >= b) {
        t = (mp_digit)(w / b);
        w -= ((mp_word)t) * ((mp_word)b);
      } else {
        t = 0;
      }
      q.dp[ix] = (mp_digit)t;
  }
  
  if (d != NULL) {
     *d = (mp_digit)w;
  }
  
  if (c != NULL) {
     mp_clamp(&q);
     mp_exch(&q, c);
  }
  mp_clear(&q);
  
  return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
>

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
<
>
>
>
>
>
>
|
|
|
|
|
|
|
|


|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|

|


|
|
|
|
|
|
|
|
|
|
|
|
|







11
12
13
14
15
16
17

















18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */


















/* single digit division (based on routine from MPI) */

int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
   mp_int  q;
   mp_word w;
   mp_digit t;
   int     res, ix;

   /* cannot divide by zero */
   if (b == 0) {
      return MP_VAL;
   }

   /* quick outs */
   if ((b == 1) || (mp_iszero(a) == MP_YES)) {
      if (d != NULL) {
         *d = 0;
      }
      if (c != NULL) {
         return mp_copy(a, c);
      }
      return MP_OKAY;
   }

   /* power of two ? */

   if (((b & (b-1)) == 0)) {
      for (ix = 1; ix < DIGIT_BIT; ix++) {
         if (b == (((mp_digit)1)<<ix)) {
            break;
         }
      }
      if (d != NULL) {
         *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
      }
      if (c != NULL) {
         return mp_div_2d(a, ix, c, NULL);
      }
      return MP_OKAY;
   }

#ifdef BN_MP_DIV_3_C
   /* three? */
   if (b == 3) {
      return mp_div_3(a, c, d);
   }
#endif

   /* no easy answer [c'est la vie].  Just division */
   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

      if (w >= b) {
         t = (mp_digit)(w / b);
         w -= ((mp_word)t) * ((mp_word)b);
      } else {
         t = 0;
      }
      q.dp[ix] = (mp_digit)t;
   }

   if (d != NULL) {
      *d = (mp_digit)w;
   }

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_is_modulus.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return 0;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
       if (a->dp[ix] != MP_MASK) {
          return 0;
       }
   }
   return 1;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|












|
|
|









12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return 0;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
      if (a->dp[ix] != MP_MASK) {
         return 0;
      }
   }
   return 1;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_reduce.c.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int
mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
  int      err, i, m;
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < (m + m)) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
 */
top:
  /* aliases for digits */
  /* alias for lower half of x */
  tmpx1 = x->dp;

  /* alias for upper half of x, or x/B**m */
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

  /* zero words above m */
  for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
  }

  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
      return err;
    }
    goto top;
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|



|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|






25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)

{
   int      err, i, m;
   mp_word  r;
   mp_digit mu, *tmpx1, *tmpx2;

   /* m = digits in modulus */
   m = n->used;

   /* ensure that "x" has at least 2m digits */
   if (x->alloc < (m + m)) {
      if ((err = mp_grow(x, m + m)) != MP_OKAY) {
         return err;
      }
   }

   /* top of loop, this is where the code resumes if
    * another reduction pass is required.
    */
top:
   /* aliases for digits */
   /* alias for lower half of x */
   tmpx1 = x->dp;

   /* alias for upper half of x, or x/B**m */
   tmpx2 = x->dp + m;

   /* set carry to zero */
   mu = 0;

   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
   for (i = 0; i < m; i++) {
      r         = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
   }

   /* set final carry */
   *tmpx1++ = mu;

   /* zero words above m */
   for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
   }

   /* clamp, sub and return */
   mp_clamp(x);

   /* if x >= n then subtract and reduce again
    * Each successive "recursion" makes the input smaller and smaller.
    */
   if (mp_cmp_mag(x, n) != MP_LT) {
      if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
         return err;
      }
      goto top;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_setup.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
        ((mp_word)a->dp[0]));
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|




|
<







12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - ((mp_word)a->dp[0]));

}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exch.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* swap the elements of two integers, for cases where you can't simply swap the 
 * mp_int pointers around
 */
void
mp_exch (mp_int * a, mp_int * b)
{
  mp_int  t;

  t  = *a;
  *a = *b;
  *b = t;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|
<

|

|
|
|






11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* swap the elements of two integers, for cases where you can't simply swap the
 * mp_int pointers around
 */
void mp_exch(mp_int *a, mp_int *b)

{
   mp_int  t;

   t  = *a;
   *a = *b;
   *b = t;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_export.c.

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_export(void* rop, size_t* countp, int order, size_t size, 
                                int endian, size_t nails, mp_int* op) {

	int result;
	size_t odd_nails, nail_bytes, i, j, bits, count;
	unsigned char odd_nail_mask;

	mp_int t;

	if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
		return result;
	}

	if (endian == 0) {
		union {
			unsigned int i;
			char c[4];
		} lint;
		lint.i = 0x01020304;

		endian = (lint.c[0] == 4) ? -1 : 1;
	}

	odd_nails = (nails % 8);
	odd_nail_mask = 0xff;
	for (i = 0; i < odd_nails; ++i) {
		odd_nail_mask ^= (1 << (7 - i));
	}
	nail_bytes = nails / 8;

	bits = mp_count_bits(&t);
	count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);

	for (i = 0; i < count; ++i) {
		for (j = 0; j < size; ++j) {
			unsigned char* byte = (
				(unsigned char*)rop + 
				(((order == -1) ? i : ((count - 1) - i)) * size) +
				((endian == -1) ? j : ((size - 1) - j))
			);

			if (j >= (size - nail_bytes)) {
				*byte = 0;
				continue;
			}

			*byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));

			if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
				mp_clear(&t);
				return result;
			}
		}
	}

	mp_clear(&t);

	if (countp != NULL) {
		*countp = count;
	}

	return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
>
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
<
|
|
|
<

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_export(void *rop, size_t *countp, int order, size_t size,
              int endian, size_t nails, const mp_int *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j, bits, count;
   unsigned char odd_nail_mask;

   mp_int t;

   if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
      return result;
   }

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;
      lint.i = 0x01020304;

      endian = (lint.c[0] == 4) ? -1 : 1;
   }

   odd_nails = (nails % 8);
   odd_nail_mask = 0xff;
   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (1 << (7 - i));
   }
   nail_bytes = nails / 8;

   bits = mp_count_bits(&t);
   count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);

   for (i = 0; i < count; ++i) {
      for (j = 0; j < size; ++j) {

         unsigned char *byte = (unsigned char *)rop +
                               (((order == -1) ? i : ((count - 1) - i)) * size) +
                               ((endian == -1) ? j : ((size - 1) - j));


         if (j >= (size - nail_bytes)) {
            *byte = 0;
            continue;
         }

         *byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));

         if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
            mp_clear(&t);
            return result;
         }
      }
   }

   mp_clear(&t);

   if (countp != NULL) {
      *countp = count;
   }

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_expt_d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
  return mp_expt_d_ex(a, b, c, 0);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* wrapper function for mp_expt_d_ex() */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{
   return mp_expt_d_ex(a, b, c, 0);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_expt_d_ex.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
  int     res;
  unsigned int x;

  mp_int  g;

  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
    return res;
  }

  /* set initial result */
  mp_set (c, 1);

  if (fast != 0) {
    while (b > 0) {
      /* if the bit is set multiply */
      if ((b & 1) != 0) {
        if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
          mp_clear (&g);
          return res;
        }
      }

      /* square */
      if (b > 1) {
        if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
          mp_clear (&g);
          return res;
        }
      }

      /* shift to next bit */
      b >>= 1;
    }
  }
  else {
    for (x = 0; x < DIGIT_BIT; x++) {
      /* square */
      if ((res = mp_sqr (c, c)) != MP_OKAY) {
        mp_clear (&g);
        return res;
      }

      /* if the bit is set multiply */
      if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
        if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
           mp_clear (&g);
           return res;
        }
      }

      /* shift to next bit */
      b <<= 1;
    }
  } /* if ... else */

  mp_clear (&g);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
<
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   int     res;
   unsigned int x;

   mp_int  g;

   if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
      return res;
   }

   /* set initial result */
   mp_set(c, 1);

   if (fast != 0) {
      while (b > 0) {
         /* if the bit is set multiply */
         if ((b & 1) != 0) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* square */
         if (b > 1) {
            if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b >>= 1;
      }

   } else {
      for (x = 0; x < DIGIT_BIT; x++) {
         /* square */
         if ((res = mp_sqr(c, c)) != MP_OKAY) {
            mp_clear(&g);
            return res;
         }

         /* if the bit is set multiply */
         if ((b & (mp_digit)(((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b <<= 1;
      }
   } /* if ... else */

   mp_clear(&g);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exptmod.c.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
  int dr;

  /* modulus P must be positive */
  if (P->sign == MP_NEG) {
     return MP_VAL;
  }

  /* if exponent X is negative we have to recurse */
  if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
     mp_int tmpG, tmpX;
     int err;

     /* first compute 1/G mod P */
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
        return err;
     }
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }

     /* now get |X| */
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
        mp_clear_multi(&tmpG, &tmpX, NULL);
        return err;
     }

     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
     mp_clear_multi(&tmpG, &tmpX, NULL);
     return err;
#else 
     /* no invmod */
     return MP_VAL;
#endif
  }

/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
  if (mp_reduce_is_2k_l(P) == MP_YES) {
     return s_mp_exptmod(G, X, P, Y, 1);
  }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
  /* is it a DR modulus? */
  dr = mp_dr_is_modulus(P);
#else
  /* default to no */
  dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
  /* if not, is it a unrestricted DR modulus? */
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
#endif
    
  /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
  if ((mp_isodd (P) == MP_YES) || (dr !=  0)) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y, 0);
#else
    /* no exptmod for evens */
    return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
  }
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|



|
|

|
|



|
|
|
|

|
|

|
|
|


|
|

|
|


|








17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      int err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }

      /* now get |X| */
      if ((err = mp_init(&tmpX)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
         mp_clear_multi(&tmpG, &tmpX, NULL);
         return err;
      }

      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
      mp_clear_multi(&tmpG, &tmpX, NULL);
      return err;
#else
      /* no invmod */
      return MP_VAL;
#endif
   }

   /* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = mp_dr_is_modulus(P);
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = mp_reduce_is_2k(P) << 1;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
   if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
      return mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exptmod_fast.c.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
   #define TAB_SIZE 32
#else
   #define TAB_SIZE 256
#endif

int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
  mp_int  M[TAB_SIZE], res;
  mp_digit buf, mp;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* use a pointer to the reduction algorithm.  This allows us to use
   * one of many reduction algorithms without modding the guts of
   * the code with if statements everywhere.
   */
  int     (*redux)(mp_int*,mp_int*,mp_digit);

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

#ifdef MP_LOW_MEM
  if (winsize > 5) {
     winsize = 5;
  }
#endif

  /* init M array */
  /* init first cell */
  if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
     return err;
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* determine and setup reduction code */
  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C     
     /* now setup montgomery  */
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
#else
        err = MP_VAL;
        goto LBL_M;
#endif
     }
  } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
     /* setup DR reduction for moduli of the form B**k - b */
     mp_dr_setup(P, &mp);
     redux = mp_dr_reduce;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
     /* setup DR reduction for moduli of the form 2**k - b */
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
     redux = mp_reduce_2k;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  }

  /* setup result */
  if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
    goto LBL_M;
  }

  /* create M table
   *

   *
   * The first half of the table is not computed though accept for M[0] and M[1]
   */

  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
     /* now we need R mod m */
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
       goto LBL_RES;
     }

     /* now set M[1] to G * R mod m */
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
       goto LBL_RES;
     }
#else
     err = MP_VAL;
     goto LBL_RES;
#endif
  } else {
     mp_set(&res, 1);
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
        goto LBL_RES;
     }
  }

  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto LBL_RES;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* create upper table */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits so break */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset bitcnt */
      buf    = X->dp[digidx--];
      bitcnt = (int)DIGIT_BIT;
    }

    /* grab the next msb from the exponent */
    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* get next bit of the window */
      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }
    }
  }

  if (redmode == 0) {
     /* fixup result if Montgomery reduction is used
      * recall that any value in a Montgomery system is
      * actually multiplied by R mod n.  So we have
      * to reduce one more time to cancel out the factor
      * of R.
      */
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
       goto LBL_RES;
     }
  }

  /* swap res with Y */
  mp_exch (&res, Y);
  err = MP_OKAY;
LBL_RES:mp_clear (&res);

LBL_M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|


|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|


|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|


|

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
>

|
|
|
|
|







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res;
   mp_digit buf, mp;
   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

   /* use a pointer to the reduction algorithm.  This allows us to use
    * one of many reduction algorithms without modding the guts of
    * the code with if statements everywhere.
    */
   int (*redux)(mp_int *,const mp_int *,mp_digit);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

#ifdef MP_LOW_MEM
   if (winsize > 5) {
      winsize = 5;
   }
#endif

   /* init M array */
   /* init first cell */
   if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* determine and setup reduction code */
   if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C
      /* now setup montgomery  */
      if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
         goto LBL_M;
      }
#else
      err = MP_VAL;
      goto LBL_M;
#endif

      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
      if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
         redux = fast_mp_montgomery_reduce;
      } else
#endif
      {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
         /* use slower baseline Montgomery method */
         redux = mp_montgomery_reduce;
#else
         err = MP_VAL;
         goto LBL_M;
#endif
      }
   } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
      /* setup DR reduction for moduli of the form B**k - b */
      mp_dr_setup(P, &mp);
      redux = mp_dr_reduce;
#else
      err = MP_VAL;
      goto LBL_M;
#endif
   } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
      /* setup DR reduction for moduli of the form 2**k - b */
      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
         goto LBL_M;
      }
      redux = mp_reduce_2k;
#else
      err = MP_VAL;
      goto LBL_M;
#endif
   }

   /* setup result */
   if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) {
      goto LBL_M;
   }

   /* create M table
    *

    *
    * The first half of the table is not computed though accept for M[0] and M[1]
    */

   if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
      /* now we need R mod m */
      if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
         goto LBL_RES;
      }

      /* now set M[1] to G * R mod m */
      if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) {
         goto LBL_RES;
      }
#else
      err = MP_VAL;
      goto LBL_RES;
#endif
   } else {
      mp_set(&res, 1);
      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
   if ((err = mp_copy(&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
   }

   for (x = 0; x < (winsize - 1); x++) {
      if ((err = mp_sqr(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
         goto LBL_RES;
      }
      if ((err = redux(&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* create upper table */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
         goto LBL_RES;
      }
      if ((err = redux(&M[x], P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits so break */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, mp)) != MP_OKAY) {
               goto LBL_RES;
            }
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* get next bit of the window */
         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, mp)) != MP_OKAY) {
               goto LBL_RES;
            }
         }
      }
   }

   if (redmode == 0) {
      /* fixup result if Montgomery reduction is used
       * recall that any value in a Montgomery system is
       * actually multiplied by R mod n.  So we have
       * to reduce one more time to cancel out the factor
       * of R.
       */
      if ((err = redux(&res, P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* swap res with Y */
   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exteuclid.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


33
34
35
36

37

38
39
40
41

42

43
44


45


46


47


48


49

50

51
52


53


54

55

56
57


58


59


60
61
62
63
64


65


66

67
68

69
70


71


72


73
74
75
76
77
78
79
80
81
82
83
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
   int err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1);
   if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        { goto LBL_ERR; }



   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1);
   if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        { goto LBL_ERR; }



   /* loop while v3 != 0 */
   while (mp_iszero(&v3) == MP_NO) {
       /* q = u3/v3 */
       if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         { goto LBL_ERR; }



       /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
       if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              { goto LBL_ERR; }


       if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             { goto LBL_ERR; }


       if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              { goto LBL_ERR; }


       if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             { goto LBL_ERR; }


       if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              { goto LBL_ERR; }


       if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             { goto LBL_ERR; }



       /* (u1,u2,u3) = (v1,v2,v3) */
       if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  { goto LBL_ERR; }


       if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  { goto LBL_ERR; }


       if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  { goto LBL_ERR; }



       /* (v1,v2,v3) = (t1,t2,t3) */
       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto LBL_ERR; }


       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto LBL_ERR; }


       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto LBL_ERR; }


   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
       if ((err = mp_neg(&u1, &u1)) != MP_OKAY)                                   { goto LBL_ERR; }


       if ((err = mp_neg(&u2, &u2)) != MP_OKAY)                                   { goto LBL_ERR; }


       if ((err = mp_neg(&u3, &u3)) != MP_OKAY)                                   { goto LBL_ERR; }

   }


   /* copy result out */
   if (U1 != NULL) { mp_exch(U1, &u1); }


   if (U2 != NULL) { mp_exch(U2, &u2); }


   if (U3 != NULL) { mp_exch(U3, &u3); }



   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|








|
>
>



|
>
|
>


|
|
>
|
>
|
|
>
>
|
>
>
|
>
>
|
>
>
|
>
>
|
>
|
>
|
|
>
>
|
>
>
|
>
|
>
|
|
>
>
|
>
>
|
>
>




|
>
>
|
>
>
|
>
|
|
>

|
>
>
|
>
>
|
>
>











14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
   int err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1);
   if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        {
      goto LBL_ERR;
   }

   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1);
   if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        {
      goto LBL_ERR;
   }

   /* loop while v3 != 0 */
   while (mp_iszero(&v3) == MP_NO) {
      /* q = u3/v3 */
      if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         {
         goto LBL_ERR;
      }

      /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
      if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             {
         goto LBL_ERR;
      }
      if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             {
         goto LBL_ERR;
      }
      if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             {
         goto LBL_ERR;
      }

      /* (u1,u2,u3) = (v1,v2,v3) */
      if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }

      /* (v1,v2,v3) = (t1,t2,t3) */
      if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  {
         goto LBL_ERR;
      }
   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
      if ((err = mp_neg(&u1, &u1)) != MP_OKAY)                                   {
         goto LBL_ERR;
      }
      if ((err = mp_neg(&u2, &u2)) != MP_OKAY)                                   {
         goto LBL_ERR;
      }
      if ((err = mp_neg(&u3, &u3)) != MP_OKAY)                                   {
         goto LBL_ERR;
      }
   }

   /* copy result out */
   if (U1 != NULL) {
      mp_exch(U1, &u1);
   }
   if (U2 != NULL) {
      mp_exch(U2, &u2);
   }
   if (U3 != NULL) {
      mp_exch(U3, &u3);
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_fread.c.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 */

#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;
   
   /* clear a */
   mp_zero(a);
   
   /* if first digit is - then set negative */
   ch = fgetc(stream);
   if (ch == '-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }
   
   for (;;) {
      /* find y in the radix map */
      for (y = 0; y < radix; y++) {
          if (mp_s_rmap[y] == ch) {
             break;
          }
      }
      if (y == radix) {
         break;
      }
      
      /* shift up and add */
      if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
         return err;
      }
      
      ch = fgetc(stream);
   }
   if (mp_cmp_d(a, 0) != MP_EQ) {
      a->sign = neg;
   }
   
   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|








|



|
|
|




|







|





|









16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 */

#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;

   /* clear a */
   mp_zero(a);

   /* if first digit is - then set negative */
   ch = fgetc(stream);
   if (ch == '-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }

   for (;;) {
      /* find y in the radix map */
      for (y = 0; y < radix; y++) {
         if (mp_s_rmap[y] == ch) {
            break;
         }
      }
      if (y == radix) {
         break;
      }

      /* shift up and add */
      if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
         return err;
      }

      ch = fgetc(stream);
   }
   if (mp_cmp_d(a, 0) != MP_EQ) {
      a->sign = neg;
   }

   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_fwrite.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#ifndef LTM_NO_FILE
int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;
   
   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = OPT_CAST(char) XMALLOC (len);
   if (buf == NULL) {
      return MP_MEM;
   }
   
   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      XFREE (buf);
      return err;
   }
   
   for (x = 0; x < len; x++) {
       if (fputc(buf[x], stream) == EOF) {
          XFREE (buf);
          return MP_VAL;
       }
   }
   
   XFREE (buf);
   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|




|



|

|


|

|
|
|
|

|
|









12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#ifndef LTM_NO_FILE
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;

   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = OPT_CAST(char) XMALLOC(len);
   if (buf == NULL) {
      return MP_MEM;
   }

   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      XFREE(buf);
      return err;
   }

   for (x = 0; x < len; x++) {
      if (fputc(buf[x], stream) == EOF) {
         XFREE(buf);
         return MP_VAL;
      }
   }

   XFREE(buf);
   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_gcd.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98
99
100
101
102
103
104
105
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;

  /* either zero than gcd is the largest */
  if (mp_iszero (a) == MP_YES) {
    return mp_abs (b, c);
  }
  if (mp_iszero (b) == MP_YES) {
    return mp_abs (a, c);
  }

  /* get copies of a and b we can modify */
  if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
    goto LBL_U;
  }

  /* must be positive for the remainder of the algorithm */
  u.sign = v.sign = MP_ZPOS;

  /* B1.  Find the common power of two for u and v */
  u_lsb = mp_cnt_lsb(&u);
  v_lsb = mp_cnt_lsb(&v);
  k     = MIN(u_lsb, v_lsb);

  if (k > 0) {
     /* divide the power of two out */
     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }

     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  /* divide any remaining factors of two out */
  if (u_lsb != k) {
     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  while (mp_iszero(&v) == MP_NO) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
        goto LBL_V;
     }
     
     /* Divide out all factors of two */
     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     } 
  } 

  /* multiply by 2**k which we divided out at the beginning */
  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
     goto LBL_V;
  }
  c->sign = MP_ZPOS;
  res = MP_OKAY;

LBL_V:mp_clear (&u);

LBL_U:mp_clear (&v);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
>
|
>
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;

   /* either zero than gcd is the largest */
   if (mp_iszero(a) == MP_YES) {
      return mp_abs(b, c);
   }
   if (mp_iszero(b) == MP_YES) {
      return mp_abs(a, c);
   }

   /* get copies of a and b we can modify */
   if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
      goto LBL_U;
   }

   /* must be positive for the remainder of the algorithm */
   u.sign = v.sign = MP_ZPOS;

   /* B1.  Find the common power of two for u and v */
   u_lsb = mp_cnt_lsb(&u);
   v_lsb = mp_cnt_lsb(&v);
   k     = MIN(u_lsb, v_lsb);

   if (k > 0) {
      /* divide the power of two out */
      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }

      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* divide any remaining factors of two out */
   if (u_lsb != k) {
      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   if (v_lsb != k) {
      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   while (mp_iszero(&v) == MP_NO) {
      /* make sure v is the largest */
      if (mp_cmp_mag(&u, &v) == MP_GT) {
         /* swap u and v to make sure v is >= u */
         mp_exch(&u, &v);
      }

      /* subtract smallest from largest */
      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_V;
      }

      /* Divide out all factors of two */
      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* multiply by 2**k which we divided out at the beginning */
   if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
      goto LBL_V;
   }
   c->sign = MP_ZPOS;
   res = MP_OKAY;
LBL_V:
   mp_clear(&u);
LBL_U:
   mp_clear(&v);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_get_int.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int * a)
{
  int i;
  mp_min_u32 res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }

  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
  return res & 0xFFFFFFFFUL;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|

|
|

|
|

|
|
|

|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int *a)
{
   int i;
   mp_min_u32 res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, (int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }

   /* force result to 32-bits always so it is consistent on non 32-bit platforms */
   return res & 0xFFFFFFFFUL;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_get_long.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(const mp_int * a)
{
  int i;
  unsigned long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }
#endif
  return res;
}
#endif






|

|
|

|
|
|

|
|

|
|


|
|
|

|


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(const mp_int *a)
{
   int i;
   unsigned long res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, (int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }
#endif
   return res;
}
#endif

Changes to libtommath/bn_mp_get_long_long.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long long of an mp_int, platform dependent */
Tcl_WideUInt mp_get_long_long (const mp_int * a)
{
  int i;
  Tcl_WideUInt res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(Tcl_WideUInt) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

#if DIGIT_BIT < 64
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }
#endif
  return res;
}
#endif






|

|
|

|
|
|

|
|

|
|


|
|
|

|


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long long of an mp_int, platform dependent */
Tcl_WideUInt mp_get_long_long(const mp_int *a)
{
   int i;
   Tcl_WideUInt res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, (int)(((sizeof(Tcl_WideUInt) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

#if DIGIT_BIT < 64
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }
#endif
   return res;
}
#endif

Changes to libtommath/bn_mp_grow.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* grow as required */
int mp_grow (mp_int * a, int size)
{
  int     i;
  mp_digit *tmp;

  /* if the alloc size is smaller alloc more ram */
  if (a->alloc < size) {
    /* ensure there are always at least MP_PREC digits extra on top */
    size += (MP_PREC * 2) - (size % MP_PREC);

    /* reallocate the array a->dp
     *
     * We store the return in a temporary variable
     * in case the operation failed we don't want
     * to overwrite the dp member of a.
     */
    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
    if (tmp == NULL) {
      /* reallocation failed but "a" is still valid [can be freed] */
      return MP_MEM;
    }

    /* reallocation succeeded so set a->dp */
    a->dp = tmp;

    /* zero excess digits */
    i        = a->alloc;
    a->alloc = size;
    for (; i < a->alloc; i++) {
      a->dp[i] = 0;
    }
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* grow as required */
int mp_grow(mp_int *a, int size)
{
   int     i;
   mp_digit *tmp;

   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {
      /* ensure there are always at least MP_PREC digits extra on top */
      size += (MP_PREC * 2) - (size % MP_PREC);

      /* reallocate the array a->dp
       *
       * We store the return in a temporary variable
       * in case the operation failed we don't want
       * to overwrite the dp member of a.
       */
      tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * size);
      if (tmp == NULL) {
         /* reallocation failed but "a" is still valid [can be freed] */
         return MP_MEM;
      }

      /* reallocation succeeded so set a->dp */
      a->dp = tmp;

      /* zero excess digits */
      i        = a->alloc;
      a->alloc = size;
      for (; i < a->alloc; i++) {
         a->dp[i] = 0;
      }
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_import.c.

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_import(mp_int* rop, size_t count, int order, size_t size, 
                            int endian, size_t nails, const void* op) {

	int result;
	size_t odd_nails, nail_bytes, i, j;
	unsigned char odd_nail_mask;

	mp_zero(rop);

	if (endian == 0) {
		union {
			unsigned int i;
			char c[4];
		} lint;
		lint.i = 0x01020304;

		endian = (lint.c[0] == 4) ? -1 : 1;
	}

	odd_nails = (nails % 8);
	odd_nail_mask = 0xff;
	for (i = 0; i < odd_nails; ++i) {
		odd_nail_mask ^= (1 << (7 - i));
	}
	nail_bytes = nails / 8;

	for (i = 0; i < count; ++i) {
		for (j = 0; j < (size - nail_bytes); ++j) {
			unsigned char byte = *(
					(unsigned char*)op + 
					(((order == 1) ? i : ((count - 1) - i)) * size) +
					((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
				);

			if (
				(result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
				return result;
			}

			rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
			rop->used  += 1;
		}
	}

	mp_clamp(rop);

	return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
>
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
<
|
|
<

<
|
|
|

|
|
|
|

|

|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_import(mp_int *rop, size_t count, int order, size_t size,
              int endian, size_t nails, const void *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j;
   unsigned char odd_nail_mask;

   mp_zero(rop);

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;
      lint.i = 0x01020304;

      endian = (lint.c[0] == 4) ? -1 : 1;
   }

   odd_nails = (nails % 8);
   odd_nail_mask = 0xff;
   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (1 << (7 - i));
   }
   nail_bytes = nails / 8;

   for (i = 0; i < count; ++i) {
      for (j = 0; j < (size - nail_bytes); ++j) {
         unsigned char byte = *((unsigned char *)op +

                                (((order == 1) ? i : ((count - 1) - i)) * size) +
                                ((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes)));



         if ((result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
            return result;
         }

         rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
         rop->used  += 1;
      }
   }

   mp_clamp(rop);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* init a new mp_int */
int mp_init (mp_int * a)
{
  int i;

  /* allocate memory required and clear it */
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the digits to zero */
  for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
  }

  /* set the used to zero, allocated digits to the default precision
   * and sign to positive */
  a->used  = 0;
  a->alloc = MP_PREC;
  a->sign  = MP_ZPOS;

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|

|
|

|

|
|
|
|
|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* init a new mp_int */
int mp_init(mp_int *a)
{
   int i;

   /* allocate memory required and clear it */
   a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * MP_PREC);
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the digits to zero */
   for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
   }

   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
   a->alloc = MP_PREC;
   a->sign  = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_copy.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, const mp_int * b)
{
  int     res;

  if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
    return res;
  }

  if((res = mp_copy (b, a)) != MP_OKAY) {
    mp_clear(a);
  }

  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|

|
|
|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* creates "a" then copies b into it */
int mp_init_copy(mp_int *a, const mp_int *b)
{
   int     res;

   if ((res = mp_init_size(a, b->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_copy(b, a)) != MP_OKAY) {
      mp_clear(a);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_multi.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...) 
{
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
    int n = 0;                 /* Number of ok inits */
    mp_int* cur_arg = mp;
    va_list args;

    va_start(args, mp);        /* init args to next argument from caller */
    while (cur_arg != NULL) {
        if (mp_init(cur_arg) != MP_OKAY) {
            /* Oops - error! Back-track and mp_clear what we already
               succeeded in init-ing, then return error.
            */
            va_list clean_args;
            
            /* now start cleaning up */            
            cur_arg = mp;
            va_start(clean_args, mp);
            while (n-- != 0) {
                mp_clear(cur_arg);
                cur_arg = va_arg(clean_args, mp_int*);
            }
            va_end(clean_args);
            res = MP_MEM;
            break;
        }
        n++;
        cur_arg = va_arg(args, mp_int*);
    }
    va_end(args);
    return res;                /* Assumed ok, if error flagged above. */
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...)
{
   mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
   int n = 0;                 /* Number of ok inits */
   mp_int *cur_arg = mp;
   va_list args;

   va_start(args, mp);        /* init args to next argument from caller */
   while (cur_arg != NULL) {
      if (mp_init(cur_arg) != MP_OKAY) {
         /* Oops - error! Back-track and mp_clear what we already
            succeeded in init-ing, then return error.
         */
         va_list clean_args;

         /* now start cleaning up */
         cur_arg = mp;
         va_start(clean_args, mp);
         while (n-- != 0) {
            mp_clear(cur_arg);
            cur_arg = va_arg(clean_args, mp_int *);
         }
         va_end(clean_args);
         res = MP_MEM;
         break;
      }
      n++;
      cur_arg = va_arg(args, mp_int *);
   }
   va_end(args);
   return res;                /* Assumed ok, if error flagged above. */
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_set.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  mp_set(a, b);
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   mp_set(a, b);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_set_int.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  return mp_set_int(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set_int(mp_int *a, unsigned long b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   return mp_set_int(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_size.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
  int x;

  /* pad size so there are always extra digits */
  size += (MP_PREC * 2) - (size % MP_PREC);	
  
  /* alloc mem */
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the members */
  a->used  = 0;
  a->alloc = size;
  a->sign  = MP_ZPOS;

  /* zero the digits */
  for (x = 0; x < size; x++) {
      a->dp[x] = 0;
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* init an mp_init for a given size */
int mp_init_size(mp_int *a, int size)
{
   int x;

   /* pad size so there are always extra digits */
   size += (MP_PREC * 2) - (size % MP_PREC);

   /* alloc mem */
   a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * size);
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the members */
   a->used  = 0;
   a->alloc = size;
   a->sign  = MP_ZPOS;

   /* zero the digits */
   for (x = 0; x < size; x++) {
      a->dp[x] = 0;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_invmod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

#ifdef BN_FAST_MP_INVMOD_C
  /* if the modulus is odd we can use a faster routine instead */
  if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) {
    return fast_mp_invmod (a, b, c);
  }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
  return mp_invmod_slow(a, b, c);
#else
  return MP_VAL;
#endif
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|


|
|
|
|



|

|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   /* b cannot be negative */
   if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
      return MP_VAL;
   }

#ifdef BN_FAST_MP_INVMOD_C
   /* if the modulus is odd we can use a faster routine instead */
   if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) {
      return fast_mp_invmod(a, b, c);
   }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
   return mp_invmod_slow(a, b, c);
#else
   return MP_VAL;
#endif
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_invmod_slow.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;

LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|



|
|
|
|



|
|
|
|
|
>
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, A, B, C, D;
   int     res;

   /* b cannot be negative */
   if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
      return MP_VAL;
   }

   /* init temps */
   if ((res = mp_init_multi(&x, &y, &u, &v,
                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x = a, y = b */
   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* 2. [modified] if x,y are both even then return an error! */
   if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&A, 1);
   mp_set(&D, 1);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if A or B is odd then */
      if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) {
         /* A = (A+y)/2, B = (B-x)/2 */
         if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* A = A/2, B = B/2 */
      if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if C or D is odd then */
      if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) {
         /* C = (C+y)/2, D = (D-x)/2 */
         if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* C = C/2, D = D/2 */
      if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, A = A - C, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, C = C - A, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO)
      goto top;

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* if its too low */
   while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* C is now the inverse */
   mp_exch(&C, c);
   res = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_is_square.c.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};

static const char rem_105[105] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret) 
{
  int           res;
  mp_digit      c;
  mp_int        t;
  unsigned long r;

  /* Default to Non-square :) */
  *ret = MP_NO; 

  if (arg->sign == MP_NEG) {
    return MP_VAL;
  }

  /* digits used?  (TSD) */
  if (arg->used == 0) {
     return MP_OKAY;
  }

  /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
  if (rem_128[127 & DIGIT(arg,0)] == 1) {
     return MP_OKAY;
  }

  /* Next check mod 105 (3*5*7) */
  if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
     return res;
  }
  if (rem_105[c] == 1) {
     return MP_OKAY;
  }


  if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
     return res;
  }
  if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
     goto ERR;
  }
  r = mp_get_int(&t);
  /* Check for other prime modules, note it's not an ERROR but we must
   * free "t" so the easiest way is to goto ERR.  We know that res
   * is already equal to MP_OKAY from the mp_mod call 
   */ 
  if (((1L<<(r%11)) & 0x5C4L) != 0L)       goto ERR;
  if (((1L<<(r%13)) & 0x9E4L) != 0L)       goto ERR;
  if (((1L<<(r%17)) & 0x5CE8L) != 0L)      goto ERR;
  if (((1L<<(r%19)) & 0x4F50CL) != 0L)     goto ERR;
  if (((1L<<(r%23)) & 0x7ACCA0L) != 0L)    goto ERR;
  if (((1L<<(r%29)) & 0xC2EDD0CL) != 0L)   goto ERR;
  if (((1L<<(r%31)) & 0x6DE2B848L) != 0L)  goto ERR;

  /* Final check - is sqr(sqrt(arg)) == arg ? */
  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
     goto ERR;
  }
  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
     goto ERR;
  }

  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;

ERR:mp_clear(&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
|
|
|
|
|
|



|
|
|
|
|
|
|



|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
>
|
|






13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};

static const char rem_105[105] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
   0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
   1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(const mp_int *arg, int *ret)
{
   int           res;
   mp_digit      c;
   mp_int        t;
   unsigned long r;

   /* Default to Non-square :) */
   *ret = MP_NO;

   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* digits used?  (TSD) */
   if (arg->used == 0) {
      return MP_OKAY;
   }

   /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
   if (rem_128[127 & DIGIT(arg, 0)] == 1) {
      return MP_OKAY;
   }

   /* Next check mod 105 (3*5*7) */
   if ((res = mp_mod_d(arg, 105, &c)) != MP_OKAY) {
      return res;
   }
   if (rem_105[c] == 1) {
      return MP_OKAY;
   }


   if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
      return res;
   }
   if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) {
      goto ERR;
   }
   r = mp_get_int(&t);
   /* Check for other prime modules, note it's not an ERROR but we must
    * free "t" so the easiest way is to goto ERR.  We know that res
    * is already equal to MP_OKAY from the mp_mod call
    */
   if (((1L<<(r%11)) & 0x5C4L) != 0L)       goto ERR;
   if (((1L<<(r%13)) & 0x9E4L) != 0L)       goto ERR;
   if (((1L<<(r%17)) & 0x5CE8L) != 0L)      goto ERR;
   if (((1L<<(r%19)) & 0x4F50CL) != 0L)     goto ERR;
   if (((1L<<(r%23)) & 0x7ACCA0L) != 0L)    goto ERR;
   if (((1L<<(r%29)) & 0xC2EDD0CL) != 0L)   goto ERR;
   if (((1L<<(r%31)) & 0x6DE2B848L) != 0L)  goto ERR;

   /* Final check - is sqr(sqrt(arg)) == arg ? */
   if ((res = mp_sqrt(arg, &t)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sqr(&t, &t)) != MP_OKAY) {
      goto ERR;
   }

   *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_jacobi.c.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

111
112
113
114
115
116
117
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149
 * HAC is wrong here, as the special case of (0 | 1) is not
 * handled correctly.
 */
int mp_jacobi (mp_int * a, mp_int * n, int *c)
{
  mp_int  a1, p1;
  int     k, s, r, res;
  mp_digit residue;

  /* if a < 0 return MP_VAL */
  if (mp_isneg(a) == MP_YES) {
     return MP_VAL;
  }

  /* if n <= 0 return MP_VAL */
  if (mp_cmp_d(n, 0) != MP_GT) {
     return MP_VAL;
  }

  /* step 1. handle case of a == 0 */
  if (mp_iszero (a) == MP_YES) {
     /* special case of a == 0 and n == 1 */
     if (mp_cmp_d (n, 1) == MP_EQ) {
       *c = 1;
     } else {
       *c = 0;
     }
     return MP_OKAY;
  }

  /* step 2.  if a == 1, return 1 */
  if (mp_cmp_d (a, 1) == MP_EQ) {
    *c = 1;
    return MP_OKAY;
  }

  /* default */
  s = 0;

  /* step 3.  write a = a1 * 2**k  */
  if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&p1)) != MP_OKAY) {
    goto LBL_A1;
  }

  /* divide out larger power of two */
  k = mp_cnt_lsb(&a1);
  if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
     goto LBL_P1;
  }

  /* step 4.  if e is even set s=1 */
  if ((k & 1) == 0) {
    s = 1;
  } else {
    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
    residue = n->dp[0] & 7;

    if ((residue == 1) || (residue == 7)) {
      s = 1;
    } else if ((residue == 3) || (residue == 5)) {
      s = -1;
    }
  }

  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
  if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
    s = -s;
  }

  /* if a1 == 1 we're done */
  if (mp_cmp_d (&a1, 1) == MP_EQ) {
    *c = s;
  } else {
    /* n1 = n mod a1 */
    if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) {
      goto LBL_P1;
    }
    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
      goto LBL_P1;
    }
    *c = s * r;
  }

  /* done */
  res = MP_OKAY;
LBL_P1:mp_clear (&p1);

LBL_A1:mp_clear (&a1);

  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
>
|
>
|






16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149
 * HAC is wrong here, as the special case of (0 | 1) is not
 * handled correctly.
 */
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
   mp_int  a1, p1;
   int     k, s, r, res;
   mp_digit residue;

   /* if a < 0 return MP_VAL */
   if (mp_isneg(a) == MP_YES) {
      return MP_VAL;
   }

   /* if n <= 0 return MP_VAL */
   if (mp_cmp_d(n, 0) != MP_GT) {
      return MP_VAL;
   }

   /* step 1. handle case of a == 0 */
   if (mp_iszero(a) == MP_YES) {
      /* special case of a == 0 and n == 1 */
      if (mp_cmp_d(n, 1) == MP_EQ) {
         *c = 1;
      } else {
         *c = 0;
      }
      return MP_OKAY;
   }

   /* step 2.  if a == 1, return 1 */
   if (mp_cmp_d(a, 1) == MP_EQ) {
      *c = 1;
      return MP_OKAY;
   }

   /* default */
   s = 0;

   /* step 3.  write a = a1 * 2**k  */
   if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init(&p1)) != MP_OKAY) {
      goto LBL_A1;
   }

   /* divide out larger power of two */
   k = mp_cnt_lsb(&a1);
   if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
      goto LBL_P1;
   }

   /* step 4.  if e is even set s=1 */
   if ((k & 1) == 0) {
      s = 1;
   } else {
      /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
      residue = n->dp[0] & 7;

      if ((residue == 1) || (residue == 7)) {
         s = 1;
      } else if ((residue == 3) || (residue == 5)) {
         s = -1;
      }
   }

   /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
   if (((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
      s = -s;
   }

   /* if a1 == 1 we're done */
   if (mp_cmp_d(&a1, 1) == MP_EQ) {
      *c = s;
   } else {
      /* n1 = n mod a1 */
      if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
         goto LBL_P1;
      }
      if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
         goto LBL_P1;
      }
      *c = s * r;
   }

   /* done */
   res = MP_OKAY;
LBL_P1:
   mp_clear(&p1);
LBL_A1:
   mp_clear(&a1);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_karatsuba_mul.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154

155

156

157

158

159
160
161
162
163
164
165
166
167
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b => 
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be 
 * computed once.  So in total three half size (half # of 
 * digit) multiplications are performed, a0b0, a1b1 and 
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in 
 * total after one call 25% of the single precision multiplications 
 * are saved.  Note also that the call to mp_mul can end up back 
 * in this function if the a0, a1, b0, or b1 are above the threshold.  
 * This is known as divide-and-conquer and leads to the famous 
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
 * the standard O(N**2) that the baseline/comba methods use.  
 * Generally though the overhead of this method doesn't pay off 
 * until a certain size (N ~ 80) is reached.
 */
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
  int     B, err;

  /* default the return code to an error */
  err = MP_MEM;

  /* min # of digits */
  B = MIN (a->used, b->used);

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;
  if (mp_init_size (&y0, B) != MP_OKAY)
    goto X1;
  if (mp_init_size (&y1, b->used - B) != MP_OKAY)
    goto Y0;

  /* init temps */
  if (mp_init_size (&t1, B * 2) != MP_OKAY)
    goto Y1;
  if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
    goto X0Y0;

  /* now shift the digits */
  x0.used = y0.used = B;
  x1.used = a->used - B;
  y1.used = b->used - B;

  {
    int x;
    mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

    /* we copy the digits directly instead of using higher level functions
     * since we also need to shift the digits
     */
    tmpa = a->dp;
    tmpb = b->dp;

    tmpx = x0.dp;
    tmpy = y0.dp;
    for (x = 0; x < B; x++) {
      *tmpx++ = *tmpa++;
      *tmpy++ = *tmpb++;
    }

    tmpx = x1.dp;
    for (x = B; x < a->used; x++) {
      *tmpx++ = *tmpa++;
    }

    tmpy = y1.dp;
    for (x = B; x < b->used; x++) {
      *tmpy++ = *tmpb++;
    }
  }

  /* only need to clamp the lower words since by definition the 
   * upper words x1/y1 must have a known number of digits
   */
  mp_clamp (&x0);
  mp_clamp (&y0);

  /* now calc the products x0y0 and x1y1 */
  /* after this x0 is no longer required, free temp [x0==t2]! */
  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
    goto X1Y1;          /* x0y0 = x0*y0 */
  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1*y1 */

  /* now calc x1+x0 and y1+y0 */
  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x1 - x0 */
  if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = y1 - y0 */
  if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */

  /* add x0y0 */
  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = x0y0 + x1y1 */
  if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
  if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1y1 << 2*B */

  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 */
  if (mp_add (&t1, &x1y1, c) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */

  /* Algorithm succeeded set the return code to MP_OKAY */
  err = MP_OKAY;


X1Y1:mp_clear (&x1y1);

X0Y0:mp_clear (&x0y0);

T1:mp_clear (&t1);

Y1:mp_clear (&y1);

Y0:mp_clear (&y0);

X1:mp_clear (&x1);

X0:mp_clear (&x0);
ERR:
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|
|





|


|
|
|



|
|
|
|
|
|
|
|


|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

>
|
>
|
>
|
>
|
>
|
>
|
>
|

|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = |a| * |b| using Karatsuba Multiplication using
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
 * let n represent half of the number of digits in
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b =>
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be
 * computed once.  So in total three half size (half # of
 * digit) multiplications are performed, a0b0, a1b1 and
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in
 * total after one call 25% of the single precision multiplications
 * are saved.  Note also that the call to mp_mul can end up back
 * in this function if the a0, a1, b0, or b1 are above the threshold.
 * This is known as divide-and-conquer and leads to the famous
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 * the standard O(N**2) that the baseline/comba methods use.
 * Generally though the overhead of this method doesn't pay off
 * until a certain size (N ~ 80) is reached.
 */
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
   int     B, err;

   /* default the return code to an error */
   err = MP_MEM;

   /* min # of digits */
   B = MIN(a->used, b->used);

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto ERR;
   if (mp_init_size(&x1, a->used - B) != MP_OKAY)
      goto X0;
   if (mp_init_size(&y0, B) != MP_OKAY)
      goto X1;
   if (mp_init_size(&y1, b->used - B) != MP_OKAY)
      goto Y0;

   /* init temps */
   if (mp_init_size(&t1, B * 2) != MP_OKAY)
      goto Y1;
   if (mp_init_size(&x0y0, B * 2) != MP_OKAY)
      goto T1;
   if (mp_init_size(&x1y1, B * 2) != MP_OKAY)
      goto X0Y0;

   /* now shift the digits */
   x0.used = y0.used = B;
   x1.used = a->used - B;
   y1.used = b->used - B;

   {
      int x;
      mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

      /* we copy the digits directly instead of using higher level functions
       * since we also need to shift the digits
       */
      tmpa = a->dp;
      tmpb = b->dp;

      tmpx = x0.dp;
      tmpy = y0.dp;
      for (x = 0; x < B; x++) {
         *tmpx++ = *tmpa++;
         *tmpy++ = *tmpb++;
      }

      tmpx = x1.dp;
      for (x = B; x < a->used; x++) {
         *tmpx++ = *tmpa++;
      }

      tmpy = y1.dp;
      for (x = B; x < b->used; x++) {
         *tmpy++ = *tmpb++;
      }
   }

   /* only need to clamp the lower words since by definition the
    * upper words x1/y1 must have a known number of digits
    */
   mp_clamp(&x0);
   mp_clamp(&y0);

   /* now calc the products x0y0 and x1y1 */
   /* after this x0 is no longer required, free temp [x0==t2]! */
   if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY)
      goto X1Y1;          /* x0y0 = x0*y0 */
   if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY)
      goto X1Y1;          /* x1y1 = x1*y1 */

   /* now calc x1+x0 and y1+y0 */
   if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = x1 - x0 */
   if (s_mp_add(&y1, &y0, &x0) != MP_OKAY)
      goto X1Y1;          /* t2 = y1 - y0 */
   if (mp_mul(&t1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */

   /* add x0y0 */
   if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY)
      goto X1Y1;          /* t2 = x0y0 + x1y1 */
   if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

   /* shift by B */
   if (mp_lshd(&t1, B) != MP_OKAY)
      goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
   if (mp_lshd(&x1y1, B * 2) != MP_OKAY)
      goto X1Y1;          /* x1y1 = x1y1 << 2*B */

   if (mp_add(&x0y0, &t1, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = x0y0 + t1 */
   if (mp_add(&t1, &x1y1, c) != MP_OKAY)
      goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */

   /* Algorithm succeeded set the return code to MP_OKAY */
   err = MP_OKAY;

X1Y1:
   mp_clear(&x1y1);
X0Y0:
   mp_clear(&x0y0);
T1:
   mp_clear(&t1);
Y1:
   mp_clear(&y1);
Y0:
   mp_clear(&y0);
X1:
   mp_clear(&x1);
X0:
   mp_clear(&x0);
ERR:
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_karatsuba_sqr.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

109

110

111

112

113
114
115
116
117
118
119
120
121
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
  mp_int  x0, x1, t1, t2, x0x0, x1x1;
  int     B, err;

  err = MP_MEM;

  /* min # of digits */
  B = a->used;

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;

  /* init temps */
  if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
    goto X1;
  if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    int x;
    mp_digit *dst, *src;

    src = a->dp;

    /* now shift the digits */
    dst = x0.dp;
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
    }

    dst = x1.dp;
    for (x = B; x < a->used; x++) {
      *dst++ = *src++;
    }
  }

  x0.used = B;
  x1.used = a->used - B;

  mp_clamp (&x0);

  /* now calc the products x0*x0 and x1*x1 */
  if (mp_sqr (&x0, &x0x0) != MP_OKAY)
    goto X1X1;           /* x0x0 = x0*x0 */
  if (mp_sqr (&x1, &x1x1) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1*x1 */

  /* now calc (x1+x0)**2 */
  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x1 - x0 */
  if (mp_sqr (&t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

  /* add x0y0 */
  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
    goto X1X1;           /* t2 = x0x0 + x1x1 */
  if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
  if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1x1 << 2*B */

  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 */
  if (mp_add (&t1, &x1x1, b) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

  err = MP_OKAY;


X1X1:mp_clear (&x1x1);

X0X0:mp_clear (&x0x0);

T2:mp_clear (&t2);

T1:mp_clear (&t1);

X1:mp_clear (&x1);

X0:mp_clear (&x0);
ERR:
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|
|


|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

>
|
>
|
>
|
>
|
>
|
>
|

|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Karatsuba squaring, computes b = a*a using three
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It
 * is essentially the same algorithm but merely
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   mp_int  x0, x1, t1, t2, x0x0, x1x1;
   int     B, err;

   err = MP_MEM;

   /* min # of digits */
   B = a->used;

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto ERR;
   if (mp_init_size(&x1, a->used - B) != MP_OKAY)
      goto X0;

   /* init temps */
   if (mp_init_size(&t1, a->used * 2) != MP_OKAY)
      goto X1;
   if (mp_init_size(&t2, a->used * 2) != MP_OKAY)
      goto T1;
   if (mp_init_size(&x0x0, B * 2) != MP_OKAY)
      goto T2;
   if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY)
      goto X0X0;

   {
      int x;
      mp_digit *dst, *src;

      src = a->dp;

      /* now shift the digits */
      dst = x0.dp;
      for (x = 0; x < B; x++) {
         *dst++ = *src++;
      }

      dst = x1.dp;
      for (x = B; x < a->used; x++) {
         *dst++ = *src++;
      }
   }

   x0.used = B;
   x1.used = a->used - B;

   mp_clamp(&x0);

   /* now calc the products x0*x0 and x1*x1 */
   if (mp_sqr(&x0, &x0x0) != MP_OKAY)
      goto X1X1;           /* x0x0 = x0*x0 */
   if (mp_sqr(&x1, &x1x1) != MP_OKAY)
      goto X1X1;           /* x1x1 = x1*x1 */

   /* now calc (x1+x0)**2 */
   if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = x1 - x0 */
   if (mp_sqr(&t1, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

   /* add x0y0 */
   if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY)
      goto X1X1;           /* t2 = x0x0 + x1x1 */
   if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

   /* shift by B */
   if (mp_lshd(&t1, B) != MP_OKAY)
      goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
   if (mp_lshd(&x1x1, B * 2) != MP_OKAY)
      goto X1X1;           /* x1x1 = x1x1 << 2*B */

   if (mp_add(&x0x0, &t1, &t1) != MP_OKAY)
      goto X1X1;           /* t1 = x0x0 + t1 */
   if (mp_add(&t1, &x1x1, b) != MP_OKAY)
      goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

   err = MP_OKAY;

X1X1:
   mp_clear(&x1x1);
X0X0:
   mp_clear(&x0x0);
T2:
   mp_clear(&t2);
T1:
   mp_clear(&t1);
X1:
   mp_clear(&x1);
X0:
   mp_clear(&x0);
ERR:
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_lcm.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
  mp_int  t1, t2;


  if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
    return res;
  }

  /* t1 = get the GCD of the two inputs */
  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
    goto LBL_T;
  }

  /* divide the smallest by the GCD */
  if (mp_cmp_mag(a, b) == MP_LT) {
     /* store quotient in t2 such that t2 * b is the LCM */
     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
        goto LBL_T;
     }
     res = mp_mul(b, &t2, c);
  } else {
     /* store quotient in t2 such that t2 * a is the LCM */
     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
        goto LBL_T;
     }
     res = mp_mul(a, &t2, c);
  }

  /* fix the sign to positive */
  c->sign = MP_ZPOS;

LBL_T:
  mp_clear_multi (&t1, &t2, NULL);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|


|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|


|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res;
   mp_int  t1, t2;


   if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
      return res;
   }

   /* t1 = get the GCD of the two inputs */
   if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) {
      goto LBL_T;
   }

   /* divide the smallest by the GCD */
   if (mp_cmp_mag(a, b) == MP_LT) {
      /* store quotient in t2 such that t2 * b is the LCM */
      if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      res = mp_mul(b, &t2, c);
   } else {
      /* store quotient in t2 such that t2 * a is the LCM */
      if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      res = mp_mul(a, &t2, c);
   }

   /* fix the sign to positive */
   c->sign = MP_ZPOS;

LBL_T:
   mp_clear_multi(&t1, &t2, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_lshd.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
{
  int     x, res;

  /* if its less than zero return */
  if (b <= 0) {
    return MP_OKAY;
  }

  /* grow to fit the new digits */
  if (a->alloc < (a->used + b)) {
     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
       return res;
     }
  }

  {
    mp_digit *top, *bottom;

    /* increment the used by the shift amount then copy upwards */
    a->used += b;

    /* top */
    top = a->dp + a->used - 1;

    /* base */
    bottom = (a->dp + a->used - 1) - b;

    /* much like mp_rshd this is implemented using a sliding window
     * except the window goes the otherway around.  Copying from
     * the bottom to the top.  see bn_mp_rshd.c for more info.
     */
    for (x = a->used - 1; x >= b; x--) {
      *top-- = *bottom--;
    }

    /* zero the lower digits */
    top = a->dp;
    for (x = 0; x < b; x++) {
      *top++ = 0;
    }
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift left a certain amount of digits */
int mp_lshd(mp_int *a, int b)
{
   int     x, res;

   /* if its less than zero return */
   if (b <= 0) {
      return MP_OKAY;
   }

   /* grow to fit the new digits */
   if (a->alloc < (a->used + b)) {
      if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
         return res;
      }
   }

   {
      mp_digit *top, *bottom;

      /* increment the used by the shift amount then copy upwards */
      a->used += b;

      /* top */
      top = a->dp + a->used - 1;

      /* base */
      bottom = (a->dp + a->used - 1) - b;

      /* much like mp_rshd this is implemented using a sliding window
       * except the window goes the otherway around.  Copying from
       * the bottom to the top.  see bn_mp_rshd.c for more info.
       */
      for (x = a->used - 1; x >= b; x--) {
         *top-- = *bottom--;
      }

      /* zero the lower digits */
      top = a->dp;
      for (x = 0; x < b; x++) {
         *top++ = 0;
      }
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  t;
  int     res;

  if ((res = mp_init_size (&t, b->used)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
    res = MP_OKAY;
    mp_exch (&t, c);
  } else {
    res = mp_add (b, &t, c);
  }

  mp_clear (&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)

{
   mp_int  t;
   int     res;

   if ((res = mp_init_size(&t, b->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }

   if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
      res = MP_OKAY;
      mp_exch(&t, c);
   } else {
      res = mp_add(b, &t, c);
   }

   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mod_2d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* calc a value mod 2**b */
int
mp_mod_2d (const mp_int * a, int b, mp_int * c)
{
  int     x, res;

  /* if b is <= 0 then zero the int */
  if (b <= 0) {
    mp_zero (c);
    return MP_OKAY;
  }

  /* if the modulus is larger than the value than return */
  if (b >= (int) (a->used * DIGIT_BIT)) {
    res = mp_copy (a, c);
    return res;
  }

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    return res;
  }

  /* zero digits above the last digit of the modulus */
  for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
    c->dp[x] = 0;
  }
  /* clear the digit that is not completely outside/inside the modulus */
  c->dp[b / DIGIT_BIT] &=
    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* calc a value mod 2**b */

int mp_mod_2d(const mp_int *a, int b, mp_int *c)
{
   int     x, res;

   /* if b is <= 0 then zero the int */
   if (b <= 0) {
      mp_zero(c);
      return MP_OKAY;
   }

   /* if the modulus is larger than the value than return */
   if (b >= (int)(a->used * DIGIT_BIT)) {
      res = mp_copy(a, c);
      return res;
   }

   /* copy */
   if ((res = mp_copy(a, c)) != MP_OKAY) {
      return res;
   }

   /* zero digits above the last digit of the modulus */
   for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
      c->dp[x] = 0;
   }
   /* clear the digit that is not completely outside/inside the modulus */
   c->dp[b / DIGIT_BIT] &=
      (mp_digit)((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mod_d.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
  return mp_div_d(a, b, NULL, c);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|






11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */


int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
   return mp_div_d(a, b, NULL, c);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_montgomery_calc_normalization.c.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
 */
int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
{
  int     x, bits, res;

  /* how many bits of last digit does b use */
  bits = mp_count_bits (b) % DIGIT_BIT;

  if (b->used > 1) {
     if ((res = mp_2expt (a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
        return res;
     }
  } else {
     mp_set(a, 1);
     bits = 1;
  }


  /* now compute C = A * B mod b */
  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
      return res;
    }
    if (mp_cmp_mag (a, b) != MP_LT) {
      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
        return res;
      }
    }
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|

|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|

|






17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
 */
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
   int     x, bits, res;

   /* how many bits of last digit does b use */
   bits = mp_count_bits(b) % DIGIT_BIT;

   if (b->used > 1) {
      if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
         return res;
      }
   } else {
      mp_set(a, 1);
      bits = 1;
   }


   /* now compute C = A * B mod b */
   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
      if ((res = mp_mul_2(a, a)) != MP_OKAY) {
         return res;
      }
      if (mp_cmp_mag(a, b) != MP_LT) {
         if ((res = s_mp_sub(a, b, a)) != MP_OKAY) {
            return res;
         }
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_montgomery_reduce.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
  int     ix, res, digs;
  mp_digit mu;

  /* can the fast reduction [comba] method be used?
   *
   * Note that unlike in mul you're safely allowed *less*
   * than the available columns [255 per default] since carries
   * are fixed up in the inner loop.
   */
  digs = (n->used * 2) + 1;
  if ((digs < MP_WARRAY) &&
      (n->used <
      (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_mp_montgomery_reduce (x, n, rho);
  }

  /* grow the input as required */
  if (x->alloc < digs) {
    if ((res = mp_grow (x, digs)) != MP_OKAY) {
      return res;
    }
  }
  x->used = digs;

  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * rho mod b
     *
     * The value of rho must be precalculated via
     * montgomery_setup() such that
     * it equals -1/n0 mod b this allows the
     * following inner loop to reduce the
     * input one digit at a time
     */
    mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

    /* a = a + mu * m * b**i */
    {
      int iy;
      mp_digit *tmpn, *tmpx, u;
      mp_word r;

      /* alias for digits of the modulus */
      tmpn = n->dp;

      /* alias for the digits of x [the input] */
      tmpx = x->dp + ix;

      /* set the carry to zero */
      u = 0;

      /* Multiply and add in place */
      for (iy = 0; iy < n->used; iy++) {
        /* compute product and sum */
        r       = ((mp_word)mu * (mp_word)*tmpn++) +
                   (mp_word) u + (mp_word) *tmpx;

        /* get carry */
        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

        /* fix digit */
        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
      }
      /* At this point the ix'th digit of x should be zero */


      /* propagate carries upwards as required*/
      while (u != 0) {
        *tmpx   += u;
        u        = *tmpx >> DIGIT_BIT;
        *tmpx++ &= MP_MASK;
      }
    }
  }

  /* at this point the n.used'th least
   * significant digits of x are all zero
   * which means we can shift x to the
   * right by n.used digits and the
   * residue is unchanged.
   */

  /* x = x/b**n.used */
  mp_clamp(x);
  mp_rshd (x, n->used);

  /* if x >= n then x = x - n */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|


|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)

{
   int     ix, res, digs;
   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < MP_WARRAY) &&
       (n->used <
        (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
      return fast_mp_montgomery_reduce(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((res = mp_grow(x, digs)) != MP_OKAY) {
         return res;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *
       * The value of rho must be precalculated via
       * montgomery_setup() such that
       * it equals -1/n0 mod b this allows the
       * following inner loop to reduce the
       * input one digit at a time
       */
      mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

      /* a = a + mu * m * b**i */
      {
         int iy;
         mp_digit *tmpn, *tmpx, u;
         mp_word r;

         /* alias for digits of the modulus */
         tmpn = n->dp;

         /* alias for the digits of x [the input] */
         tmpx = x->dp + ix;

         /* set the carry to zero */
         u = 0;

         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word) u + (mp_word) *tmpx;

            /* get carry */
            u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

            /* fix digit */
            *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0) {
            *tmpx   += u;
            u        = *tmpx >> DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero
    * which means we can shift x to the
    * right by n.used digits and the
    * residue is unchanged.
    */

   /* x = x/b**n.used */
   mp_clamp(x);
   mp_rshd(x, n->used);

   /* if x >= n then x = x - n */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_montgomery_setup.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* setups the montgomery reduction stuff */
int
mp_montgomery_setup (mp_int * n, mp_digit * rho)
{
  mp_digit x, b;

/* fast inversion mod 2**k
 *
 * Based on the fact that
 *
 * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 *                    =>  2*X*A - X*X*A*A = 1
 *                    =>  2*(1) - (1)     = 1
 */
  b = n->dp[0];

  if ((b & 1) == 0) {
    return MP_VAL;
  }

  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  x *= 2 - (b * x);             /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
  x *= 2 - (b * x);             /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
  x *= 2 - (b * x);             /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
  x *= 2 - (b * x);             /* here x*a==1 mod 2**64 */
#endif

  /* rho = -1/m mod b */
  *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|


|


|


|
|

|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* setups the montgomery reduction stuff */

int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
   mp_digit x, b;

   /* fast inversion mod 2**k
    *
    * Based on the fact that
    *
    * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
    *                    =>  2*X*A - X*X*A*A = 1
    *                    =>  2*(1) - (1)     = 1
    */
   b = n->dp[0];

   if ((b & 1) == 0) {
      return MP_VAL;
   }

   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
   x *= 2 - (b * x);             /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
   x *= 2 - (b * x);             /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
   x *= 2 - (b * x);             /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
   x *= 2 - (b * x);             /* here x*a==1 mod 2**64 */
#endif

   /* rho = -1/m mod b */
   *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mul.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level multiplication (handles sign) */
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, neg;
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

  /* use Toom-Cook? */
#ifdef BN_MP_TOOM_MUL_C
  if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
    res = mp_toom_mul(a, b, c);
  } else 
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
  /* use Karatsuba? */
  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
    res = mp_karatsuba_mul (a, b, c);
  } else 
#endif
  {
    /* can we use the fast multiplier?
     *
     * The fast multiplier can be used if the output will 
     * have less than MP_WARRAY digits and the number of 
     * digits won't affect carry propagation
     */
    int     digs = a->used + b->used + 1;

#ifdef BN_FAST_S_MP_MUL_DIGS_C
    if ((digs < MP_WARRAY) &&
        (MIN(a->used, b->used) <= 
         (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
      res = fast_s_mp_mul_digs (a, b, c, digs);
    } else 
#endif
    {
#ifdef BN_S_MP_MUL_DIGS_C
      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
      res = MP_VAL;
#endif
    }
  }
  c->sign = (c->used > 0) ? neg : MP_ZPOS;
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|

|
|
|


|
|
|
|

|
|
|
|
|
|
|
|


|
|
|
|
|

|

|

|

|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level multiplication (handles sign) */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res, neg;
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

   /* use Toom-Cook? */
#ifdef BN_MP_TOOM_MUL_C
   if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
      res = mp_toom_mul(a, b, c);
   } else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
      /* use Karatsuba? */
      if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
         res = mp_karatsuba_mul(a, b, c);
      } else
#endif
      {
         /* can we use the fast multiplier?
          *
          * The fast multiplier can be used if the output will
          * have less than MP_WARRAY digits and the number of
          * digits won't affect carry propagation
          */
         int     digs = a->used + b->used + 1;

#ifdef BN_FAST_S_MP_MUL_DIGS_C
         if ((digs < MP_WARRAY) &&
             (MIN(a->used, b->used) <=
              (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
            res = fast_s_mp_mul_digs(a, b, c, digs);
         } else
#endif
         {
#ifdef BN_S_MP_MUL_DIGS_C
            res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */
#else
            res = MP_VAL;
#endif
         }
      }
   c->sign = (c->used > 0) ? neg : MP_ZPOS;
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mul_2.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = a*2 */
int mp_mul_2(const mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* grow to accomodate result */
  if (b->alloc < (a->used + 1)) {
    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;

  {
    mp_digit r, rr, *tmpa, *tmpb;

    /* alias for source */
    tmpa = a->dp;
    
    /* alias for dest */
    tmpb = b->dp;

    /* carry */
    r = 0;
    for (x = 0; x < a->used; x++) {
    
      /* get what will be the *next* carry bit from the 
       * MSB of the current digit 
       */
      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
      
      /* now shift up this digit, add in the carry [from the previous] */
      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
      
      /* copy the carry that would be from the source 
       * digit into the next iteration 
       */
      r = rr;
    }

    /* new leading digit? */
    if (r != 0) {
      /* add a MSB which is always 1 at this point */
      *tmpb = 1;
      ++(b->used);
    }

    /* now zero any excess digits on the destination 
     * that we didn't write to 
     */
    tmpb = b->dp + b->used;
    for (x = b->used; x < oldused; x++) {
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b)
{
   int     x, res, oldused;

   /* grow to accomodate result */
   if (b->alloc < (a->used + 1)) {
      if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   oldused = b->used;
   b->used = a->used;

   {
      mp_digit r, rr, *tmpa, *tmpb;

      /* alias for source */
      tmpa = a->dp;

      /* alias for dest */
      tmpb = b->dp;

      /* carry */
      r = 0;
      for (x = 0; x < a->used; x++) {

         /* get what will be the *next* carry bit from the
          * MSB of the current digit
          */
         rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));

         /* now shift up this digit, add in the carry [from the previous] */
         *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;

         /* copy the carry that would be from the source
          * digit into the next iteration
          */
         r = rr;
      }

      /* new leading digit? */
      if (r != 0) {
         /* add a MSB which is always 1 at this point */
         *tmpb = 1;
         ++(b->used);
      }

      /* now zero any excess digits on the destination
       * that we didn't write to
       */
      tmpb = b->dp + b->used;
      for (x = b->used; x < oldused; x++) {
         *tmpb++ = 0;
      }
   }
   b->sign = a->sign;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mul_2d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift left by a certain bit count */
int mp_mul_2d (const mp_int * a, int b, mp_int * c)
{
  mp_digit d;
  int      res;

  /* copy */
  if (a != c) {
     if ((res = mp_copy (a, c)) != MP_OKAY) {
       return res;
     }
  }

  if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) {
     if ((res = mp_grow (c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
       return res;
     }
  }

  /* shift by as many digits in the bit count */
  if (b >= (int)DIGIT_BIT) {
    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
      return res;
    }
  }

  /* shift any bit count < DIGIT_BIT */
  d = (mp_digit) (b % DIGIT_BIT);
  if (d != 0) {
    mp_digit *tmpc, shift, mask, r, rr;
    int x;

    /* bitmask for carries */
    mask = (((mp_digit)1) << d) - 1;

    /* shift for msbs */
    shift = DIGIT_BIT - d;

    /* alias */
    tmpc = c->dp;

    /* carry */
    r    = 0;
    for (x = 0; x < c->used; x++) {
      /* get the higher bits of the current word */
      rr = (*tmpc >> shift) & mask;

      /* shift the current word and OR in the carry */
      *tmpc = ((*tmpc << d) | r) & MP_MASK;
      ++tmpc;

      /* set the carry to the carry bits of the current word */
      r = rr;
    }
    
    /* set final carry */
    if (r != 0) {
       c->dp[(c->used)++] = r;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift left by a certain bit count */
int mp_mul_2d(const mp_int *a, int b, mp_int *c)
{
   mp_digit d;
   int      res;

   /* copy */
   if (a != c) {
      if ((res = mp_copy(a, c)) != MP_OKAY) {
         return res;
      }
   }

   if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) {
      if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= (int)DIGIT_BIT) {
      if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) {
         return res;
      }
   }

   /* shift any bit count < DIGIT_BIT */
   d = (mp_digit)(b % DIGIT_BIT);
   if (d != 0) {
      mp_digit *tmpc, shift, mask, r, rr;
      int x;

      /* bitmask for carries */
      mask = (((mp_digit)1) << d) - 1;

      /* shift for msbs */
      shift = DIGIT_BIT - d;

      /* alias */
      tmpc = c->dp;

      /* carry */
      r    = 0;
      for (x = 0; x < c->used; x++) {
         /* get the higher bits of the current word */
         rr = (*tmpc >> shift) & mask;

         /* shift the current word and OR in the carry */
         *tmpc = ((*tmpc << d) | r) & MP_MASK;
         ++tmpc;

         /* set the carry to the carry bits of the current word */
         r = rr;
      }

      /* set final carry */
      if (r != 0) {
         c->dp[(c->used)++] = r;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mul_d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiply by a digit */
int
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit u, *tmpa, *tmpc;
  mp_word  r;
  int      ix, res, olduse;

  /* make sure c is big enough to hold a*b */
  if (c->alloc < (a->used + 1)) {
    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get the original destinations used count */
  olduse = c->used;

  /* set the sign */
  c->sign = a->sign;

  /* alias for a->dp [source] */
  tmpa = a->dp;

  /* alias for c->dp [dest] */
  tmpc = c->dp;

  /* zero carry */
  u = 0;

  /* compute columns */
  for (ix = 0; ix < a->used; ix++) {
    /* compute product and carry sum for this term */
    r       = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);

    /* mask off higher bits to get a single digit */
    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

    /* send carry into next iteration */
    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
  }

  /* store final carry [if any] and increment ix offset  */
  *tmpc++ = u;
  ++ix;

  /* now zero digits above the top */
  while (ix++ < olduse) {
     *tmpc++ = 0;
  }

  /* set used count */
  c->used = a->used + 1;
  mp_clamp(c);

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiply by a digit */

int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit u, *tmpa, *tmpc;
   mp_word  r;
   int      ix, res, olduse;

   /* make sure c is big enough to hold a*b */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* get the original destinations used count */
   olduse = c->used;

   /* set the sign */
   c->sign = a->sign;

   /* alias for a->dp [source] */
   tmpa = a->dp;

   /* alias for c->dp [dest] */
   tmpc = c->dp;

   /* zero carry */
   u = 0;

   /* compute columns */
   for (ix = 0; ix < a->used; ix++) {
      /* compute product and carry sum for this term */
      r       = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);

      /* mask off higher bits to get a single digit */
      *tmpc++ = (mp_digit)(r & ((mp_word)MP_MASK));

      /* send carry into next iteration */
      u       = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
   }

   /* store final carry [if any] and increment ix offset  */
   *tmpc++ = u;
   ++ix;

   /* now zero digits above the top */
   while (ix++ < olduse) {
      *tmpc++ = 0;
   }

   /* set used count */
   c->used = a->used + 1;
   mp_clamp(c);

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_mulmod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a * b (mod c) */
int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;

  if ((res = mp_init_size (&t, c->used)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
   int     res;
   mp_int  t;

   if ((res = mp_init_size(&t, c->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_mul(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_n_root.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* wrapper function for mp_n_root_ex()
 * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
 */
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
  return mp_n_root_ex(a, b, c, 0);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* wrapper function for mp_n_root_ex()
 * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
 */
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
{
   return mp_n_root_ex(a, b, c, 0);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_n_root_ex.c.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

125

126
127
128
129
130
131
132
 *
 * This algorithm uses Newton's approximation
 * x[i+1] = x[i] - f(x[i])/f'(x[i])
 * which will find the root in log(N) time where
 * each step involves a fair bit.  This is not meant to
 * find huge roots [square and cube, etc].
 */
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
  mp_int  t1, t2, t3;
  int     res, neg;

  /* input must be positive if b is even */
  if (((b & 1) == 0) && (a->sign == MP_NEG)) {
    return MP_VAL;
  }

  if ((res = mp_init (&t1)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init (&t3)) != MP_OKAY) {
    goto LBL_T2;
  }

  /* if a is negative fudge the sign but keep track */
  neg     = a->sign;
  a->sign = MP_ZPOS;

  /* t2 = 2 */
  mp_set (&t2, 2);

  do {
    /* t1 = t2 */
    if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

    /* t3 = t1**(b-1) */
    if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* numerator */
    /* t2 = t1**b */
    if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t2 = t1**b - a */
    if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* denominator */
    /* t3 = t1**(b-1) * b  */
    if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t3 = (t1**b - a)/(b * t1**(b-1)) */
    if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
      goto LBL_T3;
    }

    if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }
  }  while (mp_cmp (&t1, &t2) != MP_EQ);

  /* result can be off by a few so check */
  for (;;) {
    if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
      goto LBL_T3;
    }

    if (mp_cmp (&t2, a) == MP_GT) {
      if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
         goto LBL_T3;
      }
    } else {
      break;
    }
  }

  /* reset the sign of a first */
  a->sign = neg;

  /* set the result */
  mp_exch (&t1, c);

  /* set the sign of the result */
  c->sign = neg;

  res = MP_OKAY;

LBL_T3:mp_clear (&t3);

LBL_T2:mp_clear (&t2);

LBL_T1:mp_clear (&t1);

  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

<
<
<
|
|

|
|

|

|
>
|
>
|
>
|






21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111



112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
 *
 * This algorithm uses Newton's approximation
 * x[i+1] = x[i] - f(x[i])/f'(x[i])
 * which will find the root in log(N) time where
 * each step involves a fair bit.  This is not meant to
 * find huge roots [square and cube, etc].
 */
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   mp_int  t1, t2, t3, a_;
   int     res;

   /* input must be positive if b is even */
   if (((b & 1) == 0) && (a->sign == MP_NEG)) {
      return MP_VAL;
   }

   if ((res = mp_init(&t1)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init(&t3)) != MP_OKAY) {
      goto LBL_T2;
   }

   /* if a is negative fudge the sign but keep track */
   a_ = *a;
   a_.sign = MP_ZPOS;

   /* t2 = 2 */
   mp_set(&t2, 2);

   do {
      /* t1 = t2 */
      if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

      /* t3 = t1**(b-1) */
      if ((res = mp_expt_d_ex(&t1, b - 1, &t3, fast)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* numerator */
      /* t2 = t1**b */
      if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t2 = t1**b - a */
      if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* denominator */
      /* t3 = t1**(b-1) * b  */
      if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t3 = (t1**b - a)/(b * t1**(b-1)) */
      if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
         goto LBL_T3;
      }

      if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }
   }  while (mp_cmp(&t1, &t2) != MP_EQ);

   /* result can be off by a few so check */
   for (;;) {
      if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
         goto LBL_T3;
      }

      if (mp_cmp(&t2, &a_) == MP_GT) {
         if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
            goto LBL_T3;
         }
      } else {
         break;
      }
   }




   /* set the result */
   mp_exch(&t1, c);

   /* set the sign of the result */
   c->sign = a->sign;

   res = MP_OKAY;

LBL_T3:
   mp_clear(&t3);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_neg.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = -a */
int mp_neg (const mp_int * a, mp_int * b)
{
  int     res;
  if (a != b) {
     if ((res = mp_copy (a, b)) != MP_OKAY) {
        return res;
     }
  }

  if (mp_iszero(b) != MP_YES) {
     b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
  } else {
     b->sign = MP_ZPOS;
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|
|

|
|
|
|
|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* b = -a */
int mp_neg(const mp_int *a, mp_int *b)
{
   int     res;
   if (a != b) {
      if ((res = mp_copy(a, b)) != MP_OKAY) {
         return res;
      }
   }

   if (mp_iszero(b) != MP_YES) {
      b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
   } else {
      b->sign = MP_ZPOS;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_or.c.

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* OR two ints together */
int mp_or (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;


  if (a->used > b->used) {
    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
      return res;
    }
    px = b->used;
    x = b;
  } else {
    if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
      return res;
    }
    px = a->used;
    x = a;
  }

  for (ix = 0; ix < px; ix++) {
    t.dp[ix] |= x->dp[ix];
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
>

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* OR two ints together */
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;

   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }
      px = b->used;
      x = b;
   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;
      x = a;
   }

   for (ix = 0; ix < px; ix++) {
      t.dp[ix] |= x->dp[ix];
   }
   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_fermat.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* performs one Fermat test.
 * 
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 *
 * Sets result to 1 if the congruence holds, or zero otherwise.
 */
int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
{
  mp_int  t;
  int     err;

  /* default to composite  */
  *result = MP_NO;

  /* ensure b > 1 */
  if (mp_cmp_d(b, 1) != MP_GT) {
     return MP_VAL;
  }

  /* init t */
  if ((err = mp_init (&t)) != MP_OKAY) {
    return err;
  }

  /* compute t = b**a mod a */
  if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
    goto LBL_T;
  }

  /* is it equal to b? */
  if (mp_cmp (&t, b) == MP_EQ) {
    *result = MP_YES;
  }

  err = MP_OKAY;

LBL_T:mp_clear (&t);
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|






|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
>
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* performs one Fermat test.
 *
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 *
 * Sets result to 1 if the congruence holds, or zero otherwise.
 */
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  t;
   int     err;

   /* default to composite  */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
      return MP_VAL;
   }

   /* init t */
   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }

   /* compute t = b**a mod a */
   if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) {
      goto LBL_T;
   }

   /* is it equal to b? */
   if (mp_cmp(&t, b) == MP_EQ) {
      *result = MP_YES;
   }

   err = MP_OKAY;
LBL_T:
   mp_clear(&t);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_is_divisible.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if an integers is divisible by one 
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
int mp_prime_is_divisible (mp_int * a, int *result)
{
  int     err, ix;
  mp_digit res;

  /* default to not */
  *result = MP_NO;

  for (ix = 0; ix < PRIME_SIZE; ix++) {
    /* what is a mod LBL_prime_tab[ix] */
    if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
      return err;
    }

    /* is the residue zero? */
    if (res == 0) {
      *result = MP_YES;
      return MP_OKAY;
    }
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|




|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if an integers is divisible by one
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
int mp_prime_is_divisible(const mp_int *a, int *result)
{
   int     err, ix;
   mp_digit res;

   /* default to not */
   *result = MP_NO;

   for (ix = 0; ix < PRIME_SIZE; ix++) {
      /* what is a mod LBL_prime_tab[ix] */
      if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
         return err;
      }

      /* is the residue zero? */
      if (res == 0) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_is_prime.c.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
int mp_prime_is_prime (mp_int * a, int t, int *result)
{
  mp_int  b;
  int     ix, err, res;

  /* default to no */
  *result = MP_NO;

  /* valid value of t? */
  if ((t <= 0) || (t > PRIME_SIZE)) {
    return MP_VAL;
  }

  /* is the input equal to one of the primes in the table? */
  for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
         *result = 1;
         return MP_OKAY;
      }
  }

  /* first perform trial division */
  if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
    return err;
  }

  /* return if it was trivially divisible */
  if (res == MP_YES) {
    return MP_OKAY;
  }

  /* now perform the miller-rabin rounds */
  if ((err = mp_init (&b)) != MP_OKAY) {
    return err;
  }

  for (ix = 0; ix < t; ix++) {
    /* set the prime */
    mp_set (&b, ltm_prime_tab[ix]);

    if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
      goto LBL_B;
    }

    if (res == MP_NO) {
      goto LBL_B;
    }
  }

  /* passed the test */
  *result = MP_YES;

LBL_B:mp_clear (&b);
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|

|
|
|
|

|
|




|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
>
|
|






18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
   mp_int  b;
   int     ix, err, res;

   /* default to no */
   *result = MP_NO;

   /* valid value of t? */
   if ((t <= 0) || (t > PRIME_SIZE)) {
      return MP_VAL;
   }

   /* is the input equal to one of the primes in the table? */
   for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
         *result = 1;
         return MP_OKAY;
      }
   }

   /* first perform trial division */
   if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
      return err;
   }

   /* return if it was trivially divisible */
   if (res == MP_YES) {
      return MP_OKAY;
   }

   /* now perform the miller-rabin rounds */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (ix = 0; ix < t; ix++) {
      /* set the prime */
      mp_set(&b, ltm_prime_tab[ix]);

      if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
         goto LBL_B;
      }

      if (res == MP_NO) {
         goto LBL_B;
      }
   }

   /* passed the test */
   *result = MP_YES;
LBL_B:
   mp_clear(&b);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_miller_rabin.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

95
96

97
98
99
100
101
102
103
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Miller-Rabin test of "a" to the base of "b" as described in 
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often 
 * very much lower.
 */
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
{
  mp_int  n1, y, r;
  int     s, j, err;

  /* default */
  *result = MP_NO;

  /* ensure b > 1 */
  if (mp_cmp_d(b, 1) != MP_GT) {
     return MP_VAL;
  }     

  /* get n1 = a - 1 */
  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
    return err;
  }
  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
    goto LBL_N1;
  }

  /* set 2**s * r = n1 */
  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
    goto LBL_N1;
  }

  /* count the number of least significant bits
   * which are zero
   */
  s = mp_cnt_lsb(&r);

  /* now divide n - 1 by 2**s */
  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
    goto LBL_R;
  }

  /* compute y = b**r mod a */
  if ((err = mp_init (&y)) != MP_OKAY) {
    goto LBL_R;
  }
  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* if y != 1 and y != n1 do */
  if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) {
    j = 1;
    /* while j <= s-1 and y != n1 */
    while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) {
      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if y == 1 then composite */
      if (mp_cmp_d (&y, 1) == MP_EQ) {
         goto LBL_Y;
      }

      ++j;
    }

    /* if y != n1 then composite */
    if (mp_cmp (&y, &n1) != MP_EQ) {
      goto LBL_Y;
    }
  }

  /* probably prime now */
  *result = MP_YES;

LBL_Y:mp_clear (&y);

LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);

  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|


|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
>
|
>
|
|
>
|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* Miller-Rabin test of "a" to the base of "b" as described in
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often
 * very much lower.
 */
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  n1, y, r;
   int     s, j, err;

   /* default */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
      return MP_VAL;
   }

   /* get n1 = a - 1 */
   if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_sub_d(&n1, 1, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* set 2**s * r = n1 */
   if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* count the number of least significant bits
    * which are zero
    */
   s = mp_cnt_lsb(&r);

   /* now divide n - 1 by 2**s */
   if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
      goto LBL_R;
   }

   /* compute y = b**r mod a */
   if ((err = mp_init(&y)) != MP_OKAY) {
      goto LBL_R;
   }
   if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
      goto LBL_Y;
   }

   /* if y != 1 and y != n1 do */
   if ((mp_cmp_d(&y, 1) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
      j = 1;
      /* while j <= s-1 and y != n1 */
      while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
         if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* if y == 1 then composite */
         if (mp_cmp_d(&y, 1) == MP_EQ) {
            goto LBL_Y;
         }

         ++j;
      }

      /* if y != n1 then composite */
      if (mp_cmp(&y, &n1) != MP_EQ) {
         goto LBL_Y;
      }
   }

   /* probably prime now */
   *result = MP_YES;
LBL_Y:
   mp_clear(&y);
LBL_R:
   mp_clear(&r);
LBL_N1:
   mp_clear(&n1);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_next_prime.c.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
77
78
79
80
81
82
83
84


85
86
87
88
89
90
91
...
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
...
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIME_SIZE - 2; x >= 0; x--) {
          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
             if (bbs_style == 1) {
                /* ok we found a prime smaller or
                 * equal [so the next is larger]
                 *
                 * however, the prime must be
                 * congruent to 3 mod 4
                 */
                if ((ltm_prime_tab[x + 1] & 3) != 3) {
                   /* scan upwards for a prime congruent to 3 mod 4 */
                   for (y = x + 1; y < PRIME_SIZE; y++) {
                       if ((ltm_prime_tab[y] & 3) == 3) {
                          mp_set(a, ltm_prime_tab[y]);
                          return MP_OKAY;
                       }
                   }
                }
             } else {
                mp_set(a, ltm_prime_tab[x + 1]);
                return MP_OKAY;
             }
          }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1) == MP_EQ) {
         mp_set(a, 2);
         return MP_OKAY;
      }
      /* fall through to the sieve */
................................................................................
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };


      }
   } else {
      if (mp_iseven(a) == MP_YES) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
................................................................................
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
             /* add the step to each residue */
             res_tab[x] += kstep;

             /* subtract the modulus [instead of using division] */
             if (res_tab[x] >= ltm_prime_tab[x]) {
                res_tab[x]  -= ltm_prime_tab[x];
             }

             /* set flag if zero */
             if (res_tab[x] == 0) {
                y = 1;
             }
         }
      } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................
      /* if didn't pass sieve and step == MAX then skip test */
      if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
          mp_set(&b, ltm_prime_tab[x]);
          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
             goto LBL_ERR;
          }
          if (res == MP_NO) {
             break;
          }
      }

      if (res == MP_YES) {
         break;
      }
   }







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







 







|
>
>







 







|
|

|
|
|
|

|
|
|
|







 







|
|
|
|
|
|
|







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIME_SIZE - 2; x >= 0; x--) {
         if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
            if (bbs_style == 1) {
               /* ok we found a prime smaller or
                * equal [so the next is larger]
                *
                * however, the prime must be
                * congruent to 3 mod 4
                */
               if ((ltm_prime_tab[x + 1] & 3) != 3) {
                  /* scan upwards for a prime congruent to 3 mod 4 */
                  for (y = x + 1; y < PRIME_SIZE; y++) {
                     if ((ltm_prime_tab[y] & 3) == 3) {
                        mp_set(a, ltm_prime_tab[y]);
                        return MP_OKAY;
                     }
                  }
               }
            } else {
               mp_set(a, ltm_prime_tab[x + 1]);
               return MP_OKAY;
            }
         }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1) == MP_EQ) {
         mp_set(a, 2);
         return MP_OKAY;
      }
      /* fall through to the sieve */
................................................................................
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) {
            return err;
         };
      }
   } else {
      if (mp_iseven(a) == MP_YES) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
................................................................................
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
            /* add the step to each residue */
            res_tab[x] += kstep;

            /* subtract the modulus [instead of using division] */
            if (res_tab[x] >= ltm_prime_tab[x]) {
               res_tab[x]  -= ltm_prime_tab[x];
            }

            /* set flag if zero */
            if (res_tab[x] == 0) {
               y = 1;
            }
         }
      } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................
      /* if didn't pass sieve and step == MAX then skip test */
      if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
         mp_set(&b, ltm_prime_tab[x]);
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if (res == MP_NO) {
            break;
         }
      }

      if (res == MP_YES) {
         break;
      }
   }

Changes to libtommath/bn_mp_prime_rabin_miller_trials.c.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * Tom St Denis, [email protected], http://libtom.org
 */


static const struct {
   int k, t;
} sizes[] = {
{   128,    28 },
{   256,    16 },
{   384,    10 },
{   512,     7 },
{   640,     6 },
{   768,     5 },
{   896,     4 },
{  1024,     4 }
};

/* returns # of RM trials required for a given bit size */
int mp_prime_rabin_miller_trials(int size)
{
   int x;

   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
       if (sizes[x].k == size) {
          return sizes[x].t;
       } else if (sizes[x].k > size) {
          return (x == 0) ? sizes[0].t : sizes[x - 1].t;
       }
   }
   return sizes[x-1].t + 1;
}


#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
|
|
|
|
|
|








|
|
|
|
|










15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * Tom St Denis, [email protected], http://libtom.org
 */


static const struct {
   int k, t;
} sizes[] = {
   {   128,    28 },
   {   256,    16 },
   {   384,    10 },
   {   512,     7 },
   {   640,     6 },
   {   768,     5 },
   {   896,     4 },
   {  1024,     4 }
};

/* returns # of RM trials required for a given bit size */
int mp_prime_rabin_miller_trials(int size)
{
   int x;

   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
      if (sizes[x].k == size) {
         return sizes[x].t;
      } else if (sizes[x].k > size) {
         return (x == 0) ? sizes[0].t : sizes[x - 1].t;
      }
   }
   return sizes[x-1].t + 1;
}


#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_prime_random_ex.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92


93
94
95
96
97
98
99


100

101

102
103


104
105
106
107
108
109


110


111
112
113
114
115
116
117
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
................................................................................
   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if ((flags & LTM_PRIME_2MSB_ON) != 0) {
      maskOR_msb       |= 0x80 >> ((9 - size) & 7);
   }  

   /* get the maskOR_lsb */
   maskOR_lsb         = 1;
   if ((flags & LTM_PRIME_BBS) != 0) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
         goto error;
      }
 
      /* work over the MSbyte */
      tmp[0]    &= maskAND;
      tmp[0]    |= 1 << ((size - 1) & 7);

      /* mix in the maskORs */
      tmp[maskOR_msb_offset]   |= maskOR_msb;
      tmp[bsize-1]             |= maskOR_lsb;

      /* read it in */
      if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; }



      /* is it prime? */
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }


      if (res == MP_NO) {  
         continue;
      }

      if ((flags & LTM_PRIME_SAFE) != 0) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }


         if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }

 

         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }


      }
   } while (res == MP_NO);

   if ((flags & LTM_PRIME_SAFE) != 0) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }


      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }


   }

   err = MP_OKAY;
error:
   XFREE(tmp);
   return err;
}






|







 







|













|









|
>
|
>

|
>
>
|





|
>
>
|
>
|
>

|
>
>





|
>
>
|
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
................................................................................
   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if ((flags & LTM_PRIME_2MSB_ON) != 0) {
      maskOR_msb       |= 0x80 >> ((9 - size) & 7);
   }

   /* get the maskOR_lsb */
   maskOR_lsb         = 1;
   if ((flags & LTM_PRIME_BBS) != 0) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
         goto error;
      }

      /* work over the MSbyte */
      tmp[0]    &= maskAND;
      tmp[0]    |= 1 << ((size - 1) & 7);

      /* mix in the maskORs */
      tmp[maskOR_msb_offset]   |= maskOR_msb;
      tmp[bsize-1]             |= maskOR_lsb;

      /* read it in */
      if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     {
         goto error;
      }

      /* is it prime? */
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           {
         goto error;
      }
      if (res == MP_NO) {
         continue;
      }

      if ((flags & LTM_PRIME_SAFE) != 0) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    {
            goto error;
         }
         if ((err = mp_div_2(a, a)) != MP_OKAY)                       {
            goto error;
         }

         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        {
            goto error;
         }
      }
   } while (res == MP_NO);

   if ((flags & LTM_PRIME_SAFE) != 0) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          {
         goto error;
      }
      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       {
         goto error;
      }
   }

   err = MP_OKAY;
error:
   XFREE(tmp);
   return err;
}

Changes to libtommath/bn_mp_radix_size.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* returns size of ASCII reprensentation */
int mp_radix_size (const mp_int * a, int radix, int *size)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;

  *size = 0;

  /* make sure the radix is in range */
  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  if (mp_iszero(a) == MP_YES) {
    *size = 2;
    return MP_OKAY;
  }

  /* special case for binary */
  if (radix == 2) {
    *size = mp_count_bits (a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
    return MP_OKAY;
  }

  /* digs is the digit count */
  digs = 0;

  /* if it's negative add one for the sign */
  if (a->sign == MP_NEG) {
    ++digs;
  }

  /* init a copy of the input */
  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  /* force temp to positive */
  t.sign = MP_ZPOS; 

  /* fetch out all of the digits */
  while (mp_iszero (&t) == MP_NO) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    ++digs;
  }
  mp_clear (&t);

  /* return digs + 1, the 1 is for the NULL byte that would be required. */
  *size = digs + 1;
  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* returns size of ASCII reprensentation */
int mp_radix_size(const mp_int *a, int radix, int *size)
{
   int     res, digs;
   mp_int  t;
   mp_digit d;

   *size = 0;

   /* make sure the radix is in range */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   if (mp_iszero(a) == MP_YES) {
      *size = 2;
      return MP_OKAY;
   }

   /* special case for binary */
   if (radix == 2) {
      *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
      return MP_OKAY;
   }

   /* digs is the digit count */
   digs = 0;

   /* if it's negative add one for the sign */
   if (a->sign == MP_NEG) {
      ++digs;
   }

   /* init a copy of the input */
   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* force temp to positive */
   t.sign = MP_ZPOS;

   /* fetch out all of the digits */
   while (mp_iszero(&t) == MP_NO) {
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      ++digs;
   }
   mp_clear(&t);

   /* return digs + 1, the 1 is for the NULL byte that would be required. */
   *size = digs + 1;
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_rand.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#if MP_GEN_RANDOM_MAX == 0xffffffff
  #define MP_GEN_RANDOM_SHIFT  32
#elif MP_GEN_RANDOM_MAX == 32767
  /* SHRT_MAX */
  #define MP_GEN_RANDOM_SHIFT  15
#elif MP_GEN_RANDOM_MAX == 2147483647
  /* INT_MAX */
  #define MP_GEN_RANDOM_SHIFT  31
#elif !defined(MP_GEN_RANDOM_SHIFT)
#error Thou shalt define their own valid MP_GEN_RANDOM_SHIFT
#endif

/* makes a pseudo-random int of a given size */
static mp_digit s_gen_random(void)
{
  mp_digit d = 0, msk = 0;
  do {
    d <<= MP_GEN_RANDOM_SHIFT;
    d |= ((mp_digit) MP_GEN_RANDOM());
    msk <<= MP_GEN_RANDOM_SHIFT;
    msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
  } while ((MP_MASK & msk) != MP_MASK);
  d &= MP_MASK;
  return d;
}

int
mp_rand (mp_int * a, int digits)
{
  int     res;
  mp_digit d;

  mp_zero (a);
  if (digits <= 0) {
    return MP_OKAY;
  }

  /* first place a random non-zero digit */
  do {
    d = s_gen_random();
  } while (d == 0);

  if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
    return res;
  }

  while (--digits > 0) {
    if ((res = mp_lshd (a, 1)) != MP_OKAY) {
      return res;
    }

    if ((res = mp_add_d (a, s_gen_random(), a)) != MP_OKAY) {
      return res;
    }
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|







|
|
|
|
|
|
|
|
|


<
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

#if MP_GEN_RANDOM_MAX == 0xffffffff
#define MP_GEN_RANDOM_SHIFT  32
#elif MP_GEN_RANDOM_MAX == 32767
/* SHRT_MAX */
#define MP_GEN_RANDOM_SHIFT  15
#elif MP_GEN_RANDOM_MAX == 2147483647
/* INT_MAX */
#define MP_GEN_RANDOM_SHIFT  31
#elif !defined(MP_GEN_RANDOM_SHIFT)
#error Thou shalt define their own valid MP_GEN_RANDOM_SHIFT
#endif

/* makes a pseudo-random int of a given size */
static mp_digit s_gen_random(void)
{
   mp_digit d = 0, msk = 0;
   do {
      d <<= MP_GEN_RANDOM_SHIFT;
      d |= ((mp_digit) MP_GEN_RANDOM());
      msk <<= MP_GEN_RANDOM_SHIFT;
      msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
   } while ((MP_MASK & msk) != MP_MASK);
   d &= MP_MASK;
   return d;
}


int mp_rand(mp_int *a, int digits)
{
   int     res;
   mp_digit d;

   mp_zero(a);
   if (digits <= 0) {
      return MP_OKAY;
   }

   /* first place a random non-zero digit */
   do {
      d = s_gen_random();
   } while (d == 0);

   if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
      return res;
   }

   while (--digits > 0) {
      if ((res = mp_lshd(a, 1)) != MP_OKAY) {
         return res;
      }

      if ((res = mp_add_d(a, s_gen_random(), a)) != MP_OKAY) {
         return res;
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_read_radix.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, const char *str, int radix)
{
  int     y, res, neg;
  char    ch;

  /* zero the digit bignum */
  mp_zero(a);

  /* make sure the radix is ok */
  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* if the leading digit is a 
   * minus set the sign to negative. 
   */
  if (*str == '-') {
    ++str;
    neg = MP_NEG;
  } else {
    neg = MP_ZPOS;
  }

  /* set the integer to the default of zero */
  mp_zero (a);
  
  /* process each digit of the string */
  while (*str != '\0') {
    /* if the radix <= 36 the conversion is case insensitive
     * this allows numbers like 1AB and 1ab to represent the same  value
     * [e.g. in hex]
     */
    ch = (radix <= 36) ? (char)toupper((int)*str) : *str;
    for (y = 0; y < 64; y++) {
      if (ch == mp_s_rmap[y]) {
         break;
      }
    }

    /* if the char was found in the map 
     * and is less than the given radix add it
     * to the number, otherwise exit the loop. 
     */
    if (y < radix) {
      if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
         return res;
      }
      if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
         return res;
      }
    } else {
      break;
    }
    ++str;
  }

  /* if an illegal character was found, fail. */
  if (!(*str == '\0' || *str == '\r' || *str == '\n')) {
      mp_zero(a);
      return MP_VAL;
  }

  /* set the sign only if a != 0 */
  if (mp_iszero(a) != MP_YES) {
     a->sign = neg;
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|


|

|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* read a string [ASCII] in a given radix */
int mp_read_radix(mp_int *a, const char *str, int radix)
{
   int     y, res, neg;
   char    ch;

   /* zero the digit bignum */
   mp_zero(a);

   /* make sure the radix is ok */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* if the leading digit is a
    * minus set the sign to negative.
    */
   if (*str == '-') {
      ++str;
      neg = MP_NEG;
   } else {
      neg = MP_ZPOS;
   }

   /* set the integer to the default of zero */
   mp_zero(a);

   /* process each digit of the string */
   while (*str != '\0') {
      /* if the radix <= 36 the conversion is case insensitive
       * this allows numbers like 1AB and 1ab to represent the same  value
       * [e.g. in hex]
       */
      ch = (radix <= 36) ? (char)toupper((int)*str) : *str;
      for (y = 0; y < 64; y++) {
         if (ch == mp_s_rmap[y]) {
            break;
         }
      }

      /* if the char was found in the map
       * and is less than the given radix add it
       * to the number, otherwise exit the loop.
       */
      if (y < radix) {
         if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
            return res;
         }
         if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
            return res;
         }
      } else {
         break;
      }
      ++str;
   }

   /* if an illegal character was found, fail. */
   if (!(*str == '\0' || *str == '\r' || *str == '\n')) {
      mp_zero(a);
      return MP_VAL;
   }

   /* set the sign only if a != 0 */
   if (mp_iszero(a) != MP_YES) {
      a->sign = neg;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_read_signed_bin.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

  /* read magnitude */
  if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
    return res;
  }

  /* first byte is 0 for positive, non-zero for negative */
  if (b[0] == 0) {
     a->sign = MP_ZPOS;
  } else {
     a->sign = MP_NEG;
  }

  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|

|
|
|
|
|
|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
{
   int     res;

   /* read magnitude */
   if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) {
      return res;
   }

   /* first byte is 0 for positive, non-zero for negative */
   if (b[0] == 0) {
      a->sign = MP_ZPOS;
   } else {
      a->sign = MP_NEG;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_read_unsigned_bin.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

  /* make sure there are at least two digits */
  if (a->alloc < 2) {
     if ((res = mp_grow(a, 2)) != MP_OKAY) {
        return res;
     }
  }

  /* zero the int */
  mp_zero (a);

  /* read the bytes in */
  while (c-- > 0) {
    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
      return res;
    }

#ifndef MP_8BIT
    a->dp[0] |= *b++;
    a->used += 1;
#else
    a->dp[0] = (*b & MP_MASK);
    a->dp[1] |= ((*b++ >> 7U) & 1);
    a->used += 2;
#endif
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|
|

|
|

|
|
|
|
|


|
|

|
|
|

|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
{
   int     res;

   /* make sure there are at least two digits */
   if (a->alloc < 2) {
      if ((res = mp_grow(a, 2)) != MP_OKAY) {
         return res;
      }
   }

   /* zero the int */
   mp_zero(a);

   /* read the bytes in */
   while (c-- > 0) {
      if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) {
         return res;
      }

#ifndef MP_8BIT
      a->dp[0] |= *b++;
      a->used += 1;
#else
      a->dp[0] = (*b & MP_MASK);
      a->dp[1] |= ((*b++ >> 7U) & 1);
      a->used += 2;
#endif
   }
   mp_clamp(a);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce.c.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
  mp_int  q;
  int     res, um = m->used;

  /* q = x */
  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
    return res;
  }

  /* q1 = x / b**(k-1)  */
  mp_rshd (&q, um - 1);

  /* according to HAC this optimization is ok */
  if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
      goto CLEANUP;
    }
  } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#else
    {
      res = MP_VAL;
      goto CLEANUP;
    }
#endif
  }

  /* q3 = q2 / b**(k+1) */
  mp_rshd (&q, um + 1);

  /* x = x mod b**(k+1), quick (no division) */
  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* q = q * m mod b**(k+1), quick (no division) */
  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* x = x - q */
  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* If x < 0, add b**(k+1) to it */
  if (mp_cmp_d (x, 0) == MP_LT) {
    mp_set (&q, 1);
    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
      goto CLEANUP;
    if ((res = mp_add (x, &q, x)) != MP_OKAY)
      goto CLEANUP;
  }

  /* Back off if it's too big */
  while (mp_cmp (x, m) != MP_LT) {
    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
      goto CLEANUP;
    }
  }

CLEANUP:
  mp_clear (&q);

  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|


|

|






15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
{
   mp_int  q;
   int     res, um = m->used;

   /* q = x */
   if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
      return res;
   }

   /* q1 = x / b**(k-1)  */
   mp_rshd(&q, um - 1);

   /* according to HAC this optimization is ok */
   if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
      if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) {
         goto CLEANUP;
      }
   } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
      if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
      if ((res = fast_s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#else
      {
         res = MP_VAL;
         goto CLEANUP;
      }
#endif
   }

   /* q3 = q2 / b**(k+1) */
   mp_rshd(&q, um + 1);

   /* x = x mod b**(k+1), quick (no division) */
   if ((res = mp_mod_2d(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* q = q * m mod b**(k+1), quick (no division) */
   if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* x = x - q */
   if ((res = mp_sub(x, &q, x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* If x < 0, add b**(k+1) to it */
   if (mp_cmp_d(x, 0) == MP_LT) {
      mp_set(&q, 1);
      if ((res = mp_lshd(&q, um + 1)) != MP_OKAY)
         goto CLEANUP;
      if ((res = mp_add(x, &q, x)) != MP_OKAY)
         goto CLEANUP;
   }

   /* Back off if it's too big */
   while (mp_cmp(x, m) != MP_LT) {
      if ((res = s_mp_sub(x, m, x)) != MP_OKAY) {
         goto CLEANUP;
      }
   }

CLEANUP:
   mp_clear(&q);

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce_2k.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }






|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

Changes to libtommath/bn_mp_reduce_2k_l.c.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }






|







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

Changes to libtommath/bn_mp_reduce_2k_setup.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
   int res, p;
   mp_int tmp;
   
   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(a);
   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|



|





|




|









12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
   int res, p;
   mp_int tmp;

   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(a);
   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }

   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }

   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce_2k_setup_l.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
   int    res;
   mp_int tmp;
   
   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }
   
   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
      goto ERR;
   }
   
   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
      goto ERR;
   }
   
ERR:
   mp_clear(&tmp);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|



|



|



|









12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{
   int    res;
   mp_int tmp;

   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
      goto ERR;
   }

   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
      goto ERR;
   }

ERR:
   mp_clear(&tmp);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce_is_2k.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;
   
   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      iy = mp_count_bits(a);
      iz = 1;
      iw = 1;
    
      /* Test every bit from the second digit up, must be 1 */
      for (ix = DIGIT_BIT; ix < iy; ix++) {
          if ((a->dp[iw] & iz) == 0) {
             return MP_NO;
          }
          iz <<= 1;
          if (iz > (mp_digit)MP_MASK) {
             ++iw;
             iz = 1;
          }
      }
   }
   return MP_YES;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|



|








|


|
|
|
|
|
|
|
|










12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(const mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      iy = mp_count_bits(a);
      iz = 1;
      iw = 1;

      /* Test every bit from the second digit up, must be 1 */
      for (ix = DIGIT_BIT; ix < iy; ix++) {
         if ((a->dp[iw] & iz) == 0) {
            return MP_NO;
         }
         iz <<= 1;
         if (iz > (mp_digit)MP_MASK) {
            ++iw;
            iz = 1;
         }
      }
   }
   return MP_YES;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce_is_2k_l.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
{
   int ix, iy;
   
   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      /* if more than half of the digits are -1 we're sold */
      for (iy = ix = 0; ix < a->used; ix++) {
          if (a->dp[ix] == MP_MASK) {
              ++iy;
          }
      }
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
      
   }
   return MP_NO;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|







|
|
|


|









12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(const mp_int *a)
{
   int ix, iy;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      /* if more than half of the digits are -1 we're sold */
      for (iy = ix = 0; ix < a->used; ix++) {
         if (a->dp[ix] == MP_MASK) {
            ++iy;
         }
      }
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;

   }
   return MP_NO;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_reduce_setup.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
int mp_reduce_setup (mp_int * a, mp_int * b)
{
  int     res;
  
  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
    return res;
  }
  return mp_div (a, b, a, NULL);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|
|






14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
int mp_reduce_setup(mp_int *a, const mp_int *b)
{
   int     res;

   if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
      return res;
   }
   return mp_div(a, b, a, NULL);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_rshd.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift right a certain amount of digits */
void mp_rshd (mp_int * a, int b)
{
  int     x;

  /* if b <= 0 then ignore it */
  if (b <= 0) {
    return;
  }

  /* if b > used then simply zero it and return */
  if (a->used <= b) {
    mp_zero (a);
    return;
  }

  {
    mp_digit *bottom, *top;

    /* shift the digits down */

    /* bottom */
    bottom = a->dp;

    /* top [offset into digits] */
    top = a->dp + b;

    /* this is implemented as a sliding window where 
     * the window is b-digits long and digits from 
     * the top of the window are copied to the bottom
     *
     * e.g.

     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
                 /\                   |      ---->
                  \-------------------/      ---->
     */
    for (x = 0; x < (a->used - b); x++) {
      *bottom++ = *top++;
    }

    /* zero the top digits */
    for (; x < a->used; x++) {
      *bottom++ = 0;
    }
  }
  
  /* remove excess digits */
  a->used -= b;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shift right a certain amount of digits */
void mp_rshd(mp_int *a, int b)
{
   int     x;

   /* if b <= 0 then ignore it */
   if (b <= 0) {
      return;
   }

   /* if b > used then simply zero it and return */
   if (a->used <= b) {
      mp_zero(a);
      return;
   }

   {
      mp_digit *bottom, *top;

      /* shift the digits down */

      /* bottom */
      bottom = a->dp;

      /* top [offset into digits] */
      top = a->dp + b;

      /* this is implemented as a sliding window where
       * the window is b-digits long and digits from
       * the top of the window are copied to the bottom
       *
       * e.g.

       b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
                   /\                   |      ---->
                    \-------------------/      ---->
       */
      for (x = 0; x < (a->used - b); x++) {
         *bottom++ = *top++;
      }

      /* zero the top digits */
      for (; x < a->used; x++) {
         *bottom++ = 0;
      }
   }

   /* remove excess digits */
   a->used -= b;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_set.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
  mp_zero (a);
  a->dp[0] = b & MP_MASK;
  a->used  = (a->dp[0] != 0) ? 1 : 0;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set to a digit */
void mp_set(mp_int *a, mp_digit b)
{
   mp_zero(a);
   a->dp[0] = b & MP_MASK;
   a->used  = (a->dp[0] != 0) ? 1 : 0;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_set_int.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
  int     x, res;

  mp_zero (a);
  
  /* set four bits at a time */
  for (x = 0; x < 8; x++) {
    /* shift the number up four bits */
    if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
      return res;
    }

    /* OR in the top four bits of the source */
    a->dp[0] |= (b >> 28) & 15;

    /* shift the source up to the next four bits */
    b <<= 4;

    /* ensure that digits are not clamped off */
    a->used += 1;
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b)
{
   int     x, res;

   mp_zero(a);

   /* set four bits at a time */
   for (x = 0; x < 8; x++) {
      /* shift the number up four bits */
      if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) {
         return res;
      }

      /* OR in the top four bits of the source */
      a->dp[0] |= (b >> 28) & 15;

      /* shift the source up to the next four bits */
      b <<= 4;

      /* ensure that digits are not clamped off */
      a->used += 1;
   }
   mp_clamp(a);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_shrink.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shrink a bignum */
int mp_shrink (mp_int * a)
{
  mp_digit *tmp;
  int used = 1;
  
  if(a->used > 0) {
    used = a->used;
  }
  
  if (a->alloc != used) {
    if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
      return MP_MEM;
    }
    a->dp    = tmp;
    a->alloc = used;
  }
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* shrink a bignum */
int mp_shrink(mp_int *a)
{
   mp_digit *tmp;
   int used = 1;

   if (a->used > 0) {
      used = a->used;
   }

   if (a->alloc != used) {
      if ((tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * used)) == NULL) {
         return MP_MEM;
      }
      a->dp    = tmp;
      a->alloc = used;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_signed_bin_size.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the size for an signed equivalent */
int mp_signed_bin_size (mp_int * a)
{
  return 1 + mp_unsigned_bin_size (a);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the size for an signed equivalent */
int mp_signed_bin_size(const mp_int *a)
{
   return 1 + mp_unsigned_bin_size(a);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_sqr.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes b = a*a */
int
mp_sqr (mp_int * a, mp_int * b)
{
  int     res;

#ifdef BN_MP_TOOM_SQR_C
  /* use Toom-Cook? */
  if (a->used >= TOOM_SQR_CUTOFF) {
    res = mp_toom_sqr(a, b);
  /* Karatsuba? */
  } else 
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
  if (a->used >= KARATSUBA_SQR_CUTOFF) {
    res = mp_karatsuba_sqr (a, b);
  } else 
#endif
  {
#ifdef BN_FAST_S_MP_SQR_C
    /* can we use the fast comba multiplier? */
    if ((((a->used * 2) + 1) < MP_WARRAY) &&
         (a->used <
         (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) {
      res = fast_s_mp_sqr (a, b);
    } else
#endif
    {
#ifdef BN_S_MP_SQR_C
      res = s_mp_sqr (a, b);
#else
      res = MP_VAL;
#endif
    }
  }
  b->sign = MP_ZPOS;
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|


|
|
|
|
|


|
|
|

|

|
|
|
|
|
|

|

|

|

|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* computes b = a*a */
int mp_sqr(const mp_int *a, mp_int *b)

{
   int     res;

#ifdef BN_MP_TOOM_SQR_C
   /* use Toom-Cook? */
   if (a->used >= TOOM_SQR_CUTOFF) {
      res = mp_toom_sqr(a, b);
      /* Karatsuba? */
   } else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
      if (a->used >= KARATSUBA_SQR_CUTOFF) {
         res = mp_karatsuba_sqr(a, b);
      } else
#endif
      {
#ifdef BN_FAST_S_MP_SQR_C
         /* can we use the fast comba multiplier? */
         if ((((a->used * 2) + 1) < MP_WARRAY) &&
             (a->used <
              (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) {
            res = fast_s_mp_sqr(a, b);
         } else
#endif
         {
#ifdef BN_S_MP_SQR_C
            res = s_mp_sqr(a, b);
#else
            res = MP_VAL;
#endif
         }
      }
   b->sign = MP_ZPOS;
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_sqrmod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = a * a (mod b) */
int
mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
  mp_int  t;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_sqr (a, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, b, c);
  mp_clear (&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|

|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_sqr(a, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, b, c);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_sqrt.c.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
 */

#ifndef NO_FLOATING_POINT
#include <math.h>
#endif

/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret) 
{
  int res;
  mp_int t1,t2;
  int i, j, k;
#ifndef NO_FLOATING_POINT
  volatile double d;
  mp_digit dig;
#endif

  /* must be positive */
  if (arg->sign == MP_NEG) {
    return MP_VAL;
  }

  /* easy out */
  if (mp_iszero(arg) == MP_YES) {
    mp_zero(ret);
    return MP_OKAY;
  }
  
  i = (arg->used / 2) - 1;
  j = 2 * i;
  if ((res = mp_init_size(&t1, i+2)) != MP_OKAY) {
      return res;
  }
  
  if ((res = mp_init(&t2)) != MP_OKAY) {
    goto E2;
  }

  for (k = 0; k < i; ++k) {
      t1.dp[k] = (mp_digit) 0;
  }
      
#ifndef NO_FLOATING_POINT

  /* Estimate the square root using the hardware floating point unit. */

  d = 0.0;
  for (k = arg->used-1; k >= j; --k) {
      d = ldexp(d, DIGIT_BIT) + (double) (arg->dp[k]);
  }

  /* 
   * At this point, d is the nearest floating point number to the most
   * significant 1 or 2 mp_digits of arg. Extract its square root.
   */
     
  d = sqrt(d);

  /* dig is the most significant mp_digit of the square root */

  dig = (mp_digit) ldexp(d, -DIGIT_BIT);

  /* 
   * If the most significant digit is nonzero, find the next digit down
   * by subtracting DIGIT_BIT times thie most significant digit. 
   * Subtract one from the result so that our initial estimate is always
   * low.
   */

  if (dig) {
      t1.used = i+2;
      d -= ldexp((double) dig, DIGIT_BIT);
      if (d >= 1.0) {
	  t1.dp[i+1] = dig;
	  t1.dp[i] = ((mp_digit) d) - 1;
      } else {
	  t1.dp[i+1] = dig-1;
	  t1.dp[i] = MP_DIGIT_MAX;
      }
  } else {
      t1.used = i+1;
      t1.dp[i] = ((mp_digit) d) - 1;
  }

#else

  /* Estimate the square root as having 1 in the most significant place. */

  t1.used = i + 2;
  t1.dp[i+1] = (mp_digit) 1;
  t1.dp[i] = (mp_digit) 0;

#endif

  /* t1 > 0  */ 
  if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
    goto E1;
  }
  if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
    goto E1;
  }
  if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
    goto E1;
  }
  /* And now t1 > sqrt(arg) */
  do { 
    if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
      goto E1;
    }
    if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
      goto E1;
    }
    if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
      goto E1;
    }
    /* t1 >= sqrt(arg) >= t2 at this point */
  } while (mp_cmp_mag(&t1,&t2) == MP_GT);

  mp_exch(&t1,ret);


E1: mp_clear(&t2);

E2: mp_clear(&t1);
  return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|

|
|


|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|


|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|

|



|
|

|
|

|


|



|

|
|
|



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

>
|
>
|
|







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
 */

#ifndef NO_FLOATING_POINT
#include <math.h>
#endif

/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(const mp_int *arg, mp_int *ret)
{
   int res;
   mp_int t1,t2;
   int i, j, k;
#ifndef NO_FLOATING_POINT
   volatile double d;
   mp_digit dig;
#endif

   /* must be positive */
   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* easy out */
   if (mp_iszero(arg) == MP_YES) {
      mp_zero(ret);
      return MP_OKAY;
   }

   i = (arg->used / 2) - 1;
   j = 2 * i;
   if ((res = mp_init_size(&t1, i+2)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto E2;
   }

   for (k = 0; k < i; ++k) {
      t1.dp[k] = (mp_digit) 0;
   }

#ifndef NO_FLOATING_POINT

   /* Estimate the square root using the hardware floating point unit. */

   d = 0.0;
   for (k = arg->used-1; k >= j; --k) {
      d = ldexp(d, DIGIT_BIT) + (double)(arg->dp[k]);
   }

   /*
    * At this point, d is the nearest floating point number to the most
    * significant 1 or 2 mp_digits of arg. Extract its square root.
    */

   d = sqrt(d);

   /* dig is the most significant mp_digit of the square root */

   dig = (mp_digit) ldexp(d, -DIGIT_BIT);

   /*
    * If the most significant digit is nonzero, find the next digit down
    * by subtracting DIGIT_BIT times thie most significant digit.
    * Subtract one from the result so that our initial estimate is always
    * low.
    */

   if (dig) {
      t1.used = i+2;
      d -= ldexp((double) dig, DIGIT_BIT);
      if (d >= 1.0) {
         t1.dp[i+1] = dig;
         t1.dp[i] = ((mp_digit) d) - 1;
      } else {
         t1.dp[i+1] = dig-1;
         t1.dp[i] = MP_DIGIT_MAX;
      }
   } else {
      t1.used = i+1;
      t1.dp[i] = ((mp_digit) d) - 1;
   }

#else

   /* Estimate the square root as having 1 in the most significant place. */

   t1.used = i + 2;
   t1.dp[i+1] = (mp_digit) 1;
   t1.dp[i] = (mp_digit) 0;

#endif

   /* t1 > 0  */
   if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
      goto E1;
   }
   if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
      goto E1;
   }
   if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
      goto E1;
   }
   /* And now t1 > sqrt(arg) */
   do {
      if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
         goto E1;
      }
      if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
         goto E1;
      }
      if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
         goto E1;
      }
      /* t1 >= sqrt(arg) >= t2 at this point */
   } while (mp_cmp_mag(&t1,&t2) == MP_GT);

   mp_exch(&t1,ret);

E1:
   mp_clear(&t2);
E2:
   mp_clear(&t1);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_sqrtmod_prime.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
{
  int res, legendre;
  mp_int t1, C, Q, S, Z, M, T, R, two;
  mp_digit i;

  /* first handle the simple cases */
  if (mp_cmp_d(n, 0) == MP_EQ) {
    mp_zero(ret);
    return MP_OKAY;
  }
  if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */
  if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
  if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

  if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
	return res;
  }

  /* SPECIAL CASE: if prime mod 4 == 3
   * compute directly: res = n^(prime+1)/4 mod prime
   * Handbook of Applied Cryptography algorithm 3.36
   */
  if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup;
  if (i == 3) {
    if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup;
    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
    if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
    res = MP_OKAY;
    goto cleanup;
  }

  /* NOW: Tonelli-Shanks algorithm */

  /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
  if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
  if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup;
  /* Q = prime - 1 */
  mp_zero(&S);
  /* S = 0 */
  while (mp_iseven(&Q) != MP_NO) {
    if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
    /* Q = Q / 2 */
    if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup;
    /* S = S + 1 */
  }

  /* find a Z such that the Legendre symbol (Z|prime) == -1 */
  if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup;
  /* Z = 2 */
  while(1) {
    if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
    if (legendre == -1) break;
    if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup;
    /* Z = Z + 1 */
  }

  if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
  /* C = Z ^ Q mod prime */
  if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup;
  if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
  /* t1 = (Q + 1) / 2 */
  if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
  /* R = n ^ ((Q + 1) / 2) mod prime */
  if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
  /* T = n ^ Q mod prime */
  if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
  /* M = S */
  if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup;

  res = MP_VAL;
  while (1) {
    if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
    i = 0;
    while (1) {
      if (mp_cmp_d(&t1, 1) == MP_EQ) break;
      if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
      i++;
    }
    if (i == 0) {
      if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
      res = MP_OKAY;
      goto cleanup;
    }
    if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
    if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup;
    if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
    /* t1 = 2 ^ (M - i - 1) */
    if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
    /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
    if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
    /* C = (t1 * t1) mod prime */
    if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
    /* R = (R * t1) mod prime */
    if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
    /* T = (T * C) mod prime */
    mp_set(&M, i);
    /* M = i */
  }

cleanup:
  mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
  return res;
}

#endif






|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
   int res, legendre;
   mp_int t1, C, Q, S, Z, M, T, R, two;
   mp_digit i;

   /* first handle the simple cases */
   if (mp_cmp_d(n, 0) == MP_EQ) {
      mp_zero(ret);
      return MP_OKAY;
   }
   if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */
   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
      return res;
   }

   /* SPECIAL CASE: if prime mod 4 == 3
    * compute directly: res = n^(prime+1)/4 mod prime
    * Handbook of Applied Cryptography algorithm 3.36
    */
   if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup;
   if (i == 3) {
      if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
      res = MP_OKAY;
      goto cleanup;
   }

   /* NOW: Tonelli-Shanks algorithm */

   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
   if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup;
   /* Q = prime - 1 */
   mp_zero(&S);
   /* S = 0 */
   while (mp_iseven(&Q) != MP_NO) {
      if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
      /* Q = Q / 2 */
      if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup;
      /* S = S + 1 */
   }

   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
   if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup;
   /* Z = 2 */
   while (1) {
      if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
      if (legendre == -1) break;
      if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup;
      /* Z = Z + 1 */
   }

   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
   /* C = Z ^ Q mod prime */
   if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup;
   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
   /* t1 = (Q + 1) / 2 */
   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
   /* R = n ^ ((Q + 1) / 2) mod prime */
   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
   /* T = n ^ Q mod prime */
   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
   /* M = S */
   if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup;

   res = MP_VAL;
   while (1) {
      if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
      i = 0;
      while (1) {
         if (mp_cmp_d(&t1, 1) == MP_EQ) break;
         if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
         i++;
      }
      if (i == 0) {
         if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
         res = MP_OKAY;
         goto cleanup;
      }
      if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
      if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup;
      if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
      /* t1 = 2 ^ (M - i - 1) */
      if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
      if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
      /* C = (t1 * t1) mod prime */
      if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
      /* R = (R * t1) mod prime */
      if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
      /* T = (T * C) mod prime */
      mp_set(&M, i);
      /* M = i */
   }

cleanup:
   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
   return res;
}

#endif

Changes to libtommath/bn_mp_sub.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

  sa = a->sign;
  sb = b->sign;

  if (sa != sb) {
    /* subtract a negative from a positive, OR */
    /* subtract a positive from a negative. */
    /* In either case, ADD their magnitudes, */
    /* and use the sign of the first number. */
    c->sign = sa;
    res = s_mp_add (a, b, c);
  } else {
    /* subtract a positive from a positive, OR */
    /* subtract a negative from a negative. */
    /* First, take the difference between their */
    /* magnitudes, then... */
    if (mp_cmp_mag (a, b) != MP_LT) {
      /* Copy the sign from the first */
      c->sign = sa;
      /* The first has a larger or equal magnitude */
      res = s_mp_sub (a, b, c);
    } else {
      /* The result has the *opposite* sign from */
      /* the first number. */
      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
      /* The second has a larger magnitude */
      res = s_mp_sub (b, a, c);
    }
  }
  return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* high level subtraction (handles signs) */
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     sa, sb, res;

   sa = a->sign;
   sb = b->sign;

   if (sa != sb) {
      /* subtract a negative from a positive, OR */
      /* subtract a positive from a negative. */
      /* In either case, ADD their magnitudes, */
      /* and use the sign of the first number. */
      c->sign = sa;
      res = s_mp_add(a, b, c);
   } else {
      /* subtract a positive from a positive, OR */
      /* subtract a negative from a negative. */
      /* First, take the difference between their */
      /* magnitudes, then... */
      if (mp_cmp_mag(a, b) != MP_LT) {
         /* Copy the sign from the first */
         c->sign = sa;
         /* The first has a larger or equal magnitude */
         res = s_mp_sub(a, b, c);
      } else {
         /* The result has the *opposite* sign from */
         /* the first number. */
         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
         /* The second has a larger magnitude */
         res = s_mp_sub(b, a, c);
      }
   }
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_sub_d.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit *tmpa, *tmpc, mu;
  int       res, ix, oldused;

  /* grow c as required */
  if (c->alloc < (a->used + 1)) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative just do an unsigned
   * addition [with fudged signs]
   */
  if (a->sign == MP_NEG) {

     a->sign = MP_ZPOS;
     res     = mp_add_d(a, b, c);
     a->sign = c->sign = MP_NEG;

     /* clamp */
     mp_clamp(c);

     return res;
  }

  /* setup regs */
  oldused = c->used;
  tmpa    = a->dp;
  tmpc    = c->dp;

  /* if a <= b simply fix the single digit */
  if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
     if (a->used == 1) {
        *tmpc++ = b - *tmpa;
     } else {
        *tmpc++ = b;
     }
     ix      = 1;

     /* negative/1digit */
     c->sign = MP_NEG;
     c->used = 1;
  } else {
     /* positive/size */
     c->sign = MP_ZPOS;
     c->used = a->used;

     /* subtract first digit */
     *tmpc    = *tmpa++ - b;
     mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
     *tmpc++ &= MP_MASK;

     /* handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc    = *tmpa++ - mu;
        mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
        *tmpc++ &= MP_MASK;
     }
  }

  /* zero excess digits */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);
  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|

|
|
|
|
|
|

|
|
|
|
>
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|







12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* single digit subtraction */

int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit *tmpa, *tmpc, mu;
   int       res, ix, oldused;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* if a is negative just do an unsigned
    * addition [with fudged signs]
    */
   if (a->sign == MP_NEG) {
      mp_int a_ = *a;
      a_.sign = MP_ZPOS;
      res     = mp_add_d(&a_, b, c);
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return res;
   }

   /* setup regs */
   oldused = c->used;
   tmpa    = a->dp;
   tmpc    = c->dp;

   /* if a <= b simply fix the single digit */
   if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
      if (a->used == 1) {
         *tmpc++ = b - *tmpa;
      } else {
         *tmpc++ = b;
      }
      ix      = 1;

      /* negative/1digit */
      c->sign = MP_NEG;
      c->used = 1;
   } else {
      /* positive/size */
      c->sign = MP_ZPOS;
      c->used = a->used;

      /* subtract first digit */
      *tmpc    = *tmpa++ - b;
      mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
      *tmpc++ &= MP_MASK;

      /* handle rest of the digits */
      for (ix = 1; ix < a->used; ix++) {
         *tmpc    = *tmpa++ - mu;
         mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
         *tmpc++ &= MP_MASK;
      }
   }

   /* zero excess digits */
   while (ix++ < oldused) {
      *tmpc++ = 0;
   }
   mp_clamp(c);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_submod.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a - b (mod c) */
int
mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;


  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|


|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* d = a - b (mod c) */
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)

{
   int     res;
   mp_int  t;


   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_sub(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_to_signed_bin.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
  int     res;

  if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
    return res;
  }
  b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin(const mp_int *a, unsigned char *b)
{
   int     res;

   if ((res = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) {
      return res;
   }
   b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_to_signed_bin_n.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|












12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_to_unsigned_bin.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
  int     x, res;
  mp_int  t;

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  x = 0;
  while (mp_iszero (&t) == MP_NO) {
#ifndef MP_8BIT
      b[x++] = (unsigned char) (t.dp[0] & 255);
#else
      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
  }
  bn_reverse (b, x);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
{
   int     x, res;
   mp_int  t;

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   x = 0;
   while (mp_iszero(&t) == MP_NO) {
#ifndef MP_8BIT
      b[x++] = (unsigned char)(t.dp[0] & 255);
#else
      b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
      if ((res = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
   }
   bn_reverse(b, x);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_to_unsigned_bin_n.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|












12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_toom_mul.c.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
    int res, B;

    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
                             &a0, &a1, &a2, &b0, &b1,
                             &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
       return res;
    }

    /* B */
    B = MIN(a->used, b->used) / 3;

    /* a = a2 * B**2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* b = b2 * B**2 + b1 * B + b0 */
    if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(b, &b1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b1, B);
    (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

    if ((res = mp_copy(b, &b2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b2, B*2);

    /* w0 = a0*b0 */
    if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
       goto ERR;
    }

    /* w4 = a2 * b2 */
    if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
       goto ERR;
    }

    /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
       goto ERR;
    }

    /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
       goto ERR;
    }


    /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
       goto ERR;
    }

    /* now solve the matrix

       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts,
              2 small divisions and 1 small multiplication
     */

    /* r1 - r4 */
    if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r0 */
    if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/2 */
    if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/2 */
    if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r2 - r0 - r4 */
    if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - 8r0 */
    if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - 8r4 */
    if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* 3r2 - r1 - r3 */
    if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/3 */
    if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/3 */
    if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
       goto ERR;
    }

    /* at this point shift W[n] by B*n */
    if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
       goto ERR;
    }

ERR:
    mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
                   &a0, &a1, &a2, &b0, &b1,
                   &b2, &tmp1, &tmp2, NULL);
    return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|


|
|
|
|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
   int res, B;

   /* init temps */
   if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
                            &a0, &a1, &a2, &b0, &b1,
                            &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
      return res;
   }

   /* B */
   B = MIN(a->used, b->used) / 3;

   /* a = a2 * B**2 + a1 * B + a0 */
   if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_copy(a, &a1)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&a1, B);
   if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_copy(a, &a2)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&a2, B*2);

   /* b = b2 * B**2 + b1 * B + b0 */
   if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_copy(b, &b1)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&b1, B);
   (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

   if ((res = mp_copy(b, &b2)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&b2, B*2);

   /* w0 = a0*b0 */
   if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
      goto ERR;
   }

   /* w4 = a2 * b2 */
   if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
      goto ERR;
   }

   /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
   if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
      goto ERR;
   }

   /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
   if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
      goto ERR;
   }


   /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
   if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
      goto ERR;
   }

   /* now solve the matrix

      0  0  0  0  1
      1  2  4  8  16
      1  1  1  1  1
      16 8  4  2  1
      1  0  0  0  0

      using 12 subtractions, 4 shifts,
             2 small divisions and 1 small multiplication
    */

   /* r1 - r4 */
   if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r0 */
   if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1/2 */
   if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3/2 */
   if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r2 - r0 - r4 */
   if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - 8r0 */
   if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - 8r4 */
   if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* 3r2 - r1 - r3 */
   if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1/3 */
   if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
      goto ERR;
   }
   /* r3/3 */
   if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
      goto ERR;
   }

   /* at this point shift W[n] by B*n */
   if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
      goto ERR;
   }

ERR:
   mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
                  &a0, &a1, &a2, &b0, &b1,
                  &b2, &tmp1, &tmp2, NULL);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_toom_sqr.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* squaring using Toom-Cook 3-way algorithm */
int
mp_toom_sqr(mp_int *a, mp_int *b)
{
    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
    int res, B;

    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
       return res;
    }

    /* B */
    B = a->used / 3;

    /* a = a2 * B**2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* w0 = a0*a0 */
    if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
       goto ERR;
    }

    /* w4 = a2 * a2 */
    if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
       goto ERR;
    }

    /* w1 = (a2 + 2(a1 + 2a0))**2 */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }

    /* w3 = (a0 + 2(a1 + 2a2))**2 */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }


    /* w2 = (a2 + a1 + a0)**2 */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
       goto ERR;
    }

    /* now solve the matrix

       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
     */

    /* r1 - r4 */
    if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r0 */
    if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/2 */
    if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/2 */
    if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r2 - r0 - r4 */
    if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - 8r0 */
    if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - 8r4 */
    if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* 3r2 - r1 - r3 */
    if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/3 */
    if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/3 */
    if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
       goto ERR;
    }

    /* at this point shift W[n] by B*n */
    if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
       goto ERR;
    }

ERR:
    mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
    return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|


|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|


|
|







12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* squaring using Toom-Cook 3-way algorithm */

int mp_toom_sqr(const mp_int *a, mp_int *b)
{
   mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
   int res, B;

   /* init temps */
   if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
      return res;
   }

   /* B */
   B = a->used / 3;

   /* a = a2 * B**2 + a1 * B + a0 */
   if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_copy(a, &a1)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&a1, B);
   if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_copy(a, &a2)) != MP_OKAY) {
      goto ERR;
   }
   mp_rshd(&a2, B*2);

   /* w0 = a0*a0 */
   if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
      goto ERR;
   }

   /* w4 = a2 * a2 */
   if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
      goto ERR;
   }

   /* w1 = (a2 + 2(a1 + 2a0))**2 */
   if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
      goto ERR;
   }

   /* w3 = (a0 + 2(a1 + 2a2))**2 */
   if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
      goto ERR;
   }


   /* w2 = (a2 + a1 + a0)**2 */
   if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
      goto ERR;
   }

   /* now solve the matrix

      0  0  0  0  1
      1  2  4  8  16
      1  1  1  1  1
      16 8  4  2  1
      1  0  0  0  0

      using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
    */

   /* r1 - r4 */
   if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r0 */
   if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1/2 */
   if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3/2 */
   if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r2 - r0 - r4 */
   if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - 8r0 */
   if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - 8r4 */
   if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* 3r2 - r1 - r3 */
   if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
      goto ERR;
   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto ERR;
   }
   /* r1/3 */
   if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
      goto ERR;
   }
   /* r3/3 */
   if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
      goto ERR;
   }

   /* at this point shift W[n] by B*n */
   if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
      goto ERR;
   }

   if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
      goto ERR;
   }
   if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
      goto ERR;
   }

ERR:
   mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_toradix.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix (mp_int * a, char *str, int radix)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the radix */
  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == MP_YES) {
     *str++ = '0';
     *str = '\0';
     return MP_OKAY;
  }

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  /* if it is negative output a - */
  if (t.sign == MP_NEG) {
    ++_s;
    *str++ = '-';
    t.sign = MP_ZPOS;
  }

  digs = 0;
  while (mp_iszero (&t) == MP_NO) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    *str++ = mp_s_rmap[d];
    ++digs;
  }

  /* reverse the digits of the string.  In this case _s points
   * to the first digit [exluding the sign] of the number]
   */
  bn_reverse ((unsigned char *)_s, digs);

  /* append a NULL so the string is properly terminated */
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix(const mp_int *a, char *str, int radix)
{
   int     res, digs;
   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the radix */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (mp_iszero(a) == MP_YES) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      ++_s;
      *str++ = '-';
      t.sign = MP_ZPOS;
   }

   digs = 0;
   while (mp_iszero(&t) == MP_NO) {
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number]
    */
   bn_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_toradix_n.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64) 
 *
 * Stores upto maxlen-1 chars and always a NULL byte 
 */
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the maxlen, radix */
  if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == MP_YES) {
     *str++ = '0';
     *str = '\0';
     return MP_OKAY;
  }

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  /* if it is negative output a - */
  if (t.sign == MP_NEG) {
    /* we have to reverse our digits later... but not the - sign!! */
    ++_s;

    /* store the flag and mark the number as positive */
    *str++ = '-';
    t.sign = MP_ZPOS;
 
    /* subtract a char */
    --maxlen;
  }

  digs = 0;
  while (mp_iszero (&t) == MP_NO) {
    if (--maxlen < 1) {
       /* no more room */
       break;
    }
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    *str++ = mp_s_rmap[d];
    ++digs;
  }

  /* reverse the digits of the string.  In this case _s points
   * to the first digit [exluding the sign] of the number
   */
  bn_reverse ((unsigned char *)_s, digs);

  /* append a NULL so the string is properly terminated */
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64)
 *
 * Stores upto maxlen-1 chars and always a NULL byte
 */
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
{
   int     res, digs;
   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the maxlen, radix */
   if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (mp_iszero(a) == MP_YES) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      /* we have to reverse our digits later... but not the - sign!! */
      ++_s;

      /* store the flag and mark the number as positive */
      *str++ = '-';
      t.sign = MP_ZPOS;

      /* subtract a char */
      --maxlen;
   }

   digs = 0;
   while (mp_iszero(&t) == MP_NO) {
      if (--maxlen < 1) {
         /* no more room */
         break;
      }
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number
    */
   bn_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_unsigned_bin_size.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
  int     size = mp_count_bits (a);
  return (size / 8) + (((size & 7) != 0) ? 1 : 0);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size(const mp_int *a)
{
   int     size = mp_count_bits(a);
   return (size / 8) + (((size & 7) != 0) ? 1 : 0);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_xor.c.

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* XOR two ints together */
int
mp_xor (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;


  if (a->used > b->used) {
    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
      return res;
    }
    px = b->used;
    x = b;
  } else {
    if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
      return res;
    }
    px = a->used;
    x = a;
  }

  for (ix = 0; ix < px; ix++) {
     t.dp[ix] ^= x->dp[ix];
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|
>

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* XOR two ints together */
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;

   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }
      px = b->used;
      x = b;
   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;
      x = a;
   }

   for (ix = 0; ix < px; ix++) {
      t.dp[ix] ^= x->dp[ix];
   }
   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_zero.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set to zero */
void mp_zero (mp_int * a)
{
  int       n;
  mp_digit *tmp;

  a->sign = MP_ZPOS;
  a->used = 0;

  tmp = a->dp;
  for (n = 0; n < a->alloc; n++) {
     *tmp++ = 0;
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|

|
|

|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set to zero */
void mp_zero(mp_int *a)
{
   int       n;
   mp_digit *tmp;

   a->sign = MP_ZPOS;
   a->used = 0;

   tmp = a->dp;
   for (n = 0; n < a->alloc; n++) {
      *tmp++ = 0;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_prime_tab.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
const mp_digit ltm_prime_tab[] = {
  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
  0x0083,
  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,

  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,

  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
const mp_digit ltm_prime_tab[] = {
   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
   0x0083,
   0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
   0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
   0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
   0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,

   0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
   0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
   0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
   0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
   0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
   0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
   0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
   0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

   0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
   0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
   0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
   0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
   0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
   0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
   0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
   0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,

   0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
   0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
   0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_reverse.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reverse an array, used for radix code */
void
bn_reverse (unsigned char *s, int len)
{
  int     ix, iy;
  unsigned char t;

  ix = 0;
  iy = len - 1;
  while (ix < iy) {
    t     = s[ix];
    s[ix] = s[iy];
    s[iy] = t;
    ++ix;
    --iy;
  }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






<
|

|
|

|
|
|
|
|
|
|
|
|






12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* reverse an array, used for radix code */

void bn_reverse(unsigned char *s, int len)
{
   int     ix, iy;
   unsigned char t;

   ix = 0;
   iy = len - 1;
   while (ix < iy) {
      t     = s[ix];
      s[ix] = s[iy];
      s[iy] = t;
      ++ix;
      --iy;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_add.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int *x;
  int     olduse, res, min, max;

  /* find sizes, we let |a| <= |b| which means we have to sort
   * them.  "x" will point to the input with the most digits
   */
  if (a->used > b->used) {
    min = b->used;
    max = a->used;
    x = a;
  } else {
    min = a->used;
    max = b->used;
    x = b;
  }

  /* init result */
  if (c->alloc < (max + 1)) {
    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get old used digit count and set new one */
  olduse = c->used;
  c->used = max + 1;

  {
    mp_digit u, *tmpa, *tmpb, *tmpc;
    int i;

    /* alias for digit pointers */

    /* first input */
    tmpa = a->dp;

    /* second input */
    tmpb = b->dp;

    /* destination */
    tmpc = c->dp;

    /* zero the carry */
    u = 0;
    for (i = 0; i < min; i++) {
      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
      *tmpc = *tmpa++ + *tmpb++ + u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)DIGIT_BIT);

      /* take away carry bit from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, that is in A+B 
     * if A or B has more digits add those in 
     */
    if (min != max) {
      for (; i < max; i++) {
        /* T[i] = X[i] + U */
        *tmpc = x->dp[i] + u;

        /* U = carry bit of T[i] */
        u = *tmpc >> ((mp_digit)DIGIT_BIT);

        /* take away carry bit from T[i] */
        *tmpc++ &= MP_MASK;
      }
    }

    /* add carry */
    *tmpc++ = u;

    /* clear digits above oldused */
    for (i = c->used; i < olduse; i++) {
      *tmpc++ = 0;
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

|
|






12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)

{
   const mp_int *x;
   int     olduse, res, min, max;

   /* find sizes, we let |a| <= |b| which means we have to sort
    * them.  "x" will point to the input with the most digits
    */
   if (a->used > b->used) {
      min = b->used;
      max = a->used;
      x = a;
   } else {
      min = a->used;
      max = b->used;
      x = b;
   }

   /* init result */
   if (c->alloc < (max + 1)) {
      if ((res = mp_grow(c, max + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* get old used digit count and set new one */
   olduse = c->used;
   c->used = max + 1;

   {
      mp_digit u, *tmpa, *tmpb, *tmpc;
      int i;

      /* alias for digit pointers */

      /* first input */
      tmpa = a->dp;

      /* second input */
      tmpb = b->dp;

      /* destination */
      tmpc = c->dp;

      /* zero the carry */
      u = 0;
      for (i = 0; i < min; i++) {
         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
         *tmpc = *tmpa++ + *tmpb++ + u;

         /* U = carry bit of T[i] */
         u = *tmpc >> ((mp_digit)DIGIT_BIT);

         /* take away carry bit from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, that is in A+B
       * if A or B has more digits add those in
       */
      if (min != max) {
         for (; i < max; i++) {
            /* T[i] = X[i] + U */
            *tmpc = x->dp[i] + u;

            /* U = carry bit of T[i] */
            u = *tmpc >> ((mp_digit)DIGIT_BIT);

            /* take away carry bit from T[i] */
            *tmpc++ &= MP_MASK;
         }
      }

      /* add carry */
      *tmpc++ = u;

      /* clear digits above oldused */
      for (i = c->used; i < olduse; i++) {
         *tmpc++ = 0;
      }
   }

   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_exptmod.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240

241
242
243
244
245
246
247
248
249
250
251
252
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#ifdef MP_LOW_MEM
   #define TAB_SIZE 32
#else
   #define TAB_SIZE 256
#endif

int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
  mp_int  M[TAB_SIZE], res, mu;
  mp_digit buf;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
  int (*redux)(mp_int*,mp_int*,mp_int*);

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

#ifdef MP_LOW_MEM
    if (winsize > 5) {
       winsize = 5;
    }
#endif

  /* init M array */
  /* init first cell */
  if ((err = mp_init(&M[1])) != MP_OKAY) {
     return err; 
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init(&M[x])) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* create mu, used for Barrett reduction */
  if ((err = mp_init (&mu)) != MP_OKAY) {
    goto LBL_M;
  }
  
  if (redmode == 0) {
     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
        goto LBL_MU;
     }
     redux = mp_reduce;
  } else {
     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
        goto LBL_MU;
     }
     redux = mp_reduce_2k_l;
  }    

  /* create M table
   *
   * The M table contains powers of the base, 
   * e.g. M[x] = G**x mod P
   *
   * The first half of the table is not 
   * computed though accept for M[0] and M[1]
   */
  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
    goto LBL_MU;
  }

  /* compute the value at M[1<<(winsize-1)] by squaring 
   * M[1] (winsize-1) times 
   */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto LBL_MU;
  }

  for (x = 0; x < (winsize - 1); x++) {
    /* square it */
    if ((err = mp_sqr (&M[1 << (winsize - 1)], 
                       &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_MU;
    }

    /* reduce modulo P */
    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
      goto LBL_MU;
    }
  }

  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
   */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto LBL_MU;
    }
    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
      goto LBL_MU;
    }
  }

  /* setup result */
  if ((err = mp_init (&res)) != MP_OKAY) {
    goto LBL_MU;
  }
  mp_set (&res, 1);

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset the bitcnt */
      buf    = X->dp[digidx--];
      bitcnt = (int) DIGIT_BIT;
    }

    /* grab the next msb from the exponent */
    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
          goto LBL_RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
      }

      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
          goto LBL_RES;
        }
      }
    }
  }

  mp_exch (&res, Y);
  err = MP_OKAY;
LBL_RES:mp_clear (&res);

LBL_MU:mp_clear (&mu);

LBL_M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|


|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|


|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
>
|
>

|
|
|
|
|






11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */
#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res, mu;
   mp_digit buf;
   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   int (*redux)(mp_int *, const mp_int *, const mp_int *);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

#ifdef MP_LOW_MEM
   if (winsize > 5) {
      winsize = 5;
   }
#endif

   /* init M array */
   /* init first cell */
   if ((err = mp_init(&M[1])) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init(&M[x])) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* create mu, used for Barrett reduction */
   if ((err = mp_init(&mu)) != MP_OKAY) {
      goto LBL_M;
   }

   if (redmode == 0) {
      if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) {
         goto LBL_MU;
      }
      redux = mp_reduce;
   } else {
      if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
      redux = mp_reduce_2k_l;
   }

   /* create M table
    *
    * The M table contains powers of the base,
    * e.g. M[x] = G**x mod P
    *
    * The first half of the table is not
    * computed though accept for M[0] and M[1]
    */
   if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
      goto LBL_MU;
   }

   /* compute the value at M[1<<(winsize-1)] by squaring
    * M[1] (winsize-1) times
    */
   if ((err = mp_copy(&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_MU;
   }

   for (x = 0; x < (winsize - 1); x++) {
      /* square it */
      if ((err = mp_sqr(&M[1 << (winsize - 1)],
                        &M[1 << (winsize - 1)])) != MP_OKAY) {
         goto LBL_MU;
      }

      /* reduce modulo P */
      if ((err = redux(&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
   }

   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
    */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
         goto LBL_MU;
      }
      if ((err = redux(&M[x], P, &mu)) != MP_OKAY) {
         goto LBL_MU;
      }
   }

   /* setup result */
   if ((err = mp_init(&res)) != MP_OKAY) {
      goto LBL_MU;
   }
   mp_set(&res, 1);

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset the bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, &mu)) != MP_OKAY) {
               goto LBL_RES;
            }
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, &mu)) != MP_OKAY) {
            goto LBL_RES;
         }

         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, &mu)) != MP_OKAY) {
               goto LBL_RES;
            }
         }
      }
   }

   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_MU:
   mp_clear(&mu);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_mul_digs.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 * many digits of output are created.
 */
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  mp_int  t;
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
  if (((digs) < MP_WARRAY) &&
      (MIN (a->used, b->used) < 
          (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_s_mp_mul_digs (a, b, c, digs);
  }

  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
    return res;
  }
  t.used = digs;

  /* compute the digits of the product directly */
  pa = a->used;
  for (ix = 0; ix < pa; ix++) {
    /* set the carry to zero */
    u = 0;

    /* limit ourselves to making digs digits of output */
    pb = MIN (b->used, digs - ix);

    /* setup some aliases */
    /* copy of the digit from a used within the nested loop */
    tmpx = a->dp[ix];
    
    /* an alias for the destination shifted ix places */
    tmpt = t.dp + ix;
    
    /* an alias for the digits of b */
    tmpy = b->dp;

    /* compute the columns of the output and propagate the carry */
    for (iy = 0; iy < pb; iy++) {
      /* compute the column as a mp_word */
      r       = (mp_word)*tmpt +
                ((mp_word)tmpx * (mp_word)*tmpy++) +
                (mp_word)u;

      /* the new column is the lower part of the result */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get the carry word from the result */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    /* set carry if it is placed below digs */
    if ((ix + iy) < digs) {
      *tmpt = u;
    }
  }

  mp_clamp (&t);
  mp_exch (&t, c);

  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|


|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how
 * many digits of output are created.
 */
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int  t;
   int     res, pa, pb, ix, iy;
   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
   if (((digs) < MP_WARRAY) &&
       (MIN(a->used, b->used) <
        (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
      return fast_s_mp_mul_digs(a, b, c, digs);
   }

   if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
      return res;
   }
   t.used = digs;

   /* compute the digits of the product directly */
   pa = a->used;
   for (ix = 0; ix < pa; ix++) {
      /* set the carry to zero */
      u = 0;

      /* limit ourselves to making digs digits of output */
      pb = MIN(b->used, digs - ix);

      /* setup some aliases */
      /* copy of the digit from a used within the nested loop */
      tmpx = a->dp[ix];

      /* an alias for the destination shifted ix places */
      tmpt = t.dp + ix;

      /* an alias for the digits of b */
      tmpy = b->dp;

      /* compute the columns of the output and propagate the carry */
      for (iy = 0; iy < pb; iy++) {
         /* compute the column as a mp_word */
         r       = (mp_word)*tmpt +
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* the new column is the lower part of the result */
         *tmpt++ = (mp_digit)(r & ((mp_word) MP_MASK));

         /* get the carry word from the result */
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
      }
      /* set carry if it is placed below digs */
      if ((ix + iy) < digs) {
         *tmpt = u;
      }
   }

   mp_clamp(&t);
   mp_exch(&t, c);

   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_mul_high_digs.c.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int
s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  mp_int  t;
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
  if (((a->used + b->used + 1) < MP_WARRAY)
      && (MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_s_mp_mul_high_digs (a, b, c, digs);
  }
#endif

  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
    return res;
  }
  t.used = a->used + b->used + 1;

  pa = a->used;
  pb = b->used;
  for (ix = 0; ix < pa; ix++) {
    /* clear the carry */
    u = 0;

    /* left hand side of A[ix] * B[iy] */
    tmpx = a->dp[ix];

    /* alias to the address of where the digits will be stored */
    tmpt = &(t.dp[digs]);

    /* alias for where to read the right hand side from */
    tmpy = b->dp + (digs - ix);

    for (iy = digs - ix; iy < pb; iy++) {
      /* calculate the double precision result */
      r       = (mp_word)*tmpt +
                ((mp_word)tmpx * (mp_word)*tmpy++) +
                (mp_word)u;

      /* get the lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* carry the carry */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    *tmpt = u;
  }
  mp_clamp (&t);
  mp_exch (&t, c);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|
|
|
|
|

|

|
|
|
|


|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|






14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)

{
   mp_int  t;
   int     res, pa, pb, ix, iy;
   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
   if (((a->used + b->used + 1) < MP_WARRAY)
       && (MIN(a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
      return fast_s_mp_mul_high_digs(a, b, c, digs);
   }
#endif

   if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
      return res;
   }
   t.used = a->used + b->used + 1;

   pa = a->used;
   pb = b->used;
   for (ix = 0; ix < pa; ix++) {
      /* clear the carry */
      u = 0;

      /* left hand side of A[ix] * B[iy] */
      tmpx = a->dp[ix];

      /* alias to the address of where the digits will be stored */
      tmpt = &(t.dp[digs]);

      /* alias for where to read the right hand side from */
      tmpy = b->dp + (digs - ix);

      for (iy = digs - ix; iy < pb; iy++) {
         /* calculate the double precision result */
         r       = (mp_word)*tmpt +
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* get the lower part */
         *tmpt++ = (mp_digit)(r & ((mp_word) MP_MASK));

         /* carry the carry */
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
      }
      *tmpt = u;
   }
   mp_clamp(&t);
   mp_exch(&t, c);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_sqr.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
{
  mp_int  t;
  int     res, ix, iy, pa;
  mp_word r;
  mp_digit u, tmpx, *tmpt;

  pa = a->used;
  if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) {
    return res;
  }

  /* default used is maximum possible size */
  t.used = (2 * pa) + 1;

  for (ix = 0; ix < pa; ix++) {
    /* first calculate the digit at 2*ix */
    /* calculate double precision result */
    r = (mp_word)t.dp[2*ix] +
        ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

    /* store lower part in result */
    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

    /* get the carry */
    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

    /* left hand side of A[ix] * A[iy] */
    tmpx        = a->dp[ix];

    /* alias for where to store the results */
    tmpt        = t.dp + ((2 * ix) + 1);
    
    for (iy = ix + 1; iy < pa; iy++) {
      /* first calculate the product */
      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

      /* now calculate the double precision result, note we use
       * addition instead of *2 since it's easier to optimize
       */
      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);

      /* store lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get carry */
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
    }
    /* propagate upwards */
    while (u != ((mp_digit) 0)) {
      r       = ((mp_word) *tmpt) + ((mp_word) u);
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
    }
  }

  mp_clamp (&t);
  mp_exch (&t, b);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|






12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr(const mp_int *a, mp_int *b)
{
   mp_int  t;
   int     res, ix, iy, pa;
   mp_word r;
   mp_digit u, tmpx, *tmpt;

   pa = a->used;
   if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) {
      return res;
   }

   /* default used is maximum possible size */
   t.used = (2 * pa) + 1;

   for (ix = 0; ix < pa; ix++) {
      /* first calculate the digit at 2*ix */
      /* calculate double precision result */
      r = (mp_word)t.dp[2*ix] +
          ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

      /* store lower part in result */
      t.dp[ix+ix] = (mp_digit)(r & ((mp_word)MP_MASK));

      /* get the carry */
      u           = (mp_digit)(r >> ((mp_word)DIGIT_BIT));

      /* left hand side of A[ix] * A[iy] */
      tmpx        = a->dp[ix];

      /* alias for where to store the results */
      tmpt        = t.dp + ((2 * ix) + 1);

      for (iy = ix + 1; iy < pa; iy++) {
         /* first calculate the product */
         r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

         /* now calculate the double precision result, note we use
          * addition instead of *2 since it's easier to optimize
          */
         r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);

         /* store lower part */
         *tmpt++ = (mp_digit)(r & ((mp_word) MP_MASK));

         /* get carry */
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
      }
      /* propagate upwards */
      while (u != ((mp_digit) 0)) {
         r       = ((mp_word) *tmpt) + ((mp_word) u);
         *tmpt++ = (mp_digit)(r & ((mp_word) MP_MASK));
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
      }
   }

   mp_clamp(&t);
   mp_exch(&t, b);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_s_mp_sub.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     olduse, res, min, max;

  /* find sizes */
  min = b->used;
  max = a->used;

  /* init result */
  if (c->alloc < max) {
    if ((res = mp_grow (c, max)) != MP_OKAY) {
      return res;
    }
  }
  olduse = c->used;
  c->used = max;

  {
    mp_digit u, *tmpa, *tmpb, *tmpc;
    int i;

    /* alias for digit pointers */
    tmpa = a->dp;
    tmpb = b->dp;
    tmpc = c->dp;

    /* set carry to zero */
    u = 0;
    for (i = 0; i < min; i++) {
      /* T[i] = A[i] - B[i] - U */
      *tmpc = (*tmpa++ - *tmpb++) - u;

      /* U = carry bit of T[i]
       * Note this saves performing an AND operation since
       * if a carry does occur it will propagate all the way to the
       * MSB.  As a result a single shift is enough to get the carry
       */
      u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, e.g. if A has more digits than B  */
    for (; i < max; i++) {
      /* T[i] = A[i] - U */
      *tmpc = *tmpa++ - u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* clear digits above used (since we may not have grown result above) */
    for (i = c->used; i < olduse; i++) {
      *tmpc++ = 0;
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|
<

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|







12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     olduse, res, min, max;

   /* find sizes */
   min = b->used;
   max = a->used;

   /* init result */
   if (c->alloc < max) {
      if ((res = mp_grow(c, max)) != MP_OKAY) {
         return res;
      }
   }
   olduse = c->used;
   c->used = max;

   {
      mp_digit u, *tmpa, *tmpb, *tmpc;
      int i;

      /* alias for digit pointers */
      tmpa = a->dp;
      tmpb = b->dp;
      tmpc = c->dp;

      /* set carry to zero */
      u = 0;
      for (i = 0; i < min; i++) {
         /* T[i] = A[i] - B[i] - U */
         *tmpc = (*tmpa++ - *tmpb++) - u;

         /* U = carry bit of T[i]
          * Note this saves performing an AND operation since
          * if a carry does occur it will propagate all the way to the
          * MSB.  As a result a single shift is enough to get the carry
          */
         u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, e.g. if A has more digits than B  */
      for (; i < max; i++) {
         /* T[i] = A[i] - U */
         *tmpc = *tmpa++ - u;

         /* U = carry bit of T[i] */
         u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* clear digits above used (since we may not have grown result above) */
      for (i = c->used; i < olduse; i++) {
         *tmpc++ = 0;
      }
   }

   mp_clamp(c);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bncore.c.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* Known optimal configurations

 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
 AMD Athlon64           /GCC v3.4.4   /        80/       120/LTM 0.35
 
*/

int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */
        
        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
        TOOM_SQR_CUTOFF      = 400; 
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */






|




|

|





17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* Known optimal configurations

 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
 AMD Athlon64           /GCC v3.4.4   /        80/       120/LTM 0.35

*/

int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */

        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
        TOOM_SQR_CUTOFF      = 400;
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/libtommath.dsp.
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Microsoft Developer Studio Project File - Name="libtommath" - Package Owner=<4>
# Microsoft Developer Studio Generated Build File, Format Version 6.00
# ** DO NOT EDIT **

# TARGTYPE "Win32 (x86) Static Library" 0x0104

CFG=libtommath - Win32 Debug
!MESSAGE This is not a valid makefile. To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE 
!MESSAGE NMAKE /f "libtommath.mak".
!MESSAGE 
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE 
!MESSAGE NMAKE /f "libtommath.mak" CFG="libtommath - Win32 Debug"
!MESSAGE 
!MESSAGE Possible choices for configuration are:
!MESSAGE 
!MESSAGE "libtommath - Win32 Release" (based on "Win32 (x86) Static Library")
!MESSAGE "libtommath - Win32 Debug" (based on "Win32 (x86) Static Library")
!MESSAGE 

# Begin Project
# PROP AllowPerConfigDependencies 0
# PROP Scc_ProjName "libtommath"
# PROP Scc_LocalPath "."
CPP=cl.exe
RSC=rc.exe

!IF  "$(CFG)" == "libtommath - Win32 Release"

# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "Release"
# PROP BASE Intermediate_Dir "Release"
# PROP BASE Target_Dir ""
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "Release"
# PROP Intermediate_Dir "Release"
# PROP Target_Dir ""
# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
# ADD CPP /nologo /W3 /GX /O2 /I "." /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c
# ADD BASE RSC /l 0x409 /d "NDEBUG"
# ADD RSC /l 0x409 /d "NDEBUG"
BSC32=bscmake.exe
# ADD BASE BSC32 /nologo
# ADD BSC32 /nologo
LIB32=link.exe -lib
# ADD BASE LIB32 /nologo
# ADD LIB32 /nologo /out:"Release\tommath.lib"

!ELSEIF  "$(CFG)" == "libtommath - Win32 Debug"

# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 1
# PROP BASE Output_Dir "Debug"
# PROP BASE Intermediate_Dir "Debug"