Tcl Source Code

Check-in [d583c1d31f]
Login
Bounty program for improvements to Tcl and certain Tcl packages.
Tcl 2019 Conference, Houston/TX, US, Nov 4-8
Send your abstracts to [email protected]
or submit via the online form by Sep 9.

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:merge trunk
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | tip-445
Files: files | file ages | folders
SHA1: d583c1d31f77ab3959a40c3a6ca10169f812717d
User & Date: dgp 2016-11-18 18:02:04
Context
2016-11-28
16:08
merge trunk check-in: 9174c893f4 user: dgp tags: tip-445
2016-11-18
18:02
merge trunk check-in: d583c1d31f user: dgp tags: tip-445
15:51
Minor: fix the indentation of comments. check-in: 06883b64fd user: dkf tags: trunk
2016-11-16
15:04
merge trunk check-in: f8be848288 user: dgp tags: tip-445
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to .fossil-settings/ignore-glob.

13
14
15
16
17
18
19
















20
21
22
23
24
25
26
*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc
















unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/pkgs/*
win/tcl.hpj






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc
libtommath/bn.ilg
libtommath/bn.ind
libtommath/pretty.build
libtommath/tommath.src
libtommath/*.pdf
libtommath/*.pl
libtommath/*.sh
libtommath/tombc/*
libtommath/pre_gen/*
libtommath/pics/*
libtommath/mtest/*
libtommath/logs/*
libtommath/etc/*
libtommath/demo/*
libtommath/*.out
libtommath/*.tex
unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/pkgs/*
win/tcl.hpj

Changes to doc/file.n.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
returns
.QW \fB/\0\0foo\0\0./~bar\0\0baz\fR
to ensure that later commands
that use the third component do not attempt to perform tilde
substitution.
.RE
.TP
\fBfile stat  \fIname varName\fR
.
Invokes the \fBstat\fR kernel call on \fIname\fR, and uses the variable
given by \fIvarName\fR to hold information returned from the kernel call.
\fIVarName\fR is treated as an array variable, and the following elements
of that variable are set: \fBatime\fR, \fBctime\fR, \fBdev\fR, \fBgid\fR,
\fBino\fR, \fBmode\fR, \fBmtime\fR, \fBnlink\fR, \fBsize\fR, \fBtype\fR,
\fBuid\fR.  Each element except \fBtype\fR is a decimal string with the






|







386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
returns
.QW \fB/\0\0foo\0\0./~bar\0\0baz\fR
to ensure that later commands
that use the third component do not attempt to perform tilde
substitution.
.RE
.TP
\fBfile stat \fIname varName\fR
.
Invokes the \fBstat\fR kernel call on \fIname\fR, and uses the variable
given by \fIvarName\fR to hold information returned from the kernel call.
\fIVarName\fR is treated as an array variable, and the following elements
of that variable are set: \fBatime\fR, \fBctime\fR, \fBdev\fR, \fBgid\fR,
\fBino\fR, \fBmode\fR, \fBmtime\fR, \fBnlink\fR, \fBsize\fR, \fBtype\fR,
\fBuid\fR.  Each element except \fBtype\fR is a decimal string with the

Changes to generic/tclExecute.c.

8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
	    mp_clear(&big2);
	    Tcl_SetObjResult(interp, Tcl_NewStringObj(
		    "exponent too large", -1));
	    return GENERAL_ARITHMETIC_ERROR;
	}
	Tcl_TakeBignumFromObj(NULL, valuePtr, &big1);
	mp_init(&bigResult);
	mp_expt_d(&big1, big2.dp[0], &bigResult);
	mp_clear(&big1);
	mp_clear(&big2);
	BIG_RESULT(&bigResult);
    }

    case INST_ADD:
    case INST_SUB:






|







8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
	    mp_clear(&big2);
	    Tcl_SetObjResult(interp, Tcl_NewStringObj(
		    "exponent too large", -1));
	    return GENERAL_ARITHMETIC_ERROR;
	}
	Tcl_TakeBignumFromObj(NULL, valuePtr, &big1);
	mp_init(&bigResult);
	mp_expt_d_ex(&big1, big2.dp[0], &bigResult, 1);
	mp_clear(&big1);
	mp_clear(&big2);
	BIG_RESULT(&bigResult);
    }

    case INST_ADD:
    case INST_SUB:

Changes to generic/tclIOSock.c.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
...
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
...
247
248
249
250
251
252
253

254
255
256
257
258
259
260
 *
 *---------------------------------------------------------------------------
 */

int
TclSockGetPort(
    Tcl_Interp *interp,
    const char *string, /* Integer or service name */
    const char *proto, /* "tcp" or "udp", typically */
    int *portPtr)		/* Return port number */
{
    struct servent *sp;		/* Protocol info for named services */
    Tcl_DString ds;
    const char *native;

    if (Tcl_GetInt(NULL, string, portPtr) != TCL_OK) {
................................................................................
 *	Fills in the *sockaddrPtr structure.
 *
 *----------------------------------------------------------------------
 */

int
TclCreateSocketAddress(
    Tcl_Interp *interp,                 /* Interpreter for querying
					 * the desired socket family */
    struct addrinfo **addrlist,		/* Socket address list */
    const char *host,			/* Host. NULL implies INADDR_ANY */
    int port,				/* Port number */
    int willBind,			/* Is this an address to bind() to or
					 * to connect() to? */
    const char **errorMsgPtr)		/* Place to store the error message
					 * detail, if available. */
{
    struct addrinfo hints;
    struct addrinfo *p;
    struct addrinfo *v4head = NULL, *v4ptr = NULL;
    struct addrinfo *v6head = NULL, *v6ptr = NULL;
    char *native = NULL, portbuf[TCL_INTEGER_SPACE], *portstring;
    const char *family = NULL;
................................................................................
	native = Tcl_UtfToExternalDString(NULL, host, -1, &ds);
    }

    /*
     * Workaround for OSX's apparent inability to resolve "localhost", "0"
     * when the loopback device is the only available network interface.
     */

    if (host != NULL && port == 0) {
        portstring = NULL;
    } else {
        TclFormatInt(portbuf, port);
        portstring = portbuf;
    }

    (void) memset(&hints, 0, sizeof(hints));
    hints.ai_family = AF_UNSPEC;

    /*
     * Magic variable to enforce a certain address family - to be superseded
     * by a TIP that adds explicit switches to [socket]
     */

    if (interp != NULL) {
        family = Tcl_GetVar2(interp, "::tcl::unsupported::socketAF", NULL, 0);
        if (family != NULL) {
            if (strcmp(family, "inet") == 0) {
                hints.ai_family = AF_INET;
            } else if (strcmp(family, "inet6") == 0) {
                hints.ai_family = AF_INET6;
            }
        }
    }

    hints.ai_socktype = SOCK_STREAM;

#if 0
    /*
     * We found some problems when using AI_ADDRCONFIG, e.g. on systems that
................................................................................

    /*
     * Put IPv4 addresses before IPv6 addresses to maximize backwards
     * compatibility of [fconfigure -sockname] output.
     *
     * There might be more elegant/efficient ways to do this.
     */

    if (willBind) {
	for (p = *addrlist; p != NULL; p = p->ai_next) {
	    if (p->ai_family == AF_INET) {
		if (v4head == NULL) {
		    v4head = p;
		} else {
		    v4ptr->ai_next = p;






|
|







 







|
|
|
|
|
|
|
|
|







 







>

|

|
|






|
|



|
|
|
|
|
|
|
|







 







>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
...
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
...
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
 *
 *---------------------------------------------------------------------------
 */

int
TclSockGetPort(
    Tcl_Interp *interp,
    const char *string,		/* Integer or service name */
    const char *proto,		/* "tcp" or "udp", typically */
    int *portPtr)		/* Return port number */
{
    struct servent *sp;		/* Protocol info for named services */
    Tcl_DString ds;
    const char *native;

    if (Tcl_GetInt(NULL, string, portPtr) != TCL_OK) {
................................................................................
 *	Fills in the *sockaddrPtr structure.
 *
 *----------------------------------------------------------------------
 */

int
TclCreateSocketAddress(
    Tcl_Interp *interp,		/* Interpreter for querying the desired socket
				 * family */
    struct addrinfo **addrlist,	/* Socket address list */
    const char *host,		/* Host. NULL implies INADDR_ANY */
    int port,			/* Port number */
    int willBind,		/* Is this an address to bind() to or to
				 * connect() to? */
    const char **errorMsgPtr)	/* Place to store the error message detail, if
				 * available. */
{
    struct addrinfo hints;
    struct addrinfo *p;
    struct addrinfo *v4head = NULL, *v4ptr = NULL;
    struct addrinfo *v6head = NULL, *v6ptr = NULL;
    char *native = NULL, portbuf[TCL_INTEGER_SPACE], *portstring;
    const char *family = NULL;
................................................................................
	native = Tcl_UtfToExternalDString(NULL, host, -1, &ds);
    }

    /*
     * Workaround for OSX's apparent inability to resolve "localhost", "0"
     * when the loopback device is the only available network interface.
     */

    if (host != NULL && port == 0) {
	portstring = NULL;
    } else {
	TclFormatInt(portbuf, port);
	portstring = portbuf;
    }

    (void) memset(&hints, 0, sizeof(hints));
    hints.ai_family = AF_UNSPEC;

    /*
     * Magic variable to enforce a certain address family; to be superseded
     * by a TIP that adds explicit switches to [socket].
     */

    if (interp != NULL) {
	family = Tcl_GetVar2(interp, "::tcl::unsupported::socketAF", NULL, 0);
	if (family != NULL) {
	    if (strcmp(family, "inet") == 0) {
		hints.ai_family = AF_INET;
	    } else if (strcmp(family, "inet6") == 0) {
		hints.ai_family = AF_INET6;
	    }
	}
    }

    hints.ai_socktype = SOCK_STREAM;

#if 0
    /*
     * We found some problems when using AI_ADDRCONFIG, e.g. on systems that
................................................................................

    /*
     * Put IPv4 addresses before IPv6 addresses to maximize backwards
     * compatibility of [fconfigure -sockname] output.
     *
     * There might be more elegant/efficient ways to do this.
     */

    if (willBind) {
	for (p = *addrlist; p != NULL; p = p->ai_next) {
	    if (p->ai_family == AF_INET) {
		if (v4head == NULL) {
		    v4head = p;
		} else {
		    v4ptr->ai_next = p;

Changes to generic/tclObj.c.

3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
    int size;
    char *stringVal;

    UNPACK_BIGNUM(objPtr, bignumVal);
    if (MP_OKAY != mp_radix_size(&bignumVal, 10, &size)) {
	Tcl_Panic("radix size failure in UpdateStringOfBignum");
    }
    if (size == 3) {
	/*
	 * mp_radix_size() returns 3 when more than INT_MAX bytes would be
	 * needed to hold the string rep (because mp_radix_size ignores
	 * integer overflow issues). When we know the string rep will be more
	 * than 3, we can conclude the string rep would overflow our string
	 * length limits.
	 *
	 * Note that so long as we enforce our bignums to the size that fits
	 * in a packed bignum, this branch will never be taken.
	 */

	Tcl_Panic("UpdateStringOfBignum: string length limit exceeded");
    }






|

|

|
<
<







3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453


3454
3455
3456
3457
3458
3459
3460
    int size;
    char *stringVal;

    UNPACK_BIGNUM(objPtr, bignumVal);
    if (MP_OKAY != mp_radix_size(&bignumVal, 10, &size)) {
	Tcl_Panic("radix size failure in UpdateStringOfBignum");
    }
    if (size < 2) {
	/*
	 * mp_radix_size() returns < 2 when more than INT_MAX bytes would be
	 * needed to hold the string rep (because mp_radix_size ignores
	 * integer overflow issues).


	 *
	 * Note that so long as we enforce our bignums to the size that fits
	 * in a packed bignum, this branch will never be taken.
	 */

	Tcl_Panic("UpdateStringOfBignum: string length limit exceeded");
    }

Changes to generic/tclStubInit.c.

745
746
747
748
749
750
751

752
753
754
755
756
757
758
    TclBN_s_mp_sub, /* 60 */
    TclBN_mp_init_set_int, /* 61 */
    TclBN_mp_set_int, /* 62 */
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */

};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};






>







745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    TclBN_s_mp_sub, /* 60 */
    TclBN_mp_init_set_int, /* 61 */
    TclBN_mp_set_int, /* 62 */
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */
    TclBN_mp_expt_d_ex, /* 67 */
};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};

Changes to generic/tclTestObj.c.

148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
...
270
271
272
273
274
275
276












































277
278
279
280
281
282
283
TestbignumobjCmd(
    ClientData clientData,	/* unused */
    Tcl_Interp *interp,		/* Tcl interpreter */
    int objc,			/* Argument count */
    Tcl_Obj *const objv[])	/* Argument vector */
{
    const char *const subcmds[] = {
	"set",	    "get",	"mult10",	"div10", NULL
    };
    enum options {
	BIGNUM_SET, BIGNUM_GET,	BIGNUM_MULT10,	BIGNUM_DIV10

    };
    int index, varIndex;
    const char *string;
    mp_int bignumValue, newValue;
    Tcl_Obj **varPtr;

    if (objc < 3) {
................................................................................
	}
	mp_clear(&bignumValue);
	if (!Tcl_IsShared(varPtr[varIndex])) {
	    Tcl_SetBignumObj(varPtr[varIndex], &newValue);
	} else {
	    SetVarToObj(varPtr, varIndex, Tcl_NewBignumObj(&newValue));
	}












































    }

    Tcl_SetObjResult(interp, varPtr[varIndex]);
    return TCL_OK;
}
 
/*






|


|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
...
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
TestbignumobjCmd(
    ClientData clientData,	/* unused */
    Tcl_Interp *interp,		/* Tcl interpreter */
    int objc,			/* Argument count */
    Tcl_Obj *const objv[])	/* Argument vector */
{
    const char *const subcmds[] = {
	"set", "get", "mult10", "div10", "iseven", "radixsize", NULL
    };
    enum options {
	BIGNUM_SET, BIGNUM_GET, BIGNUM_MULT10, BIGNUM_DIV10, BIGNUM_ISEVEN,
	BIGNUM_RADIXSIZE
    };
    int index, varIndex;
    const char *string;
    mp_int bignumValue, newValue;
    Tcl_Obj **varPtr;

    if (objc < 3) {
................................................................................
	}
	mp_clear(&bignumValue);
	if (!Tcl_IsShared(varPtr[varIndex])) {
	    Tcl_SetBignumObj(varPtr[varIndex], &newValue);
	} else {
	    SetVarToObj(varPtr, varIndex, Tcl_NewBignumObj(&newValue));
	}
	break;

    case BIGNUM_ISEVEN:
	if (objc != 3) {
	    Tcl_WrongNumArgs(interp, 2, objv, "varIndex");
	    return TCL_ERROR;
	}
	if (CheckIfVarUnset(interp, varPtr,varIndex)) {
	    return TCL_ERROR;
	}
	if (Tcl_GetBignumFromObj(interp, varPtr[varIndex],
		&bignumValue) != TCL_OK) {
	    return TCL_ERROR;
	}
	if (!Tcl_IsShared(varPtr[varIndex])) {
	    Tcl_SetIntObj(varPtr[varIndex], mp_iseven(&bignumValue));
	} else {
	    SetVarToObj(varPtr, varIndex, Tcl_NewIntObj(mp_iseven(&bignumValue)));
	}
	mp_clear(&bignumValue);
	break;

    case BIGNUM_RADIXSIZE:
	if (objc != 3) {
	    Tcl_WrongNumArgs(interp, 2, objv, "varIndex");
	    return TCL_ERROR;
	}
	if (CheckIfVarUnset(interp, varPtr,varIndex)) {
	    return TCL_ERROR;
	}
	if (Tcl_GetBignumFromObj(interp, varPtr[varIndex],
		&bignumValue) != TCL_OK) {
	    return TCL_ERROR;
	}
	if (mp_radix_size(&bignumValue, 10, &index) != MP_OKAY) {
	    return TCL_ERROR;
	}
	if (!Tcl_IsShared(varPtr[varIndex])) {
	    Tcl_SetIntObj(varPtr[varIndex], index);
	} else {
	    SetVarToObj(varPtr, varIndex, Tcl_NewIntObj(index));
	}
	mp_clear(&bignumValue);
	break;
    }

    Tcl_SetObjResult(interp, varPtr[varIndex]);
    return TCL_OK;
}
 
/*

Changes to generic/tclTomMath.decls.

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
228
229
230
231
232
233
234





235
236
237
238
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
declare 22 {
    int TclBN_mp_init_copy(mp_int *a, mp_int *b)
}
declare 23 {
    int TclBN_mp_init_multi(mp_int *a, ...)
}
declare 24 {
    int TclBN_mp_init_set(mp_int *a, mp_digit b)
}
................................................................................
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
declare 37 {
    void TclBN_mp_rshd(mp_int *a, int shift)
}
................................................................................
}
declare 65 {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}






# Local Variables:
# mode: tcl
# End:






|







 







|







 







>
>
>
>
>




86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
declare 22 {
    int TclBN_mp_init_copy(mp_int *a, const mp_int *b)
}
declare 23 {
    int TclBN_mp_init_multi(mp_int *a, ...)
}
declare 24 {
    int TclBN_mp_init_set(mp_int *a, mp_digit b)
}
................................................................................
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(const mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
declare 37 {
    void TclBN_mp_rshd(mp_int *a, int shift)
}
................................................................................
}
declare 65 {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}

# Added in libtommath 1.0
declare 67 {
    int TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}

# Local Variables:
# mode: tcl
# End:

Changes to generic/tclTomMath.h.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67




68
69
70

71
72
73





74
75
76
77
78
79
80
81
82
83
84



85





86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140















141
142
143
144
145
146
147
...
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
...
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
...
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
...
269
270
271
272
273
274
275










276
277
278






279
280
281
282
283
284
285
...
290
291
292
293
294
295
296
297
298
299
300
301
302
303










304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
...
456
457
458
459
460
461
462



463
464
465
466
467
468
469
...
511
512
513
514
515
516
517



518
519
520
521
522





523
524
525
526
527
528
529
...
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
...
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
...
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
...
738
739
740
741
742
743
744
745
746
747

748
749
750
751
752
753

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832






 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tom[email protected], http://math.libtomcrypt.com
 */
#ifndef BN_H_
#define BN_H_

#include "tclTomMathDecls.h"
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif



#ifndef MIN
#   define MIN(x,y) ((x)<(y)?(x):(y))
#endif

#ifndef MAX
#   define MAX(x,y) ((x)>(y)?(x):(y))
#endif

#ifdef __cplusplus
extern "C" {

/* C++ compilers don't like assigning void * to mp_digit * */
#define  OPT_CAST(x)  (x *)

#else

/* C on the other hand doesn't care */
#define  OPT_CAST(x)

#endif


/* detect 64-bit mode if possible */
#if defined(NEVER)  /* 128-bit ints fail in too many places */
#   if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))

#	define MP_64BIT
#   endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
   typedef unsigned char      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef unsigned short     mp_word;




#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
   typedef unsigned short     mp_digit;

#define MP_DIGIT_DECLARED
#endif
   typedef unsigned long      mp_word;





#elif defined(MP_64BIT)
   /* for GCC only on supported platforms */
#ifndef CRYPT
   typedef unsigned long long ulong64;
   typedef signed long long   long64;
#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned long      mp_digit;
#define MP_DIGIT_DECLARED
#endif



   typedef unsigned long      mp_word __attribute__ ((mode(TI)));






#  define DIGIT_BIT          60
#else
   /* this is the default case, 28-bit digits */
   
   /* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
#  if defined(_MSC_VER) || defined(__BORLANDC__)
      typedef unsigned __int64   ulong64;
      typedef signed __int64     long64;
#  else
      typedef unsigned long long ulong64;
      typedef signed long long   long64;
#  endif
#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned int      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef ulong64            mp_word;

#ifdef MP_31BIT   
   /* this is an extension that uses 31-bit digits */
#  define DIGIT_BIT          31
#else
   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#  define DIGIT_BIT          28
#  define MP_28BIT
#endif   
#endif

/* define heap macros */
#if 0 /* these are macros in tclTomMathDecls.h */
#ifndef CRYPT
   /* default to libc stuff */
#  ifndef XMALLOC
#     define XMALLOC  malloc
#     define XFREE    free
#     define XREALLOC realloc
#     define XCALLOC  calloc
#  else
      /* prototypes for our heap functions */
      extern void *XMALLOC(size_t n);
      extern void *XREALLOC(void *p, size_t n);
      extern void *XCALLOC(size_t n, size_t s);
      extern void XFREE(void *p);
#  endif
#endif
#endif


/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
#   define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */















#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#  ifndef MP_LOW_MEM
#     define MP_PREC                 32     /* default digits of precision */
#  else
#     define MP_PREC                 8      /* default digits of precision */
#  endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
................................................................................


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */
/*
char *mp_error_to_string(int code);
*/

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/

................................................................................
/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)


/* set to zero */
/*
void mp_zero(mp_int *a);
*/

/* set to a digit */
................................................................................
void mp_set(mp_int *a, mp_digit b);
*/

/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/











/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);







/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/

/* initialize and set 32-bit value */
................................................................................
/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, mp_int *b);
*/

/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/











/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/

/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/

/* c = a / 2**b */
/*
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
*/

/* b = a/2 */
/*
int mp_div_2(mp_int *a, mp_int *b);
*/

/* c = a * 2**b */
/*
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
*/

/* b = a*2 */
/*
int mp_mul_2(mp_int *a, mp_int *b);
*/

/* c = a mod 2**d */
/*
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
*/

/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
*/

/* Counts the number of lsbs which are zero before the first zero bit */
/*
int mp_cnt_lsb(mp_int *a);
*/

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
................................................................................
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
*/




/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */
................................................................................
/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
*/




/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);
*/






/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
................................................................................
#  define PRIME_SIZE      31
#else
#  define PRIME_SIZE      256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/

................................................................................
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96 
 */
/*
int mp_prime_rabin_miller_trials(int size);
*/

/* performs t rounds of Miller-Rabin on "a" using the first
 * t prime bases.  Also performs an initial sieve of trial
................................................................................
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
/*
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
*/

/* makes a truly random prime of a given size (bytes),
 * call with bbs = 1 if you want it to be congruent to 3 mod 4 
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 * The prime generated will be larger than 2^(8*size).
 */
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(mp_int *a, int radix, int *size);
*/


/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/


#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

/* lowlevel functions, do not call! */
/*
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
/*
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_toom_sqr(mp_int *a, mp_int *b);
*/
/*
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
*/
/*
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/
/*
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
*/
/*
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
*/
/*
void bn_reverse(unsigned char *s, int len);
*/

#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const char *mp_s_rmap;
#endif

#ifdef __cplusplus
}
#endif

#endif












|











<
<
<
<
<
<
<
<


<
<
<
<
<
<
<
<
<


<

|
<
>
|
|












|


|
>
>
>
>


<
>


<
>
>
>
>
>



|
|



|


>
>
>
|
>
>
>
>
>

|


|


<
<
<
<
|
|
<



|


|

|

|


|
|
|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
|
|
|
|



|







 







<
|
<







 







|
|
>







 







>
>
>
>
>
>
>
>
>
>



>
>
>
>
>
>







 







|






>
>
>
>
>
>
>
>
>
>













|









|









|











|







 







>
>
>







 







>
>
>





>
>
>
>
>







 







|







 







|







 







|












|


<







 







|


>






>













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|



>
>
>
>
>
>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24








25
26









27
28

29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90




91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109




















110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
...
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
...
193
194
195
196
197
198
199

200

201
202
203
204
205
206
207
...
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
...
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
...
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
...
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
...
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
...
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
...
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
...
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

716
717
718
719
720
721
722
...
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791





























































792
793
794
795
796
797
798
799
800
801
802
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com
 */
#ifndef BN_H_
#define BN_H_

#include "tclTomMathDecls.h"
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif











#ifdef __cplusplus
extern "C" {









#endif


/* detect 64-bit mode if possible */
#if defined(NEVER) /* 128-bit ints fail in too many places */

   #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
      #define MP_64BIT
   #endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
   typedef uint8_t              mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef uint16_t             mp_word;
#define MP_SIZEOF_MP_DIGIT      1
#ifdef DIGIT_BIT
#error You must not define DIGIT_BIT when using MP_8BIT
#endif
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED

   typedef uint16_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif

   typedef uint32_t             mp_word;
#define MP_SIZEOF_MP_DIGIT      2
#ifdef DIGIT_BIT
#error You must not define DIGIT_BIT when using MP_16BIT
#endif
#elif defined(MP_64BIT)
   /* for GCC only on supported platforms */
#ifndef CRYPT
   typedef unsigned long long   ulong64;
   typedef signed long long     long64;
#endif

#ifndef MP_DIGIT_DECLARED
   typedef ulong64 mp_digit;
#define MP_DIGIT_DECLARED
#endif
#if defined(_WIN32)
   typedef unsigned __int128    mp_word;
#elif defined(__GNUC__)
   typedef unsigned long        mp_word __attribute__ ((mode(TI)));
#else
   /* it seems you have a problem
    * but we assume you can somewhere define your own uint128_t */
   typedef uint128_t            mp_word;
#endif

   #define DIGIT_BIT            60
#else
   /* this is the default case, 28-bit digits */

   /* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT




   typedef unsigned long long   ulong64;
   typedef signed long long     long64;

#endif

#ifndef MP_DIGIT_DECLARED
   typedef uint32_t             mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef ulong64              mp_word;

#ifdef MP_31BIT
   /* this is an extension that uses 31-bit digits */
   #define DIGIT_BIT            31
#else
   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
   #define DIGIT_BIT            28
   #define MP_28BIT
#endif
#endif





















/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
   #define DIGIT_BIT     (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
   typedef uint_least32_t mp_min_u32;
#else
   typedef mp_digit mp_min_u32;
#endif

/* platforms that can use a better rand function */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
    #define MP_USE_ALT_RAND 1
#endif

/* use arc4random on platforms that support it */
#ifdef MP_USE_ALT_RAND
    #define MP_GEN_RANDOM()    arc4random()
#else
    #define MP_GEN_RANDOM()    rand()
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
   #ifndef MP_LOW_MEM
      #define MP_PREC                 32     /* default digits of precision */
   #else
      #define MP_PREC                 8      /* default digits of precision */
   #endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
................................................................................


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */

const char *mp_error_to_string(int code);


/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/

................................................................................
/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
#define mp_isodd(a)  ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
#define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)

/* set to zero */
/*
void mp_zero(mp_int *a);
*/

/* set to a digit */
................................................................................
void mp_set(mp_int *a, mp_digit b);
*/

/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long value */
/*
int mp_set_long(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long long value */
/*
int mp_set_long_long(mp_int *a, unsigned long long b);
*/

/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);

/* get a platform dependent unsigned long value */
unsigned long mp_get_long(mp_int * a);

/* get a platform dependent unsigned long long value */
unsigned long long mp_get_long_long(mp_int * a);

/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/

/* initialize and set 32-bit value */
................................................................................
/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, const mp_int *b);
*/

/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/

/* import binary data */
/*
int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op);
*/

/* export binary data */
/*
int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op);
*/

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/

/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/

/* c = a / 2**b, implemented as c = a >> b */
/*
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
*/

/* b = a/2 */
/*
int mp_div_2(mp_int *a, mp_int *b);
*/

/* c = a * 2**b, implemented as c = a << b */
/*
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
*/

/* b = a*2 */
/*
int mp_mul_2(mp_int *a, mp_int *b);
*/

/* c = a mod 2**b */
/*
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
*/

/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
*/

/* Counts the number of lsbs which are zero before the first zero bit */
/*
int mp_cnt_lsb(const mp_int *a);
*/

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
................................................................................
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */
................................................................................
/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
*/

/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);
*/

/* special sqrt (mod prime) */
/*
int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
*/

/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
................................................................................
#  define PRIME_SIZE      31
#else
#  define PRIME_SIZE      256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/

................................................................................
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
/*
int mp_prime_rabin_miller_trials(int size);
*/

/* performs t rounds of Miller-Rabin on "a" using the first
 * t prime bases.  Also performs an initial sieve of trial
................................................................................
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
/*
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
*/

/* makes a truly random prime of a given size (bytes),
 * call with bbs = 1 if you want it to be congruent to 3 mod 4
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 * The prime generated will be larger than 2^(8*size).
 */
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)

 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(const mp_int *a, int radix, int *size);
*/

#ifndef LTM_NO_FILE
/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/
#endif

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)






























































#ifdef __cplusplus
   }
#endif

#endif


/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to generic/tclTomMathDecls.h.

69
70
71
72
73
74
75

76
77
78
79
80
81
82
...
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
...
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
...
283
284
285
286
287
288
289



290
291
292
293
294
295
296
...
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
...
355
356
357
358
359
360
361

362
363
364
365
366
367
368
...
503
504
505
506
507
508
509


510
511
512
513
514
515
516
517
518
#define mp_div TclBN_mp_div
#define mp_div_2 TclBN_mp_div_2
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d

#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
#define mp_init_size TclBN_mp_init_size
................................................................................
/* 19 */
EXTERN int		TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, mp_int *b);
/* 23 */
EXTERN int		TclBN_mp_init_multi(mp_int *a, ...);
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
................................................................................
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c);
/* 35 */
EXTERN int		TclBN_mp_radix_size(mp_int *a, int radix, int *size);

/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
................................................................................
EXTERN void		TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */
EXTERN void		TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */
EXTERN void		TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);




typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
................................................................................
    int (*tclBN_mp_div_2) (mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (mp_int *a, mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 42 */
................................................................................
    int (*tclBN_s_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */

} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */
#define TclBNInitBignumFromLong \
	(tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */
#define TclBNInitBignumFromWideInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */
#define TclBNInitBignumFromWideUInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */



#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */






>







 







|







 







|
>







 







>
>
>







 







|












|







 







>







 







>
>









69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
...
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
...
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
...
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
...
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
...
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
...
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#define mp_div TclBN_mp_div
#define mp_div_2 TclBN_mp_div_2
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d
#define mp_expt_d_ex TclBN_mp_expt_d_ex
#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
#define mp_init_size TclBN_mp_init_size
................................................................................
/* 19 */
EXTERN int		TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, const mp_int *b);
/* 23 */
EXTERN int		TclBN_mp_init_multi(mp_int *a, ...);
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
................................................................................
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c);
/* 35 */
EXTERN int		TclBN_mp_radix_size(const mp_int *a, int radix,
				int *size);
/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
................................................................................
EXTERN void		TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */
EXTERN void		TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */
EXTERN void		TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);
/* 67 */
EXTERN int		TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c,
				int fast);

typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
................................................................................
    int (*tclBN_mp_div_2) (mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (mp_int *a, mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 42 */
................................................................................
    int (*tclBN_s_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */
    int (*tclBN_mp_expt_d_ex) (mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */
} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */
#define TclBNInitBignumFromLong \
	(tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */
#define TclBNInitBignumFromWideInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */
#define TclBNInitBignumFromWideUInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */
#define TclBN_mp_expt_d_ex \
	(tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */

#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */

Changes to libtommath/LICENSE.

1
2






3
4



















LibTomMath is hereby released into the Public Domain.  







-- Tom St Denis




















|

>
>
>
>
>
>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
LibTomMath is licensed under DUAL licensing terms.

Choose and use the license of your needs.

[LICENSE #1]

LibTomMath is public domain.  As should all quality software be.

Tom St Denis

[/LICENSE #1]

[LICENSE #2]

            DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
                    Version 2, December 2004

 Copyright (C) 2004 Sam Hocevar <[email protected]>

 Everyone is permitted to copy and distribute verbatim or modified
 copies of this license document, and changing it is allowed as long
 as the name is changed.

            DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. You just DO WHAT THE FUCK YOU WANT TO.

[/LICENSE #2]

Deleted libtommath/bn.ilg.

1
2
3
4
5
6
This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
Scanning input file bn.idx....done (79 entries accepted, 0 rejected).
Sorting entries....done (511 comparisons).
Generating output file bn.ind....done (82 lines written, 0 warnings).
Output written in bn.ind.
Transcript written in bn.ilg.
<
<
<
<
<
<










Deleted libtommath/bn.ind.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\begin{theindex}

  \item mp\_add, \hyperpage{29}
  \item mp\_add\_d, \hyperpage{52}
  \item mp\_and, \hyperpage{29}
  \item mp\_clear, \hyperpage{11}
  \item mp\_clear\_multi, \hyperpage{12}
  \item mp\_cmp, \hyperpage{24}
  \item mp\_cmp\_d, \hyperpage{25}
  \item mp\_cmp\_mag, \hyperpage{23}
  \item mp\_div, \hyperpage{30}
  \item mp\_div\_2, \hyperpage{26}
  \item mp\_div\_2d, \hyperpage{28}
  \item mp\_div\_d, \hyperpage{52}
  \item mp\_dr\_reduce, \hyperpage{40}
  \item mp\_dr\_setup, \hyperpage{40}
  \item MP\_EQ, \hyperpage{22}
  \item mp\_error\_to\_string, \hyperpage{10}
  \item mp\_expt\_d, \hyperpage{43}
  \item mp\_exptmod, \hyperpage{43}
  \item mp\_exteuclid, \hyperpage{51}
  \item mp\_gcd, \hyperpage{51}
  \item mp\_get\_int, \hyperpage{20}
  \item mp\_grow, \hyperpage{16}
  \item MP\_GT, \hyperpage{22}
  \item mp\_init, \hyperpage{11}
  \item mp\_init\_copy, \hyperpage{13}
  \item mp\_init\_multi, \hyperpage{12}
  \item mp\_init\_set, \hyperpage{21}
  \item mp\_init\_set\_int, \hyperpage{21}
  \item mp\_init\_size, \hyperpage{14}
  \item mp\_int, \hyperpage{10}
  \item mp\_invmod, \hyperpage{52}
  \item mp\_jacobi, \hyperpage{52}
  \item mp\_lcm, \hyperpage{51}
  \item mp\_lshd, \hyperpage{28}
  \item MP\_LT, \hyperpage{22}
  \item MP\_MEM, \hyperpage{9}
  \item mp\_mod, \hyperpage{35}
  \item mp\_mod\_d, \hyperpage{52}
  \item mp\_montgomery\_calc\_normalization, \hyperpage{38}
  \item mp\_montgomery\_reduce, \hyperpage{37}
  \item mp\_montgomery\_setup, \hyperpage{37}
  \item mp\_mul, \hyperpage{31}
  \item mp\_mul\_2, \hyperpage{26}
  \item mp\_mul\_2d, \hyperpage{28}
  \item mp\_mul\_d, \hyperpage{52}
  \item mp\_n\_root, \hyperpage{44}
  \item mp\_neg, \hyperpage{29}
  \item MP\_NO, \hyperpage{9}
  \item MP\_OKAY, \hyperpage{9}
  \item mp\_or, \hyperpage{29}
  \item mp\_prime\_fermat, \hyperpage{45}
  \item mp\_prime\_is\_divisible, \hyperpage{45}
  \item mp\_prime\_is\_prime, \hyperpage{46}
  \item mp\_prime\_miller\_rabin, \hyperpage{45}
  \item mp\_prime\_next\_prime, \hyperpage{46}
  \item mp\_prime\_rabin\_miller\_trials, \hyperpage{46}
  \item mp\_prime\_random, \hyperpage{47}
  \item mp\_prime\_random\_ex, \hyperpage{47}
  \item mp\_radix\_size, \hyperpage{49}
  \item mp\_read\_radix, \hyperpage{49}
  \item mp\_read\_unsigned\_bin, \hyperpage{50}
  \item mp\_reduce, \hyperpage{36}
  \item mp\_reduce\_2k, \hyperpage{41}
  \item mp\_reduce\_2k\_setup, \hyperpage{41}
  \item mp\_reduce\_setup, \hyperpage{36}
  \item mp\_rshd, \hyperpage{28}
  \item mp\_set, \hyperpage{19}
  \item mp\_set\_int, \hyperpage{20}
  \item mp\_shrink, \hyperpage{15}
  \item mp\_sqr, \hyperpage{33}
  \item mp\_sub, \hyperpage{29}
  \item mp\_sub\_d, \hyperpage{52}
  \item mp\_to\_unsigned\_bin, \hyperpage{50}
  \item mp\_toradix, \hyperpage{49}
  \item mp\_unsigned\_bin\_size, \hyperpage{50}
  \item MP\_VAL, \hyperpage{9}
  \item mp\_xor, \hyperpage{29}
  \item MP\_YES, \hyperpage{9}

\end{theindex}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


































































































































































Deleted libtommath/bn.pdf.

cannot compute difference between binary files

Deleted libtommath/bn.tex.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
\documentclass[b5paper]{book}
\usepackage{hyperref}
\usepackage{makeidx}
\usepackage{amssymb}
\usepackage{color}
\usepackage{alltt}
\usepackage{graphicx}
\usepackage{layout}
\def\union{\cup}
\def\intersect{\cap}
\def\getsrandom{\stackrel{\rm R}{\gets}}
\def\cross{\times}
\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
\def\catn{$\|$}
\def\divides{\hspace{0.3em} | \hspace{0.3em}}
\def\nequiv{\not\equiv}
\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
\def\lcm{{\rm lcm}}
\def\gcd{{\rm gcd}}
\def\log{{\rm log}}
\def\ord{{\rm ord}}
\def\abs{{\mathit abs}}
\def\rep{{\mathit rep}}
\def\mod{{\mathit\ mod\ }}
\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
\def\Or{{\rm\ or\ }}
\def\And{{\rm\ and\ }}
\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
\def\implies{\Rightarrow}
\def\undefined{{\rm ``undefined"}}
\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
\let\oldphi\phi
\def\phi{\varphi}
\def\Pr{{\rm Pr}}
\newcommand{\str}[1]{{\mathbf{#1}}}
\def\F{{\mathbb F}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\R{{\mathbb R}}
\def\C{{\mathbb C}}
\def\Q{{\mathbb Q}}
\definecolor{DGray}{gray}{0.5}
\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
\def\gap{\vspace{0.5ex}}
\makeindex
\begin{document}
\frontmatter
\pagestyle{empty}
\title{LibTomMath User Manual \\ v0.39}
\author{Tom St Denis \\ [email protected]}
\maketitle
This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been 
formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.

\vspace{10cm}

\begin{flushright}Open Source.  Open Academia.  Open Minds.

\mbox{ }

Tom St Denis,

Ontario, Canada
\end{flushright}

\tableofcontents
\listoffigures
\mainmatter
\pagestyle{headings}
\chapter{Introduction}
\section{What is LibTomMath?}
LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
C compiler.  

In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous 
universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.  

\section{License}
As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
algorithms used in the library.

Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.  They are not required to use LibTomMath.} are in the 
public domain everyone is entitled to do with them as they see fit.

\section{Building LibTomMath}

LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
developer.  

\subsection{Static Libraries}
To build as a static library for GCC issue the following
\begin{alltt}
make
\end{alltt}

command.  This will build the library and archive the object files in ``libtommath.a''.  Now you link against 
that and include ``tommath.h'' within your programs.  Alternatively to build with MSVC issue the following
\begin{alltt}
nmake -f makefile.msvc
\end{alltt}

This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC 
version 6.00 with service pack 5.  

\subsection{Shared Libraries}
To build as a shared library for GCC issue the following
\begin{alltt}
make -f makefile.shared
\end{alltt}
This requires the ``libtool'' package (common on most Linux/BSD systems).  It will build LibTomMath as both shared
and static then install (by default) into /usr/lib as well as install the header files in /usr/include.  The shared 
library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''.  Generally 
you use libtool to link your application against the shared object.  

There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires 
Cygwin to work with since it requires the auto-export/import functionality.  The resulting DLL and import library 
``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.

\subsection{Testing}
To build the library and the test harness type

\begin{alltt}
make test
\end{alltt}

This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
is included in the package}.  Simply pipe mtest into test using

\begin{alltt}
mtest/mtest | test
\end{alltt}

If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into 
mtest.  For example, if your PRNG program is called ``myprng'' simply invoke

\begin{alltt}
myprng | mtest/mtest | test
\end{alltt}

This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
will exit with a dump of the relevent numbers it was working with.

\section{Build Configuration}
LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.  
Each phase changes how the library is built and they are applied one after another respectively.  

To make the system more powerful you can tweak the build process.  Classes are defined in the file
``tommath\_superclass.h''.  By default, the symbol ``LTM\_ALL'' shall be defined which simply 
instructs the system to build all of the functions.  This is how LibTomMath used to be packaged.  This will give you 
access to every function LibTomMath offers.

However, there are cases where such a build is not optional.  For instance, you want to perform RSA operations.  You 
don't need the vast majority of the library to perform these operations.  Aside from LTM\_ALL there is 
another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt.  Additional 
classes can be defined base on the need of the user.

\subsection{Build Depends}
In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
which further define symbols.  All of the symbols (technically they're macros $\ldots$) represent a given C source
file.  For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''.  When a define has been enabled the
function in the respective file will be compiled and linked into the library.  Accordingly when the define
is absent the file will not be compiled and not contribute any size to the library.

You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).  
This is to help resolve as many dependencies as possible.  In the last pass the symbol LTM\_LAST will be defined.  
This is useful for ``trims''.

\subsection{Build Tweaks}
A tweak is an algorithm ``alternative''.  For example, to provide tradeoffs (usually between size and space).
They can be enabled at any pass of the configuration phase.

\begin{small}
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Define} & \textbf{Purpose} \\
\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
                          & functional mp\_div() function \\
\hline
\end{tabular}
\end{center}
\end{small}

\subsection{Build Trims}
A trim is a manner of removing functionality from a function that is not required.  For instance, to perform
RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.  
Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
only if LTM\_LAST has been defined.

\subsubsection{Moduli Related}
\begin{small}
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Restriction} & \textbf{Undefine} \\
\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
                                           & BN\_MP\_REDUCE\_C \\
                                           & BN\_MP\_REDUCE\_SETUP\_C \\
                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
                                           & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
\hline Exponentiation with random odd moduli & (The above plus the following) \\
                                           & BN\_MP\_REDUCE\_2K\_C \\
                                           & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
                                           & BN\_MP\_REDUCE\_IS\_2K\_C \\
                                           & BN\_MP\_DR\_IS\_MODULUS\_C \\
                                           & BN\_MP\_DR\_REDUCE\_C \\
                                           & BN\_MP\_DR\_SETUP\_C \\
\hline Modular inverse odd moduli only     & BN\_MP\_INVMOD\_SLOW\_C \\
\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
\hline
\end{tabular}
\end{center}
\end{small}

\subsubsection{Operand Size Related}
\begin{small}
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Restriction} & \textbf{Undefine} \\
\hline Moduli $\le 2560$ bits              & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
                                           & BN\_S\_MP\_MUL\_DIGS\_C \\
                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
                                           & BN\_S\_MP\_SQR\_C \\
\hline Polynomial Schmolynomial            & BN\_MP\_KARATSUBA\_MUL\_C \\
                                           & BN\_MP\_KARATSUBA\_SQR\_C \\
                                           & BN\_MP\_TOOM\_MUL\_C \\ 
                                           & BN\_MP\_TOOM\_SQR\_C \\

\hline
\end{tabular}
\end{center}
\end{small}


\section{Purpose of LibTomMath}
Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with 
bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the 
source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
arithmetic techniques. 

LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
increase.

Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
the library (beat that!).

So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.

\newpage\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|l|c|c|l|}
\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\
\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
\hline Speed && X & LibTomMath is slower.  \\
\hline Totally free & X & & GPL has unfavourable restrictions.\\
\hline Large function base & X & & GnuPG is barebones. \\
\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
\hline Portable & X & & GnuPG requires configuration to build. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{LibTomMath Valuation}
\end{figure}

It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. 
However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
would require when working with large integers.  

So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
exponentiations.  It depends largely on the processor, compiler and the moduli being used.

Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However,
on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can
be performed with as little as 8KB of ram for data (again depending on build options).  

\chapter{Getting Started with LibTomMath}
\section{Building Programs}
In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically 
libtommath.a).  There is no library initialization required and the entire library is thread safe.

\section{Return Codes}
There are three possible return codes a function may return.

\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
\begin{figure}[here!]
\begin{center}
\begin{small}
\begin{tabular}{|l|l|}
\hline \textbf{Code} & \textbf{Meaning} \\
\hline MP\_OKAY & The function succeeded. \\
\hline MP\_VAL  & The function input was invalid. \\
\hline MP\_MEM  & Heap memory exhausted. \\
\hline &\\
\hline MP\_YES  & Response is yes. \\
\hline MP\_NO   & Response is no. \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Return Codes}
\end{figure}

The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
to a string use the following function.

\index{mp\_error\_to\_string}
\begin{alltt}
char *mp_error_to_string(int code);
\end{alltt}

This will return a pointer to a string which describes the given error code.  It will not work for the return codes 
MP\_YES and MP\_NO.  

\section{Data Types}
The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
as the following.

\index{mp\_int}
\begin{alltt}
typedef struct  \{
    int used, alloc, sign;
    mp_digit *dp;
\} mp_int;
\end{alltt}

Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
platforms by defining the appropriate macros.  

All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
done to use an mp\_int is that it must be initialized.

\section{Function Organization}

The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
are passed on the left and the destination is on the right.  For instance,

\begin{alltt}
mp_add(&a, &b, &c);       /* c = a + b */
mp_mul(&a, &a, &c);       /* c = a * a */
mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
\end{alltt}

Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
For instance,

\begin{alltt}
mp_add(&a, &b, &b);       /* b = a + b */
mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
\end{alltt}

This allows operands to be re-used which can make programming simpler.

\section{Initialization}
\subsection{Single Initialization}
A single mp\_int can be initialized with the ``mp\_init'' function. 

\index{mp\_init}
\begin{alltt}
int mp_init (mp_int * a);
\end{alltt}

This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
by the other LibTomMath functions.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the number */

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\subsection{Single Free}
When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function 
provides this functionality.

\index{mp\_clear}
\begin{alltt}
void mp_clear (mp_int * a);
\end{alltt}

The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the 
pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. 
Is is legal to call mp\_clear() twice on the same mp\_int in a row.  

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the number */

   /* We're done with it. */
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\subsection{Multiple Initializations}
Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
not initialized.

The  mp\_init\_multi() function provides this functionality.

\index{mp\_init\_multi} \index{mp\_clear\_multi}
\begin{alltt}
int mp_init_multi(mp_int *mp, ...);
\end{alltt}

It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd 
from the heap at the same time.  

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int num1, num2, num3;
   int result;

   if ((result = mp_init_multi(&num1, 
                               &num2,
                               &num3, NULL)) != MP\_OKAY) \{      
      printf("Error initializing the numbers.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the numbers */

   /* We're done with them. */
   mp_clear_multi(&num1, &num2, &num3, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\subsection{Other Initializers}
To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.  

\index{mp\_init\_copy}
\begin{alltt}
int mp_init_copy (mp_int * a, mp_int * b);
\end{alltt}

This function will initialize $a$ and make it a copy of $b$ if all goes well.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int num1, num2;
   int result;

   /* initialize and do work on num1 ... */

   /* We want a copy of num1 in num2 now */
   if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
     printf("Error initializing the copy.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* now num2 is ready and contains a copy of num1 */

   /* We're done with them. */
   mp_clear_multi(&num1, &num2, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
you override this behaviour.

\index{mp\_init\_size}
\begin{alltt}
int mp_init_size (mp_int * a, int size);
\end{alltt}

The $size$ parameter must be greater than zero.  If the function succeeds the mp\_int $a$ will be initialized
to have $size$ digits (which are all initially zero).  

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   /* we need a 60-digit number */
   if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the number */

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\section{Maintenance Functions}

\subsection{Reducing Memory Usage}
When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
digits can be removed to return memory to the heap with the mp\_shrink() function.

\index{mp\_shrink}
\begin{alltt}
int mp_shrink (mp_int * a);
\end{alltt}

This will remove excess digits of the mp\_int $a$.  If the operation fails the mp\_int should be intact without the
excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
modify in the system (unless you are seriously low on memory).  

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the number [e.g. pre-computation]  */

   /* We're done with it for now. */
   if ((result = mp_shrink(&number)) != MP_OKAY) \{
      printf("Error shrinking the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* use it .... */


   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\subsection{Adding additional digits}

Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
your desired size.  

\index{mp\_grow}
\begin{alltt}
int mp_grow (mp_int * a, int size);
\end{alltt}

This will grow the array of digits of $a$ to $size$.  If the \textit{alloc} parameter is already bigger than
$size$ the function will not do anything.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* use the number */

   /* We need to add 20 digits to the number  */
   if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
      printf("Error growing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}


   /* use the number */

   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\chapter{Basic Operations}
\section{Small Constants}
Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
small constant assignment functions.  The first function is used to set a single digit constant while the second sets
an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
domain of a digit can change (it's always at least $0 \ldots 127$).  

\subsection{Single Digit}

Setting a single digit can be accomplished with the following function.

\index{mp\_set}
\begin{alltt}
void mp_set (mp_int * a, mp_digit b);
\end{alltt}

This will zero the contents of $a$ and make it represent an integer equal to the value of $b$.  Note that this
function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
succeeded.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number to 5 */
   mp_set(&number, 5);

   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

\subsection{Long Constants}

To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function 
can be used.

\index{mp\_set\_int}
\begin{alltt}
int mp_set_int (mp_int * a, unsigned long b);
\end{alltt}

This will assign the value of the 32-bit variable $b$ to the mp\_int $a$.  Unlike mp\_set() this function will always
accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits 
this function can fail if it runs out of heap memory.

To get the ``unsigned long'' copy of an mp\_int the following function can be used.

\index{mp\_get\_int}
\begin{alltt}
unsigned long mp_get_int (mp_int * a);
\end{alltt}

This will return the 32 least significant bits of the mp\_int $a$.  

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number to 654321 (note this is bigger than 127) */
   if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
      printf("Error setting the value of the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   printf("number == \%lu", mp_get_int(&number));

   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

This should output the following if the program succeeds.

\begin{alltt}
number == 654321
\end{alltt}

\subsection{Initialize and Setting Constants}
To both initialize and set small constants the following two functions are available.
\index{mp\_init\_set} \index{mp\_init\_set\_int}
\begin{alltt}
int mp_init_set (mp_int * a, mp_digit b);
int mp_init_set_int (mp_int * a, unsigned long b);
\end{alltt}

Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.  

\begin{alltt}
int main(void)
\{
   mp_int number1, number2;
   int    result;

   /* initialize and set a single digit */
   if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
      printf("Error setting number1: \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}             

   /* initialize and set a long */
   if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
      printf("Error setting number2: \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* display */
   printf("Number1, Number2 == \%lu, \%lu",
          mp_get_int(&number1), mp_get_int(&number2));

   /* clear */
   mp_clear_multi(&number1, &number2, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt}

If this program succeeds it shall output.
\begin{alltt}
Number1, Number2 == 100, 1023
\end{alltt}

\section{Comparisons}

Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
for any comparison.

\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
\begin{figure}[here]
\begin{center}
\begin{tabular}{|c|c|}
\hline \textbf{Result Code} & \textbf{Meaning} \\
\hline MP\_GT & $a > b$ \\
\hline MP\_EQ & $a = b$ \\
\hline MP\_LT & $a < b$ \\
\hline
\end{tabular}
\end{center}
\caption{Comparison Codes for $a, b$}
\label{fig:CMP}
\end{figure}

In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of 
$b$.  

\subsection{Unsigned comparison}

An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the 
mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
mp\_int variables based on their digits only. 

\index{mp\_cmp\_mag}
\begin{alltt}
int mp_cmp_mag(mp_int * a, mp_int * b);
\end{alltt}
This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the
three compare codes listed in figure \ref{fig:CMP}.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number1, number2;
   int result;

   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
      printf("Error initializing the numbers.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number1 to 5 */
   mp_set(&number1, 5);
  
   /* set the number2 to -6 */
   mp_set(&number2, 6);
   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
      printf("Error negating number2.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   switch(mp_cmp_mag(&number1, &number2)) \{
       case MP_GT:  printf("|number1| > |number2|"); break;
       case MP_EQ:  printf("|number1| = |number2|"); break;
       case MP_LT:  printf("|number1| < |number2|"); break;
   \}

   /* we're done with it. */ 
   mp_clear_multi(&number1, &number2, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
successfully it should print the following.

\begin{alltt}
|number1| < |number2|
\end{alltt}

This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.

\subsection{Signed comparison}

To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.

\index{mp\_cmp}
\begin{alltt}
int mp_cmp(mp_int * a, mp_int * b);
\end{alltt}

This will compare $a$ to the left of $b$.  It will first compare the signs of the two mp\_int variables.  If they
differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number1, number2;
   int result;

   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
      printf("Error initializing the numbers.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number1 to 5 */
   mp_set(&number1, 5);
  
   /* set the number2 to -6 */
   mp_set(&number2, 6);
   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
      printf("Error negating number2.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   switch(mp_cmp(&number1, &number2)) \{
       case MP_GT:  printf("number1 > number2"); break;
       case MP_EQ:  printf("number1 = number2"); break;
       case MP_LT:  printf("number1 < number2"); break;
   \}

   /* we're done with it. */ 
   mp_clear_multi(&number1, &number2, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
successfully it should print the following.

\begin{alltt}
number1 > number2
\end{alltt}

\subsection{Single Digit}

To compare a single digit against an mp\_int the following function has been provided.

\index{mp\_cmp\_d}
\begin{alltt}
int mp_cmp_d(mp_int * a, mp_digit b);
\end{alltt}

This will compare $a$ to the left of $b$ using a signed comparison.  Note that it will always treat $b$ as 
positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
listed in figure \ref{fig:CMP}.


\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number to 5 */
   mp_set(&number, 5);

   switch(mp_cmp_d(&number, 7)) \{
       case MP_GT:  printf("number > 7"); break;
       case MP_EQ:  printf("number = 7"); break;
       case MP_LT:  printf("number < 7"); break;
   \}

   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

If this program functions properly it will print out the following.

\begin{alltt}
number < 7
\end{alltt}

\section{Logical Operations}

Logical operations are operations that can be performed either with simple shifts or boolean operators such as
AND, XOR and OR directly.  These operations are very quick.

\subsection{Multiplication by two}

Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
right depending on the operation.  

When multiplying or dividing by two a special case routine can be used which are as follows.
\index{mp\_mul\_2} \index{mp\_div\_2}
\begin{alltt}
int mp_mul_2(mp_int * a, mp_int * b);
int mp_div_2(mp_int * a, mp_int * b);
\end{alltt}

The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$.  These functions are fast
since the shift counts and maskes are hardcoded into the routines.

\begin{small} \begin{alltt}
int main(void)
\{
   mp_int number;
   int result;

   if ((result = mp_init(&number)) != MP_OKAY) \{
      printf("Error initializing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   /* set the number to 5 */
   mp_set(&number, 5);

   /* multiply by two */
   if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
      printf("Error multiplying the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
   switch(mp_cmp_d(&number, 7)) \{
       case MP_GT:  printf("2*number > 7"); break;
       case MP_EQ:  printf("2*number = 7"); break;
       case MP_LT:  printf("2*number < 7"); break;
   \}

   /* now divide by two */
   if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
      printf("Error dividing the number.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
   switch(mp_cmp_d(&number, 7)) \{
       case MP_GT:  printf("2*number/2 > 7"); break;
       case MP_EQ:  printf("2*number/2 = 7"); break;
       case MP_LT:  printf("2*number/2 < 7"); break;
   \}

   /* we're done with it. */ 
   mp_clear(&number);

   return EXIT_SUCCESS;
\}
\end{alltt} \end{small}

If this program is successful it will print out the following text.

\begin{alltt}
2*number > 7
2*number/2 < 7
\end{alltt}

Since $10 > 7$ and $5 < 7$.  To multiply by a power of two the following function can be used.

\index{mp\_mul\_2d}
\begin{alltt}
int mp_mul_2d(mp_int * a, int b, mp_int * c);
\end{alltt}

This will multiply $a$ by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to 
zero the function will copy $a$ to ``c'' without performing any further actions.  

To divide by a power of two use the following.

\index{mp\_div\_2d}
\begin{alltt}
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
\end{alltt}
Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
function simply copies $a$ over to ``c'' and zeroes $d$.  The variable $d$ may be passed as a \textbf{NULL}
value to signal that the remainder is not desired.

\subsection{Polynomial Basis Operations}

Strictly speaking the organization of the integers within the mp\_int structures is what is known as a 
``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be 
the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.  

To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
following function provides this operation.

\index{mp\_lshd}
\begin{alltt}
int mp_lshd (mp_int * a, int b);
\end{alltt}

This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.

\index{mp\_rshd}
\begin{alltt}
void mp_rshd (mp_int * a, int b)
\end{alltt}
This will divide $a$ in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
in place and no new digits are required to complete it.

\subsection{AND, OR and XOR Operations}

While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
three functions are prototyped as follows.

\index{mp\_or} \index{mp\_and} \index{mp\_xor}
\begin{alltt}
int mp_or  (mp_int * a, mp_int * b, mp_int * c);
int mp_and (mp_int * a, mp_int * b, mp_int * c);
int mp_xor (mp_int * a, mp_int * b, mp_int * c);
\end{alltt}

Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.  

\section{Addition and Subtraction}

To compute an addition or subtraction the following two functions can be used.

\index{mp\_add} \index{mp\_sub}
\begin{alltt}
int mp_add (mp_int * a, mp_int * b, mp_int * c);
int mp_sub (mp_int * a, mp_int * b, mp_int * c)
\end{alltt}

Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
aware.

\section{Sign Manipulation}
\subsection{Negation}
\label{sec:NEG}
Simple integer negation can be performed with the following.

\index{mp\_neg}
\begin{alltt}
int mp_neg (mp_int * a, mp_int * b);
\end{alltt}

Which assigns $-a$ to $b$.  

\subsection{Absolute}
Simple integer absolutes can be performed with the following.

\index{mp\_neg}
\begin{alltt}
int mp_abs (mp_int * a, mp_int * b);
\end{alltt}

Which assigns $\vert a \vert$ to $b$.  

\section{Integer Division and Remainder}
To perform a complete and general integer division with remainder use the following function.

\index{mp\_div}
\begin{alltt}
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
\end{alltt}
                                                        
This divides $a$ by $b$ and stores the quotient in $c$ and $d$.  The signed quotient is computed such that 
$bc + d = a$.  Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required.  If 
$b$ is zero the function returns \textbf{MP\_VAL}.  


\chapter{Multiplication and Squaring}
\section{Multiplication}
A full signed integer multiplication can be performed with the following.
\index{mp\_mul}
\begin{alltt}
int mp_mul (mp_int * a, mp_int * b, mp_int * c);
\end{alltt}
Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are 
specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
sized inputs.  Then followed by the Comba and baseline multipliers.

Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.

\begin{alltt}
int main(void)
\{
   mp_int number1, number2;
   int result;

   /* Initialize the numbers */
   if ((result = mp_init_multi(&number1, 
                               &number2, NULL)) != MP_OKAY) \{
      printf("Error initializing the numbers.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* set the terms */
   if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
      printf("Error setting number1.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
 
   if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
      printf("Error setting number2.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* multiply them */
   if ((result = mp_mul(&number1, &number2,
                        &number1)) != MP_OKAY) \{
      printf("Error multiplying terms.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* display */
   printf("number1 * number2 == \%lu", mp_get_int(&number1));

   /* free terms and return */
   mp_clear_multi(&number1, &number2, NULL);

   return EXIT_SUCCESS;
\}
\end{alltt}   

If this program succeeds it shall output the following.

\begin{alltt}
number1 * number2 == 262911
\end{alltt}

\section{Squaring}
Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
mp\_mul().

\index{mp\_sqr}
\begin{alltt}
int mp_sqr (mp_int * a, mp_int * b);
\end{alltt}

Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring
algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because
of the speed difference.  

\section{Tuning Polynomial Basis Routines}

Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require 
considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision
multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
of 138).

So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration, 
GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at 
110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.

Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points 
exist and for the most part I just set the cutoff points very high to make sure they're not called.

A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
can be built with GCC as follows

\begin{alltt}
make XXX
\end{alltt}
Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.

\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|l|l|}
\hline \textbf{Value of XXX} & \textbf{Meaning} \\
\hline tune & Builds portable tuning application \\
\hline tune86 & Builds x86 (pentium and up) program for COFF \\
\hline tune86c & Builds x86 program for Cygwin \\
\hline tune86l & Builds x86 program for Linux (ELF format) \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Build Names for Tuning Programs}
\label{fig:tuning}
\end{figure}

When the program is running it will output a series of measurements for different cutoff points.  It will first find
good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
tuning takes a very long time as the cutoff points are likely to be very high.

\chapter{Modular Reduction}

Modular reduction is process of taking the remainder of one quantity divided by another.  Expressed 
as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.  

\begin{equation}
a \equiv b \mbox{ (mod }c\mbox{)}
\label{eqn:mod}
\end{equation}

Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly 
fast reduction algorithms can be written for the limited range.  

Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
algorithm mp\_exptmod when an appropriate modulus is detected.  

\section{Straight Division}
In order to effect an arbitrary modular reduction the following algorithm is provided.

\index{mp\_mod}
\begin{alltt}
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
\end{alltt}

This reduces $a$ modulo $b$ and stores the result in $c$.  The sign of $c$ shall agree with the sign 
of $b$.  This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.

\section{Barrett Reduction}

Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function.

\index{mp\_reduce\_setup}
\begin{alltt}
int mp_reduce_setup(mp_int *a, mp_int *b);
\end{alltt}

Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to
be computed once.  Modular reduction can now be performed with the following.

\index{mp\_reduce}
\begin{alltt}
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
\end{alltt}

This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range
$0 \le a < b^2$.

\begin{alltt}
int main(void)
\{
   mp_int   a, b, c, mu;
   int      result;

   /* initialize a,b to desired values, mp_init mu, 
    * c and set c to 1...we want to compute a^3 mod b 
    */

   /* get mu value */
   if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
      printf("Error getting mu.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* square a to get c = a^2 */
   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
      printf("Error squaring.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* now reduce `c' modulo b */
   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
   
   /* multiply a to get c = a^3 */
   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* now reduce `c' modulo b  */
   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
  
   /* c now equals a^3 mod b */

   return EXIT_SUCCESS;
\}
\end{alltt} 

This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.  

\section{Montgomery Reduction}

Montgomery is a specialized reduction algorithm for any odd moduli.  Like Barrett reduction a pre--computation
step is required.  This is accomplished with the following.

\index{mp\_montgomery\_setup}
\begin{alltt}
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
\end{alltt}

For the given odd moduli $a$ the precomputation value is placed in $mp$.  The reduction is computed with the 
following.

\index{mp\_montgomery\_reduce}
\begin{alltt}
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
\end{alltt}
This reduces $a$ in place modulo $m$ with the pre--computed value $mp$.   $a$ must be in the range
$0 \le a < b^2$.

Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit.  With the default
setup for instance, the limit is $127$ digits ($3556$--bits).   Note that this function is not limited to
$127$ digits just that it falls back to a baseline algorithm after that point.  

An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$ 
where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).  

To quickly calculate $R$ the following function was provided.

\index{mp\_montgomery\_calc\_normalization}
\begin{alltt}
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
\end{alltt}
Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.  

The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system.  For
example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
multiplying it by $R$.  Consider the following code snippet.

\begin{alltt}
int main(void)
\{
   mp_int   a, b, c, R;
   mp_digit mp;
   int      result;

   /* initialize a,b to desired values, 
    * mp_init R, c and set c to 1.... 
    */

   /* get normalization */
   if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
      printf("Error getting norm.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* get mp value */
   if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
      printf("Error setting up montgomery.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* normalize `a' so now a is equal to aR */
   if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
      printf("Error computing aR.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* square a to get c = a^2R^2 */
   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
      printf("Error squaring.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
   
   /* multiply a to get c = a^3R^2 */
   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}
   
   /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
      printf("Error reducing.  \%s", 
             mp_error_to_string(result));
      return EXIT_FAILURE;
   \}

   /* c now equals a^3 mod b */

   return EXIT_SUCCESS;
\}
\end{alltt} 

This particular example does not look too efficient but it demonstrates the point of the algorithm.  By 
normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$.  This allows
a single final reduction to correct for the normalization and the fast reduction used within the algorithm.

For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.

\section{Restricted Dimminished Radix}

``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
digit shifting and small multiplications.  In this case the ``restricted'' variant refers to moduli of the
form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).  

As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.

\index{mp\_dr\_setup}
\begin{alltt}
void mp_dr_setup(mp_int *a, mp_digit *d);
\end{alltt}

This computes the value required for the modulus $a$ and stores it in $d$.  This function cannot fail
and does not return any error codes.  After the pre--computation a reduction can be performed with the
following.

\index{mp\_dr\_reduce}
\begin{alltt}
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
\end{alltt}

This reduces $a$ in place modulo $b$ with the pre--computed value $mp$.  $b$ must be of a restricted
dimminished radix form and $a$ must be in the range $0 \le a < b^2$.  Dimminished radix reductions are 
much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.  

Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
BBS cryptographic purposes.  This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
primes are acceptable.  

Note that unlike Montgomery reduction there is no normalization process.  The result of this function is
equal to the correct residue.

\section{Unrestricted Dimminshed Radix}

Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the 
form $2^k - p$ for $0 < p < \beta$.  In this sense the unrestricted reductions are more flexible as they 
can be applied to a wider range of numbers.  

\index{mp\_reduce\_2k\_setup}
\begin{alltt}
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
\end{alltt}

This will compute the required $d$ value for the given moduli $a$.  

\index{mp\_reduce\_2k}
\begin{alltt}
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
\end{alltt}

This will reduce $a$ in place modulo $n$ with the pre--computed value $d$.  From my experience this routine is 
slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.  

\chapter{Exponentiation}
\section{Single Digit Exponentiation}
\index{mp\_expt\_d}
\begin{alltt}
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
\end{alltt}
This computes $c = a^b$ using a simple binary left-to-right algorithm.  It is faster than repeated multiplications by 
$a$ for all values of $b$ greater than three.  

\section{Modular Exponentiation}
\index{mp\_exptmod}
\begin{alltt}
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
\end{alltt}
This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of 
$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that 
$gcd(G, P) = 1$.

This function is actually a shell around the two internal exponentiation functions.  This routine will automatically
detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used.  Generally
moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations.  Followed by Montgomery
and the other two algorithms.

\section{Root Finding}
\index{mp\_n\_root}
\begin{alltt}
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
\end{alltt}
This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not 
ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ 
will return $-2$.  

This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since
the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example,
$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply 
$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$

\chapter{Prime Numbers}
\section{Trial Division}
\index{mp\_prime\_is\_divisible}
\begin{alltt}
int mp_prime_is_divisible (mp_int * a, int *result)
\end{alltt}
This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the 
outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that 
if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
the default is to set it to zero first.}.

\section{Fermat Test}
\index{mp\_prime\_fermat}
\begin{alltt}
int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
\end{alltt}
Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
is set to zero.

\section{Miller-Rabin Test}
\index{mp\_prime\_miller\_rabin}
\begin{alltt}
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
\end{alltt}
Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.  
Otherwise $result$ is set to zero.  

Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of 
Miller-Rabin are a subset of the failures of the Fermat test.

\subsection{Required Number of Tests}
Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
This is why a simple function has been provided to help out.

\index{mp\_prime\_rabin\_miller\_trials}
\begin{alltt}
int mp_prime_rabin_miller_trials(int size)
\end{alltt}
This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
require ten tests whereas a 1024-bit number would only require four tests. 

You should always still perform a trial division before a Miller-Rabin test though.

\section{Primality Testing}
\index{mp\_prime\_is\_prime}
\begin{alltt}
int mp_prime_is_prime (mp_int * a, int t, int *result)
\end{alltt}
This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.  
If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by 
$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).

\section{Next Prime}
\index{mp\_prime\_next\_prime}
\begin{alltt}
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
\end{alltt}
This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you 
want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.  

\section{Random Primes}
\index{mp\_prime\_random}
\begin{alltt}
int mp_prime_random(mp_int *a, int t, int size, int bbs, 
                    ltm_prime_callback cb, void *dat)
\end{alltt}
This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
$t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for 

\begin{alltt}
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
\end{alltt}

Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
copied from the original input.  It can be used to pass RNG context data to the callback.  The function 
mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there 
is no skew on the least significant bits.

\textit{Note:}  As of v0.30 of the LibTomMath library this function has been deprecated.  It is still available
but users are encouraged to use the new mp\_prime\_random\_ex() function instead.

\subsection{Extended Generation}
\index{mp\_prime\_random\_ex}
\begin{alltt}
int mp_prime_random_ex(mp_int *a,    int t, 
                       int     size, int flags, 
                       ltm_prime_callback cb, void *dat);
\end{alltt}
This will generate a prime in $a$ using $t$ tests of the primality testing algorithms.  The variable $size$
specifies the bit length of the prime desired.  The variable $flags$ specifies one of several options available
(see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in 
mp\_prime\_random().

\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|r|l|}
\hline \textbf{Flag}         & \textbf{Meaning} \\
\hline LTM\_PRIME\_BBS       & Make the prime congruent to $3$ modulo $4$ \\
\hline LTM\_PRIME\_SAFE      & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
                             & This option implies LTM\_PRIME\_BBS as well. \\
\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
                             & Is forced to zero.  \\
\hline LTM\_PRIME\_2MSB\_ON  & Makes sure that the bit adjacent to the most significant bit \\
                             & Is forced to one. \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Primality Generation Options}
\label{fig:primeopts}
\end{figure}

\chapter{Input and Output}
\section{ASCII Conversions}
\subsection{To ASCII}
\index{mp\_toradix}
\begin{alltt}
int mp_toradix (mp_int * a, char *str, int radix);
\end{alltt}
This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars.  This function appends a NUL character
to terminate the string.  Valid values of ``radix'' line in the range $[2, 64]$.  To determine the size (exact) required
by the conversion before storing any data use the following function.

\index{mp\_radix\_size}
\begin{alltt}
int mp_radix_size (mp_int * a, int radix, int *size)
\end{alltt}
This stores in ``size'' the number of characters (including space for the NUL terminator) required.  Upon error this 
function returns an error code and ``size'' will be zero.  

\subsection{From ASCII}
\index{mp\_read\_radix}
\begin{alltt}
int mp_read_radix (mp_int * a, char *str, int radix);
\end{alltt}
This will read the base-``radix'' NUL terminated string from ``str'' into $a$.  It will stop reading when it reads a
character it does not recognize (which happens to include th NUL char... imagine that...).  A single leading $-$ sign
can be used to denote a negative number.

\section{Binary Conversions}

Converting an mp\_int to and from binary is another keen idea.

\index{mp\_unsigned\_bin\_size}
\begin{alltt}
int mp_unsigned_bin_size(mp_int *a);
\end{alltt}

This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.

\index{mp\_to\_unsigned\_bin}
\begin{alltt}
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
\end{alltt}
This will store $a$ into the buffer $b$ in big--endian format.  Fortunately this is exactly what DER (or is it ASN?)
requires.  It does not store the sign of the integer.

\index{mp\_read\_unsigned\_bin}
\begin{alltt}
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
\end{alltt}
This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$.  The resulting
integer $a$ will always be positive.

For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
previous functions.

\begin{alltt}
int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
\end{alltt}
They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
byte depending on the sign.  If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
is non--zero.  

\chapter{Algebraic Functions}
\section{Extended Euclidean Algorithm}
\index{mp\_exteuclid}
\begin{alltt}
int mp_exteuclid(mp_int *a, mp_int *b, 
                 mp_int *U1, mp_int *U2, mp_int *U3);
\end{alltt}

This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.

\begin{equation}
a \cdot U1 + b \cdot U2 = U3
\end{equation}

Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.  

\section{Greatest Common Divisor}
\index{mp\_gcd}
\begin{alltt}
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
\end{alltt}
This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.

\section{Least Common Multiple}
\index{mp\_lcm}
\begin{alltt}
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
\end{alltt}
This will compute the least common multiple of $a$ and $b$ and store it in $c$.

\section{Jacobi Symbol}
\index{mp\_jacobi}
\begin{alltt}
int mp_jacobi (mp_int * a, mp_int * p, int *c)
\end{alltt}
This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
and the result will be $1$ if $a$ is a quadratic residue modulo $p$.  

\section{Modular Inverse}
\index{mp\_invmod}
\begin{alltt}
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
\end{alltt}
Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.

\section{Single Digit Functions}

For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions

\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
\begin{alltt}
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
\end{alltt}

These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit.  These
functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
an entire mp\_int to store a number like $1$ or $2$.

\input{bn.ind}

\end{document}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to libtommath/bn_error.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
..
37
38
39
40
41
42
43




#include <tommath.h>
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

static const struct {
     int code;
     char *msg;
} msgs[] = {
     { MP_OKAY, "Successful" },
     { MP_MEM,  "Out of heap" },
     { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
char *mp_error_to_string(int code)
{
   int x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
       if (msgs[x].code == code) {
          return msgs[x].msg;
................................................................................
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif




|













|




|







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
..
37
38
39
40
41
42
43
44
45
46
47
#include <tommath_private.h>
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

static const struct {
     int code;
     const char *msg;
} msgs[] = {
     { MP_OKAY, "Successful" },
     { MP_MEM,  "Out of heap" },
     { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
   int x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
       if (msgs[x].code == code) {
          return msgs[x].msg;
................................................................................
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_fast_mp_invmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
...
138
139
140
141
142
143
144




#include <tommath.h>
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
................................................................................
 */
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == 1) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }
................................................................................
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == 1) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
................................................................................

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
................................................................................
  c->sign = neg;
  res = MP_OKAY;

LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
#endif




|













|







 







|







 







|





|











|





|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
...
138
139
140
141
142
143
144
145
146
147
148
#include <tommath_private.h>
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
................................................................................
 */
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == MP_YES) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }
................................................................................
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == MP_YES) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == MP_YES) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
................................................................................

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
................................................................................
  c->sign = neg;
  res = MP_OKAY;

LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_fast_mp_montgomery_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
..
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
..
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
...
162
163
164
165
166
167
168




#include <tommath.h>
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
................................................................................
  int     ix, res, olduse;
  mp_word W[MP_WARRAY];

  /* get old used count */
  olduse = x->used;

  /* grow a as required */
  if (x->alloc < n->used + 1) {
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* first we have to get the digits of the input into
   * an array of double precision words W[...]
   */
  {
    register mp_word *_W;
    register mp_digit *tmpx;

    /* alias for the W[] array */
    _W   = W;

    /* alias for the digits of  x*/
    tmpx = x->dp;

    /* copy the digits of a into W[0..a->used-1] */
    for (ix = 0; ix < x->used; ix++) {
      *_W++ = *tmpx++;
    }

    /* zero the high words of W[a->used..m->used*2] */
    for (; ix < n->used * 2 + 1; ix++) {
      *_W++ = 0;
    }
  }

  /* now we proceed to zero successive digits
   * from the least significant upwards
   */
................................................................................
  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * m' mod b
     *
     * We avoid a double precision multiplication (which isn't required)
     * by casting the value down to a mp_digit.  Note this requires
     * that W[ix-1] have  the carry cleared (see after the inner loop)
     */
    register mp_digit mu;
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

    /* a = a + mu * m * b**i
     *
     * This is computed in place and on the fly.  The multiplication
     * by b**i is handled by offseting which columns the results
     * are added to.
................................................................................
     * column since the Montgomery reduction requires digits of the
     * result (so far) [see above] to work.  This is
     * handled by fixing up one carry after the inner loop.  The
     * carry fixups are done in order so after these loops the
     * first m->used words of W[] have the carries fixed
     */
    {
      register int iy;
      register mp_digit *tmpn;
      register mp_word *_W;

      /* alias for the digits of the modulus */
      tmpn = n->dp;

      /* Alias for the columns set by an offset of ix */
      _W = W + ix;

................................................................................
  }

  /* now we have to propagate the carries and
   * shift the words downward [all those least
   * significant digits we zeroed].
   */
  {
    register mp_digit *tmpx;
    register mp_word *_W, *_W1;

    /* nox fix rest of carries */

    /* alias for current word */
    _W1 = W + ix;

    /* alias for next word, where the carry goes */
    _W = W + ++ix;

    for (; ix <= n->used * 2 + 1; ix++) {
      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    }

    /* copy out, A = A/b**n
     *
     * The result is A/b**n but instead of converting from an
     * array of mp_word to mp_digit than calling mp_rshd
................................................................................

    /* alias for destination word */
    tmpx = x->dp;

    /* alias for shifted double precision result */
    _W = W + n->used;

    for (ix = 0; ix < n->used + 1; ix++) {
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
    }

    /* zero oldused digits, if the input a was larger than
     * m->used+1 we'll have to clear the digits
     */
    for (; ix < olduse; ix++) {
................................................................................
  /* if A >= m then A = A - m */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }
  return MP_OKAY;
}
#endif




|













|







 







|









|
|













|







 







|







 







|
|
|







 







|
|









|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
..
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
..
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
...
162
163
164
165
166
167
168
169
170
171
172
#include <tommath_private.h>
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
................................................................................
  int     ix, res, olduse;
  mp_word W[MP_WARRAY];

  /* get old used count */
  olduse = x->used;

  /* grow a as required */
  if (x->alloc < (n->used + 1)) {
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* first we have to get the digits of the input into
   * an array of double precision words W[...]
   */
  {
    mp_word *_W;
    mp_digit *tmpx;

    /* alias for the W[] array */
    _W   = W;

    /* alias for the digits of  x*/
    tmpx = x->dp;

    /* copy the digits of a into W[0..a->used-1] */
    for (ix = 0; ix < x->used; ix++) {
      *_W++ = *tmpx++;
    }

    /* zero the high words of W[a->used..m->used*2] */
    for (; ix < ((n->used * 2) + 1); ix++) {
      *_W++ = 0;
    }
  }

  /* now we proceed to zero successive digits
   * from the least significant upwards
   */
................................................................................
  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * m' mod b
     *
     * We avoid a double precision multiplication (which isn't required)
     * by casting the value down to a mp_digit.  Note this requires
     * that W[ix-1] have  the carry cleared (see after the inner loop)
     */
    mp_digit mu;
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

    /* a = a + mu * m * b**i
     *
     * This is computed in place and on the fly.  The multiplication
     * by b**i is handled by offseting which columns the results
     * are added to.
................................................................................
     * column since the Montgomery reduction requires digits of the
     * result (so far) [see above] to work.  This is
     * handled by fixing up one carry after the inner loop.  The
     * carry fixups are done in order so after these loops the
     * first m->used words of W[] have the carries fixed
     */
    {
      int iy;
      mp_digit *tmpn;
      mp_word *_W;

      /* alias for the digits of the modulus */
      tmpn = n->dp;

      /* Alias for the columns set by an offset of ix */
      _W = W + ix;

................................................................................
  }

  /* now we have to propagate the carries and
   * shift the words downward [all those least
   * significant digits we zeroed].
   */
  {
    mp_digit *tmpx;
    mp_word *_W, *_W1;

    /* nox fix rest of carries */

    /* alias for current word */
    _W1 = W + ix;

    /* alias for next word, where the carry goes */
    _W = W + ++ix;

    for (; ix <= ((n->used * 2) + 1); ix++) {
      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    }

    /* copy out, A = A/b**n
     *
     * The result is A/b**n but instead of converting from an
     * array of mp_word to mp_digit than calling mp_rshd
................................................................................

    /* alias for destination word */
    tmpx = x->dp;

    /* alias for shifted double precision result */
    _W = W + n->used;

    for (ix = 0; ix < (n->used + 1); ix++) {
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
    }

    /* zero oldused digits, if the input a was larger than
     * m->used+1 we'll have to clear the digits
     */
    for (; ix < olduse; ix++) {
................................................................................
  /* if A >= m then A = A - m */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_fast_s_mp_mul_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103




#include <tommath.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
................................................................................
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  register mp_word  _W;

  /* grow the destination as required */
  if (c->alloc < digs) {
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
      return res;
    }
  }
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
 }

  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    register mp_digit *tmpc;
    tmpc = c->dp;
    for (ix = 0; ix < pa+1; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|













|







 







|







 







|






|

|













>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
..
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
................................................................................
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  mp_word  _W;

  /* grow the destination as required */
  if (c->alloc < digs) {
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
      return res;
    }
  }
................................................................................
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    mp_digit *tmpc;
    tmpc = c->dp;
    for (ix = 0; ix < (pa + 1); ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_fast_s_mp_mul_high_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
..
88
89
90
91
92
93
94




#include <tommath.h>
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
................................................................................
  }
  
  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    register mp_digit *tmpc;

    tmpc = c->dp + digs;
    for (ix = digs; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

................................................................................
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
..
88
89
90
91
92
93
94
95
96
97
98
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
................................................................................
  }
  
  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    mp_digit *tmpc;

    tmpc = c->dp + digs;
    for (ix = digs; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

................................................................................
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_fast_s_mp_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
...
104
105
106
107
108
109
110




#include <tommath.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that 
 * starts closer to zero] can't equal the offset of tmpy.  
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those 
................................................................................
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty 
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, (ty-tx+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* double the inner product and add carry */
................................................................................
      *tmpb++ = 0;
    }
  }
  mp_clamp (b);
  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
...
104
105
106
107
108
109
110
111
112
113
114
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that 
 * starts closer to zero] can't equal the offset of tmpy.  
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those 
................................................................................
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty 
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* double the inner product and add carry */
................................................................................
      *tmpb++ = 0;
    }
  }
  mp_clamp (b);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_2expt.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
................................................................................
{
  int     res;

  /* zero a as per default */
  mp_zero (a);

  /* grow a to accomodate the single bit */
  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
    return res;
  }

  /* set the used count of where the bit will go */
  a->used = b / DIGIT_BIT + 1;

  /* put the single bit in its place */
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

  return MP_OKAY;
}
#endif




|













|







 







|




|







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <tommath_private.h>
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
................................................................................
{
  int     res;

  /* zero a as per default */
  mp_zero (a);

  /* grow a to accomodate the single bit */
  if ((res = mp_grow (a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
    return res;
  }

  /* set the used count of where the bit will go */
  a->used = (b / DIGIT_BIT) + 1;

  /* put the single bit in its place */
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_abs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* b = |a| 
 *
 * Simple function copies the input and fixes the sign to positive
 */
int
................................................................................

  /* force the sign of b to positive */
  b->sign = MP_ZPOS;

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
#include <tommath_private.h>
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* b = |a| 
 *
 * Simple function copies the input and fixes the sign to positive
 */
int
................................................................................

  /* force the sign of b to positive */
  b->sign = MP_ZPOS;

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_add.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
43
44
45
46
47
48
49




#include <tommath.h>
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

................................................................................
      res = s_mp_sub (a, b, c);
    }
  }
  return res;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
43
44
45
46
47
48
49
50
51
52
53
#include <tommath_private.h>
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

................................................................................
      res = s_mp_sub (a, b, c);
    }
  }
  return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_add_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
...
103
104
105
106
107
108
109




#include <tommath.h>
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* single digit addition */
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, ix, oldused;
  mp_digit *tmpa, *tmpc, mu;

  /* grow c as required */
  if (c->alloc < a->used + 1) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative and |a| >= b, call c = |a| - b */
  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
     /* temporarily fix sign of a */
     a->sign = MP_ZPOS;

     /* c = |a| - b */
     res = mp_sub_d(a, b, c);

     /* fix signs  */
     a->sign = MP_NEG;
     c->sign = (c->used) ? MP_NEG : MP_ZPOS;

     /* clamp */
     mp_clamp(c);

     return res;
  }

................................................................................
  }
  mp_clamp(c);

  return MP_OKAY;
}

#endif




|













|










|






|






|
|
<







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
...
102
103
104
105
106
107
108
109
110
111
112
#include <tommath_private.h>
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* single digit addition */
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, ix, oldused;
  mp_digit *tmpa, *tmpc, mu;

  /* grow c as required */
  if (c->alloc < (a->used + 1)) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative and |a| >= b, call c = |a| - b */
  if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
     /* temporarily fix sign of a */
     a->sign = MP_ZPOS;

     /* c = |a| - b */
     res = mp_sub_d(a, b, c);

     /* fix sign  */
     a->sign = c->sign = MP_NEG;


     /* clamp */
     mp_clamp(c);

     return res;
  }

................................................................................
  }
  mp_clamp(c);

  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_addmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37




#include <tommath.h>
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* d = a + b (mod c) */
int
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* d = a + b (mod c) */
int
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_and.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
47
48
49
50
51
52
53




#include <tommath.h>
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* AND two ints together */
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
................................................................................

  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
47
48
49
50
51
52
53
54
55
56
57
#include <tommath_private.h>
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* AND two ints together */
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
................................................................................

  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_clamp.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
................................................................................
 */
void
mp_clamp (mp_int * a)
{
  /* decrease used while the most significant digit is
   * zero.
   */
  while (a->used > 0 && a->dp[a->used - 1] == 0) {
    --(a->used);
  }

  /* reset the sign flag if used == 0 */
  if (a->used == 0) {
    a->sign = MP_ZPOS;
  }
}
#endif




|













|







 







|









>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <tommath_private.h>
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
................................................................................
 */
void
mp_clamp (mp_int * a)
{
  /* decrease used while the most significant digit is
   * zero.
   */
  while ((a->used > 0) && (a->dp[a->used - 1] == 0)) {
    --(a->used);
  }

  /* reset the sign flag if used == 0 */
  if (a->used == 0) {
    a->sign = MP_ZPOS;
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_clear.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* clear one (frees)  */
void
mp_clear (mp_int * a)
{
  int i;
................................................................................
    /* reset members to make debugging easier */
    a->dp    = NULL;
    a->alloc = a->used = 0;
    a->sign  = MP_ZPOS;
  }
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40
41
42
43
44
#include <tommath_private.h>
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* clear one (frees)  */
void
mp_clear (mp_int * a)
{
  int i;
................................................................................
    /* reset members to make debugging easier */
    a->dp    = NULL;
    a->alloc = a->used = 0;
    a->sign  = MP_ZPOS;
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_clear_multi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30




#include <tommath.h>
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */
#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...) 
{
    mp_int* next_mp = mp;
    va_list args;
................................................................................
    while (next_mp != NULL) {
        mp_clear(next_mp);
        next_mp = va_arg(args, mp_int*);
    }
    va_end(args);
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
#include <tommath_private.h>
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */
#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...) 
{
    mp_int* next_mp = mp;
    va_list args;
................................................................................
    while (next_mp != NULL) {
        mp_clear(next_mp);
        next_mp = va_arg(args, mp_int*);
    }
    va_end(args);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_cmp.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* compare two ints (signed)*/
int
mp_cmp (const mp_int * a, const mp_int * b)
{
  /* compare based on sign */
................................................................................
     /* if negative compare opposite direction */
     return mp_cmp_mag(b, a);
  } else {
     return mp_cmp_mag(a, b);
  }
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
#include <tommath_private.h>
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* compare two ints (signed)*/
int
mp_cmp (const mp_int * a, const mp_int * b)
{
  /* compare based on sign */
................................................................................
     /* if negative compare opposite direction */
     return mp_cmp_mag(b, a);
  } else {
     return mp_cmp_mag(a, b);
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_cmp_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* compare a digit */
int mp_cmp_d(const mp_int * a, mp_digit b)
{
  /* compare based on sign */
  if (a->sign == MP_NEG) {
................................................................................
  } else if (a->dp[0] < b) {
    return MP_LT;
  } else {
    return MP_EQ;
  }
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40
41
42
43
44
#include <tommath_private.h>
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* compare a digit */
int mp_cmp_d(const mp_int * a, mp_digit b)
{
  /* compare based on sign */
  if (a->sign == MP_NEG) {
................................................................................
  } else if (a->dp[0] < b) {
    return MP_LT;
  } else {
    return MP_EQ;
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_cmp_mag.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
45
46
47
48
49
50
51




#include <tommath.h>
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (const mp_int * a, const mp_int * b)
{
  int     n;
  mp_digit *tmpa, *tmpb;
................................................................................
    if (*tmpa < *tmpb) {
      return MP_LT;
    }
  }
  return MP_EQ;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
45
46
47
48
49
50
51
52
53
54
55
#include <tommath_private.h>
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (const mp_int * a, const mp_int * b)
{
  int     n;
  mp_digit *tmpa, *tmpb;
................................................................................
    if (*tmpa < *tmpb) {
      return MP_LT;
    }
  }
  return MP_EQ;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_cnt_lsb.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
43
44
45
46
47
48
49




#include <tommath.h>
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

static const int lnz[16] = { 
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == 1) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; x < a->used && a->dp[x] == 0; x++);
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1) == 0) {
      do {
         qq  = q & 15;
................................................................................
         q >>= 4;
      } while (qq == 0);
   }
   return x;
}

#endif




|













|













|




|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
43
44
45
46
47
48
49
50
51
52
53
#include <tommath_private.h>
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

static const int lnz[16] = { 
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == MP_YES) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; (x < a->used) && (a->dp[x] == 0); x++) {}
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1) == 0) {
      do {
         qq  = q & 15;
................................................................................
         q >>= 4;
      } while (qq == 0);
   }
   return x;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_copy.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
..
58
59
60
61
62
63
64




#include <tommath.h>
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
  int     res, n;
................................................................................
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
     }
  }

  /* zero b and copy the parameters over */
  {
    register mp_digit *tmpa, *tmpb;

    /* pointer aliases */

    /* source */
    tmpa = a->dp;

    /* destination */
................................................................................

  /* copy used count and sign */
  b->used = a->used;
  b->sign = a->sign;
  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
..
58
59
60
61
62
63
64
65
66
67
68
#include <tommath_private.h>
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
  int     res, n;
................................................................................
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
     }
  }

  /* zero b and copy the parameters over */
  {
    mp_digit *tmpa, *tmpb;

    /* pointer aliases */

    /* source */
    tmpa = a->dp;

    /* destination */
................................................................................

  /* copy used count and sign */
  b->used = a->used;
  b->sign = a->sign;
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_count_bits.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41




#include <tommath.h>
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* returns the number of bits in an int */
int
mp_count_bits (const mp_int * a)
{
  int     r;
................................................................................
  while (q > ((mp_digit) 0)) {
    ++r;
    q >>= ((mp_digit) 1);
  }
  return r;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41
42
43
44
45
#include <tommath_private.h>
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* returns the number of bits in an int */
int
mp_count_bits (const mp_int * a)
{
  int     r;
................................................................................
  while (q > ((mp_digit) 0)) {
    ++r;
    q >>= ((mp_digit) 1);
  }
  return r;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_div.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
..
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
..
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209

210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272


273
274
275
276
277
278
279
...
282
283
284
285
286
287
288




#include <tommath.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
................................................................................
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }
	
  /* init our temps */
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
     return res;
  }


  mp_set(&tq, 1);
  n = mp_count_bits(a) - mp_count_bits(b);
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
  }

  while (n-- >= 0) {
     if (mp_cmp(&tb, &ta) != MP_GT) {
................................................................................
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
           goto LBL_ERR;
     }
  }

  /* now q == quotient and ta == remainder */
  n  = a->sign;
  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
  if (c != NULL) {
     mp_exch(c, &q);
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
  }
  if (d != NULL) {
     mp_exch(d, &ta);
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
................................................................................
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division. 
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly 
 * incomplete.  For example, it doesn't consider 
 * the case where digits are removed from 'x' in 
 * the inner loop.  It also doesn't consider the 
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as 
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
................................................................................

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK)
        tmp = MP_MASK;

      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }

    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
             xi * b**2 + xi-1 * b + xi-2 
     
       do q{i-t-1} -= 1; 
    */
    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;

    do {
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;


      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
        goto LBL_Y;
      }

      /* find right hand */
      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
      goto LBL_Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
        goto LBL_Y;
      }

      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
    }
  }

  /* now q is the quotient and x is the remainder 
   * [which we have to normalize] 
   */
  
  /* get sign before writing to c */
  x.sign = x.used == 0 ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_exch (&q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    mp_div_2d (&x, norm, &x, NULL);


    mp_exch (&x, d);
  }

  res = MP_OKAY;

LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
................................................................................
LBL_Q:mp_clear (&q);
  return res;
}

#endif

#endif




|













|











|







 







|

|







|







 







|







 







|



|
|
|
|


|








|







 







|


|





|

>
|


|
|
|
|

<
>

<
>



|


|




|
|





|



|












|






|



|
|

|

|








|
>
>







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
..
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
..
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
...
285
286
287
288
289
290
291
292
293
294
295
#include <tommath_private.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

  /* is divisor zero ? */
  if (mp_iszero (b) == MP_YES) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
................................................................................
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  /* init our temps */
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
     return res;
  }


  mp_set(&tq, 1);
  n = mp_count_bits(a) - mp_count_bits(b);
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
      ((res = mp_abs(b, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
  }

  while (n-- >= 0) {
     if (mp_cmp(&tb, &ta) != MP_GT) {
................................................................................
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
           goto LBL_ERR;
     }
  }

  /* now q == quotient and ta == remainder */
  n  = a->sign;
  n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  if (c != NULL) {
     mp_exch(c, &q);
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
  }
  if (d != NULL) {
     mp_exch(d, &ta);
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
................................................................................
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == MP_YES) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
................................................................................

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK) {
        tmp = MP_MASK;
      }
      q.dp[(i - t) - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }

    /* while (q{i-t-1} * (yt * b + y{t-1})) >
             xi * b**2 + xi-1 * b + xi-2

       do q{i-t-1} -= 1;
    */

    q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK;
    do {

      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK;

      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1];
      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
        goto LBL_Y;
      }

      /* find right hand */
      t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1];
      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
      goto LBL_Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
        goto LBL_Y;
      }

      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK;
    }
  }

  /* now q is the quotient and x is the remainder
   * [which we have to normalize]
   */

  /* get sign before writing to c */
  x.sign = (x.used == 0) ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_exch (&q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
      goto LBL_Y;
    }
    mp_exch (&x, d);
  }

  res = MP_OKAY;

LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
................................................................................
LBL_Q:mp_clear (&q);
  return res;
}

#endif

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_div_2.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
58
59
60
61
62
63
64




#include <tommath.h>
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* b = a/2 */
int mp_div_2(mp_int * a, mp_int * b)
{
  int     x, res, oldused;

................................................................................
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;
  {
    register mp_digit r, rr, *tmpa, *tmpb;

    /* source alias */
    tmpa = a->dp + b->used - 1;

    /* dest alias */
    tmpb = b->dp + b->used - 1;

................................................................................
    }
  }
  b->sign = a->sign;
  mp_clamp (b);
  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
58
59
60
61
62
63
64
65
66
67
68
#include <tommath_private.h>
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* b = a/2 */
int mp_div_2(mp_int * a, mp_int * b)
{
  int     x, res, oldused;

................................................................................
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;
  {
    mp_digit r, rr, *tmpa, *tmpb;

    /* source alias */
    tmpa = a->dp + b->used - 1;

    /* dest alias */
    tmpb = b->dp + b->used - 1;

................................................................................
    }
  }
  b->sign = a->sign;
  mp_clamp (b);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_div_2d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
..
87
88
89
90
91
92
93




#include <tommath.h>
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
  mp_digit D, r, rr;
  int     x, res;
................................................................................
  if (b >= (int)DIGIT_BIT) {
    mp_rshd (c, b / DIGIT_BIT);
  }

  /* shift any bit count < DIGIT_BIT */
  D = (mp_digit) (b % DIGIT_BIT);
  if (D != 0) {
    register mp_digit *tmpc, mask, shift;

    /* mask */
    mask = (((mp_digit)1) << D) - 1;

    /* shift for lsb */
    shift = DIGIT_BIT - D;

................................................................................
  if (d != NULL) {
    mp_exch (&t, d);
  }
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
..
87
88
89
90
91
92
93
94
95
96
97
#include <tommath_private.h>
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
  mp_digit D, r, rr;
  int     x, res;
................................................................................
  if (b >= (int)DIGIT_BIT) {
    mp_rshd (c, b / DIGIT_BIT);
  }

  /* shift any bit count < DIGIT_BIT */
  D = (mp_digit) (b % DIGIT_BIT);
  if (D != 0) {
    mp_digit *tmpc, mask, shift;

    /* mask */
    mask = (((mp_digit)1) << D) - 1;

    /* shift for lsb */
    shift = DIGIT_BIT - D;

................................................................................
  if (d != NULL) {
    mp_exch (&t, d);
  }
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_div_3.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
69
70
71
72
73
74
75




#include <tommath.h>
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
  mp_int   q;
................................................................................
  }
  mp_clear(&q);
  
  return res;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
69
70
71
72
73
74
75
76
77
78
79
#include <tommath_private.h>
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
  mp_int   q;
................................................................................
  }
  mp_clear(&q);
  
  return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_div_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
..
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
...
104
105
106
107
108
109
110




#include <tommath.h>
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   /* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */
   if ((b==0) || (b & (b-1))) {
       return 0;
   }
   for (x = 1; x < DIGIT_BIT; x++) {
      if (b == (((mp_digit)1)<<x)) {
         *p = x;
         return 1;
      }
................................................................................

  /* cannot divide by zero */
  if (b == 0) {
     return MP_VAL;
  }

  /* quick outs */
  if (b == 1 || mp_iszero(a) == 1) {
     if (d != NULL) {
        *d = 0;
     }
     if (c != NULL) {
        return mp_copy(a, c);
     }
     return MP_OKAY;
................................................................................
  }
  mp_clear(&q);
  
  return res;
}

#endif




|













|







|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
..
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
...
104
105
106
107
108
109
110
111
112
113
114
#include <tommath_private.h>
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   /* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */
   if ((b == 0) || ((b & (b-1)) != 0)) {
       return 0;
   }
   for (x = 1; x < DIGIT_BIT; x++) {
      if (b == (((mp_digit)1)<<x)) {
         *p = x;
         return 1;
      }
................................................................................

  /* cannot divide by zero */
  if (b == 0) {
     return MP_VAL;
  }

  /* quick outs */
  if ((b == 1) || (mp_iszero(a) == MP_YES)) {
     if (d != NULL) {
        *d = 0;
     }
     if (c != NULL) {
        return mp_copy(a, c);
     }
     return MP_OKAY;
................................................................................
  }
  mp_clear(&q);
  
  return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_dr_is_modulus.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
{
   int ix;

................................................................................
          return 0;
       }
   }
   return 1;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
#include <tommath_private.h>
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
{
   int ix;

................................................................................
          return 0;
       }
   }
   return 1;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_dr_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
78
79
80
81
82
83
84
85


86
87
88
89
90




#include <tommath.h>
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
................................................................................
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < m + m) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
................................................................................
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

................................................................................
  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    s_mp_sub(x, n, x);


    goto top;
  }
  return MP_OKAY;
}
#endif




|













|







 







|







 







|







 







|
>
>





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
..
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <tommath_private.h>
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
................................................................................
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < (m + m)) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
................................................................................
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

................................................................................
  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
      return err;
    }
    goto top;
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_dr_setup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include <tommath.h>
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
        ((mp_word)a->dp[0]));
}

#endif




|













|













>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <tommath_private.h>
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
        ((mp_word)a->dp[0]));
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_exch.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30




#include <tommath.h>
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* swap the elements of two integers, for cases where you can't simply swap the 
 * mp_int pointers around
 */
void
mp_exch (mp_int * a, mp_int * b)
................................................................................
  mp_int  t;

  t  = *a;
  *a = *b;
  *b = t;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
#include <tommath_private.h>
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* swap the elements of two integers, for cases where you can't simply swap the 
 * mp_int pointers around
 */
void
mp_exch (mp_int * a, mp_int * b)
................................................................................
  mp_int  t;

  t  = *a;
  *a = *b;
  *b = t;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_export.c.
















































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <tommath_private.h>
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_export(void* rop, size_t* countp, int order, size_t size, 
                                int endian, size_t nails, mp_int* op) {
	int result;
	size_t odd_nails, nail_bytes, i, j, bits, count;
	unsigned char odd_nail_mask;

	mp_int t;

	if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
		return result;
	}

	if (endian == 0) {
		union {
			unsigned int i;
			char c[4];
		} lint;
		lint.i = 0x01020304;

		endian = (lint.c[0] == 4) ? -1 : 1;
	}

	odd_nails = (nails % 8);
	odd_nail_mask = 0xff;
	for (i = 0; i < odd_nails; ++i) {
		odd_nail_mask ^= (1 << (7 - i));
	}
	nail_bytes = nails / 8;

	bits = mp_count_bits(&t);
	count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);

	for (i = 0; i < count; ++i) {
		for (j = 0; j < size; ++j) {
			unsigned char* byte = (
				(unsigned char*)rop + 
				(((order == -1) ? i : ((count - 1) - i)) * size) +
				((endian == -1) ? j : ((size - 1) - j))
			);

			if (j >= (size - nail_bytes)) {
				*byte = 0;
				continue;
			}

			*byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));

			if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
				mp_clear(&t);
				return result;
			}
		}
	}

	mp_clear(&t);

	if (countp != NULL) {
		*countp = count;
	}

	return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_expt_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <tommath.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, x;
  mp_int  g;

  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
    return res;
  }




  /* set initial result */
  mp_set (c, 1);

  for (x = 0; x < (int) DIGIT_BIT; x++) {
    /* square */
    if ((res = mp_sqr (c, c)) != MP_OKAY) {
      mp_clear (&g);
      return res;
    }

    /* if the bit is set multiply */
    if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
      if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
         mp_clear (&g);
         return res;
      }
    }

    /* shift to next bit */
    b <<= 1;
  }

  mp_clear (&g);
  return MP_OKAY;
}
#endif
|













|


|


|
<
|
<
<
|
>

>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22


23
24
25
26
27
28

























#include <tommath_private.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
  return mp_expt_d_ex(a, b, c, 0);

}



#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

























Added libtommath/bn_mp_expt_d_ex.c.






































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <tommath_private.h>
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
  int     res;
  unsigned int x;

  mp_int  g;

  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
    return res;
  }

  /* set initial result */
  mp_set (c, 1);

  if (fast != 0) {
    while (b > 0) {
      /* if the bit is set multiply */
      if ((b & 1) != 0) {
        if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
          mp_clear (&g);
          return res;
        }
      }

      /* square */
      if (b > 1) {
        if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
          mp_clear (&g);
          return res;
        }
      }

      /* shift to next bit */
      b >>= 1;
    }
  }
  else {
    for (x = 0; x < DIGIT_BIT; x++) {
      /* square */
      if ((res = mp_sqr (c, c)) != MP_OKAY) {
        mp_clear (&g);
        return res;
      }

      /* if the bit is set multiply */
      if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
        if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
           mp_clear (&g);
           return res;
        }
      }

      /* shift to next bit */
      b <<= 1;
    }
  } /* if ... else */

  mp_clear (&g);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_exptmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
...
102
103
104
105
106
107
108




#include <tommath.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
................................................................................
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
#endif
    
  /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
  if (mp_isodd (P) == 1 || dr !=  0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y, 0);
#else
................................................................................
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
  }
#endif
}

#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
...
102
103
104
105
106
107
108
109
110
111
112
#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
................................................................................
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
#endif
    
  /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
  if ((mp_isodd (P) == MP_YES) || (dr !=  0)) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y, 0);
#else
................................................................................
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
  }
#endif
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_exptmod_fast.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
...
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
...
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
...
310
311
312
313
314
315
316





#include <tommath.h>
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
................................................................................
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if (((P->used * 2 + 1) < MP_WARRAY) &&
          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
................................................................................
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if (mode == 0 && y == 0) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if (mode == 1 && y == 0) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
................................................................................
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if (mode == 2 && bitcpy > 0) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
................................................................................
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif





|













|







 







|
|







 







|




|







 







|







 







>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
...
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
...
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
...
310
311
312
313
314
315
316
317
318
319
320
321
#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
................................................................................
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
................................................................................
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
................................................................................
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
................................................................................
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif


/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_exteuclid.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78




#include <tommath.h>
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Extended euclidean algorithm of (a, b) produces 
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
   int err;

................................................................................
       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; }
       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; }
       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; }
   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
      mp_neg(&u1, &u1);
      mp_neg(&u2, &u2);
      mp_neg(&u3, &u3);
   }

   /* copy result out */
   if (U1 != NULL) { mp_exch(U1, &u1); }
   if (U2 != NULL) { mp_exch(U2, &u2); }
   if (U3 != NULL) { mp_exch(U3, &u3); }

   err = MP_OKAY;
_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif




|













|


|







 







|
|
|












>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <tommath_private.h>
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
   int err;

................................................................................
       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; }
       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; }
       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; }
   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
       if ((err = mp_neg(&u1, &u1)) != MP_OKAY)                                   { goto _ERR; }
       if ((err = mp_neg(&u2, &u2)) != MP_OKAY)                                   { goto _ERR; }
       if ((err = mp_neg(&u3, &u3)) != MP_OKAY)                                   { goto _ERR; }
   }

   /* copy result out */
   if (U1 != NULL) { mp_exch(U1, &u1); }
   if (U2 != NULL) { mp_exch(U2, &u2); }
   if (U3 != NULL) { mp_exch(U3, &u3); }

   err = MP_OKAY;
_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_fread.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
57
58
59
60
61
62
63




#include <tommath.h>
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;
   
................................................................................
      a->sign = neg;
   }
   
   return MP_OKAY;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
57
58
59
60
61
62
63
64
65
66
67
#include <tommath_private.h>
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;
   
................................................................................
      a->sign = neg;
   }
   
   return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_fwrite.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48




#include <tommath.h>
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;
   
................................................................................
   }
   
   XFREE (buf);
   return MP_OKAY;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48
49
50
51
52
#include <tommath_private.h>
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;
   
................................................................................
   }
   
   XFREE (buf);
   return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_gcd.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
..
95
96
97
98
99
100
101




#include <tommath.h>
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;
................................................................................

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  while (mp_iszero(&v) == 0) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
................................................................................
  c->sign = MP_ZPOS;
  res = MP_OKAY;
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
  return res;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
..
95
96
97
98
99
100
101
102
103
104
105
#include <tommath_private.h>
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;
................................................................................

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  while (mp_iszero(&v) == MP_NO) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
................................................................................
  c->sign = MP_ZPOS;
  res = MP_OKAY;
LBL_V:mp_clear (&u);
LBL_U:mp_clear (&v);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_get_int.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41




#include <tommath.h>
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a) 
{
  int i;
  unsigned long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;

  /* get most significant digit of result */
  res = DIGIT(a,i);
   
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }

  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
  return res & 0xFFFFFFFFUL;
}
#endif




|













|



|


|






|



|








>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <tommath_private.h>
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
{
  int i;
  mp_min_u32 res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }

  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
  return res & 0xFFFFFFFFUL;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_get_long.c.


















































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_GET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(mp_int * a)
{
  int i;
  unsigned long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }
#endif
  return res;
}
#endif

Added libtommath/bn_mp_get_long_long.c.


















































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_GET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long (mp_int * a)
{
  int i;
  unsigned long long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

  /* get most significant digit of result */
  res = DIGIT(a,i);

#if DIGIT_BIT < 64
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }
#endif
  return res;
}
#endif

Changes to libtommath/bn_mp_grow.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
47
48
49
50
51
52
53




#include <tommath.h>
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* grow as required */
int mp_grow (mp_int * a, int size)
{
  int     i;
  mp_digit *tmp;
................................................................................
    for (; i < a->alloc; i++) {
      a->dp[i] = 0;
    }
  }
  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
47
48
49
50
51
52
53
54
55
56
57
#include <tommath_private.h>
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* grow as required */
int mp_grow (mp_int * a, int size)
{
  int     i;
  mp_digit *tmp;
................................................................................
    for (; i < a->alloc; i++) {
      a->dp[i] = 0;
    }
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_import.c.


















































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include <tommath_private.h>
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_import(mp_int* rop, size_t count, int order, size_t size, 
                            int endian, size_t nails, const void* op) {
	int result;
	size_t odd_nails, nail_bytes, i, j;
	unsigned char odd_nail_mask;

	mp_zero(rop);

	if (endian == 0) {
		union {
			unsigned int i;
			char c[4];
		} lint;
		lint.i = 0x01020304;

		endian = (lint.c[0] == 4) ? -1 : 1;
	}

	odd_nails = (nails % 8);
	odd_nail_mask = 0xff;
	for (i = 0; i < odd_nails; ++i) {
		odd_nail_mask ^= (1 << (7 - i));
	}
	nail_bytes = nails / 8;

	for (i = 0; i < count; ++i) {
		for (j = 0; j < (size - nail_bytes); ++j) {
			unsigned char byte = *(
					(unsigned char*)op + 
					(((order == 1) ? i : ((count - 1) - i)) * size) +
					((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
				);

			if (
				(result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
				return result;
			}

			rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
			rop->used  += 1;
		}
	}

	mp_clamp(rop);

	return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
36
37
38
39
40
41
42




#include <tommath.h>
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* init a new mp_int */
int mp_init (mp_int * a)
{
  int i;

................................................................................
  a->used  = 0;
  a->alloc = MP_PREC;
  a->sign  = MP_ZPOS;

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
36
37
38
39
40
41
42
43
44
45
46
#include <tommath_private.h>
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* init a new mp_int */
int mp_init (mp_int * a)
{
  int i;

................................................................................
  a->used  = 0;
  a->alloc = MP_PREC;
  a->sign  = MP_ZPOS;

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init_copy.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include <tommath.h>
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, mp_int * b)
{
  int     res;

  if ((res = mp_init (a)) != MP_OKAY) {
    return res;
  }
  return mp_copy (b, a);
}
#endif




|













|



|



|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <tommath_private.h>
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, const mp_int * b)
{
  int     res;

  if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
    return res;
  }
  return mp_copy (b, a);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init_multi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
..
49
50
51
52
53
54
55




#include <tommath.h>
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...) 
{
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
    int n = 0;                 /* Number of ok inits */
................................................................................
            
            /* end the current list */
            va_end(args);
            
            /* now start cleaning up */            
            cur_arg = mp;
            va_start(clean_args, mp);
            while (n--) {
                mp_clear(cur_arg);
                cur_arg = va_arg(clean_args, mp_int*);
            }
            va_end(clean_args);
            res = MP_MEM;
            break;
        }
................................................................................
        cur_arg = va_arg(args, mp_int*);
    }
    va_end(args);
    return res;                /* Assumed ok, if error flagged above. */
}

#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
..
49
50
51
52
53
54
55
56
57
58
59
#include <tommath_private.h>
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...) 
{
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
    int n = 0;                 /* Number of ok inits */
................................................................................
            
            /* end the current list */
            va_end(args);
            
            /* now start cleaning up */            
            cur_arg = mp;
            va_start(clean_args, mp);
            while (n-- != 0) {
                mp_clear(cur_arg);
                cur_arg = va_arg(clean_args, mp_int*);
            }
            va_end(clean_args);
            res = MP_MEM;
            break;
        }
................................................................................
        cur_arg = va_arg(args, mp_int*);
    }
    va_end(args);
    return res;                /* Assumed ok, if error flagged above. */
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init_set.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include <tommath.h>
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  mp_set(a, b);
  return err;
}
#endif




|













|













>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <tommath_private.h>
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  mp_set(a, b);
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init_set_int.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include <tommath.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  return mp_set_int(a, b);
}
#endif




|













|












>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <tommath_private.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  return mp_set_int(a, b);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_init_size.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
  int x;

................................................................................
  for (x = 0; x < size; x++) {
      a->dp[x] = 0;
  }

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
38
39
40
41
42
43
44
45
46
47
48
#include <tommath_private.h>
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
  int x;

................................................................................
  for (x = 0; x < size; x++) {
      a->dp[x] = 0;
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_invmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39




#include <tommath.h>
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

#ifdef BN_FAST_MP_INVMOD_C
  /* if the modulus is odd we can use a faster routine instead */
  if (mp_isodd (b) == 1) {
    return fast_mp_invmod (a, b, c);
  }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
  return mp_invmod_slow(a, b, c);
#endif

  return MP_VAL;

}
#endif




|













|






|





|






|
<

>


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
#include <tommath_private.h>
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

#ifdef BN_FAST_MP_INVMOD_C
  /* if the modulus is odd we can use a faster routine instead */
  if (mp_isodd (b) == MP_YES) {
    return fast_mp_invmod (a, b, c);
  }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
  return mp_invmod_slow(a, b, c);
#else

  return MP_VAL;
#endif
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_invmod_slow.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
..
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
...
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
165
166
167
168
169
170
171




#include <tommath.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
................................................................................
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
................................................................................
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
................................................................................
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif




|













|









|







 







|







 







|





|







 







|





|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
..
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
...
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
165
166
167
168
169
170
171
172
173
174
175
#include <tommath_private.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
................................................................................
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
................................................................................
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == MP_YES) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == MP_YES) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
................................................................................

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == MP_NO)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
................................................................................
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_is_square.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
..
99
100
101
102
103
104
105




#include <tommath.h>
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
................................................................................
     goto ERR;
  }
  r = mp_get_int(&t);
  /* Check for other prime modules, note it's not an ERROR but we must
   * free "t" so the easiest way is to goto ERR.  We know that res
   * is already equal to MP_OKAY from the mp_mod call 
   */ 
  if ( (1L<<(r%11)) & 0x5C4L )             goto ERR;
  if ( (1L<<(r%13)) & 0x9E4L )             goto ERR;
  if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR;
  if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR;
  if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR;
  if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR;
  if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR;

  /* Final check - is sqr(sqrt(arg)) == arg ? */
  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
     goto ERR;
  }
  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
     goto ERR;
................................................................................
  }

  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
  return res;
}
#endif




|













|







 







|
|
|
|
|
|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
..
99
100
101
102
103
104
105
106
107
108
109
#include <tommath_private.h>
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
................................................................................
     goto ERR;
  }
  r = mp_get_int(&t);
  /* Check for other prime modules, note it's not an ERROR but we must
   * free "t" so the easiest way is to goto ERR.  We know that res
   * is already equal to MP_OKAY from the mp_mod call 
   */ 
  if (((1L<<(r%11)) & 0x5C4L) != 0L)       goto ERR;
  if (((1L<<(r%13)) & 0x9E4L) != 0L)       goto ERR;
  if (((1L<<(r%17)) & 0x5CE8L) != 0L)      goto ERR;
  if (((1L<<(r%19)) & 0x4F50CL) != 0L)     goto ERR;
  if (((1L<<(r%23)) & 0x7ACCA0L) != 0L)    goto ERR;
  if (((1L<<(r%29)) & 0xC2EDD0CL) != 0L)   goto ERR;
  if (((1L<<(r%31)) & 0x6DE2B848L) != 0L)  goto ERR;

  /* Final check - is sqr(sqrt(arg)) == arg ? */
  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
     goto ERR;
  }
  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
     goto ERR;
................................................................................
  }

  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_jacobi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19


20
21
22
23
24
25
26





27
28
29
30
31
32
33




34

35
36
37
38
39
40
41
42
..
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
..
95
96
97
98
99
100
101




#include <tommath.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149


 */
int mp_jacobi (mp_int * a, mp_int * p, int *c)
{
  mp_int  a1, p1;
  int     k, s, r, res;
  mp_digit residue;






  /* if p <= 0 return MP_VAL */
  if (mp_cmp_d(p, 0) != MP_GT) {
     return MP_VAL;
  }

  /* step 1.  if a == 0, return 0 */
  if (mp_iszero (a) == 1) {




    *c = 0;

    return MP_OKAY;
  }

  /* step 2.  if a == 1, return 1 */
  if (mp_cmp_d (a, 1) == MP_EQ) {
    *c = 1;
    return MP_OKAY;
  }
................................................................................
  }

  /* step 4.  if e is even set s=1 */
  if ((k & 1) == 0) {
    s = 1;
  } else {
    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
    residue = p->dp[0] & 7;

    if (residue == 1 || residue == 7) {
      s = 1;
    } else if (residue == 3 || residue == 5) {
      s = -1;
    }
  }

  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
  if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
    s = -s;
  }

  /* if a1 == 1 we're done */
  if (mp_cmp_d (&a1, 1) == MP_EQ) {
    *c = s;
  } else {
    /* n1 = n mod a1 */
    if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
      goto LBL_P1;
    }
    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
      goto LBL_P1;
    }
    *c = s * r;
  }
................................................................................
  /* done */
  res = MP_OKAY;
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
  return res;
}
#endif




|













|




>
>

|





>
>
>
>
>
|
|



|
|
>
>
>
>
|
>
|







 







|

|

|





|








|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
..
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
...
107
108
109
110
111
112
113
114
115
116
117
#include <tommath_private.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149
 * HAC is wrong here, as the special case of (0 | 1) is not
 * handled correctly.
 */
int mp_jacobi (mp_int * a, mp_int * n, int *c)
{
  mp_int  a1, p1;
  int     k, s, r, res;
  mp_digit residue;

  /* if a < 0 return MP_VAL */
  if (mp_isneg(a) == MP_YES) {
     return MP_VAL;
  }

  /* if n <= 0 return MP_VAL */
  if (mp_cmp_d(n, 0) != MP_GT) {
     return MP_VAL;
  }

  /* step 1. handle case of a == 0 */
  if (mp_iszero (a) == MP_YES) {
     /* special case of a == 0 and n == 1 */
     if (mp_cmp_d (n, 1) == MP_EQ) {
       *c = 1;
     } else {
       *c = 0;
     }
     return MP_OKAY;
  }

  /* step 2.  if a == 1, return 1 */
  if (mp_cmp_d (a, 1) == MP_EQ) {
    *c = 1;
    return MP_OKAY;
  }
................................................................................
  }

  /* step 4.  if e is even set s=1 */
  if ((k & 1) == 0) {
    s = 1;
  } else {
    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
    residue = n->dp[0] & 7;

    if ((residue == 1) || (residue == 7)) {
      s = 1;
    } else if ((residue == 3) || (residue == 5)) {
      s = -1;
    }
  }

  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
  if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
    s = -s;
  }

  /* if a1 == 1 we're done */
  if (mp_cmp_d (&a1, 1) == MP_EQ) {
    *c = s;
  } else {
    /* n1 = n mod a1 */
    if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) {
      goto LBL_P1;
    }
    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
      goto LBL_P1;
    }
    *c = s * r;
  }
................................................................................
  /* done */
  res = MP_OKAY;
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_karatsuba_mul.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
157
158
159
160
161
162
163




#include <tommath.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
................................................................................

  /* now shift the digits */
  x0.used = y0.used = B;
  x1.used = a->used - B;
  y1.used = b->used - B;

  {
    register int x;
    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

    /* we copy the digits directly instead of using higher level functions
     * since we also need to shift the digits
     */
    tmpa = a->dp;
    tmpb = b->dp;

................................................................................
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}
#endif




|













|







 







|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
157
158
159
160
161
162
163
164
165
166
167
#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
................................................................................

  /* now shift the digits */
  x0.used = y0.used = B;
  x1.used = a->used - B;
  y1.used = b->used - B;

  {
    int x;
    mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

    /* we copy the digits directly instead of using higher level functions
     * since we also need to shift the digits
     */
    tmpa = a->dp;
    tmpb = b->dp;

................................................................................
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_karatsuba_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
...
111
112
113
114
115
116
117




#include <tommath.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
................................................................................
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    register int x;
    register mp_digit *dst, *src;

    src = a->dp;

    /* now shift the digits */
    dst = x0.dp;
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
................................................................................
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}
#endif




|













|







 







|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
...
111
112
113
114
115
116
117
118
119
120
121
#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
................................................................................
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    int x;
    mp_digit *dst, *src;

    src = a->dp;

    /* now shift the digits */
    dst = x0.dp;
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
................................................................................
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_lcm.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
50
51
52
53
54
55
56




#include <tommath.h>
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
  mp_int  t1, t2;
................................................................................
  c->sign = MP_ZPOS;

LBL_T:
  mp_clear_multi (&t1, &t2, NULL);
  return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
50
51
52
53
54
55
56
57
58
59
60
#include <tommath_private.h>
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
  mp_int  t1, t2;
................................................................................
  c->sign = MP_ZPOS;

LBL_T:
  mp_clear_multi (&t1, &t2, NULL);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_lshd.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
..
57
58
59
60
61
62
63




#include <tommath.h>
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
{
  int     x, res;

  /* if its less than zero return */
  if (b <= 0) {
    return MP_OKAY;
  }

  /* grow to fit the new digits */
  if (a->alloc < a->used + b) {
     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
       return res;
     }
  }

  {
    register mp_digit *top, *bottom;

    /* increment the used by the shift amount then copy upwards */
    a->used += b;

    /* top */
    top = a->dp + a->used - 1;

    /* base */
    bottom = a->dp + a->used - 1 - b;

    /* much like mp_rshd this is implemented using a sliding window
     * except the window goes the otherway around.  Copying from
     * the bottom to the top.  see bn_mp_rshd.c for more info.
     */
    for (x = a->used - 1; x >= b; x--) {
      *top-- = *bottom--;
................................................................................
    for (x = 0; x < b; x++) {
      *top++ = 0;
    }
  }
  return MP_OKAY;
}
#endif




|













|













|






|








|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
..
57
58
59
60
61
62
63
64
65
66
67
#include <tommath_private.h>
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
{
  int     x, res;

  /* if its less than zero return */
  if (b <= 0) {
    return MP_OKAY;
  }

  /* grow to fit the new digits */
  if (a->alloc < (a->used + b)) {
     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
       return res;
     }
  }

  {
    mp_digit *top, *bottom;

    /* increment the used by the shift amount then copy upwards */
    a->used += b;

    /* top */
    top = a->dp + a->used - 1;

    /* base */
    bottom = (a->dp + a->used - 1) - b;

    /* much like mp_rshd this is implemented using a sliding window
     * except the window goes the otherway around.  Copying from
     * the bottom to the top.  see bn_mp_rshd.c for more info.
     */
    for (x = a->used - 1; x >= b; x--) {
      *top-- = *bottom--;
................................................................................
    for (x = 0; x < b; x++) {
      *top++ = 0;
    }
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
27
28
29
30
31
32
33
34
35
36
37
38


39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* c = a mod b, 0 <= c < b */
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  t;
  int     res;

  if ((res = mp_init (&t)) != MP_OKAY) {
................................................................................
  }

  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  if (t.sign != b->sign) {
    res = mp_add (b, &t, c);
  } else {
    res = MP_OKAY;
    mp_exch (&t, c);


  }

  mp_clear (&t);
  return res;
}
#endif




|













|


|







 







|
<
<


>
>






>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
27
28
29
30
31
32
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <tommath_private.h>
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  t;
  int     res;

  if ((res = mp_init (&t)) != MP_OKAY) {
................................................................................
  }

  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {


    res = MP_OKAY;
    mp_exch (&t, c);
  } else {
    res = mp_add (b, &t, c);
  }

  mp_clear (&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mod_2d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51




#include <tommath.h>
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* calc a value mod 2**b */
int
mp_mod_2d (const mp_int * a, int b, mp_int * c)
{
  int     x, res;
................................................................................

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    return res;
  }

  /* zero digits above the last digit of the modulus */
  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
    c->dp[x] = 0;
  }
  /* clear the digit that is not completely outside/inside the modulus */
  c->dp[b / DIGIT_BIT] &=
    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|













|







 







|









>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <tommath_private.h>
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* calc a value mod 2**b */
int
mp_mod_2d (const mp_int * a, int b, mp_int * c)
{
  int     x, res;
................................................................................

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    return res;
  }

  /* zero digits above the last digit of the modulus */
  for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
    c->dp[x] = 0;
  }
  /* clear the digit that is not completely outside/inside the modulus */
  c->dp[b / DIGIT_BIT] &=
    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mod_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23




#include <tommath.h>
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
  return mp_div_d(a, b, NULL, c);
}
#endif




|













|








>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <tommath_private.h>
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
  return mp_div_d(a, b, NULL, c);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_montgomery_calc_normalization.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
49
50
51
52
53
54
55




#include <tommath.h>
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
................................................................................
{
  int     x, bits, res;

  /* how many bits of last digit does b use */
  bits = mp_count_bits (b) % DIGIT_BIT;

  if (b->used > 1) {
     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
        return res;
     }
  } else {
     mp_set(a, 1);
     bits = 1;
  }

................................................................................
      }
    }
  }

  return MP_OKAY;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
49
50
51
52
53
54
55
56
57
58
59
#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
................................................................................
{
  int     x, bits, res;

  /* how many bits of last digit does b use */
  bits = mp_count_bits (b) % DIGIT_BIT;

  if (b->used > 1) {
     if ((res = mp_2expt (a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
        return res;
     }
  } else {
     mp_set(a, 1);
     bits = 1;
  }

................................................................................
      }
    }
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_montgomery_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
...
108
109
110
111
112
113
114




#include <tommath.h>
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
  int     ix, res, digs;
................................................................................

  /* can the fast reduction [comba] method be used?
   *
   * Note that unlike in mul you're safely allowed *less*
   * than the available columns [255 per default] since carries
   * are fixed up in the inner loop.
   */
  digs = n->used * 2 + 1;
  if ((digs < MP_WARRAY) &&
      n->used <
      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_mp_montgomery_reduce (x, n, rho);
  }

  /* grow the input as required */
  if (x->alloc < digs) {
    if ((res = mp_grow (x, digs)) != MP_OKAY) {
      return res;
................................................................................
     *
     * The value of rho must be precalculated via
     * montgomery_setup() such that
     * it equals -1/n0 mod b this allows the
     * following inner loop to reduce the
     * input one digit at a time
     */
    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

    /* a = a + mu * m * b**i */
    {
      register int iy;
      register mp_digit *tmpn, *tmpx, u;
      register mp_word r;

      /* alias for digits of the modulus */
      tmpn = n->dp;

      /* alias for the digits of x [the input] */
      tmpx = x->dp + ix;

      /* set the carry to zero */
      u = 0;

      /* Multiply and add in place */
      for (iy = 0; iy < n->used; iy++) {
        /* compute product and sum */
        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
                  ((mp_word) u) + ((mp_word) * tmpx);

        /* get carry */
        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

        /* fix digit */
        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
      }
      /* At this point the ix'th digit of x should be zero */


      /* propagate carries upwards as required*/
      while (u) {
        *tmpx   += u;
        u        = *tmpx >> DIGIT_BIT;
        *tmpx++ &= MP_MASK;
      }
    }
  }

................................................................................
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }

  return MP_OKAY;
}
#endif




|













|







 







|

|
|







 







|



|
|
|













|
|











|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
...
108
109
110
111
112
113
114
115
116
117
118
#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
  int     ix, res, digs;
................................................................................

  /* can the fast reduction [comba] method be used?
   *
   * Note that unlike in mul you're safely allowed *less*
   * than the available columns [255 per default] since carries
   * are fixed up in the inner loop.
   */
  digs = (n->used * 2) + 1;
  if ((digs < MP_WARRAY) &&
      (n->used <
      (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_mp_montgomery_reduce (x, n, rho);
  }

  /* grow the input as required */
  if (x->alloc < digs) {
    if ((res = mp_grow (x, digs)) != MP_OKAY) {
      return res;
................................................................................
     *
     * The value of rho must be precalculated via
     * montgomery_setup() such that
     * it equals -1/n0 mod b this allows the
     * following inner loop to reduce the
     * input one digit at a time
     */
    mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

    /* a = a + mu * m * b**i */
    {
      int iy;
      mp_digit *tmpn, *tmpx, u;
      mp_word r;

      /* alias for digits of the modulus */
      tmpn = n->dp;

      /* alias for the digits of x [the input] */
      tmpx = x->dp + ix;

      /* set the carry to zero */
      u = 0;

      /* Multiply and add in place */
      for (iy = 0; iy < n->used; iy++) {
        /* compute product and sum */
        r       = ((mp_word)mu * (mp_word)*tmpn++) +
                   (mp_word) u + (mp_word) *tmpx;

        /* get carry */
        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

        /* fix digit */
        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
      }
      /* At this point the ix'th digit of x should be zero */


      /* propagate carries upwards as required*/
      while (u != 0) {
        *tmpx   += u;
        u        = *tmpx >> DIGIT_BIT;
        *tmpx++ &= MP_MASK;
      }
    }
  }

................................................................................
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_montgomery_setup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55




#include <tommath.h>
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* setups the montgomery reduction stuff */
int
mp_montgomery_setup (mp_int * n, mp_digit * rho)
{
  mp_digit x, b;
................................................................................
  b = n->dp[0];

  if ((b & 1) == 0) {
    return MP_VAL;
  }

  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
#endif

  /* rho = -1/m mod b */
  *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

  return MP_OKAY;
}
#endif




|













|







 







|

|


|


|



|




>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* setups the montgomery reduction stuff */
int
mp_montgomery_setup (mp_int * n, mp_digit * rho)
{
  mp_digit x, b;
................................................................................
  b = n->dp[0];

  if ((b & 1) == 0) {
    return MP_VAL;
  }

  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
  x *= 2 - (b * x);             /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
  x *= 2 - (b * x);             /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
  x *= 2 - (b * x);             /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
  x *= 2 - (b * x);             /* here x*a==1 mod 2**64 */
#endif

  /* rho = -1/m mod b */
  *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mul.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62




#include <tommath.h>
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* high level multiplication (handles sign) */
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, neg;
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
................................................................................
     * have less than MP_WARRAY digits and the number of 
     * digits won't affect carry propagation
     */
    int     digs = a->used + b->used + 1;

#ifdef BN_FAST_S_MP_MUL_DIGS_C
    if ((digs < MP_WARRAY) &&
        MIN(a->used, b->used) <= 
        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
      res = fast_s_mp_mul_digs (a, b, c, digs);
    } else 
#endif

#ifdef BN_S_MP_MUL_DIGS_C
      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
      res = MP_VAL;
#endif

  }
  c->sign = (c->used > 0) ? neg : MP_ZPOS;
  return res;
}
#endif




|













|







 







|
|



>





|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <tommath_private.h>
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* high level multiplication (handles sign) */
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, neg;
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
................................................................................
     * have less than MP_WARRAY digits and the number of 
     * digits won't affect carry propagation
     */
    int     digs = a->used + b->used + 1;

#ifdef BN_FAST_S_MP_MUL_DIGS_C
    if ((digs < MP_WARRAY) &&
        (MIN(a->used, b->used) <= 
         (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
      res = fast_s_mp_mul_digs (a, b, c, digs);
    } else 
#endif
    {
#ifdef BN_S_MP_MUL_DIGS_C
      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
      res = MP_VAL;
#endif
    }
  }
  c->sign = (c->used > 0) ? neg : MP_ZPOS;
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mul_2.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
72
73
74
75
76
77
78




#include <tommath.h>
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* b = a*2 */
int mp_mul_2(mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* grow to accomodate result */
  if (b->alloc < a->used + 1) {
    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;

  {
    register mp_digit r, rr, *tmpa, *tmpb;

    /* alias for source */
    tmpa = a->dp;
    
    /* alias for dest */
    tmpb = b->dp;

................................................................................
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  return MP_OKAY;
}
#endif




|













|








|









|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
72
73
74
75
76
77
78
79
80
81
82
#include <tommath_private.h>
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* b = a*2 */
int mp_mul_2(mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* grow to accomodate result */
  if (b->alloc < (a->used + 1)) {
    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;

  {
    mp_digit r, rr, *tmpa, *tmpb;

    /* alias for source */
    tmpa = a->dp;
    
    /* alias for dest */
    tmpb = b->dp;

................................................................................
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mul_2d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
..
75
76
77
78
79
80
81




#include <tommath.h>
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* shift left by a certain bit count */
int mp_mul_2d (const mp_int * a, int b, mp_int * c)
{
  mp_digit d;
  int      res;
................................................................................
  /* copy */
  if (a != c) {
     if ((res = mp_copy (a, c)) != MP_OKAY) {
       return res;
     }
  }

  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
       return res;
     }
  }

  /* shift by as many digits in the bit count */
  if (b >= (int)DIGIT_BIT) {
    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
................................................................................
      return res;
    }
  }

  /* shift any bit count < DIGIT_BIT */
  d = (mp_digit) (b % DIGIT_BIT);
  if (d != 0) {
    register mp_digit *tmpc, shift, mask, r, rr;
    register int x;

    /* bitmask for carries */
    mask = (((mp_digit)1) << d) - 1;

    /* shift for msbs */
    shift = DIGIT_BIT - d;

................................................................................
       c->dp[(c->used)++] = r;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|













|







 







|
|







 







|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
..
75
76
77
78
79
80
81
82
83
84
85
#include <tommath_private.h>
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* shift left by a certain bit count */
int mp_mul_2d (const mp_int * a, int b, mp_int * c)
{
  mp_digit d;
  int      res;
................................................................................
  /* copy */
  if (a != c) {
     if ((res = mp_copy (a, c)) != MP_OKAY) {
       return res;
     }
  }

  if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) {
     if ((res = mp_grow (c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
       return res;
     }
  }

  /* shift by as many digits in the bit count */
  if (b >= (int)DIGIT_BIT) {
    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
................................................................................
      return res;
    }
  }

  /* shift any bit count < DIGIT_BIT */
  d = (mp_digit) (b % DIGIT_BIT);
  if (d != 0) {
    mp_digit *tmpc, shift, mask, r, rr;
    int x;

    /* bitmask for carries */
    mask = (((mp_digit)1) << d) - 1;

    /* shift for msbs */
    shift = DIGIT_BIT - d;

................................................................................
       c->dp[(c->used)++] = r;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mul_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
..
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
69
70
71
72
73
74
75




#include <tommath.h>
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* multiply by a digit */
int
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit u, *tmpa, *tmpc;
  mp_word  r;
  int      ix, res, olduse;

  /* make sure c is big enough to hold a*b */
  if (c->alloc < a->used + 1) {
    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get the original destinations used count */
  olduse = c->used;
................................................................................

  /* zero carry */
  u = 0;

  /* compute columns */
  for (ix = 0; ix < a->used; ix++) {
    /* compute product and carry sum for this term */
    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);

    /* mask off higher bits to get a single digit */
    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

    /* send carry into next iteration */
    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
  }
................................................................................
  /* set used count */
  c->used = a->used + 1;
  mp_clamp(c);

  return MP_OKAY;
}
#endif




|













|











|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
..
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
69
70
71
72
73
74
75
76
77
78
79
#include <tommath_private.h>
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* multiply by a digit */
int
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit u, *tmpa, *tmpc;
  mp_word  r;
  int      ix, res, olduse;

  /* make sure c is big enough to hold a*b */
  if (c->alloc < (a->used + 1)) {
    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get the original destinations used count */
  olduse = c->used;
................................................................................

  /* zero carry */
  u = 0;

  /* compute columns */
  for (ix = 0; ix < a->used; ix++) {
    /* compute product and carry sum for this term */
    r       = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);

    /* mask off higher bits to get a single digit */
    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

    /* send carry into next iteration */
    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
  }
................................................................................
  /* set used count */
  c->used = a->used + 1;
  mp_clamp(c);

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_mulmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
30
31
32
33
34
35
36




#include <tommath.h>
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* d = a * b (mod c) */
int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
30
31
32
33
34
35
36
37
38
39
40
#include <tommath_private.h>
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* d = a * b (mod c) */
int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_n_root.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128




#include <tommath.h>
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* find the n'th root of an integer 
 *
 * Result found such that (c)**b <= a and (c+1)**b > a 
 *
 * This algorithm uses Newton's approximation 
 * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
 * which will find the root in log(N) time where 
 * each step involves a fair bit.  This is not meant to 
 * find huge roots [square and cube, etc].
 */
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
  mp_int  t1, t2, t3;
  int     res, neg;

  /* input must be positive if b is even */
  if ((b & 1) == 0 && a->sign == MP_NEG) {
    return MP_VAL;
  }

  if ((res = mp_init (&t1)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init (&t3)) != MP_OKAY) {
    goto LBL_T2;
  }

  /* if a is negative fudge the sign but keep track */
  neg     = a->sign;
  a->sign = MP_ZPOS;

  /* t2 = 2 */
  mp_set (&t2, 2);

  do {
    /* t1 = t2 */
    if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
    
    /* t3 = t1**(b-1) */
    if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {   
      goto LBL_T3;
    }

    /* numerator */
    /* t2 = t1**b */
    if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {    
      goto LBL_T3;
    }

    /* t2 = t1**b - a */
    if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {  
      goto LBL_T3;
    }

    /* denominator */
    /* t3 = t1**(b-1) * b  */
    if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {    
      goto LBL_T3;
    }

    /* t3 = (t1**b - a)/(b * t1**(b-1)) */
    if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {  
      goto LBL_T3;
    }

    if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }
  }  while (mp_cmp (&t1, &t2) != MP_EQ);

  /* result can be off by a few so check */
  for (;;) {
    if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }

    if (mp_cmp (&t2, a) == MP_GT) {
      if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
         goto LBL_T3;
      }
    } else {
      break;
    }
  }

  /* reset the sign of a first */
  a->sign = neg;

  /* set the result */
  mp_exch (&t1, c);

  /* set the sign of the result */
  c->sign = neg;

  res = MP_OKAY;

LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
  return res;
}
#endif




|













|


|
<
|
<
<
<
<
<
<



|
<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19






20
21
22
23

24



25



























































































26
27
28
29
30
#include <tommath_private.h>
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* wrapper function for mp_n_root_ex()

 * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a






 */
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
  return mp_n_root_ex(a, b, c, 0);

}































































































#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_n_root_ex.c.








































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <tommath_private.h>
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* find the n'th root of an integer
 *
 * Result found such that (c)**b <= a and (c+1)**b > a
 *
 * This algorithm uses Newton's approximation
 * x[i+1] = x[i] - f(x[i])/f'(x[i])
 * which will find the root in log(N) time where
 * each step involves a fair bit.  This is not meant to
 * find huge roots [square and cube, etc].
 */
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
  mp_int  t1, t2, t3;
  int     res, neg;

  /* input must be positive if b is even */
  if (((b & 1) == 0) && (a->sign == MP_NEG)) {
    return MP_VAL;
  }

  if ((res = mp_init (&t1)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init (&t3)) != MP_OKAY) {
    goto LBL_T2;
  }

  /* if a is negative fudge the sign but keep track */
  neg     = a->sign;
  a->sign = MP_ZPOS;

  /* t2 = 2 */
  mp_set (&t2, 2);

  do {
    /* t1 = t2 */
    if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

    /* t3 = t1**(b-1) */
    if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* numerator */
    /* t2 = t1**b */
    if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t2 = t1**b - a */
    if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* denominator */
    /* t3 = t1**(b-1) * b  */
    if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
      goto LBL_T3;
    }

    /* t3 = (t1**b - a)/(b * t1**(b-1)) */
    if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
      goto LBL_T3;
    }

    if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
      goto LBL_T3;
    }
  }  while (mp_cmp (&t1, &t2) != MP_EQ);

  /* result can be off by a few so check */
  for (;;) {
    if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
      goto LBL_T3;
    }

    if (mp_cmp (&t2, a) == MP_GT) {
      if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
         goto LBL_T3;
      }
    } else {
      break;
    }
  }

  /* reset the sign of a first */
  a->sign = neg;

  /* set the result */
  mp_exch (&t1, c);

  /* set the sign of the result */
  c->sign = neg;

  res = MP_OKAY;

LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_neg.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
30
31
32
33
34
35
36




#include <tommath.h>
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* b = -a */
int mp_neg (const mp_int * a, mp_int * b)
{
  int     res;
  if (a != b) {
................................................................................
  } else {
     b->sign = MP_ZPOS;
  }

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
30
31
32
33
34
35
36
37
38
39
40
#include <tommath_private.h>
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* b = -a */
int mp_neg (const mp_int * a, mp_int * b)
{
  int     res;
  if (a != b) {
................................................................................
  } else {
     b->sign = MP_ZPOS;
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_or.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46




#include <tommath.h>
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* OR two ints together */
int mp_or (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;
................................................................................
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46
47
48
49
50
#include <tommath_private.h>
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* OR two ints together */
int mp_or (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;
................................................................................
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_fermat.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
52
53
54
55
56
57
58




#include <tommath.h>
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* performs one Fermat test.
 * 
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
................................................................................
  }

  err = MP_OKAY;
LBL_T:mp_clear (&t);
  return err;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
52
53
54
55
56
57
58
59
60
61
62
#include <tommath_private.h>
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* performs one Fermat test.
 * 
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
................................................................................
  }

  err = MP_OKAY;
LBL_T:mp_clear (&t);
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_is_divisible.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46




#include <tommath.h>
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines if an integers is divisible by one 
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
................................................................................
      return MP_OKAY;
    }
  }

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
40
41
42
43
44
45
46
47
48
49
50
#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines if an integers is divisible by one 
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
................................................................................
      return MP_OKAY;
    }
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_is_prime.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
73
74
75
76
77
78
79




#include <tommath.h>
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
................................................................................
  mp_int  b;
  int     ix, err, res;

  /* default to no */
  *result = MP_NO;

  /* valid value of t? */
  if (t <= 0 || t > PRIME_SIZE) {
    return MP_VAL;
  }

  /* is the input equal to one of the primes in the table? */
  for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
         *result = 1;
................................................................................

  /* passed the test */
  *result = MP_YES;
LBL_B:mp_clear (&b);
  return err;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
73
74
75
76
77
78
79
80
81
82
83
#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
................................................................................
  mp_int  b;
  int     ix, err, res;

  /* default to no */
  *result = MP_NO;

  /* valid value of t? */
  if ((t <= 0) || (t > PRIME_SIZE)) {
    return MP_VAL;
  }

  /* is the input equal to one of the primes in the table? */
  for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
         *result = 1;
................................................................................

  /* passed the test */
  *result = MP_YES;
LBL_B:mp_clear (&b);
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_miller_rabin.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
..
93
94
95
96
97
98
99




#include <tommath.h>
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Miller-Rabin test of "a" to the base of "b" as described in 
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often 
................................................................................
    goto LBL_R;
  }
  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* if y != 1 and y != n1 do */
  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
    j = 1;
    /* while j <= s-1 and y != n1 */
    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if y == 1 then composite */
      if (mp_cmp_d (&y, 1) == MP_EQ) {
         goto LBL_Y;
................................................................................
  *result = MP_YES;
LBL_Y:mp_clear (&y);
LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);
  return err;
}
#endif




|













|







 







|


|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
..
93
94
95
96
97
98
99
100
101
102
103
#include <tommath_private.h>
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Miller-Rabin test of "a" to the base of "b" as described in 
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often 
................................................................................
    goto LBL_R;
  }
  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* if y != 1 and y != n1 do */
  if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) {
    j = 1;
    /* while j <= s-1 and y != n1 */
    while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) {
      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if y == 1 then composite */
      if (mp_cmp_d (&y, 1) == MP_EQ) {
         goto LBL_Y;
................................................................................
  *result = MP_YES;
LBL_Y:mp_clear (&y);
LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_next_prime.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
160
161
162
163
164
165
166




#include <tommath.h>
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res, x, y;
   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* ensure t is valid */
   if (t <= 0 || t > PRIME_SIZE) {
      return MP_VAL;
   }

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
................................................................................

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
      }
   } else {
      if (mp_iseven(a) == 1) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
      }
   }

................................................................................
             }

             /* set flag if zero */
             if (res_tab[x] == 0) {
                y = 1;
             }
         }
      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
          mp_set(&b, ltm_prime_tab[x]);
          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
................................................................................
   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif




|













|









|




|







 







|







 







|







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
160
161
162
163
164
165
166
167
168
169
170
#include <tommath_private.h>
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res = MP_NO, x, y;
   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* ensure t is valid */
   if ((t <= 0) || (t > PRIME_SIZE)) {
      return MP_VAL;
   }

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
................................................................................

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3) != 3) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
      }
   } else {
      if (mp_iseven(a) == MP_YES) {
         /* force odd */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
            return err;
         }
      }
   }

................................................................................
             }

             /* set flag if zero */
             if (res_tab[x] == 0) {
                y = 1;
             }
         }
      } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) {
         continue;
      }

      /* is this prime? */
      for (x = 0; x < t; x++) {
          mp_set(&b, ltm_prime_tab[x]);
          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
................................................................................
   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_rabin_miller_trials.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48




#include <tommath.h>
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */


static const struct {
   int k, t;
} sizes[] = {
{   128,    28 },
................................................................................
       }
   }
   return sizes[x-1].t + 1;
}


#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48
49
50
51
52
#include <tommath_private.h>
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */


static const struct {
   int k, t;
} sizes[] = {
{   128,    28 },
................................................................................
       }
   }
   return sizes[x-1].t + 1;
}


#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_prime_random_ex.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
..
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121




#include <tommath.h>
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
   int res, err, bsize, maskOR_msb_offset;

   /* sanity check the input */
   if (size <= 1 || t <= 0) {
      return MP_VAL;
   }

   /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
   if (flags & LTM_PRIME_SAFE) {
      flags |= LTM_PRIME_BBS;
   }

   /* calc the byte size */
   bsize = (size>>3) + ((size&7)?1:0);

   /* we need a buffer of bsize bytes */
................................................................................

   /* calc the maskAND value for the MSbyte*/
   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if (flags & LTM_PRIME_2MSB_ON) {
      maskOR_msb       |= 0x80 >> ((9 - size) & 7);
   }  

   /* get the maskOR_lsb */
   maskOR_lsb         = 1;
   if (flags & LTM_PRIME_BBS) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
................................................................................

      /* is it prime? */
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }
      if (res == MP_NO) {  
         continue;
      }

      if (flags & LTM_PRIME_SAFE) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }
         if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }
 
         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }
      }
   } while (res == MP_NO);

   if (flags & LTM_PRIME_SAFE) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }
      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }
   }

   err = MP_OKAY;
error:
   XFREE(tmp);
   return err;
}


#endif




|













|








<







 







|




|







 







|





|







 







|









|













>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
..
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
..
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <tommath_private.h>
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)

 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
   int res, err, bsize, maskOR_msb_offset;

   /* sanity check the input */
   if ((size <= 1) || (t <= 0)) {
      return MP_VAL;
   }

   /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
   if ((flags & LTM_PRIME_SAFE) != 0) {
      flags |= LTM_PRIME_BBS;
   }

   /* calc the byte size */
   bsize = (size>>3) + ((size&7)?1:0);

   /* we need a buffer of bsize bytes */
................................................................................

   /* calc the maskAND value for the MSbyte*/
   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if ((flags & LTM_PRIME_2MSB_ON) != 0) {
      maskOR_msb       |= 0x80 >> ((9 - size) & 7);
   }  

   /* get the maskOR_lsb */
   maskOR_lsb         = 1;
   if ((flags & LTM_PRIME_BBS) != 0) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
................................................................................

      /* is it prime? */
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }
      if (res == MP_NO) {  
         continue;
      }

      if ((flags & LTM_PRIME_SAFE) != 0) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }
         if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }
 
         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }
      }
   } while (res == MP_NO);

   if ((flags & LTM_PRIME_SAFE) != 0) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }
      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }
   }

   err = MP_OKAY;
error:
   XFREE(tmp);
   return err;
}


#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_radix_size.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41






42
43
44
45
46
47
48
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83




#include <tommath.h>
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* returns size of ASCII reprensentation */
int mp_radix_size (mp_int * a, int radix, int *size)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;

  *size = 0;

  /* special case for binary */
  if (radix == 2) {
    *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
    return MP_OKAY;
  }

  /* make sure the radix is in range */
  if (radix < 2 || radix > 64) {

    return MP_VAL;
  }

  if (mp_iszero(a) == MP_YES) {
    *size = 2;
    return MP_OKAY;
  }







  /* digs is the digit count */
  digs = 0;

  /* if it's negative add one for the sign */
  if (a->sign == MP_NEG) {
    ++digs;
................................................................................
      mp_clear (&t);
      return res;
    }
    ++digs;
  }
  mp_clear (&t);

  /* 
   * return digs + 1, the 1 is for the NULL byte that would be required.
   * mp_toradix_n requires a minimum of 3 bytes, so never report less than
   * that.
   */

  if ( digs >= 2 ) {
      *size = digs + 1;
  } else {
      *size = 3;
  }
  return MP_OKAY;
}

#endif




|













|



|







<
<
<
<
<
<

<
>







>
>
>
>
>
>







 







<
|
<
<
<
<
<
|
<
<
<




>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26






27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
..
62
63
64
65
66
67
68

69





70



71
72
73
74
75
76
77
78
#include <tommath_private.h>
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* returns size of ASCII reprensentation */
int mp_radix_size (const mp_int * a, int radix, int *size)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;

  *size = 0;







  /* make sure the radix is in range */

  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  if (mp_iszero(a) == MP_YES) {
    *size = 2;
    return MP_OKAY;
  }

  /* special case for binary */
  if (radix == 2) {
    *size = mp_count_bits (a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
    return MP_OKAY;
  }

  /* digs is the digit count */
  digs = 0;

  /* if it's negative add one for the sign */
  if (a->sign == MP_NEG) {
    ++digs;
................................................................................
      mp_clear (&t);
      return res;
    }
    ++digs;
  }
  mp_clear (&t);


  /* return digs + 1, the 1 is for the NULL byte that would be required. */





  *size = digs + 1;



  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_radix_smap.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20




#include <tommath.h>
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* chars used in radix conversions */
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#endif




|













|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <tommath_private.h>
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* chars used in radix conversions */
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_rand.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51




#include <tommath.h>
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* makes a pseudo-random int of a given size */
int
mp_rand (mp_int * a, int digits)
{
  int     res;
................................................................................
  mp_zero (a);
  if (digits <= 0) {
    return MP_OKAY;
  }

  /* first place a random non-zero digit */
  do {
    d = ((mp_digit) abs (rand ())) & MP_MASK;
  } while (d == 0);

  if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
    return res;
  }

  while (--digits > 0) {
    if ((res = mp_lshd (a, 1)) != MP_OKAY) {
      return res;
    }

    if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
      return res;
    }
  }

  return MP_OKAY;
}
#endif




|













|







 







|











|







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <tommath_private.h>
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* makes a pseudo-random int of a given size */
int
mp_rand (mp_int * a, int digits)
{
  int     res;
................................................................................
  mp_zero (a);
  if (digits <= 0) {
    return MP_OKAY;
  }

  /* first place a random non-zero digit */
  do {
    d = ((mp_digit) abs (MP_GEN_RANDOM())) & MP_MASK;
  } while (d == 0);

  if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
    return res;
  }

  while (--digits > 0) {
    if ((res = mp_lshd (a, 1)) != MP_OKAY) {
      return res;
    }

    if ((res = mp_add_d (a, ((mp_digit) abs (MP_GEN_RANDOM())), a)) != MP_OKAY) {
      return res;
    }
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_read_radix.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
..
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
76
77
78
79
80
81
82
83
84
85
86
87
88




#include <tommath.h>
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, const char *str, int radix)
{
  int     y, res, neg;
  char    ch;

  /* zero the digit bignum */
  mp_zero(a);

  /* make sure the radix is ok */
  if (radix < 2 || radix > 64) {
    return MP_VAL;
  }

  /* if the leading digit is a 
   * minus set the sign to negative. 
   */
  if (*str == '-') {
................................................................................
    neg = MP_ZPOS;
  }

  /* set the integer to the default of zero */
  mp_zero (a);
  
  /* process each digit of the string */
  while (*str) {
    /* if the radix < 36 the conversion is case insensitive
     * this allows numbers like 1AB and 1ab to represent the same  value
     * [e.g. in hex]
     */
    ch = (char) ((radix < 36) ? toupper ((unsigned char) *str) : *str);
    for (y = 0; y < 64; y++) {
      if (ch == mp_s_rmap[y]) {
         break;
      }
    }

    /* if the char was found in the map 
................................................................................

  if ( *str != '\0' ) {
      mp_zero( a );
      return MP_VAL;
  }

  /* set the sign only if a != 0 */
  if (mp_iszero(a) != 1) {
     a->sign = neg;
  }
  return MP_OKAY;
}
#endif




|













|












|







 







|
|



|







 







|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
..
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <tommath_private.h>
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* read a string [ASCII] in a given radix */
int mp_read_radix (mp_int * a, const char *str, int radix)
{
  int     y, res, neg;
  char    ch;

  /* zero the digit bignum */
  mp_zero(a);

  /* make sure the radix is ok */
  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* if the leading digit is a 
   * minus set the sign to negative. 
   */
  if (*str == '-') {
................................................................................
    neg = MP_ZPOS;
  }

  /* set the integer to the default of zero */
  mp_zero (a);
  
  /* process each digit of the string */
  while (*str != '\0') {
    /* if the radix <= 36 the conversion is case insensitive
     * this allows numbers like 1AB and 1ab to represent the same  value
     * [e.g. in hex]
     */
    ch = (radix <= 36) ? (char)toupper((unsigned char)*str) : *str;
    for (y = 0; y < 64; y++) {
      if (ch == mp_s_rmap[y]) {
         break;
      }
    }

    /* if the char was found in the map 
................................................................................

  if ( *str != '\0' ) {
      mp_zero( a );
      return MP_VAL;
  }

  /* set the sign only if a != 0 */
  if (mp_iszero(a) != MP_YES) {
     a->sign = neg;
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_read_signed_bin.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37




#include <tommath.h>
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

................................................................................
  } else {
     a->sign = MP_NEG;
  }

  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

................................................................................
  } else {
     a->sign = MP_NEG;
  }

  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_read_unsigned_bin.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51




#include <tommath.h>
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

................................................................................
  /* read the bytes in */
  while (c-- > 0) {
    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
      return res;
    }

#ifndef MP_8BIT
      a->dp[0] |= *b++;
      a->used += 1;
#else
      a->dp[0] = (*b & MP_MASK);
      a->dp[1] |= ((*b++ >> 7U) & 1);
      a->used += 2;
#endif
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif




|













|







 







|
|

|
|
|






>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <tommath_private.h>
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
  int     res;

................................................................................
  /* read the bytes in */
  while (c-- > 0) {
    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
      return res;
    }

#ifndef MP_8BIT
    a->dp[0] |= *b++;
    a->used += 1;
#else
    a->dp[0] = (*b & MP_MASK);
    a->dp[1] |= ((*b++ >> 7U) & 1);
    a->used += 2;
#endif
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
..
83
84
85
86
87
88
89
90
91
92
93
94
95
96




#include <tommath.h>
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reduces x mod m, assumes 0 < x < m**2, mu is 
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
  mp_int  q;
  int     res, um = m->used;
................................................................................

  /* q = x */
  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
    return res;
  }

  /* q1 = x / b**(k-1)  */
  mp_rshd (&q, um - 1);         

  /* according to HAC this optimization is ok */
  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
      goto CLEANUP;
    }
  } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#else 
    { 
      res = MP_VAL;
      goto CLEANUP;
    }
#endif
  }

  /* q3 = q2 / b**(k+1) */
  mp_rshd (&q, um + 1);         

  /* x = x mod b**(k+1), quick (no division) */
  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* q = q * m mod b**(k+1), quick (no division) */
................................................................................

  /* Back off if it's too big */
  while (mp_cmp (x, m) != MP_LT) {
    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
      goto CLEANUP;
    }
  }
  
CLEANUP:
  mp_clear (&q);

  return res;
}
#endif




|













|


|







 







|


|












|
|







|







 







|






>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
..
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
  mp_int  q;
  int     res, um = m->used;
................................................................................

  /* q = x */
  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
    return res;
  }

  /* q1 = x / b**(k-1)  */
  mp_rshd (&q, um - 1);

  /* according to HAC this optimization is ok */
  if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
      goto CLEANUP;
    }
  } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
      goto CLEANUP;
    }
#else
    {
      res = MP_VAL;
      goto CLEANUP;
    }
#endif
  }

  /* q3 = q2 / b**(k+1) */
  mp_rshd (&q, um + 1);

  /* x = x mod b**(k+1), quick (no division) */
  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
    goto CLEANUP;
  }

  /* q = q * m mod b**(k+1), quick (no division) */
................................................................................

  /* Back off if it's too big */
  while (mp_cmp (x, m) != MP_LT) {
    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
      goto CLEANUP;
    }
  }

CLEANUP:
  mp_clear (&q);

  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_2k.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


49
50
51
52
53
54
55
56
57




#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
   mp_int q;
   int    p, res;
   
   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(n);    
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   if (d != 1) {
      /* q = q * d */
      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { 
         goto ERR;
      }
   }
   
   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   if (mp_cmp_mag(a, n) != MP_LT) {
      s_mp_sub(a, n, a);


      goto top;
   }
   
ERR:
   mp_clear(&q);
   return res;
}

#endif




|













|







|



|
|





|


|



|




|

|
>
>


|






>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   if (d != 1) {
      /* q = q * d */
      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
         goto ERR;
      }
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto ERR;
      }
      goto top;
   }

ERR:
   mp_clear(&q);
   return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_2k_l.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


50
51
52
53
54
55
56
57
58




#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reduces a modulo n where n is of the form 2**p - d 
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
   mp_int q;
   int    p, res;
   
   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(n);    
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   /* q = q * d */
   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 
      goto ERR;
   }
   
   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }
   
   if (mp_cmp_mag(a, n) != MP_LT) {
      s_mp_sub(a, n, a);


      goto top;
   }
   
ERR:
   mp_clear(&q);
   return res;
}

#endif




|













|


|







|



|
|





|

|


|




|

|
>
>


|






>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   /* q = q * d */
   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
      goto ERR;
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto ERR;
      }
      goto top;
   }

ERR:
   mp_clear(&q);
   return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_2k_setup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
37
38
39
40
41
42
43




#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines the setup value */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
   int res, p;
   mp_int tmp;
................................................................................
   }
   
   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
37
38
39
40
41
42
43
44
45
46
47
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
   int res, p;
   mp_int tmp;
................................................................................
   }
   
   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_2k_setup_l.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
   int    res;
   mp_int tmp;
................................................................................
   }
   
ERR:
   mp_clear(&tmp);
   return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40
41
42
43
44
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
   int    res;
   mp_int tmp;
................................................................................
   }
   
ERR:
   mp_clear(&tmp);
   return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_is_2k.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48




#include <tommath.h>
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;
................................................................................
          }
      }
   }
   return MP_YES;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
42
43
44
45
46
47
48
49
50
51
52
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;
................................................................................
          }
      }
   }
   return MP_YES;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_is_2k_l.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
{
   int ix, iy;
   
................................................................................
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
      
   }
   return MP_NO;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
34
35
36
37
38
39
40
41
42
43
44
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
{
   int ix, iy;
   
................................................................................
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
      
   }
   return MP_NO;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_reduce_setup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30




#include <tommath.h>
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
int mp_reduce_setup (mp_int * a, mp_int * b)
{
................................................................................
  
  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
    return res;
  }
  return mp_div (a, b, a, NULL);
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
24
25
26
27
28
29
30
31
32
33
34
#include <tommath_private.h>
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
int mp_reduce_setup (mp_int * a, mp_int * b)
{
................................................................................
  
  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
    return res;
  }
  return mp_div (a, b, a, NULL);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_rshd.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
..
62
63
64
65
66
67
68




#include <tommath.h>
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* shift right a certain amount of digits */
void mp_rshd (mp_int * a, int b)
{
  int     x;

................................................................................
  /* if b > used then simply zero it and return */
  if (a->used <= b) {
    mp_zero (a);
    return;
  }

  {
    register mp_digit *bottom, *top;

    /* shift the digits down */

    /* bottom */
    bottom = a->dp;

    /* top [offset into digits] */
................................................................................
    }
  }
  
  /* remove excess digits */
  a->used -= b;
}
#endif




|













|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
..
62
63
64
65
66
67
68
69
70
71
72
#include <tommath_private.h>
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* shift right a certain amount of digits */
void mp_rshd (mp_int * a, int b)
{
  int     x;

................................................................................
  /* if b > used then simply zero it and return */
  if (a->used <= b) {
    mp_zero (a);
    return;
  }

  {
    mp_digit *bottom, *top;

    /* shift the digits down */

    /* bottom */
    bottom = a->dp;

    /* top [offset into digits] */
................................................................................
    }
  }
  
  /* remove excess digits */
  a->used -= b;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_set.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25




#include <tommath.h>
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
  mp_zero (a);
  a->dp[0] = b & MP_MASK;
  a->used  = (a->dp[0] != 0) ? 1 : 0;
}
#endif




|













|










>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <tommath_private.h>
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* set to a digit */
void mp_set (mp_int * a, mp_digit b)
{
  mp_zero (a);
  a->dp[0] = b & MP_MASK;
  a->used  = (a->dp[0] != 0) ? 1 : 0;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_set_int.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
  int     x, res;

................................................................................
    /* ensure that digits are not clamped off */
    a->used += 1;
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
38
39
40
41
42
43
44
45
46
47
48
#include <tommath_private.h>
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
  int     x, res;

................................................................................
    /* ensure that digits are not clamped off */
    a->used += 1;
  }
  mp_clamp (a);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_set_long.c.
















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <tommath_private.h>
#ifdef BN_MP_SET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set a platform dependent unsigned long int */
MP_SET_XLONG(mp_set_long, unsigned long)
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_set_long_long.c.
















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <tommath_private.h>
#ifdef BN_MP_SET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* set a platform dependent unsigned long long int */
MP_SET_XLONG(mp_set_long_long, unsigned long long)
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_shrink.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36




#include <tommath.h>
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* shrink a bignum */
int mp_shrink (mp_int * a)
{
  mp_digit *tmp;
  int used = 1;
  
  if(a->used > 0)
    used = a->used;

  
  if (a->alloc != used) {
    if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
      return MP_MEM;
    }
    a->dp    = tmp;
    a->alloc = used;
  }
  return MP_OKAY;
}
#endif




|













|








|

>











>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* shrink a bignum */
int mp_shrink (mp_int * a)
{
  mp_digit *tmp;
  int used = 1;
  
  if(a->used > 0) {
    used = a->used;
  }
  
  if (a->alloc != used) {
    if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
      return MP_MEM;
    }
    a->dp    = tmp;
    a->alloc = used;
  }
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_signed_bin_size.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23




#include <tommath.h>
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* get the size for an signed equivalent */
int mp_signed_bin_size (mp_int * a)
{
  return 1 + mp_unsigned_bin_size (a);
}
#endif




|













|








>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <tommath_private.h>
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* get the size for an signed equivalent */
int mp_signed_bin_size (mp_int * a)
{
  return 1 + mp_unsigned_bin_size (a);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49

50
51
52
53
54




#include <tommath.h>
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* computes b = a*a */
int
mp_sqr (mp_int * a, mp_int * b)
{
  int     res;
................................................................................
  /* use Toom-Cook? */
  if (a->used >= TOOM_SQR_CUTOFF) {
    res = mp_toom_sqr(a, b);
  /* Karatsuba? */
  } else 
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
if (a->used >= KARATSUBA_SQR_CUTOFF) {
    res = mp_karatsuba_sqr (a, b);
  } else 
#endif
  {
#ifdef BN_FAST_S_MP_SQR_C
    /* can we use the fast comba multiplier? */
    if ((a->used * 2 + 1) < MP_WARRAY && 
         a->used < 
         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
      res = fast_s_mp_sqr (a, b);
    } else
#endif

#ifdef BN_S_MP_SQR_C
      res = s_mp_sqr (a, b);
#else
      res = MP_VAL;
#endif

  }
  b->sign = MP_ZPOS;
  return res;
}
#endif




|













|







 







|






|
|
|



>





>





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <tommath_private.h>
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* computes b = a*a */
int
mp_sqr (mp_int * a, mp_int * b)
{
  int     res;
................................................................................
  /* use Toom-Cook? */
  if (a->used >= TOOM_SQR_CUTOFF) {
    res = mp_toom_sqr(a, b);
  /* Karatsuba? */
  } else 
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
  if (a->used >= KARATSUBA_SQR_CUTOFF) {
    res = mp_karatsuba_sqr (a, b);
  } else 
#endif
  {
#ifdef BN_FAST_S_MP_SQR_C
    /* can we use the fast comba multiplier? */
    if ((((a->used * 2) + 1) < MP_WARRAY) &&
         (a->used <
         (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) {
      res = fast_s_mp_sqr (a, b);
    } else
#endif
    {
#ifdef BN_S_MP_SQR_C
      res = s_mp_sqr (a, b);
#else
      res = MP_VAL;
#endif
    }
  }
  b->sign = MP_ZPOS;
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_sqrmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37




#include <tommath.h>
#ifdef BN_MP_SQRMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* c = a * a (mod b) */
int
mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, b, c);
  mp_clear (&t);
  return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
#include <tommath_private.h>
#ifdef BN_MP_SQRMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* c = a * a (mod b) */
int
mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, b, c);
  mp_clear (&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_sqrt.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
...
136
137
138
139
140
141
142




#include <tommath.h>

#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

#ifndef NO_FLOATING_POINT
#include <math.h>
#endif

/* this function is less generic than mp_n_root, simpler and faster */
................................................................................

E1: mp_clear(&t2);
E2: mp_clear(&t1);
  return res;
}

#endif




|
<













|







 







>
>
>
>
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
135
136
137
138
139
140
141
142
143
144
145
#include <tommath_private.h>

#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

#ifndef NO_FLOATING_POINT
#include <math.h>
#endif

/* this function is less generic than mp_n_root, simpler and faster */
................................................................................

E1: mp_clear(&t2);
E2: mp_clear(&t1);
  return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Added libtommath/bn_mp_sqrtmod_prime.c.
























































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <tommath_private.h>
#ifdef BN_MP_SQRTMOD_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
{
  int res, legendre;
  mp_int t1, C, Q, S, Z, M, T, R, two;
  mp_digit i;

  /* first handle the simple cases */
  if (mp_cmp_d(n, 0) == MP_EQ) {
    mp_zero(ret);
    return MP_OKAY;
  }
  if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */
  if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
  if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

  if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
	return res;
  }

  /* SPECIAL CASE: if prime mod 4 == 3
   * compute directly: res = n^(prime+1)/4 mod prime
   * Handbook of Applied Cryptography algorithm 3.36
   */
  if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup;
  if (i == 3) {
    if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup;
    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
    if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
    res = MP_OKAY;
    goto cleanup;
  }

  /* NOW: Tonelli-Shanks algorithm */

  /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
  if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
  if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup;
  /* Q = prime - 1 */
  mp_zero(&S);
  /* S = 0 */
  while (mp_iseven(&Q) != MP_NO) {
    if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
    /* Q = Q / 2 */
    if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup;
    /* S = S + 1 */
  }

  /* find a Z such that the Legendre symbol (Z|prime) == -1 */
  if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup;
  /* Z = 2 */
  while(1) {
    if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
    if (legendre == -1) break;
    if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup;
    /* Z = Z + 1 */
  }

  if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
  /* C = Z ^ Q mod prime */
  if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup;
  if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
  /* t1 = (Q + 1) / 2 */
  if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
  /* R = n ^ ((Q + 1) / 2) mod prime */
  if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
  /* T = n ^ Q mod prime */
  if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
  /* M = S */
  if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup;

  res = MP_VAL;
  while (1) {
    if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
    i = 0;
    while (1) {
      if (mp_cmp_d(&t1, 1) == MP_EQ) break;
      if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
      i++;
    }
    if (i == 0) {
      if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
      res = MP_OKAY;
      goto cleanup;
    }
    if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
    if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup;
    if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
    /* t1 = 2 ^ (M - i - 1) */
    if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
    /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
    if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
    /* C = (t1 * t1) mod prime */
    if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
    /* R = (R * t1) mod prime */
    if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
    /* T = (T * C) mod prime */
    mp_set(&M, i);
    /* M = i */
  }

cleanup:
  mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
  return res;
}

#endif

Changes to libtommath/bn_mp_sub.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
49
50
51
52
53
54
55




#include <tommath.h>
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;
................................................................................
      res = s_mp_sub (b, a, c);
    }
  }
  return res;
}

#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
49
50
51
52
53
54
55
56
57
58
59
#include <tommath_private.h>
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* high level subtraction (handles signs) */
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;
................................................................................
      res = s_mp_sub (b, a, c);
    }
  }
  return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_sub_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
..
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89




#include <tommath.h>
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit *tmpa, *tmpc, mu;
  int       res, ix, oldused;

  /* grow c as required */
  if (c->alloc < a->used + 1) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative just do an unsigned
   * addition [with fudged signs]
................................................................................

  /* setup regs */
  oldused = c->used;
  tmpa    = a->dp;
  tmpc    = c->dp;

  /* if a <= b simply fix the single digit */
  if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
     if (a->used == 1) {
        *tmpc++ = b - *tmpa;
     } else {
        *tmpc++ = b;
     }
     ix      = 1;

................................................................................
  } else {
     /* positive/size */
     c->sign = MP_ZPOS;
     c->used = a->used;

     /* subtract first digit */
     *tmpc    = *tmpa++ - b;
     mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
     *tmpc++ &= MP_MASK;

     /* handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc    = *tmpa++ - mu;
        mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
        *tmpc++ &= MP_MASK;
     }
  }

  /* zero excess digits */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);
  return MP_OKAY;
}

#endif




|













|










|







 







|







 







|





|













>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
..
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <tommath_private.h>
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* single digit subtraction */
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
  mp_digit *tmpa, *tmpc, mu;
  int       res, ix, oldused;

  /* grow c as required */
  if (c->alloc < (a->used + 1)) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative just do an unsigned
   * addition [with fudged signs]
................................................................................

  /* setup regs */
  oldused = c->used;
  tmpa    = a->dp;
  tmpc    = c->dp;

  /* if a <= b simply fix the single digit */
  if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
     if (a->used == 1) {
        *tmpc++ = b - *tmpa;
     } else {
        *tmpc++ = b;
     }
     ix      = 1;

................................................................................
  } else {
     /* positive/size */
     c->sign = MP_ZPOS;
     c->used = a->used;

     /* subtract first digit */
     *tmpc    = *tmpa++ - b;
     mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
     *tmpc++ &= MP_MASK;

     /* handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc    = *tmpa++ - mu;
        mu       = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
        *tmpc++ &= MP_MASK;
     }
  }

  /* zero excess digits */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);
  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_submod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38




#include <tommath.h>
#ifdef BN_MP_SUBMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* d = a - b (mod c) */
int
mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38
39
40
41
42
#include <tommath_private.h>
#ifdef BN_MP_SUBMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* d = a - b (mod c) */
int
mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
................................................................................
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_to_signed_bin.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29




#include <tommath.h>
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* store in signed [big endian] format */
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
  int     res;

  if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
    return res;
  }
  b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
  return MP_OKAY;
}
#endif




|













|










|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
  int     res;

  if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
    return res;
  }
  b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_to_signed_bin_n.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include <tommath.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif




|













|












>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_to_unsigned_bin.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
..
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
  int     x, res;
  mp_int  t;

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  x = 0;
  while (mp_iszero (&t) == 0) {
#ifndef MP_8BIT
      b[x++] = (unsigned char) (t.dp[0] & 255);
#else
      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
      mp_clear (&t);
................................................................................
    }
  }
  bn_reverse (b, x);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
..
38
39
40
41
42
43
44
45
46
47
48
#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
  int     x, res;
  mp_int  t;

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  x = 0;
  while (mp_iszero (&t) == MP_NO) {
#ifndef MP_8BIT
      b[x++] = (unsigned char) (t.dp[0] & 255);
#else
      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
      mp_clear (&t);
................................................................................
    }
  }
  bn_reverse (b, x);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_to_unsigned_bin_n.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include <tommath.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif




|













|












>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_toom_mul.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
...
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280




#include <tommath.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* multiplication using the Toom-Cook 3-way algorithm 
 *
 * Much more complicated than Karatsuba but has a lower 
 * asymptotic running time of O(N**1.464).  This algorithm is 
 * only particularly useful on VERY large inputs 
 * (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
    int res, B;
        
    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
                             &a0, &a1, &a2, &b0, &b1, 
                             &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
       return res;
    }
    
    /* B */
    B = MIN(a->used, b->used) / 3;
    
    /* a = a2 * B**2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    mp_mod_2d(&a1, DIGIT_BIT * B, &a1);



    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);
    
    /* b = b2 * B**2 + b1 * B + b0 */
    if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(b, &b1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b1, B);
    mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

    if ((res = mp_copy(b, &b2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b2, B*2);
    
    /* w0 = a0*b0 */
    if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w4 = a2 * b2 */
    if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    
    /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    
    if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    

    /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
................................................................................
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
       goto ERR;
    }
    
    /* now solve the matrix 
    
       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0
       
       using 12 subtractions, 4 shifts, 
              2 small divisions and 1 small multiplication 
     */
     
     /* r1 - r4 */
     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r0 */
     if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/2 */
     if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/2 */
     if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r2 - r0 - r4 */
     if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - 8r0 */
     if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - 8r4 */
     if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* 3r2 - r1 - r3 */
     if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/3 */
     if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/3 */
     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
        goto ERR;
     }
     
     /* at this point shift W[n] by B*n */
     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
        goto ERR;
     }     
     
     if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
        goto ERR;
     }     
     
ERR:
     mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
                    &a0, &a1, &a2, &b0, &b1, 
                    &b2, &tmp1, &tmp2, NULL);
     return res;
}     
     
#endif




|













|


|

|
|
|






|

|
|



|


|









|
>
>





|









|





|




|




|













|












|



|













|












|



|







 







|
|
|





|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
...
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#include <tommath_private.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
    int res, B;

    /* init temps */
    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
                             &a0, &a1, &a2, &b0, &b1,
                             &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
       return res;
    }

    /* B */
    B = MIN(a->used, b->used) / 3;

    /* a = a2 * B**2 + a1 * B + a0 */
    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* b = b2 * B**2 + b1 * B + b0 */
    if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(b, &b1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b1, B);
    (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

    if ((res = mp_copy(b, &b2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&b2, B*2);

    /* w0 = a0*b0 */
    if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
       goto ERR;
    }

    /* w4 = a2 * b2 */
    if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
       goto ERR;
    }

    /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
       goto ERR;
    }

    /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
       goto ERR;
    }


    /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
       goto ERR;
................................................................................
    }
    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
       goto ERR;
    }

    /* now solve the matrix

       0  0  0  0  1
       1  2  4  8  16
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts,
              2 small divisions and 1 small multiplication
     */

    /* r1 - r4 */
    if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r0 */
    if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/2 */
    if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/2 */
    if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r2 - r0 - r4 */
    if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - 8r0 */
    if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - 8r4 */
    if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* 3r2 - r1 - r3 */
    if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/3 */
    if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/3 */
    if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
       goto ERR;
    }

    /* at this point shift W[n] by B*n */
    if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
       goto ERR;
    }

ERR:
    mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
                   &a0, &a1, &a2, &b0, &b1,
                   &b2, &tmp1, &tmp2, NULL);
    return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_toom_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41
42


43
44
45
46
47
48
49
...
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222




#include <tommath.h>
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* squaring using Toom-Cook 3-way algorithm */
int
mp_toom_sqr(mp_int *a, mp_int *b)
{
    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
................................................................................
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    mp_mod_2d(&a1, DIGIT_BIT * B, &a1);



    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* w0 = a0*a0 */
................................................................................
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
     */

     /* r1 - r4 */
     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r0 */
     if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/2 */
     if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/2 */
     if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r2 - r0 - r4 */
     if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - 8r0 */
     if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - 8r4 */
     if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* 3r2 - r1 - r3 */
     if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
        goto ERR;
     }
     /* r1 - r2 */
     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
        goto ERR;
     }
     /* r3 - r2 */
     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
        goto ERR;
     }
     /* r1/3 */
     if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
        goto ERR;
     }
     /* r3/3 */
     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
        goto ERR;
     }

     /* at this point shift W[n] by B*n */
     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
        goto ERR;
     }

     if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
     if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
        goto ERR;
     }

ERR:
     mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
     return res;
}

#endif




|













|







 







|
>
>







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|


|
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#include <tommath_private.h>
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* squaring using Toom-Cook 3-way algorithm */
int
mp_toom_sqr(mp_int *a, mp_int *b)
{
    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
................................................................................
       goto ERR;
    }

    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a1, B);
    if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_copy(a, &a2)) != MP_OKAY) {
       goto ERR;
    }
    mp_rshd(&a2, B*2);

    /* w0 = a0*a0 */
................................................................................
       1  1  1  1  1
       16 8  4  2  1
       1  0  0  0  0

       using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
     */

    /* r1 - r4 */
    if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r0 */
    if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/2 */
    if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/2 */
    if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r2 - r0 - r4 */
    if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - 8r0 */
    if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - 8r4 */
    if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* 3r2 - r1 - r3 */
    if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
       goto ERR;
    }
    /* r1 - r2 */
    if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
       goto ERR;
    }
    /* r3 - r2 */
    if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
       goto ERR;
    }
    /* r1/3 */
    if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
       goto ERR;
    }
    /* r3/3 */
    if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
       goto ERR;
    }

    /* at this point shift W[n] by B*n */
    if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
       goto ERR;
    }

    if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
       goto ERR;
    }
    if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
       goto ERR;
    }

ERR:
    mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
    return res;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_toradix.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
..
65
66
67
68
69
70
71




#include <tommath.h>
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix (mp_int * a, char *str, int radix)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the radix */
  if (radix < 2 || radix > 64) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == 1) {
     *str++ = '0';
     *str = '\0';
     return MP_OKAY;
  }

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
................................................................................
  if (t.sign == MP_NEG) {
    ++_s;
    *str++ = '-';
    t.sign = MP_ZPOS;
  }

  digs = 0;
  while (mp_iszero (&t) == 0) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    *str++ = mp_s_rmap[d];
    ++digs;
  }
................................................................................
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif




|













|











|




|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
..
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
..
65
66
67
68
69
70
71
72
73
74
75
#include <tommath_private.h>
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix (mp_int * a, char *str, int radix)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the radix */
  if ((radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == MP_YES) {
     *str++ = '0';
     *str = '\0';
     return MP_OKAY;
  }

  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
................................................................................
  if (t.sign == MP_NEG) {
    ++_s;
    *str++ = '-';
    t.sign = MP_ZPOS;
  }

  digs = 0;
  while (mp_iszero (&t) == MP_NO) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    *str++ = mp_s_rmap[d];
    ++digs;
  }
................................................................................
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_toradix_n.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
..
78
79
80
81
82
83
84




#include <tommath.h>
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* stores a bignum as a ASCII string in a given radix (2..64) 
 *
 * Stores upto maxlen-1 chars and always a NULL byte 
 */
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
................................................................................
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the maxlen, radix */
  if (maxlen < 2 || radix < 2 || radix > 64) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == MP_YES) {
     *str++ = '0';
     *str = '\0';
................................................................................
    t.sign = MP_ZPOS;
 
    /* subtract a char */
    --maxlen;
  }

  digs = 0;
  while (mp_iszero (&t) == 0) {
    if (--maxlen < 1) {
       /* no more room */
       break;
    }
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
................................................................................
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif




|













|







 







|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
..
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
..
78
79
80
81
82
83
84
85
86
87
88
#include <tommath_private.h>
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* stores a bignum as a ASCII string in a given radix (2..64) 
 *
 * Stores upto maxlen-1 chars and always a NULL byte 
 */
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
................................................................................
{
  int     res, digs;
  mp_int  t;
  mp_digit d;
  char   *_s = str;

  /* check range of the maxlen, radix */
  if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
    return MP_VAL;
  }

  /* quick out if its zero */
  if (mp_iszero(a) == MP_YES) {
     *str++ = '0';
     *str = '\0';
................................................................................
    t.sign = MP_ZPOS;
 
    /* subtract a char */
    --maxlen;
  }

  digs = 0;
  while (mp_iszero (&t) == MP_NO) {
    if (--maxlen < 1) {
       /* no more room */
       break;
    }
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
................................................................................
  *str = '\0';

  mp_clear (&t);
  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_unsigned_bin_size.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24




#include <tommath.h>
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
  int     size = mp_count_bits (a);
  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
#endif




|













|






|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <tommath_private.h>
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
  int     size = mp_count_bits (a);
  return (size / 8) + (((size & 7) != 0) ? 1 : 0);
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_xor.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
41
42
43
44
45
46
47




#include <tommath.h>
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* XOR two ints together */
int
mp_xor (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
................................................................................
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
41
42
43
44
45
46
47
48
49
50
51
#include <tommath_private.h>
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* XOR two ints together */
int
mp_xor (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
................................................................................
  }
  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_mp_zero.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32




#include <tommath.h>
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* set to zero */
void mp_zero (mp_int * a)
{
  int       n;
  mp_digit *tmp;
................................................................................

  tmp = a->dp;
  for (n = 0; n < a->alloc; n++) {
     *tmp++ = 0;
  }
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
#include <tommath_private.h>
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* set to zero */
void mp_zero (mp_int * a)
{
  int       n;
  mp_digit *tmp;
................................................................................

  tmp = a->dp;
  for (n = 0; n < a->alloc; n++) {
     *tmp++ = 0;
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_prime_tab.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
51
52
53
54
55
56
57




#include <tommath.h>
#ifdef BN_PRIME_TAB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */
const mp_digit ltm_prime_tab[] = {
  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
................................................................................
  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
51
52
53
54
55
56
57
58
59
60
61
#include <tommath_private.h>
#ifdef BN_PRIME_TAB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */
const mp_digit ltm_prime_tab[] = {
  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
................................................................................
  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_reverse.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
29
30
31
32
33
34
35




#include <tommath.h>
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* reverse an array, used for radix code */
void
bn_reverse (unsigned char *s, int len)
{
  int     ix, iy;
................................................................................
    s[ix] = s[iy];
    s[iy] = t;
    ++ix;
    --iy;
  }
}
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
29
30
31
32
33
34
35
36
37
38
39
#include <tommath_private.h>
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* reverse an array, used for radix code */
void
bn_reverse (unsigned char *s, int len)
{
  int     ix, iy;
................................................................................
    s[ix] = s[iy];
    s[iy] = t;
    ++ix;
    --iy;
  }
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_add.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
99
100
101
102
103
104
105




#include <tommath.h>
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int *x;
................................................................................
  } else {
    min = a->used;
    max = b->used;
    x = b;
  }

  /* init result */
  if (c->alloc < max + 1) {
    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get old used digit count and set new one */
  olduse = c->used;
  c->used = max + 1;

  {
    register mp_digit u, *tmpa, *tmpb, *tmpc;
    register int i;

    /* alias for digit pointers */

    /* first input */
    tmpa = a->dp;

    /* second input */
................................................................................
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}
#endif




|













|







 







|










|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
99
100
101
102
103
104
105
106
107
108
109
#include <tommath_private.h>
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int *x;
................................................................................
  } else {
    min = a->used;
    max = b->used;
    x = b;
  }

  /* init result */
  if (c->alloc < (max + 1)) {
    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* get old used digit count and set new one */
  olduse = c->used;
  c->used = max + 1;

  {
    mp_digit u, *tmpa, *tmpb, *tmpc;
    int i;

    /* alias for digit pointers */

    /* first input */
    tmpa = a->dp;

    /* second input */
................................................................................
    }
  }

  mp_clamp (c);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_exptmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
...
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
...
242
243
244
245
246
247
248




#include <tommath.h>
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */
#ifdef MP_LOW_MEM
   #define TAB_SIZE 32
#else
   #define TAB_SIZE 256
#endif

................................................................................
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if (mode == 0 && y == 0) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if (mode == 1 && y == 0) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
................................................................................
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if (mode == 2 && bitcpy > 0) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
................................................................................
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif




|













|







 







|




|







 







|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
...
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
...
242
243
244
245
246
247
248
249
250
251
252
#include <tommath_private.h>
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */
#ifdef MP_LOW_MEM
   #define TAB_SIZE 32
#else
   #define TAB_SIZE 256
#endif

................................................................................
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
................................................................................
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
        goto LBL_RES;
................................................................................
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_mul_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86




#include <tommath.h>
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 * many digits of output are created.
 */
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
................................................................................
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
  if (((digs) < MP_WARRAY) &&
      MIN (a->used, b->used) < 
          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_s_mp_mul_digs (a, b, c, digs);
  }

  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
    return res;
  }
  t.used = digs;
................................................................................
    
    /* an alias for the digits of b */
    tmpy = b->dp;

    /* compute the columns of the output and propagate the carry */
    for (iy = 0; iy < pb; iy++) {
      /* compute the column as a mp_word */
      r       = ((mp_word)*tmpt) +
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
                ((mp_word) u);

      /* the new column is the lower part of the result */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get the carry word from the result */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    /* set carry if it is placed below digs */
    if (ix + iy < digs) {
      *tmpt = u;
    }
  }

  mp_clamp (&t);
  mp_exch (&t, c);

  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







|
|







 







|
|
|








|











>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include <tommath_private.h>
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 * many digits of output are created.
 */
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
................................................................................
  int     res, pa, pb, ix, iy;
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
  if (((digs) < MP_WARRAY) &&
      (MIN (a->used, b->used) < 
          (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_s_mp_mul_digs (a, b, c, digs);
  }

  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
    return res;
  }
  t.used = digs;
................................................................................
    
    /* an alias for the digits of b */
    tmpy = b->dp;

    /* compute the columns of the output and propagate the carry */
    for (iy = 0; iy < pb; iy++) {
      /* compute the column as a mp_word */
      r       = (mp_word)*tmpt +
                ((mp_word)tmpx * (mp_word)*tmpy++) +
                (mp_word)u;

      /* the new column is the lower part of the result */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* get the carry word from the result */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
    /* set carry if it is placed below digs */
    if ((ix + iy) < digs) {
      *tmpt = u;
    }
  }

  mp_clamp (&t);
  mp_exch (&t, c);

  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_mul_high_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
71
72
73
74
75
76
77




#include <tommath.h>
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int
s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
................................................................................
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
  if (((a->used + b->used + 1) < MP_WARRAY)
      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
    return fast_s_mp_mul_high_digs (a, b, c, digs);
  }
#endif

  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
    return res;
  }
................................................................................
    tmpt = &(t.dp[digs]);

    /* alias for where to read the right hand side from */
    tmpy = b->dp + (digs - ix);

    for (iy = digs - ix; iy < pb; iy++) {
      /* calculate the double precision result */
      r       = ((mp_word)*tmpt) +
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
                ((mp_word) u);

      /* get the lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* carry the carry */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
................................................................................
  }
  mp_clamp (&t);
  mp_exch (&t, c);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|







 







|







 







|
|
|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
71
72
73
74
75
76
77
78
79
80
81
#include <tommath_private.h>
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int
s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
................................................................................
  mp_digit u;
  mp_word r;
  mp_digit tmpx, *tmpt, *tmpy;

  /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
  if (((a->used + b->used + 1) < MP_WARRAY)
      && (MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
    return fast_s_mp_mul_high_digs (a, b, c, digs);
  }
#endif

  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
    return res;
  }
................................................................................
    tmpt = &(t.dp[digs]);

    /* alias for where to read the right hand side from */
    tmpy = b->dp + (digs - ix);

    for (iy = digs - ix; iy < pb; iy++) {
      /* calculate the double precision result */
      r       = (mp_word)*tmpt +
                ((mp_word)tmpx * (mp_word)*tmpy++) +
                (mp_word)u;

      /* get the lower part */
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

      /* carry the carry */
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
    }
................................................................................
  }
  mp_clamp (&t);
  mp_exch (&t, c);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
..
74
75
76
77
78
79
80




#include <tommath.h>
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
{
  mp_int  t;
  int     res, ix, iy, pa;
  mp_word r;
  mp_digit u, tmpx, *tmpt;

  pa = a->used;
  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
    return res;
  }

  /* default used is maximum possible size */
  t.used = 2*pa + 1;

  for (ix = 0; ix < pa; ix++) {
    /* first calculate the digit at 2*ix */
    /* calculate double precision result */
    r = ((mp_word) t.dp[2*ix]) +
        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

    /* store lower part in result */
    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

    /* get the carry */
    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

    /* left hand side of A[ix] * A[iy] */
    tmpx        = a->dp[ix];

    /* alias for where to store the results */
    tmpt        = t.dp + (2*ix + 1);
    
    for (iy = ix + 1; iy < pa; iy++) {
      /* first calculate the product */
      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

      /* now calculate the double precision result, note we use
       * addition instead of *2 since it's easier to optimize
................................................................................

  mp_clamp (&t);
  mp_exch (&t, b);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|













|











|




|




|
|











|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
..
74
75
76
77
78
79
80
81
82
83
84
#include <tommath_private.h>
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
{
  mp_int  t;
  int     res, ix, iy, pa;
  mp_word r;
  mp_digit u, tmpx, *tmpt;

  pa = a->used;
  if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) {
    return res;
  }

  /* default used is maximum possible size */
  t.used = (2 * pa) + 1;

  for (ix = 0; ix < pa; ix++) {
    /* first calculate the digit at 2*ix */
    /* calculate double precision result */
    r = (mp_word)t.dp[2*ix] +
        ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

    /* store lower part in result */
    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

    /* get the carry */
    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

    /* left hand side of A[ix] * A[iy] */
    tmpx        = a->dp[ix];

    /* alias for where to store the results */
    tmpt        = t.dp + ((2 * ix) + 1);
    
    for (iy = ix + 1; iy < pa; iy++) {
      /* first calculate the product */
      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

      /* now calculate the double precision result, note we use
       * addition instead of *2 since it's easier to optimize
................................................................................

  mp_clamp (&t);
  mp_exch (&t, b);
  mp_clear (&t);
  return MP_OKAY;
}
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bn_s_mp_sub.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
..
79
80
81
82
83
84
85




#include <tommath.h>
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     olduse, res, min, max;
................................................................................
      return res;
    }
  }
  olduse = c->used;
  c->used = max;

  {
    register mp_digit u, *tmpa, *tmpb, *tmpc;
    register int i;

    /* alias for digit pointers */
    tmpa = a->dp;
    tmpb = b->dp;
    tmpc = c->dp;

    /* set carry to zero */
    u = 0;
    for (i = 0; i < min; i++) {
      /* T[i] = A[i] - B[i] - U */
      *tmpc = *tmpa++ - *tmpb++ - u;

      /* U = carry bit of T[i]
       * Note this saves performing an AND operation since
       * if a carry does occur it will propagate all the way to the
       * MSB.  As a result a single shift is enough to get the carry
       */
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, e.g. if A has more digits than B  */
    for (; i < max; i++) {
      /* T[i] = A[i] - U */
      *tmpc = *tmpa++ - u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* clear digits above used (since we may not have grown result above) */
    for (i = c->used; i < olduse; i++) {
................................................................................
  }

  mp_clamp (c);
  return MP_OKAY;
}

#endif




|













|







 







|
|










|






|











|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
..
79
80
81
82
83
84
85
86
87
88
89
#include <tommath_private.h>
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
  int     olduse, res, min, max;
................................................................................
      return res;
    }
  }
  olduse = c->used;
  c->used = max;

  {
    mp_digit u, *tmpa, *tmpb, *tmpc;
    int i;

    /* alias for digit pointers */
    tmpa = a->dp;
    tmpb = b->dp;
    tmpc = c->dp;

    /* set carry to zero */
    u = 0;
    for (i = 0; i < min; i++) {
      /* T[i] = A[i] - B[i] - U */
      *tmpc = (*tmpa++ - *tmpb++) - u;

      /* U = carry bit of T[i]
       * Note this saves performing an AND operation since
       * if a carry does occur it will propagate all the way to the
       * MSB.  As a result a single shift is enough to get the carry
       */
      u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, e.g. if A has more digits than B  */
    for (; i < max; i++) {
      /* T[i] = A[i] - U */
      *tmpc = *tmpa++ - u;

      /* U = carry bit of T[i] */
      u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));

      /* Clear carry from T[i] */
      *tmpc++ &= MP_MASK;
    }

    /* clear digits above used (since we may not have grown result above) */
    for (i = c->used; i < olduse; i++) {
................................................................................
  }

  mp_clamp (c);
  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Changes to libtommath/bncore.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32




#include <tommath.h>
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */

/* Known optimal configurations

 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
................................................................................

int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */
        
        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
        TOOM_SQR_CUTOFF      = 400; 
#endif




|













|







 







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
26
27
28
29
30
31
32
33
34
35
36
#include <tommath_private.h>
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 */

/* Known optimal configurations

 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
................................................................................

int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */
        
        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
        TOOM_SQR_CUTOFF      = 400; 
#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */

Deleted libtommath/booker.pl.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/bin/perl
#
#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
#
#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
#
#EXAM,file
#
#This preprocessor will then open "file" and insert it as a verbatim copy.
#
#Tom St Denis

#get graphics type
if (shift =~ /PDF/) {
   $graph = "";
} else {
   $graph = ".ps";
}   

open(IN,"<tommath.src") or die "Can't open source file";
open(OUT,">tommath.tex") or die "Can't open destination file";

print "Scanning for sections\n";
$chapter = $section = $subsection = 0;
$x = 0;
while (<IN>) {
   print ".";
   if (!(++$x % 80)) { print "\n"; }
   #update the headings 
   if (~($_ =~ /\*/)) {
      if ($_ =~ /\\chapter{.+}/) {
          ++$chapter;
          $section = $subsection = 0;
      } elsif ($_ =~ /\\section{.+}/) {
          ++$section;
          $subsection = 0;
      } elsif ($_ =~ /\\subsection{.+}/) {
          ++$subsection;
      }
   }      

   if ($_ =~ m/MARK/) {
      @m = split(",",$_);
      chomp(@m[1]);
      $index1{@m[1]} = $chapter;
      $index2{@m[1]} = $section;
      $index3{@m[1]} = $subsection;
   }
}
close(IN);

open(IN,"<tommath.src") or die "Can't open source file";
$readline = $wroteline = 0;
$srcline = 0;

while (<IN>) {
   ++$readline;
   ++$srcline;
   
   if ($_ =~ m/MARK/) {
   } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
      if ($_ =~ m/EXAM/) {
         $skipheader = 1;
      } else {
         $skipheader = 0;
      }
      
      # EXAM,file
      chomp($_);
      @m = split(",",$_);
      open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
      
      print "$srcline:Inserting $m[1]:";
      
      $line = 0;
      $tmp = $m[1];
      $tmp =~ s/_/"\\_"/ge;
      print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
      $wroteline += 5;
      
      if ($skipheader == 1) {
         # scan till next end of comment, e.g. skip license 
         while (<SRC>) {
            $text[$line++] = $_;
            last if ($_ =~ /math\.libtomcrypt\.org/);
         }
         <SRC>;   
      }
      
      $inline = 0;
      while (<SRC>) {
      next if ($_ =~ /\$Source/);
      next if ($_ =~ /\$Revision/);
      next if ($_ =~ /\$Date/);
         $text[$line++] = $_;
         ++$inline;
         chomp($_);
         $_ =~ s/\t/"    "/ge;
         $_ =~ s/{/"^{"/ge;
         $_ =~ s/}/"^}"/ge;
         $_ =~ s/\\/'\symbol{92}'/ge;
         $_ =~ s/\^/"\\"/ge;
           
         printf OUT ("%03d   ", $line);
         for ($x = 0; $x < length($_); $x++) {
             print OUT chr(vec($_, $x, 8));
             if ($x == 75) { 
                 print OUT "\n      ";
                 ++$wroteline;
             }
         }
         print OUT "\n";
         ++$wroteline;
      }
      $totlines = $line;
      print OUT "\\end{alltt}\n\\end{small}\n";
      close(SRC);
      print "$inline lines\n";
      $wroteline += 2;
   } elsif ($_ =~ m/@\d+,[email protected]/) {
     # line contains [number,text]
     # e.g. @14,for (ix = 0)@
     $txt = $_;
     while ($txt =~ m/@\d+,[email protected]/) {
        @m = split("@",$txt);      # splits into text, one, two
        @parms = split(",",$m[1]);  # splits one,two into two elements 
                
        # now search from $parms[0] down for $parms[1] 
        $found1 = 0;
        $found2 = 0;
        for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
           if ($text[$i] =~ m/\Q$parms[1]\E/) {
              $foundline1 = $i + 1;
              $found1 = 1;
           }
        }
        
        # now search backwards
        for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
           if ($text[$i] =~ m/\Q$parms[1]\E/) {
              $foundline2 = $i + 1;
              $found2 = 1;
           }
        }
        
        # now use the closest match or the first if tied
        if ($found1 == 1 && $found2 == 0) {
           $found = 1;
           $foundline = $foundline1;
        } elsif ($found1 == 0 && $found2 == 1) {
           $found = 1;
           $foundline = $foundline2;
        } elsif ($found1 == 1 && $found2 == 1) {
           $found = 1;
           if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
              $foundline = $foundline1;
           } else {
              $foundline = $foundline2;
           }
        } else {
           $found = 0;
        }
                      
        # if found replace 
        if ($found == 1) {
           $delta = $parms[0] - $foundline;
           print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
           $_ =~ s/@\Q$m[1]\[email protected]/$foundline/;
        } else {
           print "ERROR:  The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
        }
        
        # remake the rest of the line 
        $cnt = @m;
        $txt = "";
        for ($i = 2; $i < $cnt; $i++) {
            $txt = $txt . $m[$i] . "@";
        }
     }
     print OUT $_;
     ++$wroteline;
   } elsif ($_ =~ /~.+~/) {
      # line contains a ~text~ pair used to refer to indexing :-)
      $txt = $_;
      while ($txt =~ /~.+~/) {
         @m = split("~", $txt);
         
         # word is the second position
         $word = @m[1];
         $a = $index1{$word};
         $b = $index2{$word};
         $c = $index3{$word};
         
         # if chapter (a) is zero it wasn't found
         if ($a == 0) {
            print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
         } else {
            # format the tag as x, x.y or x.y.z depending on the values
            $str = $a;
            $str = $str . ".$b" if ($b != 0);
            $str = $str . ".$c" if ($c != 0);
            
            if ($b == 0 && $c == 0) {
               # its a chapter
               if ($a <= 10) {
                  if ($a == 1) {
                     $str = "chapter one";
                  } elsif ($a == 2) {
                     $str = "chapter two";
                  } elsif ($a == 3) {
                     $str = "chapter three";
                  } elsif ($a == 4) {
                     $str = "chapter four";
                  } elsif ($a == 5) {
                     $str = "chapter five";
                  } elsif ($a == 6) {
                     $str = "chapter six";
                  } elsif ($a == 7) {
                     $str = "chapter seven";
                  } elsif ($a == 8) {
                     $str = "chapter eight";
                  } elsif ($a == 9) {
                     $str = "chapter nine";
                  } elsif ($a == 10) {
                     $str = "chapter ten";
                  }
               } else {
                  $str = "chapter " . $str;
               }
            } else {
               $str = "section " . $str     if ($b != 0 && $c == 0);            
               $str = "sub-section " . $str if ($b != 0 && $c != 0);
            }
            
            #substitute
            $_ =~ s/~\Q$word\E~/$str/;
            
            print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
         }
         
         # remake rest of the line
         $cnt = @m;
         $txt = "";
         for ($i = 2; $i < $cnt; $i++) {
             $txt = $txt . $m[$i] . "~";
         }
      }
      print OUT $_;
      ++$wroteline;
   } elsif ($_ =~ m/FIGU/) {
      # FIGU,file,caption
      chomp($_);
      @m = split(",", $_);
      print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
      print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
      $wroteline += 4;
   } else {
      print OUT $_;
      ++$wroteline;
   }
}
print "Read $readline lines, wrote $wroteline lines\n";

close (OUT);
close (IN);
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















































































































































































































































































































































































































































































































































Changes to libtommath/callgraph.txt.

more than 10,000 changes

Changes to libtommath/changes.txt.






















1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
..
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124




















July 23rd, 2010
v0.42.0
       -- Fix for mp_prime_next_prime() bug when checking generated prime
       -- allow mp_shrink to shrink initialized, but empty MPI's
       -- Added project and solution files for Visual Studio 2005 and Visual Studio 2008. 

March 10th, 2007
v0.41  -- Wolfgang Ehrhardt suggested a quick fix to mp_div_d() which makes the detection of powers of two quicker. 
       -- [CRI] Added libtommath.dsp for Visual C++ users.

December 24th, 2006
v0.40  -- Updated makefile to properly support LIBNAME
       -- Fixed bug in fast_s_mp_mul_high_digs() which overflowed (line 83), thanks Valgrind!

April 4th, 2006
................................................................................
       -- "mm" from sci.crypt pointed out that my mp_gcd was sub-optimal (I also updated and corrected the book)
       -- updated some of the @@ tags in tommath.src to reflect source changes.
       -- updated email and url info in all source files

Jan 26th, 2006
v0.38  -- broken makefile.shared fixed
       -- removed some carry stores that were not required [updated text]
       
November 18th, 2005
v0.37  -- [Don Porter] reported on a TCL list [HEY SEND ME BUGREPORTS ALREADY!!!] that mp_add_d() would compute -0 with some inputs.  Fixed.
       -- [[email protected]] reported the makefile.bcc was messed up.  Fixed.
       -- [Kevin Kenny] reported some issues with mp_toradix_n().  Now it doesn't require a min of 3 chars of output.  
       -- Made the make command renamable.  Wee

August 1st, 2005
v0.36  -- LTM_PRIME_2MSB_ON was fixed and the "OFF" flag was removed.
       -- [Peter LaDow] found a typo in the XREALLOC macro
       -- [Peter LaDow] pointed out that mp_read_(un)signed_bin should have "const" on the input
       -- Ported LTC patch to fix the prime_random_ex() function to get the bitsize correct [and the maskOR flags]
       -- Kevin Kenny pointed out a stray //
       -- David Hulton pointed out a typo in the textbook [mp_montgomery_setup() pseudo-code]
       -- Neal Hamilton (Elliptic Semiconductor) pointed out that my Karatsuba notation was backwards and that I could use 
          unsigned operations in the routine.  
       -- Paul Schmidt pointed out a linking error in mp_exptmod() when BN_S_MP_EXPTMOD_C is undefined (and another for read_radix)
       -- Updated makefiles to be way more flexible

March 12th, 2005
v0.35  -- Stupid XOR function missing line again... oops.
       -- Fixed bug in invmod not handling negative inputs correctly [Wolfgang Ehrhardt]
       -- Made exteuclid always give positive u3 output...[ Wolfgang Ehrhardt ]
       -- [Wolfgang Ehrhardt] Suggested a fix for mp_reduce() which avoided underruns.  ;-)
       -- mp_rand() would emit one too many digits and it was possible to get a 0 out of it ... oops
       -- Added montgomery to the testing to make sure it handles 1..10 digit moduli correctly
       -- Fixed bug in comba that would lead to possible erroneous outputs when "pa < digs" 
       -- Fixed bug in mp_toradix_size for "0" [Kevin Kenny]
       -- Updated chapters 1-5 of the textbook ;-) It now talks about the new comba code!

February 12th, 2005
v0.34  -- Fixed two more small errors in mp_prime_random_ex()
       -- Fixed overflow in mp_mul_d() [Kevin Kenny]
       -- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size]
       -- Added "large" diminished radix support.  Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so
          Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4)
       -- Updated the manual a bit
       -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the 
          end of Feb/05.  Once I get back I'll have tons of free time and I plan to go to town on the book.
          As of this release the API will freeze.  At least until the book catches up with all the changes.  I welcome
          bug reports but new algorithms will have to wait.

December 23rd, 2004
v0.33  -- Fixed "small" variant for mp_div() which would munge with negative dividends...
       -- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
................................................................................
       -- Made the makefiles easier to configure the group/user that ltm will install as
       -- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan)
       -- Matt Johnston pointed out a missing semi-colon in mp_exptmod

October 29th, 2004
v0.32  -- Added "makefile.shared" for shared object support
       -- Added more to the build options/configs in the manual
       -- Started the Depends framework, wrote dep.pl to scan deps and 
          produce "callgraph.txt" ;-)
       -- Wrote SC_RSA_1 which will enable close to the minimum required to perform
          RSA on 32-bit [or 64-bit] platforms with LibTomCrypt
       -- Merged in the small/slower mp_div replacement.  You can now toggle which
          you want to use as your mp_div() at build time.  Saves roughly 8KB or so.
       -- Renamed a few files and changed some comments to make depends system work better.
          (No changes to function names)
       -- Merged in new Combas that perform 2 reads per inner loop instead of the older 
          3reads/2writes per inner loop of the old code.  Really though if you want speed
          learn to use TomsFastMath ;-)

August 9th, 2004
v0.31  -- "profiled" builds now :-) new timings for Intel Northwoods
       -- Added "pretty" build target
       -- Update mp_init() to actually assign 0's instead of relying on calloc()
................................................................................
          is only accurate to byte lengths).  See the new LTM_PRIME_* flags ;-)
       -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square().
          I've cleaned them all up to be a little more consistent [along with one bug fix] for this release.
       -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function
          call.
       -- Removed /etclib directory [um LibTomPoly deprecates this].
       -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus.
       ++ N.B.  My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org 
          website.  

Jan 25th, 2004
v0.29  ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-)
       -- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???]
       -- Made the mp_prime_rabin_miller_trials() function internal table smaller and also
          set the minimum number of tests to two (sounds a bit safer).
       -- Added a mp_exteuclid() which computes the extended euclidean algorithm.
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|


|







 







|



|









|
|










|










|







 







|







|







 







|
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
..
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
..
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
...
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
Feb 5th, 2016
v1.0.0
       -- Bump to 1.0.0
       -- Dirkjan Bussink provided a faster version of mp_expt_d()
       -- Moritz Lenz contributed a fix to mp_mod()
          and provided mp_get_long() and mp_set_long()
       -- Fixed bugs in mp_read_radix(), mp_radix_size
          Thanks to shameister, Gerhard R,
       -- Christopher Brown provided mp_export() and mp_import()
       -- Improvements in the code of mp_init_copy()
          Thanks to ramkumarkoppu,
       -- lomereiter provided mp_balance_mul()
       -- Alexander Boström from the heimdal project contributed patches to
          mp_prime_next_prime() and mp_invmod() and added a mp_isneg() macro
       -- Fix build issues for Linux x32 ABI
       -- Added mp_get_long_long() and mp_set_long_long()
       -- Carlin provided a patch to use arc4random() instead of rand()
          on platforms where it is supported
       -- Karel Miko provided mp_sqrtmod_prime()


July 23rd, 2010
v0.42.0
       -- Fix for mp_prime_next_prime() bug when checking generated prime
       -- allow mp_shrink to shrink initialized, but empty MPI's
       -- Added project and solution files for Visual Studio 2005 and Visual Studio 2008.

March 10th, 2007
v0.41  -- Wolfgang Ehrhardt suggested a quick fix to mp_div_d() which makes the detection of powers of two quicker.
       -- [CRI] Added libtommath.dsp for Visual C++ users.

December 24th, 2006
v0.40  -- Updated makefile to properly support LIBNAME
       -- Fixed bug in fast_s_mp_mul_high_digs() which overflowed (line 83), thanks Valgrind!

April 4th, 2006
................................................................................
       -- "mm" from sci.crypt pointed out that my mp_gcd was sub-optimal (I also updated and corrected the book)
       -- updated some of the @@ tags in tommath.src to reflect source changes.
       -- updated email and url info in all source files

Jan 26th, 2006
v0.38  -- broken makefile.shared fixed
       -- removed some carry stores that were not required [updated text]

November 18th, 2005
v0.37  -- [Don Porter] reported on a TCL list [HEY SEND ME BUGREPORTS ALREADY!!!] that mp_add_d() would compute -0 with some inputs.  Fixed.
       -- [[email protected]] reported the makefile.bcc was messed up.  Fixed.
       -- [Kevin Kenny] reported some issues with mp_toradix_n().  Now it doesn't require a min of 3 chars of output.
       -- Made the make command renamable.  Wee

August 1st, 2005
v0.36  -- LTM_PRIME_2MSB_ON was fixed and the "OFF" flag was removed.
       -- [Peter LaDow] found a typo in the XREALLOC macro
       -- [Peter LaDow] pointed out that mp_read_(un)signed_bin should have "const" on the input
       -- Ported LTC patch to fix the prime_random_ex() function to get the bitsize correct [and the maskOR flags]
       -- Kevin Kenny pointed out a stray //
       -- David Hulton pointed out a typo in the textbook [mp_montgomery_setup() pseudo-code]
       -- Neal Hamilton (Elliptic Semiconductor) pointed out that my Karatsuba notation was backwards and that I could use
          unsigned operations in the routine.
       -- Paul Schmidt pointed out a linking error in mp_exptmod() when BN_S_MP_EXPTMOD_C is undefined (and another for read_radix)
       -- Updated makefiles to be way more flexible

March 12th, 2005
v0.35  -- Stupid XOR function missing line again... oops.
       -- Fixed bug in invmod not handling negative inputs correctly [Wolfgang Ehrhardt]
       -- Made exteuclid always give positive u3 output...[ Wolfgang Ehrhardt ]
       -- [Wolfgang Ehrhardt] Suggested a fix for mp_reduce() which avoided underruns.  ;-)
       -- mp_rand() would emit one too many digits and it was possible to get a 0 out of it ... oops
       -- Added montgomery to the testing to make sure it handles 1..10 digit moduli correctly
       -- Fixed bug in comba that would lead to possible erroneous outputs when "pa < digs"
       -- Fixed bug in mp_toradix_size for "0" [Kevin Kenny]
       -- Updated chapters 1-5 of the textbook ;-) It now talks about the new comba code!

February 12th, 2005
v0.34  -- Fixed two more small errors in mp_prime_random_ex()
       -- Fixed overflow in mp_mul_d() [Kevin Kenny]
       -- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size]
       -- Added "large" diminished radix support.  Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so
          Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4)
       -- Updated the manual a bit
       -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the
          end of Feb/05.  Once I get back I'll have tons of free time and I plan to go to town on the book.
          As of this release the API will freeze.  At least until the book catches up with all the changes.  I welcome
          bug reports but new algorithms will have to wait.

December 23rd, 2004
v0.33  -- Fixed "small" variant for mp_div() which would munge with negative dividends...
       -- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
................................................................................
       -- Made the makefiles easier to configure the group/user that ltm will install as
       -- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan)
       -- Matt Johnston pointed out a missing semi-colon in mp_exptmod

October 29th, 2004
v0.32  -- Added "makefile.shared" for shared object support
       -- Added more to the build options/configs in the manual
       -- Started the Depends framework, wrote dep.pl to scan deps and
          produce "callgraph.txt" ;-)
       -- Wrote SC_RSA_1 which will enable close to the minimum required to perform
          RSA on 32-bit [or 64-bit] platforms with LibTomCrypt
       -- Merged in the small/slower mp_div replacement.  You can now toggle which
          you want to use as your mp_div() at build time.  Saves roughly 8KB or so.
       -- Renamed a few files and changed some comments to make depends system work better.
          (No changes to function names)
       -- Merged in new Combas that perform 2 reads per inner loop instead of the older
          3reads/2writes per inner loop of the old code.  Really though if you want speed
          learn to use TomsFastMath ;-)

August 9th, 2004
v0.31  -- "profiled" builds now :-) new timings for Intel Northwoods
       -- Added "pretty" build target
       -- Update mp_init() to actually assign 0's instead of relying on calloc()
................................................................................
          is only accurate to byte lengths).  See the new LTM_PRIME_* flags ;-)
       -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square().
          I've cleaned them all up to be a little more consistent [along with one bug fix] for this release.
       -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function
          call.
       -- Removed /etclib directory [um LibTomPoly deprecates this].
       -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus.
       ++ N.B.  My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org
          website.

Jan 25th, 2004
v0.29  ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-)
       -- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???]
       -- Made the mp_prime_rabin_miller_trials() function internal table smaller and also
          set the minimum number of tests to two (sounds a bit safer).
       -- Added a mp_exteuclid() which computes the extended euclidean algorithm.

Deleted libtommath/demo/demo.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
#include <time.h>

#ifdef IOWNANATHLON
#include <unistd.h>
#define SLEEP sleep(4)
#else
#define SLEEP
#endif

#include "tommath.h"

void ndraw(mp_int * a, char *name)
{
   char buf[16000];

   printf("%s: ", name);
   mp_toradix(a, buf, 10);
   printf("%s\n", buf);
}

static void draw(mp_int * a)
{
   ndraw(a, "");
}


unsigned long lfsr = 0xAAAAAAAAUL;

int lbit(void)
{
   if (lfsr & 0x80000000UL) {
      lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
      return 1;
   } else {
      lfsr <<= 1;
      return 0;
   }
}

int myrng(unsigned char *dst, int len, void *dat)
{
   int x;

   for (x = 0; x < len; x++)
      dst[x] = rand() & 0xFF;
   return len;
}



char cmd[4096], buf[4096];
int main(void)
{
   mp_int a, b, c, d, e, f;
   unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n,
      gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t;
   unsigned rr;
   int i, n, err, cnt, ix, old_kara_m, old_kara_s;
   mp_digit mp;


   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);
   mp_init(&f);

   srand(time(NULL));

#if 0
   // test montgomery 
   printf("Testing montgomery...\n");
   for (i = 1; i < 10; i++) {
      printf("Testing digit size: %d\n", i);
      for (n = 0; n < 1000; n++) {
         mp_rand(&a, i);
         a.dp[0] |= 1;

         // let's see if R is right
         mp_montgomery_calc_normalization(&b, &a);
         mp_montgomery_setup(&a, &mp);

         // now test a random reduction 
         for (ix = 0; ix < 100; ix++) {
             mp_rand(&c, 1 + abs(rand()) % (2*i));
             mp_copy(&c, &d);
             mp_copy(&c, &e);

             mp_mod(&d, &a, &d);
             mp_montgomery_reduce(&c, &a, mp);
             mp_mulmod(&c, &b, &a, &c);

             if (mp_cmp(&c, &d) != MP_EQ) { 
printf("d = e mod a, c = e MOD a\n");
mp_todecimal(&a, buf); printf("a = %s\n", buf);
mp_todecimal(&e, buf); printf("e = %s\n", buf);
mp_todecimal(&d, buf); printf("d = %s\n", buf);
mp_todecimal(&c, buf); printf("c = %s\n", buf);
printf("compare no compare!\n"); exit(EXIT_FAILURE); }
         }
      }
   }
   printf("done\n");

   // test mp_get_int
   printf("Testing: mp_get_int\n");
   for (i = 0; i < 1000; ++i) {
      t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF;
      mp_set_int(&a, t);
      if (t != mp_get_int(&a)) {
	 printf("mp_get_int() bad result!\n");
	 return 1;
      }
   }
   mp_set_int(&a, 0);
   if (mp_get_int(&a) != 0) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   mp_set_int(&a, 0xffffffff);
   if (mp_get_int(&a) != 0xffffffff) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   // test mp_sqrt
   printf("Testing: mp_sqrt\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);
      n = (rand() & 15) + 1;
      mp_rand(&a, n);
      if (mp_sqrt(&a, &b) != MP_OKAY) {
	 printf("mp_sqrt() error!\n");
	 return 1;
      }
      mp_n_root(&a, 2, &a);
      if (mp_cmp_mag(&b, &a) != MP_EQ) {
	 printf("mp_sqrt() bad result!\n");
	 return 1;
      }
   }

   printf("\nTesting: mp_is_square\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);

      /* test mp_is_square false negatives */
      n = (rand() & 7) + 1;
      mp_rand(&a, n);
      mp_sqr(&a, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fn:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 0) {
	 printf("fn:mp_is_square() bad result!\n");
	 return 1;
      }

      /* test for false positives */
      mp_add_d(&a, 1, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fp:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 1) {
	 printf("fp:mp_is_square() bad result!\n");
	 return 1;
      }

   }
   printf("\n\n");

   /* test for size */
   for (ix = 10; ix < 128; ix++) {
      printf("Testing (not safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    (rand() & 1) ? LTM_PRIME_2MSB_OFF :
			    LTM_PRIME_2MSB_ON, myrng, NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
   }

   for (ix = 16; ix < 128; ix++) {
      printf("Testing (   safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    ((rand() & 1) ? LTM_PRIME_2MSB_OFF :
			     LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng,
			    NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
      /* let's see if it's really a safe prime */
      mp_sub_d(&a, 1, &a);
      mp_div_2(&a, &a);
      mp_prime_is_prime(&a, 8, &cnt);
      if (cnt != MP_YES) {
	 printf("sub is not prime!\n");
	 return EXIT_FAILURE;
      }
   }

   printf("\n\n");

   mp_read_radix(&a, "123456", 10);
   mp_toradix_n(&a, buf, 10, 3);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 4);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 30);
   printf("a == %s\n", buf);


#if 0
   for (;;) {
      fgets(buf, sizeof(buf), stdin);
      mp_read_radix(&a, buf, 10);
      mp_prime_next_prime(&a, 5, 1);
      mp_toradix(&a, buf, 10);
      printf("%s, %lu\n", buf, a.dp[0] & 3);
   }
#endif

   /* test mp_cnt_lsb */
   printf("testing mp_cnt_lsb...\n");
   mp_set(&a, 1);
   for (ix = 0; ix < 1024; ix++) {
      if (mp_cnt_lsb(&a) != ix) {
	 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
	 return 0;
      }
      mp_mul_2(&a, &a);
   }

/* test mp_reduce_2k */
   printf("Testing mp_reduce_2k...\n");
   for (cnt = 3; cnt <= 128; ++cnt) {
      mp_digit tmp;

      mp_2expt(&a, cnt);
      mp_sub_d(&a, 2, &a);	/* a = 2**cnt - 2 */


      printf("\nTesting %4d bits", cnt);
      printf("(%d)", mp_reduce_is_2k(&a));
      mp_reduce_2k_setup(&a, &tmp);
      printf("(%d)", tmp);
      for (ix = 0; ix < 1000; ix++) {
	 if (!(ix & 127)) {
	    printf(".");
	    fflush(stdout);
	 }
	 mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2);
	 mp_copy(&c, &b);
	 mp_mod(&c, &a, &c);
	 mp_reduce_2k(&b, &a, 2);
	 if (mp_cmp(&c, &b)) {
	    printf("FAILED\n");
	    exit(0);
	 }
      }
   }

/* test mp_div_3  */
   printf("Testing mp_div_3...\n");
   mp_set(&d, 3);
   for (cnt = 0; cnt < 10000;) {
      mp_digit r1, r2;

      if (!(++cnt & 127))
	 printf("%9d\r", cnt);
      mp_rand(&a, abs(rand()) % 128 + 1);
      mp_div(&a, &d, &b, &e);
      mp_div_3(&a, &c, &r2);

      if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
	 printf("\n\nmp_div_3 => Failure\n");
      }
   }
   printf("\n\nPassed div_3 testing\n");

/* test the DR reduction */
   printf("testing mp_dr_reduce...\n");
   for (cnt = 2; cnt < 32; cnt++) {
      printf("%d digit modulus\n", cnt);
      mp_grow(&a, cnt);
      mp_zero(&a);
      for (ix = 1; ix < cnt; ix++) {
	 a.dp[ix] = MP_MASK;
      }
      a.used = cnt;
      a.dp[0] = 3;

      mp_rand(&b, cnt - 1);
      mp_copy(&b, &c);

      rr = 0;
      do {
	 if (!(rr & 127)) {
	    printf("%9lu\r", rr);
	    fflush(stdout);
	 }
	 mp_sqr(&b, &b);
	 mp_add_d(&b, 1, &b);
	 mp_copy(&b, &c);

	 mp_mod(&b, &a, &b);
	 mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]);

	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("Failed on trial %lu\n", rr);
	    exit(-1);

	 }
      } while (++rr < 500);
      printf("Passed DR test for %d digits\n", cnt);
   }

#endif

/* test the mp_reduce_2k_l code */
#if 0
#if 0
/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
   mp_2expt(&a, 1024);
   mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
   mp_sub(&a, &b, &a);
#elif 1
/*  p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F  */
   mp_2expt(&a, 2048);
   mp_read_radix(&b,
		 "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
		 16);
   mp_sub(&a, &b, &a);
#endif

   mp_todecimal(&a, buf);
   printf("p==%s\n", buf);
/* now mp_reduce_is_2k_l() should return */
   if (mp_reduce_is_2k_l(&a) != 1) {
      printf("mp_reduce_is_2k_l() return 0, should be 1\n");
      return EXIT_FAILURE;
   }
   mp_reduce_2k_setup_l(&a, &d);
   /* now do a million square+1 to see if it varies */
   mp_rand(&b, 64);
   mp_mod(&b, &a, &b);
   mp_copy(&b, &c);
   printf("testing mp_reduce_2k_l...");
   fflush(stdout);
   for (cnt = 0; cnt < (1UL << 20); cnt++) {
      mp_sqr(&b, &b);
      mp_add_d(&b, 1, &b);
      mp_reduce_2k_l(&b, &a, &d);
      mp_sqr(&c, &c);
      mp_add_d(&c, 1, &c);
      mp_mod(&c, &a, &c);
      if (mp_cmp(&b, &c) != MP_EQ) {
	 printf("mp_reduce_2k_l() failed at step %lu\n", cnt);
	 mp_tohex(&b, buf);
	 printf("b == %s\n", buf);
	 mp_tohex(&c, buf);
	 printf("c == %s\n", buf);
	 return EXIT_FAILURE;
      }
   }
   printf("...Passed\n");
#endif

   div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
      sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n =
      sub_d_n = 0;

   /* force KARA and TOOM to enable despite cutoffs */
   KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8;
   TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16;

   for (;;) {
      /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
      switch (abs(rand()) % 7) {
      case 0:
	 mp_clear(&a);
	 mp_init(&a);
	 break;
      case 1:
	 mp_clear(&b);
	 mp_init(&b);
	 break;
      case 2:
	 mp_clear(&c);
	 mp_init(&c);
	 break;
      case 3:
	 mp_clear(&d);
	 mp_init(&d);
	 break;
      case 4:
	 mp_clear(&e);
	 mp_init(&e);
	 break;
      case 5:
	 mp_clear(&f);
	 mp_init(&f);
	 break;
      case 6:
	 break;			/* don't clear any */
      }


      printf
	 ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ",
	  add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n,
	  expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
      fgets(cmd, 4095, stdin);
      cmd[strlen(cmd) - 1] = 0;
      printf("%s  ]\r", cmd);
      fflush(stdout);
      if (!strcmp(cmd, "mul2d")) {
	 ++mul2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_mul_2d(&a, rr, &a);
	 a.sign = b.sign;
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("mul2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div2d")) {
	 ++div2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_div_2d(&a, rr, &a, &e);
	 a.sign = b.sign;
	 if (a.used == b.used && a.used == 0) {
	    a.sign = b.sign = MP_ZPOS;
	 }
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("div2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add")) {
	 ++add_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_add(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("add %lu failure!\n", add_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

	 /* test the sign/unsigned storage functions */

	 rr = mp_signed_bin_size(&c);
	 mp_to_signed_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_signed_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mp_signed_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }


	 rr = mp_unsigned_bin_size(&c);
	 mp_to_unsigned_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp_mag(&c, &d) != MP_EQ) {
	    printf("mp_unsigned_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sub")) {
	 ++sub_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_sub(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("sub %lu failure!\n", sub_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul")) {
	 ++mul_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_mul(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mul %lu failure!\n", mul_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div")) {
	 ++div_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);

	 mp_div(&a, &b, &e, &f);
	 if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
	    printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e),
		   mp_cmp(&d, &f));
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    draw(&f);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sqr")) {
	 ++sqr_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_copy(&a, &c);
	 mp_sqr(&c, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sqr %lu failure!\n", sqr_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "gcd")) {
	 ++gcd_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_gcd(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("gcd %lu failure!\n", gcd_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "lcm")) {
	 ++lcm_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_lcm(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("lcm %lu failure!\n", lcm_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "expt")) {
	 ++expt_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);
	 mp_copy(&a, &e);
	 mp_exptmod(&e, &b, &c, &e);
	 if (mp_cmp(&d, &e) != MP_EQ) {
	    printf("expt %lu failure!\n", expt_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    return 0;
	 }
      } else if (!strcmp(cmd, "invmod")) {
	 ++inv_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_invmod(&a, &b, &d);
	 mp_mulmod(&d, &a, &b, &e);
	 if (mp_cmp_d(&e, 1) != MP_EQ) {
	    printf("inv [wrong value from MPI?!] failure\n");
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    mp_gcd(&a, &b, &e);
	    draw(&e);
	    return 0;
	 }

      } else if (!strcmp(cmd, "div2")) {
	 ++div2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_div_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("div_2 %lu failure\n", div2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul2")) {
	 ++mul2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_mul_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("mul_2 %lu failure\n", mul2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add_d")) {
	 ++add_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_add_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("add_d %lu failure\n", add_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      } else if (!strcmp(cmd, "sub_d")) {
	 ++sub_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_sub_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sub_d %lu failure\n", sub_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      }
   }
   return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted libtommath/demo/timing.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <tommath.h>
#include <time.h>

ulong64 _tt;

#ifdef IOWNANATHLON
#include <unistd.h>
#define SLEEP sleep(4)
#else
#define SLEEP
#endif


void ndraw(mp_int * a, char *name)
{
   char buf[4096];

   printf("%s: ", name);
   mp_toradix(a, buf, 64);
   printf("%s\n", buf);
}

static void draw(mp_int * a)
{
   ndraw(a, "");
}


unsigned long lfsr = 0xAAAAAAAAUL;

int lbit(void)
{
   if (lfsr & 0x80000000UL) {
      lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
      return 1;
   } else {
      lfsr <<= 1;
      return 0;
   }
}

/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC(void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
   unsigned long long a;
   __asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::
			"m"(a):"%eax", "%edx");
   return a;
#else /* gcc-IA64 version */
   unsigned long result;
   __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");

   while (__builtin_expect((int) result == -1, 0))
      __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");

   return result;
#endif

   // Microsoft and Intel Windows compilers
#elif defined _M_IX86
   __asm rdtsc
#elif defined _M_AMD64
   return __rdtsc();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
   return __getReg(3116);
#else
#error need rdtsc function for this build
#endif
}

#define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x);
//#define DO8(x) DO4(x); DO4(x);
//#define DO(x)  DO8(x); DO8(x);

int main(void)
{
   ulong64 tt, gg, CLK_PER_SEC;
   FILE *log, *logb, *logc, *logd;
   mp_int a, b, c, d, e, f;
   int n, cnt, ix, old_kara_m, old_kara_s;
   unsigned rr;

   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);
   mp_init(&f);

   srand(time(NULL));


   /* temp. turn off TOOM */
   TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;

   CLK_PER_SEC = TIMFUNC();
   sleep(1);
   CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;

   printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
   goto exptmod;
   log = fopen("logs/add.log", "w");
   for (cnt = 8; cnt <= 128; cnt += 8) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);
      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_add(&a, &b, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 100000);
      printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
      fflush(log);
   }
   fclose(log);

   log = fopen("logs/sub.log", "w");
   for (cnt = 8; cnt <= 128; cnt += 8) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);
      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_sub(&a, &b, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 100000);

      printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
      fflush(log);
   }
   fclose(log);

   /* do mult/square twice, first without karatsuba and second with */
 multtest:
   old_kara_m = KARATSUBA_MUL_CUTOFF;
   old_kara_s = KARATSUBA_SQR_CUTOFF;
   for (ix = 0; ix < 2; ix++) {
      printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");

      KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
      KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;

      log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
      for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
	 SLEEP;
	 mp_rand(&a, cnt);
	 mp_rand(&b, cnt);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_mul(&a, &b, &c));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 100);
	 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
	 fflush(log);
      }
      fclose(log);

      log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
      for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
	 SLEEP;
	 mp_rand(&a, cnt);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_sqr(&a, &b));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 100);
	 printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
	 fflush(log);
      }
      fclose(log);

   }
 exptmod:

   {
      char *primes[] = {
	 /* 2K large moduli */
	 "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
	 "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
	 "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
	 /* 2K moduli mersenne primes */
	 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
	 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
	 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
	 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
	 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
	 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",

	 /* DR moduli */
	 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
	 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
	 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
	 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
	 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
	 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
	 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",

	 /* generic unrestricted moduli */
	 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
	 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
	 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
	 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
	 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
	 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
	 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
	 NULL
      };
      log = fopen("logs/expt.log", "w");
      logb = fopen("logs/expt_dr.log", "w");
      logc = fopen("logs/expt_2k.log", "w");
      logd = fopen("logs/expt_2kl.log", "w");
      for (n = 0; primes[n]; n++) {
	 SLEEP;
	 mp_read_radix(&a, primes[n], 10);
	 mp_zero(&b);
	 for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
	    mp_mul_2(&b, &b);
	    b.dp[0] |= lbit();
	    b.used += 1;
	 }
	 mp_sub_d(&a, 1, &c);
	 mp_mod(&b, &c, &b);
	 mp_set(&c, 3);
	 rr = 0;
	 tt = -1;
	 do {
	    gg = TIMFUNC();
	    DO(mp_exptmod(&c, &b, &a, &d));
	    gg = (TIMFUNC() - gg) >> 1;
	    if (tt > gg)
	       tt = gg;
	 } while (++rr < 10);
	 mp_sub_d(&a, 1, &e);
	 mp_sub(&e, &b, &b);
	 mp_exptmod(&c, &b, &a, &e);	/* c^(p-1-b) mod a */
	 mp_mulmod(&e, &d, &a, &d);	/* c^b * c^(p-1-b) == c^p-1 == 1 */
	 if (mp_cmp_d(&d, 1)) {
	    printf("Different (%d)!!!\n", mp_count_bits(&a));
	    draw(&d);
	    exit(0);
	 }
	 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
		mp_count_bits(&a), CLK_PER_SEC / tt, tt);
	 fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
		 "%d %9llu\n", mp_count_bits(&a), tt);
      }
   }
   fclose(log);
   fclose(logb);
   fclose(logc);
   fclose(logd);

   log = fopen("logs/invmod.log", "w");
   for (cnt = 4; cnt <= 128; cnt += 4) {
      SLEEP;
      mp_rand(&a, cnt);
      mp_rand(&b, cnt);

      do {
	 mp_add_d(&b, 1, &b);
	 mp_gcd(&a, &b, &c);
      } while (mp_cmp_d(&c, 1) != MP_EQ);

      rr = 0;
      tt = -1;
      do {
	 gg = TIMFUNC();
	 DO(mp_invmod(&b, &a, &c));
	 gg = (TIMFUNC() - gg) >> 1;
	 if (tt > gg)
	    tt = gg;
      } while (++rr < 1000);
      mp_mulmod(&b, &c, &a, &d);
      if (mp_cmp_d(&d, 1) != MP_EQ) {
	 printf("Failed to invert\n");
	 return 0;
      }
      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
	     mp_count_bits(&a), CLK_PER_SEC / tt, tt);
      fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
   }
   fclose(log);

   return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































































































































































































































































































































































































































Deleted libtommath/dep.pl.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/perl 
#
# Walk through source, add labels and make classes
#
#use strict;

my %deplist;

#open class file and write preamble 
open(CLASS, ">tommath_class.h") or die "Couldn't open tommath_class.h for writing\n";
print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";

foreach my $filename (glob "bn*.c") {
   my $define = $filename;

print "Processing $filename\n";

   # convert filename to upper case so we can use it as a define 
   $define =~ tr/[a-z]/[A-Z]/;
   $define =~ tr/\./_/;
   print CLASS "#define $define\n";

   # now copy text and apply #ifdef as required 
   my $apply = 0;
   open(SRC, "<$filename");
   open(OUT, ">tmp");

   # first line will be the #ifdef
   my $line = <SRC>;
   if ($line =~ /include/) {
      print OUT $line;
   } else {
      print OUT "#include <tommath.h>\n#ifdef $define\n$line";
      $apply = 1;
   }
   while (<SRC>) {
      if (!($_ =~ /tommath\.h/)) {
         print OUT $_;
      }
   }
   if ($apply == 1) {
      print OUT "#endif\n";
   }
   close SRC;
   close OUT;

   unlink($filename);
   rename("tmp", $filename);
}
print CLASS "#endif\n\n";

# now do classes 

foreach my $filename (glob "bn*.c") {
   open(SRC, "<$filename") or die "Can't open source file!\n"; 

   # convert filename to upper case so we can use it as a define 
   $filename =~ tr/[a-z]/[A-Z]/;
   $filename =~ tr/\./_/;

   print CLASS "#if defined($filename)\n";
   my $list = $filename;

   # scan for mp_* and make classes
   while (<SRC>) {
      my $line = $_;
      while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) {
          $line = $';
          # now $& is the match, we want to skip over LTM keywords like
          # mp_int, mp_word, mp_digit
          if (!($& eq "mp_digit") && !($& eq "mp_word") && !($& eq "mp_int")) {
             my $a = $&;
             $a =~ tr/[a-z]/[A-Z]/;
             $a = "BN_" . $a . "_C";
             if (!($list =~ /$a/)) {
                print CLASS "   #define $a\n";
             }
             $list = $list . "," . $a;
          }
      }
   }
   @deplist{$filename} = $list;

   print CLASS "#endif\n\n";
   close SRC;
}

print CLASS "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
close CLASS;

#now let's make a cool call graph... 

open(OUT,">callgraph.txt");
$indent = 0;
foreach (keys %deplist) {
   $list = "";
   draw_func(@deplist{$_});
   print OUT "\n\n";
}
close(OUT);

sub draw_func()
{
   my @funcs = split(",", $_[0]);
   if ($list =~ /@funcs[0]/) {
      return;
   } else {
      $list = $list . @funcs[0];
   }
   if ($indent == 0) { }
   elsif ($indent >= 1) { print OUT "|   " x ($indent - 1) . "+--->"; }
   print OUT @funcs[0] . "\n";   
   shift @funcs;
      my $temp = $list;
   foreach my $i (@funcs) {
      ++$indent;
      draw_func(@deplist{$i});
      --$indent;
   }
      $list = $temp;
}


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































Deleted libtommath/etc/2kprime.1.

1
2
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
<
<


Deleted libtommath/etc/2kprime.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/* Makes safe primes of a 2k nature */
#include <tommath.h>
#include <time.h>

int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};

int main(void)
{
   char buf[2000];
   int x, y;
   mp_int q, p;
   FILE *out;
   clock_t t1;
   mp_digit z;
   
   mp_init_multi(&q, &p, NULL);
   
   out = fopen("2kprime.1", "w");
   for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
   top:
       mp_2expt(&q, sizes[x]);
       mp_add_d(&q, 3, &q);
       z = -3;
       
       t1 = clock();
       for(;;) {
         mp_sub_d(&q, 4, &q);
         z += 4;

         if (z > MP_MASK) {
            printf("No primes of size %d found\n", sizes[x]);
            break;
         }
         
         if (clock() - t1 > CLOCKS_PER_SEC) { 
            printf("."); fflush(stdout);
//            sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
            t1 = clock();
         }
         
         /* quick test on q */
         mp_prime_is_prime(&q, 1, &y);
         if (y == 0) {
            continue;
         }

         /* find (q-1)/2 */
         mp_sub_d(&q, 1, &p);
         mp_div_2(&p, &p);
         mp_prime_is_prime(&p, 3, &y);
         if (y == 0) {
            continue;
         }

         /* test on q */
         mp_prime_is_prime(&q, 3, &y);
         if (y == 0) {
            continue;
         }

         break;
       }
       
       if (y == 0) {
          ++sizes[x];
          goto top;
       }
       
       mp_toradix(&q, buf, 10);
       printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
       fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
   }
   
   return 0;
}   
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































Deleted libtommath/etc/drprime.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/* Makes safe primes of a DR nature */
#include <tommath.h>

int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
int main(void)
{
   int res, x, y;
   char buf[4096];
   FILE *out;
   mp_int a, b;
   
   mp_init(&a);
   mp_init(&b);
   
   out = fopen("drprimes.txt", "w");
   for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
   top:
       printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
       mp_grow(&a, sizes[x]);
       mp_zero(&a);
       for (y = 1; y < sizes[x]; y++) {
           a.dp[y] = MP_MASK;
       }
       
       /* make a DR modulus */
       a.dp[0] = -1;
       a.used = sizes[x];
       
       /* now loop */
       res = 0;
       for (;;) { 
          a.dp[0] += 4;
          if (a.dp[0] >= MP_MASK) break;
          mp_prime_is_prime(&a, 1, &res);
          if (res == 0) continue;
          printf("."); fflush(stdout);
          mp_sub_d(&a, 1, &b);
          mp_div_2(&b, &b);
          mp_prime_is_prime(&b, 3, &res);  
          if (res == 0) continue;
          mp_prime_is_prime(&a, 3, &res);
          if (res == 1) break;
	}
        
        if (res != 1) {
           printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
        } else {
           mp_toradix(&a, buf, 10);
           printf("\n\np == %s\n\n", buf);
           fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
        }           
   }
   fclose(out);
   
   mp_clear(&a);
   mp_clear(&b);
   
   return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































Deleted libtommath/etc/drprimes.28.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
DR safe primes for 28-bit digits.

224-bit prime:
p == 26959946667150639794667015087019630673637144422540572481103341844143

532-bit prime:
p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747

784-bit prime:
p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039

1036-bit prime:
p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127

1540-bit prime:
p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783

2072-bit prime:
p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147

3080-bit prime:
p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503

4116-bit prime:
p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















































Deleted libtommath/etc/drprimes.txt.

1
2
3
4
5
6
7
8
9
300-bit prime:
p == 2037035976334486086268445688409378161051468393665936250636140449354381298610415201576637819

540-bit prime:
p == 3599131035634557106248430806148785487095757694641533306480604458089470064537190296255232548883112685719936728506816716098566612844395439751206810991770626477344739

780-bit prime:
p == 6359114106063703798370219984742410466332205126109989319225557147754704702203399726411277962562135973685197744935448875852478791860694279747355800678568677946181447581781401213133886609947027230004277244697462656003655947791725966271167

<
<
<
<
<
<
<
<
<
















Deleted libtommath/etc/makefile.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../

# default lib name (requires install with root)
# LIBNAME=-ltommath

# libname when you can't install the lib with install
LIBNAME=../libtommath.a

#provable primes
pprime: pprime.o
	$(CC) pprime.o $(LIBNAME) -o pprime

# portable [well requires clock()] tuning app
tune: tune.o
	$(CC) tune.o $(LIBNAME) -o tune
	
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
	nasm -f coff timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
	
# for cygwin
tune86c: tune.c
	nasm -f gnuwin32 timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86

#make tune86 for linux or any ELF format
tune86l: tune.c
	nasm -f elf -DUSE_ELF timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
        
# spits out mersenne primes
mersenne: mersenne.o
	$(CC) mersenne.o $(LIBNAME) -o mersenne

# fines DR safe primes for the given config
drprime: drprime.o
	$(CC) drprime.o $(LIBNAME) -o drprime
	
# fines 2k safe primes for the given config
2kprime: 2kprime.o
	$(CC) 2kprime.o $(LIBNAME) -o 2kprime

mont: mont.o
	$(CC) mont.o $(LIBNAME) -o mont

        
clean:
	rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
         *.da *.dyn *.dpi *~
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


































































































Deleted libtommath/etc/makefile.icc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
CC = icc

CFLAGS += -I../

# optimize for SPEED
#
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
# -ax?   specifies make code specifically for ? but compatible with IA-32
# -x?    specifies compile solely for ? [not specifically IA-32 compatible]
#
# where ? is 
#   K - PIII
#   W - first P4 [Williamette]
#   N - P4 Northwood
#   P - P4 Prescott
#   B - Blend of P4 and PM [mobile]
#
# Default to just generic max opts
CFLAGS += -O3 -xP -ip

# default lib name (requires install with root)
# LIBNAME=-ltommath

# libname when you can't install the lib with install
LIBNAME=../libtommath.a

#provable primes
pprime: pprime.o
	$(CC) pprime.o $(LIBNAME) -o pprime

# portable [well requires clock()] tuning app
tune: tune.o
	$(CC) tune.o $(LIBNAME) -o tune
	
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
	nasm -f coff timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
	
# for cygwin
tune86c: tune.c
	nasm -f gnuwin32 timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86

#make tune86 for linux or any ELF format
tune86l: tune.c
	nasm -f elf -DUSE_ELF timer.asm
	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
        
# spits out mersenne primes
mersenne: mersenne.o
	$(CC) mersenne.o $(LIBNAME) -o mersenne

# fines DR safe primes for the given config
drprime: drprime.o
	$(CC) drprime.o $(LIBNAME) -o drprime
	
# fines 2k safe primes for the given config
2kprime: 2kprime.o
	$(CC) 2kprime.o $(LIBNAME) -o 2kprime

mont: mont.o
	$(CC) mont.o $(LIBNAME) -o mont

        
clean:
	rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




































































































































Deleted libtommath/etc/makefile.msvc.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#MSVC Makefile
#
#Tom St Denis

CFLAGS = /I../ /Ox /DWIN32 /W3

pprime: pprime.obj
	cl pprime.obj ../tommath.lib 

mersenne: mersenne.obj
	cl mersenne.obj ../tommath.lib
	
tune: tune.obj
	cl tune.obj ../tommath.lib

mont: mont.obj
	cl mont.obj ../tommath.lib
	
drprime: drprime.obj
	cl drprime.obj ../tommath.lib

2kprime: 2kprime.obj
	cl 2kprime.obj ../tommath.lib
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<












































Deleted libtommath/etc/mersenne.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* Finds Mersenne primes using the Lucas-Lehmer test 
 *
 * Tom St Denis, [email protected]
 */
#include <time.h>
#include <tommath.h>

int
is_mersenne (long s, int *pp)
{
  mp_int  n, u;
  int     res, k;
  
  *pp = 0;

  if ((res = mp_init (&n)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&u)) != MP_OKAY) {
    goto LBL_N;
  }

  /* n = 2^s - 1 */
  if ((res = mp_2expt(&n, s)) != MP_OKAY) {
     goto LBL_MU;
  }
  if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
    goto LBL_MU;
  }

  /* set u=4 */
  mp_set (&u, 4);

  /* for k=1 to s-2 do */
  for (k = 1; k <= s - 2; k++) {
    /* u = u^2 - 2 mod n */
    if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
      goto LBL_MU;
    }
    if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
      goto LBL_MU;
    }

    /* make sure u is positive */
    while (u.sign == MP_NEG) {
      if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
         goto LBL_MU;
      }
    }

    /* reduce */
    if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
      goto LBL_MU;
    }
  }

  /* if u == 0 then its prime */
  if (mp_iszero (&u) == 1) {
    mp_prime_is_prime(&n, 8, pp);
  if (*pp != 1) printf("FAILURE\n");
  }

  res = MP_OKAY;
LBL_MU:mp_clear (&u);
LBL_N:mp_clear (&n);
  return res;
}

/* square root of a long < 65536 */
long
i_sqrt (long x)
{
  long    x1, x2;

  x2 = 16;
  do {
    x1 = x2;
    x2 = x1 - ((x1 * x1) - x) / (2 * x1);
  } while (x1 != x2);

  if (x1 * x1 > x) {
    --x1;
  }

  return x1;
}

/* is the long prime by brute force */
int
isprime (long k)
{
  long    y, z;

  y = i_sqrt (k);
  for (z = 2; z <= y; z++) {
    if ((k % z) == 0)
      return 0;
  }
  return 1;
}


int
main (void)
{
  int     pp;
  long    k;
  clock_t tt;

  k = 3;

  for (;;) {
    /* start time */
    tt = clock ();

    /* test if 2^k - 1 is prime */
    if (is_mersenne (k, &pp) != MP_OKAY) {
      printf ("Whoa error\n");
      return -1;
    }

    if (pp == 1) {
      /* count time */
      tt = clock () - tt;

      /* display if prime */
      printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
    }

    /* goto next odd exponent */
    k += 2;

    /* but make sure its prime */
    while (isprime (k) == 0) {
      k += 2;
    }
  }
  return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






















































































































































































































































































Deleted libtommath/etc/mont.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/* tests the montgomery routines */
#include <tommath.h>

int main(void)
{
   mp_int modulus, R, p, pp;
   mp_digit mp;
   long x, y;

   srand(time(NULL));
   mp_init_multi(&modulus, &R, &p, &pp, NULL);

   /* loop through various sizes */
   for (x = 4; x < 256; x++) {
       printf("DIGITS == %3ld...", x); fflush(stdout);
       
       /* make up the odd modulus */
       mp_rand(&modulus, x);
       modulus.dp[0] |= 1;
       
       /* now find the R value */
       mp_montgomery_calc_normalization(&R, &modulus);
       mp_montgomery_setup(&modulus, &mp);
       
       /* now run through a bunch tests */
       for (y = 0; y < 1000; y++) {
           mp_rand(&p, x/2);        /* p = random */
           mp_mul(&p, &R, &pp);     /* pp = R * p */
           mp_montgomery_reduce(&pp, &modulus, mp);
           
           /* should be equal to p */
           if (mp_cmp(&pp, &p) != MP_EQ) {
              printf("FAILURE!\n");
              exit(-1);
           }
       }
       printf("PASSED\n");
    }
    
    return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















































































Deleted libtommath/etc/pprime.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/* Generates provable primes
 *
 * See http://gmail.com:8080/papers/pp.pdf for more info.
 *
 * Tom St Denis, [email protected], http://tom.gmail.com
 */
#include <time.h>
#include "tommath.h"

int   n_prime;
FILE *primes;

/* fast square root */
static  mp_digit
i_sqrt (mp_word x)
{
  mp_word x1, x2;

  x2 = x;
  do {
    x1 = x2;
    x2 = x1 - ((x1 * x1) - x) / (2 * x1);
  } while (x1 != x2);

  if (x1 * x1 > x) {
    --x1;
  }

  return x1;
}


/* generates a prime digit */
static void gen_prime (void)
{
  mp_digit r, x, y, next;
  FILE *out;

  out = fopen("pprime.dat", "wb");

  /* write first set of primes */
  r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
  r = 31; fwrite(&r, 1, sizeof(mp_digit), out);

  /* get square root, since if 'r' is composite its factors must be < than this */
  y = i_sqrt (r);
  next = (y + 1) * (y + 1);

  for (;;) {
  do {
    r += 2;			/* next candidate */
    r &= MP_MASK;
    if (r < 31) break;

    /* update sqrt ? */
    if (next <= r) {
      ++y;
      next = (y + 1) * (y + 1);
    }

    /* loop if divisible by 3,5,7,11,13,17,19,23,29  */
    if ((r % 3) == 0) {
      x = 0;
      continue;
    }
    if ((r % 5) == 0) {
      x = 0;
      continue;
    }
    if ((r % 7) == 0) {
      x = 0;
      continue;
    }
    if ((r % 11) == 0) {
      x = 0;
      continue;
    }
    if ((r % 13) == 0) {
      x = 0;
      continue;
    }
    if ((r % 17) == 0) {
      x = 0;
      continue;
    }
    if ((r % 19) == 0) {
      x = 0;
      continue;
    }
    if ((r % 23) == 0) {
      x = 0;
      continue;
    }
    if ((r % 29) == 0) {
      x = 0;
      continue;
    }

    /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
    for (x = 30; x <= y; x += 30) {
      if ((r % (x + 1)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 7)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 11)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 13)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 17)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 19)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 23)) == 0) {
	x = 0;
	break;
      }
      if ((r % (x + 29)) == 0) {
	x = 0;
	break;
      }
    }
  } while (x == 0);
  if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
  if (r < 31) break;
  }

  fclose(out);
}

void load_tab(void)
{
   primes = fopen("pprime.dat", "rb");
   if (primes == NULL) {
      gen_prime();
      primes = fopen("pprime.dat", "rb");
   }
   fseek(primes, 0, SEEK_END);
   n_prime = ftell(primes) / sizeof(mp_digit);
}

mp_digit prime_digit(void)
{
   int n;
   mp_digit d;

   n = abs(rand()) % n_prime;
   fseek(primes, n * sizeof(mp_digit), SEEK_SET);
   fread(&d, 1, sizeof(mp_digit), primes);
   return d;
}


/* makes a prime of at least k bits */
int
pprime (int k, int li, mp_int * p, mp_int * q)
{
  mp_int  a, b, c, n, x, y, z, v;
  int     res, ii;
  static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };

  /* single digit ? */
  if (k <= (int) DIGIT_BIT) {
    mp_set (p, prime_digit ());
    return MP_OKAY;
  }

  if ((res = mp_init (&c)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&v)) != MP_OKAY) {
    goto LBL_C;
  }

  /* product of first 50 primes */
  if ((res =
       mp_read_radix (&v,
		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
		      10)) != MP_OKAY) {
    goto LBL_V;
  }

  if ((res = mp_init (&a)) != MP_OKAY) {
    goto LBL_V;
  }

  /* set the prime */
  mp_set (&a, prime_digit ());

  if ((res = mp_init (&b)) != MP_OKAY) {
    goto LBL_A;
  }

  if ((res = mp_init (&n)) != MP_OKAY) {
    goto LBL_B;
  }

  if ((res = mp_init (&x)) != MP_OKAY) {
    goto LBL_N;
  }

  if ((res = mp_init (&y)) != MP_OKAY) {
    goto LBL_X;
  }

  if ((res = mp_init (&z)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* now loop making the single digit */
  while (mp_count_bits (&a) < k) {
    fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
    fflush (stderr);
  top:
    mp_set (&b, prime_digit ());

    /* now compute z = a * b * 2 */
    if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */
      goto LBL_Z;
    }

    if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */
      goto LBL_Z;
    }

    if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */
      goto LBL_Z;
    }

    /* n = z + 1 */
    if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */
      goto LBL_Z;
    }

    /* check (n, v) == 1 */
    if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */
      goto LBL_Z;
    }

    if (mp_cmp_d (&y, 1) != MP_EQ)
      goto top;

    /* now try base x=bases[ii]  */
    for (ii = 0; ii < li; ii++) {
      mp_set (&x, bases[ii]);

      /* compute x^a mod n */
      if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2a mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^b mod n */
      if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2b mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^c mod n == x^ab mod n */
      if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now compute (x^c mod n)^2 */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */
	goto LBL_Z;
      }

      /* y should be 1 */
      if (mp_cmp_d (&y, 1) != MP_EQ)
	continue;
      break;
    }

    /* no bases worked? */
    if (ii == li)
      goto top;

{
   char buf[4096];

   mp_toradix(&n, buf, 10);
   printf("Certificate of primality for:\n%s\n\n", buf);
   mp_toradix(&a, buf, 10);
   printf("A == \n%s\n\n", buf);
   mp_toradix(&b, buf, 10);
   printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
   printf("----------------------------------------------------------------\n");
}

    /* a = n */
    mp_copy (&n, &a);
  }

  /* get q to be the order of the large prime subgroup */
  mp_sub_d (&n, 1, q);
  mp_div_2 (q, q);
  mp_div (q, &b, q, NULL);

  mp_exch (&n, p);

  res = MP_OKAY;
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
  return res;
}


int
main (void)
{
  mp_int  p, q;
  char    buf[4096];
  int     k, li;
  clock_t t1;

  srand (time (NULL));
  load_tab();

  printf ("Enter # of bits: \n");
  fgets (buf, sizeof (buf), stdin);
  sscanf (buf, "%d", &k);

  printf ("Enter number of bases to try (1 to 8):\n");
  fgets (buf, sizeof (buf), stdin);
  sscanf (buf, "%d", &li);


  mp_init (&p);
  mp_init (&q);

  t1 = clock ();
  pprime (k, li, &p, &q);
  t1 = clock () - t1;

  printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));

  mp_toradix (&p, buf, 10);
  printf ("P == %s\n", buf);
  mp_toradix (&q, buf, 10);
  printf ("Q == %s\n", buf);

  return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






















































































































































































































































































































































































































































































































































































































































































































































































































Deleted libtommath/etc/prime.1024.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
Enter # of bits: 
Enter number of bases to try (1 to 8):
Certificate of primality for:
36360080703173363

A == 
89963569

B == 
202082249

G == 2
----------------------------------------------------------------
Certificate of primality for:
4851595597739856136987139

A == 
36360080703173363

B == 
66715963

G == 2
----------------------------------------------------------------
Certificate of primality for:
19550639734462621430325731591027

A == 
4851595597739856136987139

B == 
2014867

G == 2
----------------------------------------------------------------
Certificate of primality for:
10409036141344317165691858509923818734539

A == 
19550639734462621430325731591027

B == 
266207047

G == 2
----------------------------------------------------------------
Certificate of primality for:
1049829549988285012736475602118094726647504414203

A == 
10409036141344317165691858509923818734539

B == 
50428759

G == 2
----------------------------------------------------------------
Certificate of primality for:
77194737385528288387712399596835459931920358844586615003

A == 
1049829549988285012736475602118094726647504414203

B == 
36765367

G == 2
----------------------------------------------------------------
Certificate of primality for:
35663756695365208574443215955488689578374232732893628896541201763

A == 
77194737385528288387712399596835459931920358844586615003

B == 
230998627

G == 2
----------------------------------------------------------------
Certificate of primality for:
16711831463502165169495622246023119698415848120292671294127567620396469803

A == 
35663756695365208574443215955488689578374232732893628896541201763

B == 
234297127

G == 2
----------------------------------------------------------------
Certificate of primality for:
6163534781560285962890718925972249753147470953579266394395432475622345597103528739

A == 
16711831463502165169495622246023119698415848120292671294127567620396469803

B == 
184406323

G == 2
----------------------------------------------------------------
Certificate of primality for:
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787

A == 
6163534781560285962890718925972249753147470953579266394395432475622345597103528739

B == 
66054487

G == 2
----------------------------------------------------------------
Certificate of primality for:
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187

A == 
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787

B == 
108362239

G == 2
----------------------------------------------------------------
Certificate of primality for:
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419

A == 
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187

B == 
127286707

G == 2
----------------------------------------------------------------
Certificate of primality for:
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059

A == 
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419

B == 
229284691

G == 2
----------------------------------------------------------------
Certificate of primality for:
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979

A == 
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059

B == 
152800771

G == 2
----------------------------------------------------------------
Certificate of primality for:
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123

A == 
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979

B == 
246595759

G == 2
----------------------------------------------------------------
Certificate of primality for:
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499

A == 
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123

B == 
4252063

G == 2
----------------------------------------------------------------
Certificate of primality for:
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163

A == 
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499

B == 
210605419

G == 2
----------------------------------------------------------------
Certificate of primality for:
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187

A == 
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163

B == 
74170111

G == 2
----------------------------------------------------------------
Certificate of primality for:
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363

A == 
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187

B == 
260016763

G == 2
----------------------------------------------------------------
Certificate of primality for:
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283

A == 
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363

B == 
102563707

G == 2
----------------------------------------------------------------
Certificate of primality for:
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283

A == 
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283

B == 
137747527

G == 2
----------------------------------------------------------------
Certificate of primality for:
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403

A == 
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283

B == 
135672847

G == 2
----------------------------------------------------------------
Certificate of primality for:
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123

A == 
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403

B == 
241523587

G == 2
----------------------------------------------------------------
Certificate of primality for:
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083

A == 
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123

B == 
248388667

G == 2
----------------------------------------------------------------
Certificate of primality for:
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067

A == 
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083

B == 
61849651

G == 2
----------------------------------------------------------------
Certificate of primality for:
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739

A == 
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067

B == 
62201707

G == 2
----------------------------------------------------------------
Certificate of primality for:
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419

A == 
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739

B == 
264832231

G == 2
----------------------------------------------------------------
Certificate of primality for:
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387

A == 
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419

B == 
54494047

G == 2
----------------------------------------------------------------
Certificate of primality for:
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547

A == 
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387

B == 
131594179

G == 2
----------------------------------------------------------------
Certificate of primality for:
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683

A == 
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547

B == 
266107603

G == 2
----------------------------------------------------------------
Certificate of primality for:
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627

A == 
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683

B == 
214408111

G == 2
----------------------------------------------------------------
Certificate of primality for:
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643

A == 
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627

B == 
44122723

G == 2
----------------------------------------------------------------
Certificate of primality for:
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019

A == 
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643

B == 
40808563

G == 2
----------------------------------------------------------------
Certificate of primality for:
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843

A == 
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019

B == 
77035759

G == 2
----------------------------------------------------------------
Certificate of primality for:
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683

A == 
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843

B == 
222383587

G == 2
----------------------------------------------------------------
Certificate of primality for:
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443

A == 
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683

B == 
23407687

G == 2
----------------------------------------------------------------
Certificate of primality for:
1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723

A == 
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443

B == 
213701827

G == 2
----------------------------------------------------------------


Took 33057 ticks, 1048 bits
P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


























































































































































































































































































































































































































































































































































































































































































































































































































































Deleted libtommath/etc/prime.512.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
Enter # of bits: 
Enter number of bases to try (1 to 8):
Certificate of primality for:
85933926807634727

A == 
253758023

B == 
169322581

G == 5
----------------------------------------------------------------
Certificate of primality for:
23930198825086241462113799

A == 
85933926807634727

B == 
139236037

G == 11
----------------------------------------------------------------
Certificate of primality for:
6401844647261612602378676572510019

A == 
23930198825086241462113799

B == 
133760791

G == 2
----------------------------------------------------------------
Certificate of primality for:
269731366027728777712034888684015329354259

A == 
6401844647261612602378676572510019

B == 
21066691

G == 2
----------------------------------------------------------------
Certificate of primality for:
37942338209025571690075025099189467992329684223707

A == 
269731366027728777712034888684015329354259

B == 
70333567

G == 2
----------------------------------------------------------------
Certificate of primality for:
15306904714258982484473490774101705363308327436988160248323

A == 
37942338209025571690075025099189467992329684223707

B == 
201712723

G == 2
----------------------------------------------------------------
Certificate of primality for:
1616744757018513392810355191503853040357155275733333124624513530099

A == 
15306904714258982484473490774101705363308327436988160248323

B == 
52810963

G == 2
----------------------------------------------------------------
Certificate of primality for:
464222094814208047161771036072622485188658077940154689939306386289983787983

A == 
1616744757018513392810355191503853040357155275733333124624513530099

B == 
143566909

G == 5
----------------------------------------------------------------
Certificate of primality for:
187429931674053784626487560729643601208757374994177258429930699354770049369025096447

A == 
464222094814208047161771036072622485188658077940154689939306386289983787983

B == 
201875281

G == 5
----------------------------------------------------------------
Certificate of primality for:
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563

A == 
187429931674053784626487560729643601208757374994177258429930699354770049369025096447

B == 
268311523

G == 2
----------------------------------------------------------------
Certificate of primality for:
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163

A == 
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563

B == 
5834287

G == 2
----------------------------------------------------------------
Certificate of primality for:
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623

A == 
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163

B == 
81567097

G == 5
----------------------------------------------------------------
Certificate of primality for:
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519

A == 
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623

B == 
151095433

G == 7
----------------------------------------------------------------
Certificate of primality for:
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803

A == 
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519

B == 
119178679

G == 2
----------------------------------------------------------------
Certificate of primality for:
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979

A == 
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803

B == 
256552363

G == 2
----------------------------------------------------------------
Certificate of primality for:
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463

A == 
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979

B == 
86720989

G == 5
----------------------------------------------------------------
Certificate of primality for:
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763

A == 
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463

B == 
182015287

G == 2
----------------------------------------------------------------
Certificate of primality for:
5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243

A == 
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763

B == 
5920567

G == 2
----------------------------------------------------------------


Took 3454 ticks, 521 bits
P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































































































































































































































































































































































































Deleted libtommath/etc/timer.asm.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
; x86 timer in NASM
;
; Tom St Denis, [email protected]
[bits 32]
[section .data]
time dd 0, 0

[section .text]

%ifdef USE_ELF
[global t_start]
t_start:
%else
[global _t_start]
_t_start:
%endif
   push edx
   push eax
   rdtsc
   mov [time+0],edx
   mov [time+4],eax
   pop eax
   pop edx
   ret
   
%ifdef USE_ELF
[global t_read]
t_read:
%else
[global _t_read]
_t_read:
%endif
   rdtsc
   sub eax,[time+4]
   sbb edx,[time+0]
   ret
   
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








































































Deleted libtommath/etc/tune.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/* Tune the Karatsuba parameters
 *
 * Tom St Denis, [email protected]
 */
#include <tommath.h>
#include <time.h>

/* how many times todo each size mult.  Depends on your computer.  For slow computers
 * this can be low like 5 or 10.  For fast [re: Athlon] should be 25 - 50 or so 
 */
#define TIMES (1UL<<14UL)

/* RDTSC from Scott Duplichan */
static ulong64 TIMFUNC (void)
   {
   #if defined __GNUC__
      #if defined(__i386__) || defined(__x86_64__)
         unsigned long long a;
         __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
         return a;
      #else /* gcc-IA64 version */
         unsigned long result;
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         while (__builtin_expect ((int) result == -1, 0))
         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
         return result;
      #endif

   // Microsoft and Intel Windows compilers
   #elif defined _M_IX86
     __asm rdtsc
   #elif defined _M_AMD64
     return __rdtsc ();
   #elif defined _M_IA64
     #if defined __INTEL_COMPILER
       #include <ia64intrin.h>
     #endif
      return __getReg (3116);
   #else
     #error need rdtsc function for this build
   #endif
   }


#ifndef X86_TIMER

/* generic ISO C timer */
ulong64 LBL_T;
void t_start(void) { LBL_T = TIMFUNC(); }
ulong64 t_read(void) { return TIMFUNC() - LBL_T; }

#else
extern void t_start(void);
extern ulong64 t_read(void);
#endif

ulong64 time_mult(int size, int s)
{
  unsigned long     x;
  mp_int  a, b, c;
  ulong64 t1;

  mp_init (&a);
  mp_init (&b);
  mp_init (&c);

  mp_rand (&a, size);
  mp_rand (&b, size);

  if (s == 1) { 
      KARATSUBA_MUL_CUTOFF = size;
  } else {
      KARATSUBA_MUL_CUTOFF = 100000;
  }

  t_start();
  for (x = 0; x < TIMES; x++) {
      mp_mul(&a,&b,&c);
  }
  t1 = t_read();
  mp_clear (&a);
  mp_clear (&b);
  mp_clear (&c);
  return t1;
}

ulong64 time_sqr(int size, int s)
{
  unsigned long     x;
  mp_int  a, b;
  ulong64 t1;

  mp_init (&a);
  mp_init (&b);

  mp_rand (&a, size);

  if (s == 1) { 
      KARATSUBA_SQR_CUTOFF = size;
  } else {
      KARATSUBA_SQR_CUTOFF = 100000;
  }

  t_start();
  for (x = 0; x < TIMES; x++) {
      mp_sqr(&a,&b);
  }
  t1 = t_read();
  mp_clear (&a);
  mp_clear (&b);
  return t1;
}

int
main (void)
{
  ulong64 t1, t2;
  int x, y;

  for (x = 8; ; x += 2) { 
     t1 = time_mult(x, 0);
     t2 = time_mult(x, 1);
     printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
     if (t2 < t1) break;
  }
  y = x;

  for (x = 8; ; x += 2) { 
     t1 = time_sqr(x, 0);
     t2 = time_sqr(x, 1);
     printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
     if (t2 < t1) break;
  }
  printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
  printf("KARATSUBA_SQR_CUTOFF = %d\n", x);

  return 0;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


















































































































































































































































































Deleted libtommath/gen.pl.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#!/usr/bin/perl -w
#
# Generates a "single file" you can use to quickly
# add the whole source without any makefile troubles
#
use strict;

open( OUT, ">mpi.c" ) or die "Couldn't open mpi.c for writing: $!";
foreach my $filename (glob "bn*.c") {
   open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
   print OUT "/* Start: $filename */\n";
   print OUT while <SRC>;
   print OUT "\n/* End: $filename */\n\n";
   close SRC or die "Error closing $filename after reading: $!";
}
print OUT "\n/* EOF */\n";
close OUT or die "Error closing mpi.c after writing: $!";
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
































Deleted libtommath/logs/README.

1
2
3
4
5
6
7
8
9
10
11
12
13
To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.  
Todo this type 

make timing ; ltmtest

in the root.  It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.

After doing that run "gnuplot graphs.dem" to make the PNGs.  If you managed todo that all so far just open index.html to view
them all :-)

Have fun

Tom
<
<
<
<
<
<
<
<
<
<
<
<
<
























Deleted libtommath/logs/add.log.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
480        87
960       111
1440       135
1920       159
2400       200
2880       224
3360       248
3840       272
4320       296
4800       320
5280       344
5760       368
6240       392
6720       416
7200       440
7680       464
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























Deleted libtommath/logs/addsub.png.

cannot compute difference between binary files

Deleted libtommath/logs/expt.log.

1
2
3
4
5
6
7
513   1435869
769   3544970
1025   7791638
2049  46902238
2561  85334899
3073 141451412
4097 308770310
<
<
<
<
<
<
<












Deleted libtommath/logs/expt.png.

cannot compute difference between binary files

Deleted libtommath/logs/expt_2k.log.

1
2
3
4
5
607   2109225
1279  10148314
2203  34126877
3217  82716424
4253 161569606
<
<
<
<
<








Deleted libtommath/logs/expt_2kl.log.

1
2
3
4
1024   7705271
2048  34286851
4096 165207491
521   1618631
<
<
<
<






Deleted libtommath/logs/expt_dr.log.

1
2
3
4
5
6
7
532   1928550
784   3763908
1036   7564221
1540  16566059
2072  32283784
3080  79851565
4116 157843530
<
<
<
<
<
<
<












Deleted libtommath/logs/graphs.dem.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
set terminal png
set size 1.75
set ylabel "Cycles per Operation"
set xlabel "Operand size (bits)"

set output "addsub.png"
plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"

set output "mult.png"
plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"

set output "expt.png"
plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"

set output "invmod.png"
plot 'invmod.log' smooth bezier title "Modular Inverse"

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
































Deleted libtommath/logs/index.html.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
<html>
<head>
<title>LibTomMath Log Plots</title>
</head>
<body>

<h1>Addition and Subtraction</h1>
<center><img src=addsub.png></center>
<hr>

<h1>Multipliers</h1>
<center><img src=mult.png></center>
<hr>

<h1>Exptmod</h1>
<center><img src=expt.png></center>
<hr>

<h1>Modular Inverse</h1>
<center><img src=invmod.png></center>
<hr>

</body>
</html>
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














































Deleted libtommath/logs/invmod.log.

Deleted libtommath/logs/invmod.png.

cannot compute difference between binary files

Deleted libtommath/logs/mult.log.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
271       555
390       855
508      1161
631      1605
749      2117
871      2687
991      3329
1108      4084
1231      4786
1351      5624
1470      6392
1586      7364
1710      8218
1830      9255
1951     10217
2067     11461
2191     12463
2308     13677
2430     14800
2551     16232
2671     17460
2791     18899
2902     20247
3028     21902
3151     23240
3267     24927
3391     26441
3511     28277
3631     29838
3749     31751
3869     33673
3989     35431
4111     37518
4231     39426
4349     41504
4471     43567
4591     45786
4711     47876
4831     50299
4951     52427
5071     54785
5189     57241
5307     59730
5431     62194
5551     64761
5670     67322
5789     70073
5907     72663
6030     75437
6151     78242
6268     81202
6389     83948
6509     86985
6631     89903
6747     93184
6869     96044
6991     99286
7109    102395
7229    105917
7351    108940
7470    112490
7589    115702
7711    119508
7831    122632
7951    126410
8071    129808
8190    133895
8311    137146
8431    141218
8549    144732
8667    149131
8790    152462
8911    156754
9030    160479
9149    165138
9271    168601
9391    173185
9511    176988
9627    181976
9751    185539
9870    190388
9991    194335
10110    199605
10228    203298
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






































































































































































Deleted libtommath/logs/mult.png.

cannot compute difference between binary files

Deleted libtommath/logs/mult_kara.log.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
271       560
391       870
511      1159
631      1605
750      2111
871      2737
991      3361
1111      4054
1231      4778
1351      5600