Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update some libtommath functions to the latest trunk versions. Small step forward in the upgrade to (upcoming) libtommath 1.2. Advantage: simplify Tcl code accessing those functions. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | core-8-5-branch |
Files: | files | file ages | folders |
SHA3-256: |
5bc72628bd0af3e1c7a7a73cf44ba122 |
User & Date: | jan.nijtmans 2019-05-29 22:48:50.305 |
Context
2019-06-10
| ||
18:24 | Remove declarations that are never defined. check-in: 65ba73d0ea user: dgp tags: core-8-5-branch | |
2019-05-29
| ||
23:08 | Merge 8.5 check-in: a5dc393eae user: jan.nijtmans tags: core-8-6-branch | |
22:48 | Update some libtommath functions to the latest trunk versions. Small step forward in the upgrade to ... check-in: 5bc72628bd user: jan.nijtmans tags: core-8-5-branch | |
2019-05-28
| ||
21:38 | Eliminate a set of libtommath-related files that don't do anything. There's no sense in it, keeping ... check-in: 55750caf85 user: jan.nijtmans tags: core-8-5-branch | |
Changes
Changes to generic/tclBasic.c.
︙ | ︙ | |||
1916 1917 1918 1919 1920 1921 1922 | * deleted - We've already deleted a conflicting command */ break; } /* An existing command conflicts. Try to delete it.. */ cmdPtr = Tcl_GetHashValue(hPtr); | | | 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 | * deleted - We've already deleted a conflicting command */ break; } /* An existing command conflicts. Try to delete it.. */ cmdPtr = Tcl_GetHashValue(hPtr); /* * Be careful to preserve * any existing import links so we can restore them down below. That * way, you can redefine a command and its import status will remain * intact. */ |
︙ | ︙ | |||
2103 2104 2105 2106 2107 2108 2109 | break; } /* An existing command conflicts. Try to delete it.. */ cmdPtr = Tcl_GetHashValue(hPtr); /* | | | 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 | break; } /* An existing command conflicts. Try to delete it.. */ cmdPtr = Tcl_GetHashValue(hPtr); /* * [***] This is wrong. See Tcl Bug a16752c252. * However, this buggy behavior is kept under particular * circumstances to accommodate deployed binaries of the * "tclcompiler" program. http://sourceforge.net/projects/tclpro/ * that crash if the bug is fixed. */ if (cmdPtr->objProc == TclInvokeStringCommand |
︙ | ︙ | |||
5184 5185 5186 5187 5188 5189 5190 | int nelements; Tcl_Obj **elements, *copyPtr = TclListObjCopy(NULL, objPtr); CmdFrame *eoFramePtr = (CmdFrame *) TclStackAlloc(interp, sizeof(CmdFrame)); eoFramePtr->type = TCL_LOCATION_EVAL_LIST; | | | 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 | int nelements; Tcl_Obj **elements, *copyPtr = TclListObjCopy(NULL, objPtr); CmdFrame *eoFramePtr = (CmdFrame *) TclStackAlloc(interp, sizeof(CmdFrame)); eoFramePtr->type = TCL_LOCATION_EVAL_LIST; eoFramePtr->level = (iPtr->cmdFramePtr == NULL? 1 : iPtr->cmdFramePtr->level + 1); eoFramePtr->framePtr = iPtr->framePtr; eoFramePtr->nextPtr = iPtr->cmdFramePtr; eoFramePtr->nline = 0; eoFramePtr->line = NULL; |
︙ | ︙ | |||
6342 6343 6344 6345 6346 6347 6348 | } } break; case TCL_NUMBER_BIG: if (Tcl_GetBignumFromObj(interp, objv[1], &big) != TCL_OK) { return TCL_ERROR; } | | | 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 | } } break; case TCL_NUMBER_BIG: if (Tcl_GetBignumFromObj(interp, objv[1], &big) != TCL_OK) { return TCL_ERROR; } if (mp_isneg(&big)) { mp_clear(&big); goto negarg; } break; default: if (Tcl_GetWideIntFromObj(interp, objv[1], &w) != TCL_OK) { return TCL_ERROR; |
︙ | ︙ | |||
6613 6614 6615 6616 6617 6618 6619 | } Tcl_SetObjResult(interp, Tcl_NewWideIntObj(-w)); return TCL_OK; } #endif if (type == TCL_NUMBER_BIG) { | < | | 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 | } Tcl_SetObjResult(interp, Tcl_NewWideIntObj(-w)); return TCL_OK; } #endif if (type == TCL_NUMBER_BIG) { if (mp_cmp_d(ptr, 0) == MP_LT) { Tcl_GetBignumFromObj(NULL, objv[1], &big); tooLarge: mp_neg(&big, &big); Tcl_SetObjResult(interp, Tcl_NewBignumObj(&big)); } else { unChanged: Tcl_SetObjResult(interp, objv[1]); |
︙ | ︙ | |||
6764 6765 6766 6767 6768 6769 6770 | /* * Truncate the bignum; keep only bits in long range. */ mp_int big; Tcl_GetBignumFromObj(NULL, objPtr, &big); | | | 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 | /* * Truncate the bignum; keep only bits in long range. */ mp_int big; Tcl_GetBignumFromObj(NULL, objPtr, &big); mp_mod_2d(&big, CHAR_BIT * sizeof(long), &big); objPtr = Tcl_NewBignumObj(&big); Tcl_IncrRefCount(objPtr); TclGetLongFromObj(NULL, objPtr, &iResult); Tcl_DecrRefCount(objPtr); } Tcl_SetObjResult(interp, Tcl_NewLongObj(iResult)); return TCL_OK; |
︙ | ︙ | |||
6796 6797 6798 6799 6800 6801 6802 | /* * Truncate the bignum; keep only bits in wide int range. */ mp_int big; Tcl_GetBignumFromObj(NULL, objPtr, &big); | | | 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 | /* * Truncate the bignum; keep only bits in wide int range. */ mp_int big; Tcl_GetBignumFromObj(NULL, objPtr, &big); mp_mod_2d(&big, CHAR_BIT * sizeof(Tcl_WideInt), &big); objPtr = Tcl_NewBignumObj(&big); Tcl_IncrRefCount(objPtr); Tcl_GetWideIntFromObj(NULL, objPtr, &wResult); Tcl_DecrRefCount(objPtr); } Tcl_SetObjResult(interp, Tcl_NewWideIntObj(wResult)); return TCL_OK; |
︙ | ︙ | |||
7003 7004 7005 7006 7007 7008 7009 | mp_int big; if (Tcl_GetBignumFromObj(interp, objv[1], &big) != TCL_OK) { /* TODO: more ::errorInfo here? or in caller? */ return TCL_ERROR; } | | | 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 | mp_int big; if (Tcl_GetBignumFromObj(interp, objv[1], &big) != TCL_OK) { /* TODO: more ::errorInfo here? or in caller? */ return TCL_ERROR; } mp_mod_2d(&big, CHAR_BIT * sizeof(long), &big); objPtr = Tcl_NewBignumObj(&big); Tcl_IncrRefCount(objPtr); TclGetLongFromObj(NULL, objPtr, &i); Tcl_DecrRefCount(objPtr); } /* |
︙ | ︙ |
Changes to generic/tclExecute.c.
︙ | ︙ | |||
1357 1358 1359 1360 1361 1362 1363 | * The object is shimmered to bytecode type. * *---------------------------------------------------------------------- */ ByteCode * TclCompileObj( | | | 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 | * The object is shimmered to bytecode type. * *---------------------------------------------------------------------- */ ByteCode * TclCompileObj( Tcl_Interp *interp, Tcl_Obj *objPtr, const CmdFrame *invoker, int word) { register Interp *iPtr = (Interp *) interp; register ByteCode *codePtr; /* Tcl Internal type of bytecode. */ Namespace *namespacePtr = iPtr->varFramePtr->nsPtr; |
︙ | ︙ | |||
4938 4939 4940 4941 4942 4943 4944 | } #endif { mp_int big2; Tcl_TakeBignumFromObj(NULL, value2Ptr, &big2); | < | | < < < < | < | | | > > > > | > | | | 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 | } #endif { mp_int big2; Tcl_TakeBignumFromObj(NULL, value2Ptr, &big2); if ((l1 > 0) ^ mp_isneg(&big2)) { /* * Arguments are same sign; remainder is first operand. */ mp_clear(&big2); TRACE(("%s\n", O2S(valuePtr))); NEXT_INST_F(1, 1, 0); } /* * Arguments are opposite sign; remainder is sum. */ mp_int big1; TclBNInitBignumFromLong(&big1, l1); mp_add(&big2, &big1, &big2); mp_clear(&big1); objResultPtr = Tcl_NewBignumObj(&big2); TRACE(("%s\n", O2S(objResultPtr))); NEXT_INST_F(1, 2, 1); } } #ifndef NO_WIDE_TYPE if (type1 == TCL_NUMBER_WIDE) { Tcl_WideInt w1 = *((const Tcl_WideInt *)ptr1); if (type2 != TCL_NUMBER_BIG) { |
︙ | ︙ | |||
4995 4996 4997 4998 4999 5000 5001 | NEXT_INST_F(1, 2, 1); } { mp_int big2; Tcl_TakeBignumFromObj(NULL, value2Ptr, &big2); /* TODO: internals intrusion */ | | > > > > > > > > | | | | | | | | | | < < < < < < < < | | 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 | NEXT_INST_F(1, 2, 1); } { mp_int big2; Tcl_TakeBignumFromObj(NULL, value2Ptr, &big2); /* TODO: internals intrusion */ if ((w1 > ((Tcl_WideInt) 0)) ^ mp_isneg(&big2)) { /* * Arguments are same sign; remainder is first operand. */ mp_clear(&big2); TRACE(("%s\n", O2S(valuePtr))); NEXT_INST_F(1, 1, 0); } /* * Arguments are opposite sign; remainder is sum. */ mp_int big1; TclBNInitBignumFromWideInt(&big1, w1); mp_add(&big2, &big1, &big2); mp_clear(&big1); objResultPtr = Tcl_NewBignumObj(&big2); TRACE(("%s\n", O2S(objResultPtr))); NEXT_INST_F(1, 2, 1); } } #endif { mp_int big1, big2, bigResult, bigRemainder; Tcl_GetBignumFromObj(NULL, valuePtr, &big1); Tcl_GetBignumFromObj(NULL, value2Ptr, &big2); mp_init(&bigResult); mp_init(&bigRemainder); mp_div(&big1, &big2, &bigResult, &bigRemainder); if (!mp_iszero(&bigRemainder) && (mp_isneg(&bigRemainder) != mp_isneg(&big2))) { /* * Convert to Tcl's integer division rules. */ mp_sub_d(&bigResult, 1, &bigResult); mp_add(&bigRemainder, &big2, &bigRemainder); } |
︙ | ︙ | |||
5312 5313 5314 5315 5316 5317 5318 | DECACHE_STACK_INFO(); IllegalExprOperandType(interp, pc, value2Ptr); CACHE_STACK_INFO(); goto checkForCatch; } if ((type1 == TCL_NUMBER_BIG) || (type2 == TCL_NUMBER_BIG)) { | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < | | < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < < < < | 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 | DECACHE_STACK_INFO(); IllegalExprOperandType(interp, pc, value2Ptr); CACHE_STACK_INFO(); goto checkForCatch; } if ((type1 == TCL_NUMBER_BIG) || (type2 == TCL_NUMBER_BIG)) { mp_int big1, big2, bigResult; Tcl_TakeBignumFromObj(NULL, valuePtr, &big1); Tcl_TakeBignumFromObj(NULL, value2Ptr, &big2); mp_init(&bigResult); switch (*pc) { case INST_BITAND: mp_and(&big1, &big2, &bigResult); break; case INST_BITOR: mp_or(&big1, &big2, &bigResult); break; case INST_BITXOR: mp_xor(&big1, &big2, &bigResult); break; } mp_clear(&big1); mp_clear(&big2); TRACE(("%s %s => ", O2S(valuePtr), O2S(value2Ptr))); if (Tcl_IsShared(valuePtr)) { |
︙ | ︙ | |||
6252 6253 6254 6255 6256 6257 6258 | mp_clear(&big1); mp_clear(&big2); mp_clear(&bigResult); goto divideByZero; } mp_init(&bigRemainder); mp_div(&big1, &big2, &bigResult, &bigRemainder); | < | | 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 | mp_clear(&big1); mp_clear(&big2); mp_clear(&bigResult); goto divideByZero; } mp_init(&bigRemainder); mp_div(&big1, &big2, &bigResult, &bigRemainder); if (!mp_iszero(&bigRemainder) && (mp_isneg(&bigRemainder) != mp_isneg(&big2))) { /* * Convert to Tcl's integer division rules. */ mp_sub_d(&bigResult, 1, &bigResult); mp_add(&bigRemainder, &big2, &bigRemainder); } |
︙ | ︙ |
Changes to generic/tclObj.c.
︙ | ︙ | |||
185 186 187 188 189 190 191 | (objPtr)->internalRep.ptrAndLongRep.ptr = (void*) temp; \ (objPtr)->internalRep.ptrAndLongRep.value = (unsigned long)(-1); \ } else { \ if ((bignum).alloc > 0x7fff) { \ mp_shrink(&(bignum)); \ } \ (objPtr)->internalRep.ptrAndLongRep.ptr = (void*) (bignum).dp; \ | | | 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | (objPtr)->internalRep.ptrAndLongRep.ptr = (void*) temp; \ (objPtr)->internalRep.ptrAndLongRep.value = (unsigned long)(-1); \ } else { \ if ((bignum).alloc > 0x7fff) { \ mp_shrink(&(bignum)); \ } \ (objPtr)->internalRep.ptrAndLongRep.ptr = (void*) (bignum).dp; \ (objPtr)->internalRep.ptrAndLongRep.value = ( (mp_isneg(&bignum) << 30) \ | ((bignum).alloc << 15) | ((bignum).used)); \ } #define UNPACK_BIGNUM(objPtr, bignum) \ if ((objPtr)->internalRep.ptrAndLongRep.value == (unsigned long)(-1)) { \ (bignum) = *((mp_int *) ((objPtr)->internalRep.ptrAndLongRep.ptr)); \ } else { \ |
︙ | ︙ | |||
2783 2784 2785 2786 2787 2788 2789 | unsigned long value = 0, numBytes = sizeof(long); long scratch; unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(&big, bytes, &numBytes) == MP_OKAY) { while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } | | | 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 | unsigned long value = 0, numBytes = sizeof(long); long scratch; unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(&big, bytes, &numBytes) == MP_OKAY) { while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } if (mp_isneg(&big)) { *longPtr = - (long) value; } else { *longPtr = (long) value; } return TCL_OK; } } |
︙ | ︙ | |||
3085 3086 3087 3088 3089 3090 3091 | Tcl_WideInt scratch; unsigned char *bytes = (unsigned char *) &scratch; if (mp_to_unsigned_bin_n(&big, bytes, &numBytes) == MP_OKAY) { while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } | | | 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 | Tcl_WideInt scratch; unsigned char *bytes = (unsigned char *) &scratch; if (mp_to_unsigned_bin_n(&big, bytes, &numBytes) == MP_OKAY) { while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } if (mp_isneg(&big)) { *wideIntPtr = - (Tcl_WideInt) value; } else { *wideIntPtr = (Tcl_WideInt) value; } return TCL_OK; } } |
︙ | ︙ | |||
3504 3505 3506 3507 3508 3509 3510 | unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(bignumValue, bytes, &numBytes) != MP_OKAY) { goto tooLargeForLong; } while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } | | | | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 | unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(bignumValue, bytes, &numBytes) != MP_OKAY) { goto tooLargeForLong; } while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } if (value > (((~(unsigned long)0) >> 1) + mp_isneg(bignumValue))) { goto tooLargeForLong; } if (mp_isneg(bignumValue)) { TclSetLongObj(objPtr, -(long)value); } else { TclSetLongObj(objPtr, (long)value); } mp_clear(bignumValue); return; } |
︙ | ︙ | |||
3529 3530 3531 3532 3533 3534 3535 | unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(bignumValue, bytes, &numBytes) != MP_OKAY) { goto tooLargeForWide; } while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } | | | | 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 | unsigned char *bytes = (unsigned char *)&scratch; if (mp_to_unsigned_bin_n(bignumValue, bytes, &numBytes) != MP_OKAY) { goto tooLargeForWide; } while (numBytes-- > 0) { value = (value << CHAR_BIT) | *bytes++; } if (value > (((~(Tcl_WideUInt)0) >> 1) + mp_isneg(bignumValue))) { goto tooLargeForWide; } if (mp_isneg(bignumValue)) { TclSetWideIntObj(objPtr, -(Tcl_WideInt)value); } else { TclSetWideIntObj(objPtr, (Tcl_WideInt)value); } mp_clear(bignumValue); return; } |
︙ | ︙ |
Changes to generic/tclStrToD.c.
︙ | ︙ | |||
125 126 127 128 129 130 131 | /* floor(FP_PRECISION*log(2)/log(5)) */ #define QUICK_MAX 14 /* floor((FP_PRECISION-1)*log(2)/log(10)) - 1 */ #define BLETCH 0x10 /* Highest power of two that is greater than * DBL_MAX_10_EXP, divided by 16 */ #define DIGIT_GROUP 8 | | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | /* floor(FP_PRECISION*log(2)/log(5)) */ #define QUICK_MAX 14 /* floor((FP_PRECISION-1)*log(2)/log(10)) - 1 */ #define BLETCH 0x10 /* Highest power of two that is greater than * DBL_MAX_10_EXP, divided by 16 */ #define DIGIT_GROUP 8 /* floor(MP_DIGIT_BIT*log(2)/log(10)) */ /* Union used to dismantle floating point numbers. */ typedef union Double { struct { #ifdef WORDS_BIGENDIAN int word0; |
︙ | ︙ | |||
1443 1444 1445 1446 1447 1448 1449 | bignumRepPtr); mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); } else { /* * More than single digit multiplication. Multiply by the appropriate * small powers of 5, and then shift. Large strings of zeroes are * eaten 256 at a time; this is less efficient than it could be, but | | | | 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 | bignumRepPtr); mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); } else { /* * More than single digit multiplication. Multiply by the appropriate * small powers of 5, and then shift. Large strings of zeroes are * eaten 256 at a time; this is less efficient than it could be, but * seems implausible. We presume that MP_DIGIT_BIT is at least 27. The * first multiplication, by up to 10**7, is done with a one-DIGIT * multiply (this presumes that MP_DIGIT_BIT >= 24). */ n = numZeros + 1; mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr); for (i=3; i<=7; ++i) { if (n & (1 << i)) { mp_mul(bignumRepPtr, pow5+i, bignumRepPtr); |
︙ | ︙ | |||
3096 3097 3098 3099 3100 3101 3102 | /* *----------------------------------------------------------------------------- * * ShouldBankerRoundUpPowD -- * * Test whether bankers' rounding should round a digit up. Assumption * is made that the denominator of the fraction being tested is | | | | 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 | /* *----------------------------------------------------------------------------- * * ShouldBankerRoundUpPowD -- * * Test whether bankers' rounding should round a digit up. Assumption * is made that the denominator of the fraction being tested is * a power of 2**MP_DIGIT_BIT. * * Results: * Returns 1 iff the fraction is more than 1/2, or if the fraction * is exactly 1/2 and the digit is odd. * *----------------------------------------------------------------------------- */ inline static int ShouldBankerRoundUpPowD(mp_int* b, /* Numerator of the fraction */ int sd, /* Denominator is 2**(sd*MP_DIGIT_BIT) */ int isodd) /* 1 if the digit is odd, 0 if even */ { int i; static const mp_digit topbit = (1<<(MP_DIGIT_BIT-1)); if (b->used < sd || (b->dp[sd-1] & topbit) == 0) { return 0; |
︙ | ︙ | |||
3149 3150 3151 3152 3153 3154 3155 | inline static int ShouldBankerRoundUpToNextPowD(mp_int* b, /* Numerator of the fraction */ mp_int* m, /* Numerator of the rounding tolerance */ int sd, | | | | 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 | inline static int ShouldBankerRoundUpToNextPowD(mp_int* b, /* Numerator of the fraction */ mp_int* m, /* Numerator of the rounding tolerance */ int sd, /* Common denominator is 2**(sd*MP_DIGIT_BIT) */ int convType, /* Conversion type: STEELE defeats * round-to-even (Not sure why one wants to * do this; I copied it from Gay) FIXME */ int isodd, /* 1 if the integer significand is odd */ mp_int* temp) /* Work area for the calculation */ { int i; /* * Compare B and S-m -- which is the same as comparing B+m and S -- * which we do by computing b+m and doing a bitwhack compare against * 2**(MP_DIGIT_BIT*sd) */ mp_add(b, m, temp); if (temp->used <= sd) { /* too few digits to be > S */ return 0; } if (temp->used > sd+1 || temp->dp[sd] > 1) { /* >= 2s */ |
︙ | ︙ | |||
3196 3197 3198 3199 3200 3201 3202 | * * ShorteningBignumConversionPowD -- * * Converts a double-precision number to the shortest string of * digits that reconverts exactly to the given number, or to * 'ilim' digits if that will yield a shorter result. The denominator * in David Gay's conversion algorithm is known to be a power of | | | 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 | * * ShorteningBignumConversionPowD -- * * Converts a double-precision number to the shortest string of * digits that reconverts exactly to the given number, or to * 'ilim' digits if that will yield a shorter result. The denominator * in David Gay's conversion algorithm is known to be a power of * 2**MP_DIGIT_BIT, and hence the division in the main loop may be replaced * by a digit shift and mask. * * Results: * Returns the string of significant decimal digits, in newly * allocated memory * * Side effects: |
︙ | ︙ | |||
3285 3286 3287 3288 3289 3290 3291 | MulPow5(&mminus, m5, &mminus); if (m2plus > m2minus) { mp_init_copy(&mplus, &mminus); mp_mul_2d(&mplus, m2plus-m2minus, &mplus); } mp_init(&temp); | | | 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 | MulPow5(&mminus, m5, &mminus); if (m2plus > m2minus) { mp_init_copy(&mplus, &mminus); mp_mul_2d(&mplus, m2plus-m2minus, &mplus); } mp_init(&temp); /* Loop through the digits. Do division and mod by s == 2**(sd*MP_DIGIT_BIT) * by mp_digit extraction */ i = 0; for (;;) { if (b.used <= sd) { digit = 0; } else { |
︙ | ︙ | |||
3392 3393 3394 3395 3396 3397 3398 | *----------------------------------------------------------------------------- * * StrictBignumConversionPowD -- * * Converts a double-precision number to a fixed-lengt string of * 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.) * The denominator in David Gay's conversion algorithm is known to | | | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 | *----------------------------------------------------------------------------- * * StrictBignumConversionPowD -- * * Converts a double-precision number to a fixed-lengt string of * 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.) * The denominator in David Gay's conversion algorithm is known to * be a power of 2**MP_DIGIT_BIT, and hence the division in the main * loop may be replaced by a digit shift and mask. * * Results: * Returns the string of significant decimal digits, in newly * allocated memory. * * Side effects: |
︙ | ︙ | |||
3461 3462 3463 3464 3465 3466 3467 | mp_mul_d(&b, 10, &b); ilim = ilim1; --k; } mp_init(&temp); /* | | | 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 | mp_mul_d(&b, 10, &b); ilim = ilim1; --k; } mp_init(&temp); /* * Loop through the digits. Do division and mod by s == 2**(sd*MP_DIGIT_BIT) * by mp_digit extraction */ i = 1; for (;;) { if (b.used <= sd) { digit = 0; |
︙ | ︙ | |||
4230 4231 4232 4233 4234 4235 4236 | m2plus, m2minus, m5, s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { /* * The denominator is a power of 2, so we can replace division * by digit shifts. First we round up s2 to a multiple of | | | 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 | m2plus, m2minus, m5, s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { /* * The denominator is a power of 2, so we can replace division * by digit shifts. First we round up s2 to a multiple of * MP_DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch * into a version of the comparison that's specialized for * the 'power of mp_digit in the denominator' case. */ if (s2 % MP_DIGIT_BIT != 0) { int delta = MP_DIGIT_BIT - (s2 % MP_DIGIT_BIT); b2 += delta; m2plus += delta; |
︙ | ︙ | |||
4290 4291 4292 4293 4294 4295 4296 | s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { /* * The denominator is a power of 2, so we can replace division * by digit shifts. First we round up s2 to a multiple of | | | 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 | s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { /* * The denominator is a power of 2, so we can replace division * by digit shifts. First we round up s2 to a multiple of * MP_DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch * into a version of the comparison that's specialized for * the 'power of mp_digit in the denominator' case. */ if (s2 % MP_DIGIT_BIT != 0) { int delta = MP_DIGIT_BIT - (s2 % MP_DIGIT_BIT); b2 += delta; s2 += delta; |
︙ | ︙ | |||
4569 4570 4571 4572 4573 4574 4575 | * We need a 'mantBits'-bit significand. Determine what shift will * give us that. */ bits = mp_count_bits(a); if (bits > DBL_MAX_EXP*log2FLT_RADIX) { errno = ERANGE; | | | | | 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 | * We need a 'mantBits'-bit significand. Determine what shift will * give us that. */ bits = mp_count_bits(a); if (bits > DBL_MAX_EXP*log2FLT_RADIX) { errno = ERANGE; if (mp_isneg(a)) { return -HUGE_VAL; } else { return HUGE_VAL; } } shift = mantBits - bits; /* * If shift > 0, shift the significand left by the requisite number of * bits. If shift == 0, the significand is already exactly 'mantBits' |
︙ | ︙ | |||
4602 4603 4604 4605 4606 4607 4608 | /* * Round to even */ mp_div_2d(a, -shift, &b, NULL); if (mp_isodd(&b)) { | | | | | | | | 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 | /* * Round to even */ mp_div_2d(a, -shift, &b, NULL); if (mp_isodd(&b)) { if (mp_isneg(&b)) { mp_sub_d(&b, 1, &b); } else { mp_add_d(&b, 1, &b); } } } else { /* * Ordinary rounding */ mp_div_2d(a, -1-shift, &b, NULL); if (mp_isneg(&b)) { mp_sub_d(&b, 1, &b); } else { mp_add_d(&b, 1, &b); } mp_div_2d(&b, 1, &b, NULL); } } /* * Accumulate the result, one mp_digit at a time. |
︙ | ︙ | |||
4644 4645 4646 4647 4648 4649 4650 | r = ldexp(r, bits - mantBits); /* * Return the result with the appropriate sign. */ | | | | | 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 | r = ldexp(r, bits - mantBits); /* * Return the result with the appropriate sign. */ if (mp_isneg(a)) { return -r; } else { return r; } } /* *----------------------------------------------------------------------------- * * TclCeil -- |
︙ | ︙ | |||
4820 4821 4822 4823 4824 4825 4826 | mp_clear(&b); /* * Return the result with the appropriate sign. */ *machexp = bits - mantBits + 2; | | | 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 | mp_clear(&b); /* * Return the result with the appropriate sign. */ *machexp = bits - mantBits + 2; return (mp_isneg(a) ? -r : r); } /* *---------------------------------------------------------------------- * * Pow10TimesFrExp -- * |
︙ | ︙ |
Changes to generic/tclStringObj.c.
︙ | ︙ | |||
2089 2090 2091 2092 2093 2094 2095 | } else if (useWide) { if (Tcl_GetWideIntFromObj(NULL, segment, &w) != TCL_OK) { Tcl_Obj *objPtr; if (Tcl_GetBignumFromObj(interp,segment,&big) != TCL_OK) { goto error; } | | | | 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 | } else if (useWide) { if (Tcl_GetWideIntFromObj(NULL, segment, &w) != TCL_OK) { Tcl_Obj *objPtr; if (Tcl_GetBignumFromObj(interp,segment,&big) != TCL_OK) { goto error; } mp_mod_2d(&big, CHAR_BIT*sizeof(Tcl_WideInt), &big); objPtr = Tcl_NewBignumObj(&big); Tcl_IncrRefCount(objPtr); Tcl_GetWideIntFromObj(NULL, objPtr, &w); Tcl_DecrRefCount(objPtr); } isNegative = (w < (Tcl_WideInt)0); } else if (TclGetLongFromObj(NULL, segment, &l) != TCL_OK) { if (Tcl_GetWideIntFromObj(NULL, segment, &w) != TCL_OK) { Tcl_Obj *objPtr; if (Tcl_GetBignumFromObj(interp,segment,&big) != TCL_OK) { goto error; } mp_mod_2d(&big, CHAR_BIT * sizeof(long), &big); objPtr = Tcl_NewBignumObj(&big); Tcl_IncrRefCount(objPtr); TclGetLongFromObj(NULL, objPtr, &l); Tcl_DecrRefCount(objPtr); } else { l = Tcl_WideAsLong(w); } |
︙ | ︙ |
Changes to generic/tclTestObj.c.
︙ | ︙ | |||
265 266 267 268 269 270 271 | return TCL_ERROR; } if (Tcl_GetBignumFromObj(interp, varPtr[varIndex], &bignumValue) != TCL_OK) { return TCL_ERROR; } if (!Tcl_IsShared(varPtr[varIndex])) { | | | | 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | return TCL_ERROR; } if (Tcl_GetBignumFromObj(interp, varPtr[varIndex], &bignumValue) != TCL_OK) { return TCL_ERROR; } if (!Tcl_IsShared(varPtr[varIndex])) { Tcl_SetIntObj(varPtr[varIndex], !mp_isodd(&bignumValue)); } else { SetVarToObj(varIndex, Tcl_NewIntObj(!mp_isodd(&bignumValue))); } mp_clear(&bignumValue); break; case BIGNUM_RADIXSIZE: if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "varIndex"); |
︙ | ︙ |
Changes to generic/tclTomMath.decls.
1 2 | # tclTomMath.decls -- # | | | | < > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | # tclTomMath.decls -- # # This file contains the declarations for the functions in 'libtommath' # that are contained within the Tcl library. This file is used to # generate the 'tclTomMathDecls.h' and 'tclStubInit.c' files. # # If you edit this file, advance the revision number (and the epoch # if the new stubs are not backward compatible) in tclTomMathDecls.h # # Copyright (c) 2005 by Kevin B. Kenny. All rights reserved. # # See the file "license.terms" for information on usage and redistribution # of this file, and for a DISCLAIMER OF ALL WARRANTIES. library tcl # Define the unsupported generic interfaces. interface tclTomMath # hooks {tclTomMathInt} scspec EXTERN # Declare each of the functions in the Tcl tommath interface declare 0 { int TclBN_epoch(void) } declare 1 { int TclBN_revision(void) } declare 2 { int TclBN_mp_add(mp_int *a, mp_int *b, mp_int *c) } declare 3 { int TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c) } declare 4 { int TclBN_mp_and(const mp_int *a, const mp_int *b, mp_int *c) } declare 5 { void TclBN_mp_clamp(mp_int *a) } declare 6 { void TclBN_mp_clear(mp_int *a) } declare 7 { void TclBN_mp_clear_multi(mp_int *a, ...) } declare 8 { int TclBN_mp_cmp(const mp_int *a, const mp_int *b) } declare 9 { int TclBN_mp_cmp_d(const mp_int *a, mp_digit b) } declare 10 { int TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b) } declare 11 { int TclBN_mp_copy(mp_int *a, mp_int *b) } declare 12 { int TclBN_mp_count_bits(mp_int *a) } declare 13 { int TclBN_mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) } declare 14 { int TclBN_mp_div_d(mp_int *a, mp_digit b, mp_int *q, mp_digit *r) } declare 15 { int TclBN_mp_div_2(mp_int *a, mp_int *q) } declare 16 { int TclBN_mp_div_2d(mp_int *a, int b, mp_int *q, mp_int *r) } declare 17 { int TclBN_mp_div_3(mp_int *a, mp_int *q, mp_digit *r) } declare 18 { void TclBN_mp_exch(mp_int *a, mp_int *b) } declare 19 { int TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c) } declare 20 { int TclBN_mp_grow(mp_int *a, int size) } declare 21 { int TclBN_mp_init(mp_int *a) } declare 22 { int TclBN_mp_init_copy(mp_int *a, mp_int *b) } declare 23 { int TclBN_mp_init_multi(mp_int *a, ...) } declare 24 { int TclBN_mp_init_set(mp_int *a, mp_digit b) } declare 25 { int TclBN_mp_init_size(mp_int *a, int size) } declare 26 { int TclBN_mp_lshd(mp_int *a, int shift) } declare 27 { int TclBN_mp_mod(mp_int *a, mp_int *b, mp_int *r) } declare 28 { int TclBN_mp_mod_2d(mp_int *a, int b, mp_int *r) } declare 29 { int TclBN_mp_mul(mp_int *a, mp_int *b, mp_int *p) } declare 30 { int TclBN_mp_mul_d(mp_int *a, mp_digit b, mp_int *p) } declare 31 { int TclBN_mp_mul_2(mp_int *a, mp_int *p) } declare 32 { int TclBN_mp_mul_2d(mp_int *a, int d, mp_int *p) } declare 33 { int TclBN_mp_neg(mp_int *a, mp_int *b) } declare 34 { int TclBN_mp_or(const mp_int *a, const mp_int *b, mp_int *c) } declare 35 { int TclBN_mp_radix_size(mp_int *a, int radix, int *size) } declare 36 { int TclBN_mp_read_radix(mp_int *a, const char *str, int radix) } declare 37 { void TclBN_mp_rshd(mp_int *a, int shift) } declare 38 { int TclBN_mp_shrink(mp_int *a) } declare 39 { void TclBN_mp_set(mp_int *a, mp_digit b) } declare 40 { int TclBN_mp_sqr(mp_int *a, mp_int *b) } declare 41 { int TclBN_mp_sqrt(mp_int *a, mp_int *b) } declare 42 { int TclBN_mp_sub(mp_int *a, mp_int *b, mp_int *c) } declare 43 { int TclBN_mp_sub_d(mp_int *a, mp_digit b, mp_int *c) } declare 44 { int TclBN_mp_to_unsigned_bin(mp_int *a, unsigned char *b) } declare 45 { int TclBN_mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen) } declare 46 { int TclBN_mp_toradix_n(mp_int *a, char *str, int radix, int maxlen) } declare 47 { int TclBN_mp_unsigned_bin_size(mp_int *a) } declare 48 { int TclBN_mp_xor(const mp_int *a, const mp_int *b, mp_int *c) } declare 49 { void TclBN_mp_zero(mp_int *a) } # internal routines to libtommath - should not be called but must be # exported to accommodate the "tommath" extension declare 50 { void TclBN_reverse(unsigned char *s, int len) } declare 51 { int TclBN_fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs) } declare 52 { int TclBN_fast_s_mp_sqr(mp_int *a, mp_int *b) } declare 53 { int TclBN_mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c) } declare 54 { int TclBN_mp_karatsuba_sqr(mp_int *a, mp_int *b) } declare 55 { int TclBN_mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) } declare 56 { int TclBN_mp_toom_sqr(mp_int *a, mp_int *b) } declare 57 { int TclBN_s_mp_add(mp_int *a, mp_int *b, mp_int *c) } declare 58 { int TclBN_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs) } declare 59 { int TclBN_s_mp_sqr(mp_int *a, mp_int *b) } declare 60 { int TclBN_s_mp_sub(mp_int *a, mp_int *b, mp_int *c) } declare 61 { int TclBN_mp_init_set_int(mp_int *a, unsigned long i) } declare 62 { int TclBN_mp_set_int(mp_int *a, unsigned long i) } declare 63 { int TclBN_mp_cnt_lsb(mp_int *a) } |
Changes to generic/tclTomMath.h.
︙ | ︙ | |||
237 238 239 240 241 242 243 | /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); /* error code to char* string */ /* | | | | | | | > | 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); /* error code to char* string */ /* const char *mp_error_to_string(mp_err code); */ /* ---> init and deinit bignum functions <--- */ /* init a bignum */ /* mp_err mp_init(mp_int *a); */ /* free a bignum */ /* void mp_clear(mp_int *a); */ /* init a null terminated series of arguments */ /* mp_err mp_init_multi(mp_int *mp, ...); */ /* clear a null terminated series of arguments */ /* void mp_clear_multi(mp_int *mp, ...); */ /* exchange two ints */ /* void mp_exch(mp_int *a, mp_int *b); */ /* shrink ram required for a bignum */ /* mp_err mp_shrink(mp_int *a); */ /* grow an int to a given size */ /* mp_err mp_grow(mp_int *a, int size); */ /* init to a given number of digits */ /* mp_err mp_init_size(mp_int *a, int size); */ /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ /* void mp_zero(mp_int *a); */ /* set to a digit */ |
︙ | ︙ | |||
672 673 674 675 676 677 678 | int mp_prime_is_divisible(mp_int *a, int *result); */ /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ /* | | | | | | | | | 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 | int mp_prime_is_divisible(mp_int *a, int *result); */ /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ /* mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result); */ /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ /* mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result); */ /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ /* int mp_prime_rabin_miller_trials(int size); */ /* performs t rounds of Miller-Rabin on "a" using the first * t prime bases. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * * Sets result to 1 if probably prime, 0 otherwise */ /* mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result); */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ /* mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style); */ /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * MP_PRIME_BBS - make prime congruent to 3 mod 4 * MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS) * MP_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ /* |
︙ | ︙ |
Changes to generic/tclTomMathDecls.h.
︙ | ︙ | |||
40 41 42 43 44 45 46 | /* unused - no macro */ #define XMALLOC(x) TclBNAlloc(x) #define XFREE(x) TclBNFree(x) #define XREALLOC(x,n) TclBNRealloc(x,n) #define XCALLOC(n,x) TclBNCalloc(n,x) | < < < < < < < | 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | /* unused - no macro */ #define XMALLOC(x) TclBNAlloc(x) #define XFREE(x) TclBNFree(x) #define XREALLOC(x,n) TclBNRealloc(x,n) #define XCALLOC(n,x) TclBNCalloc(n,x) #define bn_reverse TclBN_reverse #define s_mp_reverse TclBN_reverse #define fast_s_mp_mul_digs TclBN_fast_s_mp_mul_digs #define s_mp_mul_digs_fast TclBN_fast_s_mp_mul_digs #define fast_s_mp_sqr TclBN_fast_s_mp_sqr #define s_mp_sqr_fast TclBN_fast_s_mp_sqr #define mp_add TclBN_mp_add |
︙ | ︙ | |||
168 169 170 171 172 173 174 | #define TclBN_mp_add_d_TCL_DECLARED /* 3 */ EXTERN int TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c); #endif #ifndef TclBN_mp_and_TCL_DECLARED #define TclBN_mp_and_TCL_DECLARED /* 4 */ | | > | | | | 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | #define TclBN_mp_add_d_TCL_DECLARED /* 3 */ EXTERN int TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c); #endif #ifndef TclBN_mp_and_TCL_DECLARED #define TclBN_mp_and_TCL_DECLARED /* 4 */ EXTERN int TclBN_mp_and(CONST mp_int *a, CONST mp_int *b, mp_int *c); #endif #ifndef TclBN_mp_clamp_TCL_DECLARED #define TclBN_mp_clamp_TCL_DECLARED /* 5 */ EXTERN void TclBN_mp_clamp(mp_int *a); #endif #ifndef TclBN_mp_clear_TCL_DECLARED #define TclBN_mp_clear_TCL_DECLARED /* 6 */ EXTERN void TclBN_mp_clear(mp_int *a); #endif #ifndef TclBN_mp_clear_multi_TCL_DECLARED #define TclBN_mp_clear_multi_TCL_DECLARED /* 7 */ EXTERN void TclBN_mp_clear_multi(mp_int *a, ...); #endif #ifndef TclBN_mp_cmp_TCL_DECLARED #define TclBN_mp_cmp_TCL_DECLARED /* 8 */ EXTERN int TclBN_mp_cmp(CONST mp_int *a, CONST mp_int *b); #endif #ifndef TclBN_mp_cmp_d_TCL_DECLARED #define TclBN_mp_cmp_d_TCL_DECLARED /* 9 */ EXTERN int TclBN_mp_cmp_d(CONST mp_int *a, mp_digit b); #endif #ifndef TclBN_mp_cmp_mag_TCL_DECLARED #define TclBN_mp_cmp_mag_TCL_DECLARED /* 10 */ EXTERN int TclBN_mp_cmp_mag(CONST mp_int *a, CONST mp_int *b); #endif #ifndef TclBN_mp_copy_TCL_DECLARED #define TclBN_mp_copy_TCL_DECLARED /* 11 */ EXTERN int TclBN_mp_copy(mp_int *a, mp_int *b); #endif #ifndef TclBN_mp_count_bits_TCL_DECLARED |
︙ | ︙ | |||
321 322 323 324 325 326 327 | #define TclBN_mp_neg_TCL_DECLARED /* 33 */ EXTERN int TclBN_mp_neg(mp_int *a, mp_int *b); #endif #ifndef TclBN_mp_or_TCL_DECLARED #define TclBN_mp_or_TCL_DECLARED /* 34 */ | | > | 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | #define TclBN_mp_neg_TCL_DECLARED /* 33 */ EXTERN int TclBN_mp_neg(mp_int *a, mp_int *b); #endif #ifndef TclBN_mp_or_TCL_DECLARED #define TclBN_mp_or_TCL_DECLARED /* 34 */ EXTERN int TclBN_mp_or(CONST mp_int *a, CONST mp_int *b, mp_int *c); #endif #ifndef TclBN_mp_radix_size_TCL_DECLARED #define TclBN_mp_radix_size_TCL_DECLARED /* 35 */ EXTERN int TclBN_mp_radix_size(mp_int *a, int radix, int *size); #endif #ifndef TclBN_mp_read_radix_TCL_DECLARED |
︙ | ︙ | |||
394 395 396 397 398 399 400 | #define TclBN_mp_unsigned_bin_size_TCL_DECLARED /* 47 */ EXTERN int TclBN_mp_unsigned_bin_size(mp_int *a); #endif #ifndef TclBN_mp_xor_TCL_DECLARED #define TclBN_mp_xor_TCL_DECLARED /* 48 */ | | > | 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | #define TclBN_mp_unsigned_bin_size_TCL_DECLARED /* 47 */ EXTERN int TclBN_mp_unsigned_bin_size(mp_int *a); #endif #ifndef TclBN_mp_xor_TCL_DECLARED #define TclBN_mp_xor_TCL_DECLARED /* 48 */ EXTERN int TclBN_mp_xor(CONST mp_int *a, CONST mp_int *b, mp_int *c); #endif #ifndef TclBN_mp_zero_TCL_DECLARED #define TclBN_mp_zero_TCL_DECLARED /* 49 */ EXTERN void TclBN_mp_zero(mp_int *a); #endif #ifndef TclBN_reverse_TCL_DECLARED |
︙ | ︙ | |||
483 484 485 486 487 488 489 | int magic; struct TclTomMathStubHooks *hooks; int (*tclBN_epoch) (void); /* 0 */ int (*tclBN_revision) (void); /* 1 */ int (*tclBN_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 2 */ int (*tclBN_mp_add_d) (mp_int *a, mp_digit b, mp_int *c); /* 3 */ | | | | | | 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | int magic; struct TclTomMathStubHooks *hooks; int (*tclBN_epoch) (void); /* 0 */ int (*tclBN_revision) (void); /* 1 */ int (*tclBN_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 2 */ int (*tclBN_mp_add_d) (mp_int *a, mp_digit b, mp_int *c); /* 3 */ int (*tclBN_mp_and) (CONST mp_int *a, CONST mp_int *b, mp_int *c); /* 4 */ void (*tclBN_mp_clamp) (mp_int *a); /* 5 */ void (*tclBN_mp_clear) (mp_int *a); /* 6 */ void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */ int (*tclBN_mp_cmp) (CONST mp_int *a, CONST mp_int *b); /* 8 */ int (*tclBN_mp_cmp_d) (CONST mp_int *a, mp_digit b); /* 9 */ int (*tclBN_mp_cmp_mag) (CONST mp_int *a, CONST mp_int *b); /* 10 */ int (*tclBN_mp_copy) (mp_int *a, mp_int *b); /* 11 */ int (*tclBN_mp_count_bits) (mp_int *a); /* 12 */ int (*tclBN_mp_div) (mp_int *a, mp_int *b, mp_int *q, mp_int *r); /* 13 */ int (*tclBN_mp_div_d) (mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */ int (*tclBN_mp_div_2) (mp_int *a, mp_int *q); /* 15 */ int (*tclBN_mp_div_2d) (mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */ int (*tclBN_mp_div_3) (mp_int *a, mp_int *q, mp_digit *r); /* 17 */ |
︙ | ︙ | |||
513 514 515 516 517 518 519 | int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */ int (*tclBN_mp_mod_2d) (mp_int *a, int b, mp_int *r); /* 28 */ int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */ int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */ int (*tclBN_mp_mul_2) (mp_int *a, mp_int *p); /* 31 */ int (*tclBN_mp_mul_2d) (mp_int *a, int d, mp_int *p); /* 32 */ int (*tclBN_mp_neg) (mp_int *a, mp_int *b); /* 33 */ | | | | 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */ int (*tclBN_mp_mod_2d) (mp_int *a, int b, mp_int *r); /* 28 */ int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */ int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */ int (*tclBN_mp_mul_2) (mp_int *a, mp_int *p); /* 31 */ int (*tclBN_mp_mul_2d) (mp_int *a, int d, mp_int *p); /* 32 */ int (*tclBN_mp_neg) (mp_int *a, mp_int *b); /* 33 */ int (*tclBN_mp_or) (CONST mp_int *a, CONST mp_int *b, mp_int *c); /* 34 */ int (*tclBN_mp_radix_size) (mp_int *a, int radix, int *size); /* 35 */ int (*tclBN_mp_read_radix) (mp_int *a, CONST char *str, int radix); /* 36 */ void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */ int (*tclBN_mp_shrink) (mp_int *a); /* 38 */ void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */ int (*tclBN_mp_sqr) (mp_int *a, mp_int *b); /* 40 */ int (*tclBN_mp_sqrt) (mp_int *a, mp_int *b); /* 41 */ int (*tclBN_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 42 */ int (*tclBN_mp_sub_d) (mp_int *a, mp_digit b, mp_int *c); /* 43 */ int (*tclBN_mp_to_unsigned_bin) (mp_int *a, unsigned char *b); /* 44 */ int (*tclBN_mp_to_unsigned_bin_n) (mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */ int (*tclBN_mp_toradix_n) (mp_int *a, char *str, int radix, int maxlen); /* 46 */ int (*tclBN_mp_unsigned_bin_size) (mp_int *a); /* 47 */ int (*tclBN_mp_xor) (CONST mp_int *a, CONST mp_int *b, mp_int *c); /* 48 */ void (*tclBN_mp_zero) (mp_int *a); /* 49 */ void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */ int (*tclBN_fast_s_mp_mul_digs) (mp_int *a, mp_int *b, mp_int *c, int digs); /* 51 */ int (*tclBN_fast_s_mp_sqr) (mp_int *a, mp_int *b); /* 52 */ int (*tclBN_mp_karatsuba_mul) (mp_int *a, mp_int *b, mp_int *c); /* 53 */ int (*tclBN_mp_karatsuba_sqr) (mp_int *a, mp_int *b); /* 54 */ int (*tclBN_mp_toom_mul) (mp_int *a, mp_int *b, mp_int *c); /* 55 */ |
︙ | ︙ |
Changes to libtommath/bn_mp_and.c.
1 2 | #include <tommath.h> #ifdef BN_MP_AND_C | | > | < | | < > | | < < | > | > | < > | > | > | < | | < > > > > > > | < < < | > > | | > | < | | < < | > > | > | > | | < < < | | > | < < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include <tommath.h> #ifdef BN_MP_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement and */ mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) { int used = MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x & y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_cmp.c.
1 2 | #include <tommath.h> #ifdef BN_MP_CMP_C | | | < < | < < < < < < < < < < < | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include <tommath.h> #ifdef BN_MP_CMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare two ints (signed)*/ mp_ord mp_cmp(const mp_int *a, const mp_int *b) { /* compare based on sign */ if (a->sign != b->sign) { if (a->sign == MP_NEG) { return MP_LT; } else { return MP_GT; } } /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ return mp_cmp_mag(b, a); } else { return mp_cmp_mag(a, b); } } #endif |
Changes to libtommath/bn_mp_cmp_d.c.
1 2 | #include <tommath.h> #ifdef BN_MP_CMP_D_C | | | < < | < < < < < < < < < < | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include <tommath.h> #ifdef BN_MP_CMP_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare a digit */ mp_ord mp_cmp_d(const mp_int *a, mp_digit b) { /* compare based on sign */ if (a->sign == MP_NEG) { return MP_LT; } /* compare based on magnitude */ if (a->used > 1) { return MP_GT; } /* compare the only digit of a to b */ if (a->dp[0] > b) { return MP_GT; } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; } } #endif |
Changes to libtommath/bn_mp_cmp_mag.c.
1 2 | #include <tommath.h> #ifdef BN_MP_CMP_MAG_C | | | < < < < < < < < < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include <tommath.h> #ifdef BN_MP_CMP_MAG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare maginitude of two ints (unsigned) */ mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) { int n; const mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { return MP_GT; } if (a->used < b->used) { return MP_LT; } /* alias for a */ tmpa = a->dp + (a->used - 1); /* alias for b */ tmpb = b->dp + (a->used - 1); /* compare based on digits */ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { if (*tmpa > *tmpb) { return MP_GT; } if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ; } #endif |
Changes to libtommath/bn_mp_or.c.
1 2 | #include <tommath.h> #ifdef BN_MP_OR_C | | > | < | | < > | | < < | > | > | < > | > | | > | | < > > > > > > | < < < | > > | | > | < | | | > | > > > > > | | < < | > > | < < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include <tommath.h> #ifdef BN_MP_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement or */ mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) { int used = MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = ((a->sign == MP_NEG) || (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x | y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_xor.c.
1 2 | #include <tommath.h> #ifdef BN_MP_XOR_C | | > | < | | < > | | < < | > | > | < > | > | > | < | | < > > > > > > | < < < | > > | | > | < | | | > | > > > > > | | < < | > > | < < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include <tommath.h> #ifdef BN_MP_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement xor */ mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c) { int used = MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = (a->sign != b->sign) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x ^ y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/tommath.h.
|
| | | < < | < < < < < < < < < < < < > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef BN_H_ #define BN_H_ #include <string.h> #include <stdlib.h> #include <ctype.h> #include <limits.h> #ifndef MIN #define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX #define MAX(x,y) ((x)>(y)?(x):(y)) #endif #ifndef MP_NO_FILE # include <stdio.h> #endif #ifdef __cplusplus extern "C" { /* C++ compilers don't like assigning void * to mp_digit * */ #define OPT_CAST(x) (x *) |
︙ | ︙ | |||
127 128 129 130 131 132 133 | #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > | < < | < < < < < < > | > > | | | | > | | > > | | | | > | | | | | | | > | | > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > | > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > | | > > > > > > > | | | | | | | | > > > | | | | | | | | | | | | | > | | > | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ #ifdef MP_USE_ENUMS typedef enum { MP_ZPOS = 0, MP_NEG = 1 } mp_sign; typedef enum { MP_LT = -1, MP_EQ = 0, MP_GT = 1 } mp_ord; typedef enum { MP_NO = 0, MP_YES = 1 } mp_bool; typedef enum { MP_OKAY = 0, MP_ERR = -1, MP_MEM = -2, MP_VAL = -3, MP_ITER = -4 } mp_err; #else typedef int mp_sign; #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ typedef int mp_ord; #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ typedef int mp_bool; #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ typedef int mp_err; #define MP_OKAY 0 /* ok result */ #define MP_ERR -1 /* unknown error */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL #define MP_ITER -4 /* Max. iterations reached */ #endif /* tunable cutoffs */ #ifndef MP_FIXED_CUTOFFS extern int KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; #endif /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC # ifndef MP_LOW_MEM # define MP_PREC 32 /* default digits of precision */ # elif defined(MP_8BIT) # define MP_PREC 16 /* default digits of precision */ # else # define MP_PREC 8 /* default digits of precision */ # endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) /* the infamous mp_int structure */ typedef struct { int used, alloc; mp_sign sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define USED(m) ((m)->used) #define DIGIT(m,k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) /* error code to char* string */ const char *mp_error_to_string(mp_err code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ mp_err mp_init(mp_int *a); /* free a bignum */ void mp_clear(mp_int *a); /* init a null terminated series of arguments */ mp_err mp_init_multi(mp_int *mp, ...); /* clear a null terminated series of arguments */ void mp_clear_multi(mp_int *mp, ...); /* exchange two ints */ void mp_exch(mp_int *a, mp_int *b); /* shrink ram required for a bignum */ mp_err mp_shrink(mp_int *a); /* grow an int to a given size */ mp_err mp_grow(mp_int *a, int size); /* init to a given number of digits */ mp_err mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ void mp_zero(mp_int *a); /* set to a digit */ void mp_set(mp_int *a, mp_digit b); /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b); /* get a 32-bit value */ unsigned long mp_get_int(mp_int * a); /* initialize and set a digit */ int mp_init_set (mp_int * a, mp_digit b); /* initialize and set 32-bit value */ int mp_init_set_int (mp_int * a, unsigned long b); /* copy, b = a */ mp_err mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ mp_err mp_init_copy(mp_int *a, const mp_int *b); /* trim unused digits */ void mp_clamp(mp_int *a); /* import binary data */ mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); /* export binary data */ mp_err mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op); /* ---> digit manipulation <--- */ /* right shift by "b" digits */ void mp_rshd(mp_int *a, int b); /* left shift by "b" digits */ mp_err mp_lshd(mp_int *a, int b); /* c = a / 2**b, implemented as c = a >> b */ mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); /* b = a/2 */ mp_err mp_div_2(const mp_int *a, mp_int *b); /* c = a * 2**b, implemented as c = a << b */ mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c); /* b = a*2 */ mp_err mp_mul_2(const mp_int *a, mp_int *b); /* c = a mod 2**b */ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c); /* computes a = 2**b */ mp_err mp_2expt(mp_int *a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(const mp_int *a); /* I Love Earth! */ /* makes a pseudo-random int of a given size */ mp_err mp_rand(mp_int *a, int digits); /* ---> binary operations <--- */ /* c = a XOR b (two complement) */ mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c); /* c = a OR b (two complement) */ mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c); /* c = a AND b (two complement) */ mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c); /* ---> Basic arithmetic <--- */ /* b = -a */ mp_err mp_neg(const mp_int *a, mp_int *b); /* b = |a| */ mp_err mp_abs(const mp_int *a, mp_int *b); /* compare a to b */ mp_ord mp_cmp(const mp_int *a, const mp_int *b); /* compare |a| to |b| */ mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b); /* c = a + b */ mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c); /* c = a - b */ mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c); /* c = a * b */ mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c); /* b = a*a */ mp_err mp_sqr(const mp_int *a, mp_int *b); /* a/b => cb + d == a */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); /* c = a mod b, 0 <= c < b */ mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ mp_ord mp_cmp_d(const mp_int *a, mp_digit b); /* c = a + b */ mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c); /* Increment "a" by one like "a++". Changes input! */ mp_err mp_incr(mp_int *a); /* c = a - b */ mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c); /* Decrement "a" by one like "a--". Changes input! */ mp_err mp_decr(mp_int *a); /* c = a * b */ mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c); /* a/b => cb + d == a */ mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d); /* a/3 => 3c + d == a */ mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c); /* c = a mod b, 0 <= c < b */ mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a - b (mod c) */ mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a * b (mod c) */ mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* c = a * a (mod b) */ mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = 1/a (mod b) */ mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = (a, b) */ mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); /* produces value such that U1*a + U2*b = U3 */ mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ int mp_n_root(mp_int *a, mp_digit b, mp_int *c); /* special sqrt algo */ mp_err mp_sqrt(const mp_int *arg, mp_int *ret); /* is number a square? */ mp_err mp_is_square(const mp_int *arg, mp_bool *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ int mp_jacobi(mp_int *a, mp_int *n, int *c); /* used to setup the Barrett reduction for a given modulus b */ mp_err mp_reduce_setup(mp_int *a, const mp_int *b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code]. */ mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); /* setups the montgomery reduction */ mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b); /* computes x/R == x (mod N) via Montgomery Reduction */ mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); /* returns 1 if a is a valid DR modulus */ mp_bool mp_dr_is_modulus(const mp_int *a); /* sets the value of "d" required for mp_dr_reduce */ void mp_dr_setup(const mp_int *a, mp_digit *d); /* reduces a modulo n using the Diminished Radix method */ mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k); /* returns true if a can be reduced with mp_reduce_2k */ mp_bool mp_reduce_is_2k(const mp_int *a); /* determines k value for 2k reduction */ mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d); /* returns true if a can be reduced with mp_reduce_2k_l */ mp_bool mp_reduce_is_2k_l(const mp_int *a); /* determines k value for 2k reduction */ mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d); /* Y = G**X (mod P) */ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y); /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT #define PRIME_SIZE 31 #else #define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ extern const mp_digit ltm_prime_tab[]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ mp_err mp_prime_is_divisible(mp_int *a, mp_bool *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); /* performs one strong Lucas-Selfridge test of "a". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result); /* performs one Frobenius test of "a" as described by Paul Underwood. * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result); /* performs t random rounds of Miller-Rabin on "a" additional to * bases 2 and 3. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * Both a strong Lucas-Selfridge to complete the BPSW test * and a separate Frobenius test are available at compile time. * With t<0 a deterministic test is run for primes up to * 318665857834031151167461. With t<13 (abs(t)-13) additional * tests with sequential small primes are run starting at 43. * Is Fips 186.4 compliant if called with t as computed by * mp_prime_rabin_miller_trials(); * * Sets result to 1 if probably prime, 0 otherwise */ mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * MP_PRIME_BBS - make prime congruent to 3 mod 4 * MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS) * MP_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* Integer logarithm to integer base */ mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c); /* ---> radix conversion <--- */ int mp_count_bits(const mp_int *a); int mp_unsigned_bin_size(const mp_int *a); mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b); mp_err mp_to_unsigned_bin_n(const mp_int * a, unsigned char *b, unsigned long *outlen); int mp_signed_bin_size(const mp_int *a); mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b); mp_err mp_to_signed_bin_n(const mp_int * a, unsigned char *b, unsigned long *outlen); mp_err mp_read_radix(mp_int *a, const char *str, int radix); mp_err mp_toradix(const mp_int *a, char *str, int radix); mp_err mp_toradix_n(const mp_int * a, char *str, int radix, int maxlen); mp_err mp_radix_size(const mp_int *a, int radix, int *size); #ifndef MP_NO_FILE mp_err mp_fread(mp_int *a, int radix, FILE *stream); mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream); #endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) |
︙ | ︙ |