Tcl Source Code

Check-in [519bf88d4c]
Login
Bounty program for improvements to Tcl and certain Tcl packages.
Tcl 2019 Conference, Houston/TX, US, Nov 4-8
Send your abstracts to [email protected]
or submit via the online form by Sep 9.

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge 8.7. Also eliminate some spacing before line-endings
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: 519bf88d4cc97fbe3ea7c3cfb83fbaa7db98abe0af2d268ada7b1ec0729d77ca
User & Date: jan.nijtmans 2019-06-24 07:35:33
Context
2019-06-24
10:17
merge 8.7 check-in: d66ef00ecb user: sebres tags: trunk
07:35
Merge 8.7. Also eliminate some spacing before line-endings check-in: 519bf88d4c user: jan.nijtmans tags: trunk
07:26
Fix test title, since TclGetIntForIndex() is now exported as Tcl_GetIntForIndex() check-in: f68cec6e3a user: jan.nijtmans tags: core-8-branch
2019-06-20
19:43
[6bdadfba7d] Stop crash with multi-lappend and failing writes check-in: df1a5b5e07 user: dkf tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to doc/binary.n.

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
...
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
...
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
...
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
...
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
...
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
...
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
...
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
...
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
...
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
...
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
...
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
...
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
...
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
...
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
...
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
...
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
...
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
...
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
...
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
...
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
...
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
...
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
bytes are used to pad out the field.  If \fIarg\fR is longer than the
specified length, the extra characters will be ignored.  If
\fIcount\fR is
.QW \fB*\fR ,
then all of the bytes in \fIarg\fR will be
formatted.  If \fIcount\fR is omitted, then one character will be
formatted.  For example, the command:
.RS 
.PP
.CS
\fBbinary format\fR a7a*a alpha bravo charlie
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fBalpha\e000\e000bravoc\fR
.CE
.PP
the command:
.PP
.CS
\fBbinary format\fR a* [encoding convertto utf-8 \eu20ac]
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\e342\e202\e254\fR
.CE
.PP
(which is the
UTF-8 byte sequence for a Euro-currency character), and the command:
.PP
.CS
\fBbinary format\fR a* [encoding convertto iso8859-15 \eu20ac]
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\e244\fR
.CE
.PP
(which is the ISO
8859\-15 byte sequence for a Euro-currency character). Contrast these
last two with: 
.PP
.CS
\fBbinary format\fR a* \eu20ac
.CE 
.PP
which returns a binary string equivalent to:
.PP
.CS
\fB\e254\fR
.CE
.PP
................................................................................
(i.e. \fB\exac\fR) by
truncating the high-bits of the character, and which is probably not
what is desired.
.RE
.IP \fBA\fR 5
This form is the same as \fBa\fR except that spaces are used for
padding instead of nulls.  For example,
.RS 
.PP
.CS
\fBbinary format\fR A6A*A alpha bravo charlie
.CE 
.PP
will return
.PP
.CS
\fBalpha bravoc\fR
.CE
.RE
................................................................................
digits will be ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the
digits in \fIarg\fR will be formatted.  If \fIcount\fR is omitted,
then one digit will be formatted.  If the number of bits formatted
does not end at a byte boundary, the remaining bits of the last byte
will be zeros.  For example,
.RS 
.PP
.CS
\fBbinary format\fR b5b* 11100 111000011010
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex07\ex87\ex05\fR
.CE
.RE
.IP \fBB\fR 5
This form is the same as \fBb\fR except that the bits are stored in
high-to-low order within each byte.  For example,
.RS 
.PP
.CS
\fBbinary format\fR B5B* 11100 111000011010
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exe0\exe1\exa0\fR
.CE
.RE
................................................................................
remaining digits.  If \fIarg\fR has more than the specified number of
digits, the extra digits will be ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the digits in \fIarg\fR will be formatted.  If
\fIcount\fR is omitted, then one digit will be formatted.  If the
number of digits formatted does not end at a byte boundary, the
remaining bits of the last byte will be zeros.  For example,
.RS 
.PP
.CS
\fBbinary format\fR H3H*H2 ab DEF 987
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exab\ex00\exde\exf0\ex98\fR
.CE
.RE
.IP \fBh\fR 5
This form is the same as \fBH\fR except that the digits are stored in
low-to-high order within each byte. This is seldom required. For example,
.RS 
.PP
.CS
\fBbinary format\fR h3h*h2 AB def 987
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exba\ex00\exed\ex0f\ex89\fR
.CE
.RE
................................................................................
value. If \fIcount\fR is specified, \fIarg\fR must consist of a list
containing at least that many integers. The low-order 8 bits of each integer
are stored as a one-byte value at the cursor position.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the integers in the list are formatted. If the
number of elements in the list is greater
than \fIcount\fR, then the extra elements are ignored.  For example,
.RS 
.PP
.CS
\fBbinary format\fR c3cc* {3 -3 128 1} 260 {2 5}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\exfd\ex80\ex04\ex02\ex05\fR
.CE
.PP
whereas: 
.PP
.CS
\fBbinary format\fR c {2 5}
.CE 
.PP
will generate an error.
.RE
.IP \fBs\fR 5
This form is the same as \fBc\fR except that it stores one or more
16-bit integers in little-endian byte order in the output string.  The
low-order 16-bits of each integer are stored as a two-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS 
.PP
.CS
\fBbinary format\fR s3 {3 -3 258 1}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\ex00\exfd\exff\ex02\ex01\fR
.CE
.RE
.IP \fBS\fR 5
This form is the same as \fBs\fR except that it stores one or more
16-bit integers in big-endian byte order in the output string.  For
example,
.RS 
.PP
.CS
\fBbinary format\fR S3 {3 -3 258 1}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex00\ex03\exff\exfd\ex01\ex02\fR
.CE
.RE
................................................................................
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
.IP \fBi\fR 5
This form is the same as \fBc\fR except that it stores one or more
32-bit integers in little-endian byte order in the output string.  The
low-order 32-bits of each integer are stored as a four-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS 
.PP
.CS
\fBbinary format\fR i3 {3 -3 65536 1}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\ex00\ex00\ex00\exfd\exff\exff\exff\ex00\ex00\ex01\ex00\fR
.CE
.RE
.IP \fBI\fR 5
This form is the same as \fBi\fR except that it stores one or more one
or more 32-bit integers in big-endian byte order in the output string.
For example,
.RS 
.PP
.CS
\fBbinary format\fR I3 {3 -3 65536 1}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex00\ex00\ex00\ex03\exff\exff\exff\exfd\ex00\ex01\ex00\ex00\fR
.CE
.RE
................................................................................
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
.IP \fBw\fR 5
This form is the same as \fBc\fR except that it stores one or more
64-bit integers in little-endian byte order in the output string.  The
low-order 64-bits of each integer are stored as an eight-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS 
.PP
.CS
\fBbinary format\fR w 7810179016327718216
.CE 
.PP
will return the binary string \fBHelloTcl\fR.
.RE
.IP \fBW\fR 5
This form is the same as \fBw\fR except that it stores one or more one
or more 64-bit integers in big-endian byte order in the output string.
For example,
.RS 
.PP
.CS
\fBbinary format\fR Wc 4785469626960341345 110
.CE 
.PP
will return the binary string \fBBigEndian\fR
.RE
.IP \fBm\fR 5
This form (mnemonically the mirror of \fBw\fR) is the same as \fBw\fR
and \fBW\fR except that it stores the 64-bit integers in the output
string in the native byte order of the machine where the Tcl script is
................................................................................
point number may vary across architectures, so the number of bytes
that are generated may vary.  If the value overflows the
machine's native representation, then the value of FLT_MAX
as defined by the system will be used instead.  Because Tcl uses
double-precision floating point numbers internally, there may be some
loss of precision in the conversion to single-precision.  For example,
on a Windows system running on an Intel Pentium processor,
.RS 
.PP
.CS
\fBbinary format\fR f2 {1.6 3.4}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\excd\excc\excc\ex3f\ex9a\ex99\ex59\ex40\fR
.CE
.RE
................................................................................
This form is the same as \fBr\fR except that it stores the
single-precision floating point numbers in big-endian order.
.IP \fBd\fR 5
This form is the same as \fBf\fR except that it stores one or more one
or more double-precision floating point numbers in the machine's native
representation in the output string.  For example, on a
Windows system running on an Intel Pentium processor,
.RS 
.PP
.CS
\fBbinary format\fR d1 {1.6}
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f\fR
.CE
.RE
................................................................................
double-precision floating point numbers in big-endian order.
.IP \fBx\fR 5
Stores \fIcount\fR null bytes in the output string.  If \fIcount\fR is
not specified, stores one null byte.  If \fIcount\fR is
.QW \fB*\fR ,
generates an error.  This type does not consume an argument.  For
example,
.RS 
.PP
.CS
\fBbinary format\fR a3xa3x2a3 abc def ghi
.CE 
.PP
will return a binary string equivalent to:
.PP
.CS
\fBabc\e000def\e000\e000ghi\fR
.CE
.RE
................................................................................
\fIcount\fR is
.QW \fB*\fR
or is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte
stored will be the first byte in the result string.  If \fIcount\fR is
omitted then the cursor is moved back one byte.  This type does not
consume an argument.  For example,
.RS 
.PP
.CS
\fBbinary format\fR a3X*a3X2a3 abc def ghi
.CE 
.PP
will return \fBdghi\fR.
.RE
.IP \[email protected]\fR 5
Moves the cursor to the absolute location in the output string
specified by \fIcount\fR.  Position 0 refers to the first byte in the
output string.  If \fIcount\fR refers to a position beyond the last
................................................................................
byte stored so far, then null bytes will be placed in the uninitialized
locations and the cursor will be placed at the specified location.  If
\fIcount\fR is
.QW \fB*\fR ,
then the cursor is moved to the current end of
the output string.  If \fIcount\fR is omitted, then an error will be
generated.  This type does not consume an argument. For example,
.RS 
.PP
.CS
\fBbinary format\fR [email protected]@*[email protected] abcde f ghi j
.CE 
.PP
will return
.PP
.CS
\fBabfdeghi\e000\e000j\fR
.CE
.RE
................................................................................
consume arguments, then an error is generated. The flag character
.QW u
may be given to cause some types to be read as unsigned values. The flag
is accepted for all field types but is ignored for non-integer fields.
.PP
A similar example as with \fBbinary format\fR should explain the
relation between field specifiers and arguments in case of the binary
scan subcommand: 
.PP
.CS
\fBbinary scan\fR $bytes s3s first second
.CE
.PP
This command (provided the binary string in the variable \fIbytes\fR
is long enough) assigns a list of three integers to the variable
\fIfirst\fR and assigns a single value to the variable \fIsecond\fR.
If \fIbytes\fR contains fewer than 8 bytes (i.e. four 2-byte
integers), no assignment to \fIsecond\fR will be made, and if
\fIbytes\fR contains fewer than 6 bytes (i.e. three 2-byte integers),
no assignment to \fIfirst\fR will be made.  Hence: 
.PP
.CS
puts [\fBbinary scan\fR abcdefg s3s first second]
puts $first
puts $second
.CE 
.PP
will print (assuming neither variable is set previously): 
.PP
.CS
1
25185 25699 26213
can't read "second": no such variable
.CE
.PP
It is \fIimportant\fR to note that the \fBc\fR, \fBs\fR, and \fBS\fR
(and \fBi\fR and \fBI\fR on 64bit systems) will be scanned into
long data size values.  In doing this, values that have their high
bit set (0x80 for chars, 0x8000 for shorts, 0x80000000 for ints),
will be sign extended.  Thus the following will occur: 
.PP
.CS
set signShort [\fBbinary format\fR s1 0x8000]
\fBbinary scan\fR $signShort s1 val; \fI# val == 0xFFFF8000\fR
.CE 
.PP
If you require unsigned values you can include the
.QW u
flag character following
the field type. For example, to read an unsigned short value: 
.PP
.CS
set signShort [\fBbinary format\fR s1 0x8000]
\fBbinary scan\fR $signShort su1 val; \fI# val == 0x00008000\fR
.CE
.PP
Each type-count pair moves an imaginary cursor through the binary data,
................................................................................
scanned into the variable.  If \fIcount\fR is omitted, then one
byte will be scanned.
All bytes scanned will be interpreted as being characters in the
range \eu0000-\eu00ff so the \fBencoding convertfrom\fR command will be
needed if the string is not a binary string or a string encoded in ISO
8859\-1.
For example,
.RS 
.PP
.CS
\fBbinary scan\fR abcde\e000fghi a6a10 var1 var2
.CE 
.PP
will return \fB1\fR with the string equivalent to \fBabcde\e000\fR
stored in \fIvar1\fR and \fIvar2\fR left unmodified, and 
.PP
.CS
\fBbinary scan\fR \e342\e202\e254 a* var1
set var2 [encoding convertfrom utf-8 $var1]
.CE 
.PP
will store a Euro-currency character in \fIvar2\fR.
.RE
.IP \fBA\fR 5
This form is the same as \fBa\fR, except trailing blanks and nulls are stripped from
the scanned value before it is stored in the variable.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR "abc efghi  \e000" A* var1
.CE 
.PP
will return \fB1\fR with \fBabc efghi\fR stored in \fIvar1\fR.
.RE
.IP \fBb\fR 5
The data is turned into a string of \fIcount\fR binary digits in
low-to-high order represented as a sequence of
.QW 1
................................................................................
.QW 0
characters.  The data bytes are scanned in first to last order with
the bits being taken in low-to-high order within each byte.  Any extra
bits in the last byte are ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bits in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one bit will be scanned.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex07\ex87\ex05 b5b* var1 var2
.CE 
.PP
will return \fB2\fR with \fB11100\fR stored in \fIvar1\fR and
\fB1110000110100000\fR stored in \fIvar2\fR.
.RE
.IP \fBB\fR 5
This form is the same as \fBb\fR, except the bits are taken in
high-to-low order within each byte.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex70\ex87\ex05 B5B* var1 var2
.CE 
.PP
will return \fB2\fR with \fB01110\fR stored in \fIvar1\fR and
\fB1000011100000101\fR stored in \fIvar2\fR.
.RE
.IP \fBH\fR 5
The data is turned into a string of \fIcount\fR hexadecimal digits in
high-to-low order represented as a sequence of characters in the set
................................................................................
The data bytes are scanned in first to last
order with the hex digits being taken in high-to-low order within each
byte. Any extra bits in the last byte are ignored. If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining hex digits in \fIstring\fR will be
scanned. If \fIcount\fR is omitted, then one hex digit will be
scanned. For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex07\exC6\ex05\ex1f\ex34 H3H* var1 var2
.CE 
.PP
will return \fB2\fR with \fB07c\fR stored in \fIvar1\fR and
\fB051f34\fR stored in \fIvar2\fR.
.RE
.IP \fBh\fR 5
This form is the same as \fBH\fR, except the digits are taken in
reverse (low-to-high) order within each byte. For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex07\ex86\ex05\ex12\ex34 h3h* var1 var2
.CE 
.PP
will return \fB2\fR with \fB706\fR stored in \fIvar1\fR and
\fB502143\fR stored in \fIvar2\fR.
.PP
Note that most code that wishes to parse the hexadecimal digits from
multiple bytes in order should use the \fBH\fR format.
.RE
................................................................................
The data is turned into \fIcount\fR 8-bit signed integers and stored
in the corresponding variable as a list, or as unsigned if \fBu\fR is placed
immediately after the \fBc\fR. If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 8-bit integer will be scanned.  For
example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex07\ex86\ex05 c2c* var1 var2
.CE 
.PP
will return \fB2\fR with \fB7 -122\fR stored in \fIvar1\fR and \fB5\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBcu\fR in place of \fBc\fR.
.RE
.IP \fBs\fR 5
The data is interpreted as \fIcount\fR 16-bit signed integers
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBs\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 16-bit integer will be scanned.  For
example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex05\ex00\ex07\ex00\exf0\exff s2s* var1 var2
.CE 
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBsu\fR is used in place of \fBs\fR.
.RE
.IP \fBS\fR 5
This form is the same as \fBs\fR except that the data is interpreted
as \fIcount\fR 16-bit integers represented in big-endian byte
order.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex00\ex05\ex00\ex07\exff\exf0 S2S* var1 var2
.CE 
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBt\fR 5
The data is interpreted as \fIcount\fR 16-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBi\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 32-bit integer will be scanned.  For
example,
.RS 
.PP
.CS
set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff
\fBbinary scan\fR $str i2i* var1 var2
.CE 
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBiu\fR is used in place of \fBi\fR.
.RE
.IP \fBI\fR 5
This form is the same as \fBI\fR except that the data is interpreted
as \fIcount\fR 32-bit signed integers represented in big-endian byte
order, or as unsigned if \fBu\fR is placed
immediately after the \fBI\fR.  For example,
.RS 
.PP
.CS
set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0
\fBbinary scan\fR $str I2I* var1 var2
.CE 
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBn\fR 5
The data is interpreted as \fIcount\fR 32-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBw\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 64-bit integer will be scanned.  For
example,
.RS 
.PP
.CS
set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff
\fBbinary scan\fR $str wi* var1 var2
.CE 
.PP
will return \fB2\fR with \fB30064771077\fR stored in \fIvar1\fR and
\fB\-16\fR stored in \fIvar2\fR.
.RE
.IP \fBW\fR 5
This form is the same as \fBw\fR except that the data is interpreted
as \fIcount\fR 64-bit signed integers represented in big-endian byte
order, or as unsigned if \fBu\fR is placed
immediately after the \fBW\fR.  For example,
.RS 
.PP
.CS
set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0
\fBbinary scan\fR $str WI* var1 var2
.CE 
.PP
will return \fB2\fR with \fB21474836487\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBm\fR 5
The data is interpreted as \fIcount\fR 64-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
\fIstring\fR will be scanned.  If \fIcount\fR is omitted, then one
single-precision floating point number will be scanned.  The size of a
floating point number may vary across architectures, so the number of
bytes that are scanned may vary.  If the data does not represent a
valid floating point number, the resulting value is undefined and
compiler dependent.  For example, on a Windows system running on an
Intel Pentium processor,
.RS 
.PP
.CS
\fBbinary scan\fR \ex3f\excc\excc\excd f var1
.CE 
.PP
will return \fB1\fR with \fB1.6000000238418579\fR stored in
\fIvar1\fR.
.RE
.IP \fBr\fR 5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR single-precision floating point number in little-endian
................................................................................
order.  This conversion is not portable to the minority of systems not
using IEEE floating point representations.
.IP \fBd\fR 5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR double-precision floating point numbers in the
machine's native representation. For example, on a Windows system
running on an Intel Pentium processor,
.RS 
.PP
.CS
\fBbinary scan\fR \ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f d var1
.CE 
.PP
will return \fB1\fR with \fB1.6000000000000001\fR
stored in \fIvar1\fR.
.RE
.IP \fBq\fR 5
This form is the same as \fBd\fR except that the data is interpreted
as \fIcount\fR double-precision floating point number in little-endian
................................................................................
\fIcount\fR is
.QW \fB*\fR
or is larger than the number of bytes after the
current cursor position, then the cursor is positioned after
the last byte in \fIstring\fR.  If \fIcount\fR is omitted, then the
cursor is moved forward one byte.  Note that this type does not
consume an argument.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 x2H* var1
.CE 
.PP
will return \fB1\fR with \fB0304\fR stored in \fIvar1\fR.
.RE
.IP \fBX\fR 5
Moves the cursor back \fIcount\fR bytes in \fIstring\fR.  If
\fIcount\fR is
.QW \fB*\fR
or is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte
scanned will be the first byte in \fIstring\fR.  If \fIcount\fR
is omitted then the cursor is moved back one byte.  Note that this
type does not consume an argument.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 c2XH* var1 var2
.CE 
.PP
will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR
stored in \fIvar2\fR.
.RE
.IP \[email protected]\fR 5
Moves the cursor to the absolute location in the data string specified
by \fIcount\fR.  Note that position 0 refers to the first byte in
\fIstring\fR.  If \fIcount\fR refers to a position beyond the end of
\fIstring\fR, then the cursor is positioned after the last byte.  If
\fIcount\fR is omitted, then an error will be generated.  For example,
.RS 
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 [email protected]* var1 var2
.CE 
.PP
will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR
stored in \fIvar2\fR.
.RE
.SH "PORTABILITY ISSUES"
.PP
The \fBr\fR, \fBR\fR, \fBq\fR and \fBQ\fR conversions will only work






|



|











|












|









|



|







 







|



|







 







|



|










|



|







 







|



|










|



|







 







|



|







|



|









|



|











|



|







 







|



|











|



|







 







|



|







|



|







 







|



|







 







|



|







 







|



|







 







|



|







 







|



|







 







|











|





|

|











|




|




|







 







|



|


|




|






|



|







 







|



|







|



|







 







|



|







|



|







 







|



|







 







|



|









|



|







 







|




|










|




|







 







|




|









|




|







 







|



|







 







|



|







 







|



|












|



|










|



|







176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
...
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
...
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
...
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
...
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
...
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
...
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
...
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
...
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
...
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
...
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
...
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
...
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
...
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
...
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
...
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
...
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
...
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
...
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
...
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
...
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
...
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
...
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
bytes are used to pad out the field.  If \fIarg\fR is longer than the
specified length, the extra characters will be ignored.  If
\fIcount\fR is
.QW \fB*\fR ,
then all of the bytes in \fIarg\fR will be
formatted.  If \fIcount\fR is omitted, then one character will be
formatted.  For example, the command:
.RS
.PP
.CS
\fBbinary format\fR a7a*a alpha bravo charlie
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fBalpha\e000\e000bravoc\fR
.CE
.PP
the command:
.PP
.CS
\fBbinary format\fR a* [encoding convertto utf-8 \eu20ac]
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\e342\e202\e254\fR
.CE
.PP
(which is the
UTF-8 byte sequence for a Euro-currency character), and the command:
.PP
.CS
\fBbinary format\fR a* [encoding convertto iso8859-15 \eu20ac]
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\e244\fR
.CE
.PP
(which is the ISO
8859\-15 byte sequence for a Euro-currency character). Contrast these
last two with:
.PP
.CS
\fBbinary format\fR a* \eu20ac
.CE
.PP
which returns a binary string equivalent to:
.PP
.CS
\fB\e254\fR
.CE
.PP
................................................................................
(i.e. \fB\exac\fR) by
truncating the high-bits of the character, and which is probably not
what is desired.
.RE
.IP \fBA\fR 5
This form is the same as \fBa\fR except that spaces are used for
padding instead of nulls.  For example,
.RS
.PP
.CS
\fBbinary format\fR A6A*A alpha bravo charlie
.CE
.PP
will return
.PP
.CS
\fBalpha bravoc\fR
.CE
.RE
................................................................................
digits will be ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the
digits in \fIarg\fR will be formatted.  If \fIcount\fR is omitted,
then one digit will be formatted.  If the number of bits formatted
does not end at a byte boundary, the remaining bits of the last byte
will be zeros.  For example,
.RS
.PP
.CS
\fBbinary format\fR b5b* 11100 111000011010
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex07\ex87\ex05\fR
.CE
.RE
.IP \fBB\fR 5
This form is the same as \fBb\fR except that the bits are stored in
high-to-low order within each byte.  For example,
.RS
.PP
.CS
\fBbinary format\fR B5B* 11100 111000011010
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exe0\exe1\exa0\fR
.CE
.RE
................................................................................
remaining digits.  If \fIarg\fR has more than the specified number of
digits, the extra digits will be ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the digits in \fIarg\fR will be formatted.  If
\fIcount\fR is omitted, then one digit will be formatted.  If the
number of digits formatted does not end at a byte boundary, the
remaining bits of the last byte will be zeros.  For example,
.RS
.PP
.CS
\fBbinary format\fR H3H*H2 ab DEF 987
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exab\ex00\exde\exf0\ex98\fR
.CE
.RE
.IP \fBh\fR 5
This form is the same as \fBH\fR except that the digits are stored in
low-to-high order within each byte. This is seldom required. For example,
.RS
.PP
.CS
\fBbinary format\fR h3h*h2 AB def 987
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\exba\ex00\exed\ex0f\ex89\fR
.CE
.RE
................................................................................
value. If \fIcount\fR is specified, \fIarg\fR must consist of a list
containing at least that many integers. The low-order 8 bits of each integer
are stored as a one-byte value at the cursor position.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the integers in the list are formatted. If the
number of elements in the list is greater
than \fIcount\fR, then the extra elements are ignored.  For example,
.RS
.PP
.CS
\fBbinary format\fR c3cc* {3 -3 128 1} 260 {2 5}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\exfd\ex80\ex04\ex02\ex05\fR
.CE
.PP
whereas:
.PP
.CS
\fBbinary format\fR c {2 5}
.CE
.PP
will generate an error.
.RE
.IP \fBs\fR 5
This form is the same as \fBc\fR except that it stores one or more
16-bit integers in little-endian byte order in the output string.  The
low-order 16-bits of each integer are stored as a two-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS
.PP
.CS
\fBbinary format\fR s3 {3 -3 258 1}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\ex00\exfd\exff\ex02\ex01\fR
.CE
.RE
.IP \fBS\fR 5
This form is the same as \fBs\fR except that it stores one or more
16-bit integers in big-endian byte order in the output string.  For
example,
.RS
.PP
.CS
\fBbinary format\fR S3 {3 -3 258 1}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex00\ex03\exff\exfd\ex01\ex02\fR
.CE
.RE
................................................................................
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
.IP \fBi\fR 5
This form is the same as \fBc\fR except that it stores one or more
32-bit integers in little-endian byte order in the output string.  The
low-order 32-bits of each integer are stored as a four-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS
.PP
.CS
\fBbinary format\fR i3 {3 -3 65536 1}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex03\ex00\ex00\ex00\exfd\exff\exff\exff\ex00\ex00\ex01\ex00\fR
.CE
.RE
.IP \fBI\fR 5
This form is the same as \fBi\fR except that it stores one or more one
or more 32-bit integers in big-endian byte order in the output string.
For example,
.RS
.PP
.CS
\fBbinary format\fR I3 {3 -3 65536 1}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex00\ex00\ex00\ex03\exff\exff\exff\exfd\ex00\ex01\ex00\ex00\fR
.CE
.RE
................................................................................
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
.IP \fBw\fR 5
This form is the same as \fBc\fR except that it stores one or more
64-bit integers in little-endian byte order in the output string.  The
low-order 64-bits of each integer are stored as an eight-byte value at
the cursor position with the least significant byte stored first.  For
example,
.RS
.PP
.CS
\fBbinary format\fR w 7810179016327718216
.CE
.PP
will return the binary string \fBHelloTcl\fR.
.RE
.IP \fBW\fR 5
This form is the same as \fBw\fR except that it stores one or more one
or more 64-bit integers in big-endian byte order in the output string.
For example,
.RS
.PP
.CS
\fBbinary format\fR Wc 4785469626960341345 110
.CE
.PP
will return the binary string \fBBigEndian\fR
.RE
.IP \fBm\fR 5
This form (mnemonically the mirror of \fBw\fR) is the same as \fBw\fR
and \fBW\fR except that it stores the 64-bit integers in the output
string in the native byte order of the machine where the Tcl script is
................................................................................
point number may vary across architectures, so the number of bytes
that are generated may vary.  If the value overflows the
machine's native representation, then the value of FLT_MAX
as defined by the system will be used instead.  Because Tcl uses
double-precision floating point numbers internally, there may be some
loss of precision in the conversion to single-precision.  For example,
on a Windows system running on an Intel Pentium processor,
.RS
.PP
.CS
\fBbinary format\fR f2 {1.6 3.4}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\excd\excc\excc\ex3f\ex9a\ex99\ex59\ex40\fR
.CE
.RE
................................................................................
This form is the same as \fBr\fR except that it stores the
single-precision floating point numbers in big-endian order.
.IP \fBd\fR 5
This form is the same as \fBf\fR except that it stores one or more one
or more double-precision floating point numbers in the machine's native
representation in the output string.  For example, on a
Windows system running on an Intel Pentium processor,
.RS
.PP
.CS
\fBbinary format\fR d1 {1.6}
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fB\ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f\fR
.CE
.RE
................................................................................
double-precision floating point numbers in big-endian order.
.IP \fBx\fR 5
Stores \fIcount\fR null bytes in the output string.  If \fIcount\fR is
not specified, stores one null byte.  If \fIcount\fR is
.QW \fB*\fR ,
generates an error.  This type does not consume an argument.  For
example,
.RS
.PP
.CS
\fBbinary format\fR a3xa3x2a3 abc def ghi
.CE
.PP
will return a binary string equivalent to:
.PP
.CS
\fBabc\e000def\e000\e000ghi\fR
.CE
.RE
................................................................................
\fIcount\fR is
.QW \fB*\fR
or is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte
stored will be the first byte in the result string.  If \fIcount\fR is
omitted then the cursor is moved back one byte.  This type does not
consume an argument.  For example,
.RS
.PP
.CS
\fBbinary format\fR a3X*a3X2a3 abc def ghi
.CE
.PP
will return \fBdghi\fR.
.RE
.IP \[email protected]\fR 5
Moves the cursor to the absolute location in the output string
specified by \fIcount\fR.  Position 0 refers to the first byte in the
output string.  If \fIcount\fR refers to a position beyond the last
................................................................................
byte stored so far, then null bytes will be placed in the uninitialized
locations and the cursor will be placed at the specified location.  If
\fIcount\fR is
.QW \fB*\fR ,
then the cursor is moved to the current end of
the output string.  If \fIcount\fR is omitted, then an error will be
generated.  This type does not consume an argument. For example,
.RS
.PP
.CS
\fBbinary format\fR [email protected]@*[email protected] abcde f ghi j
.CE
.PP
will return
.PP
.CS
\fBabfdeghi\e000\e000j\fR
.CE
.RE
................................................................................
consume arguments, then an error is generated. The flag character
.QW u
may be given to cause some types to be read as unsigned values. The flag
is accepted for all field types but is ignored for non-integer fields.
.PP
A similar example as with \fBbinary format\fR should explain the
relation between field specifiers and arguments in case of the binary
scan subcommand:
.PP
.CS
\fBbinary scan\fR $bytes s3s first second
.CE
.PP
This command (provided the binary string in the variable \fIbytes\fR
is long enough) assigns a list of three integers to the variable
\fIfirst\fR and assigns a single value to the variable \fIsecond\fR.
If \fIbytes\fR contains fewer than 8 bytes (i.e. four 2-byte
integers), no assignment to \fIsecond\fR will be made, and if
\fIbytes\fR contains fewer than 6 bytes (i.e. three 2-byte integers),
no assignment to \fIfirst\fR will be made.  Hence:
.PP
.CS
puts [\fBbinary scan\fR abcdefg s3s first second]
puts $first
puts $second
.CE
.PP
will print (assuming neither variable is set previously):
.PP
.CS
1
25185 25699 26213
can't read "second": no such variable
.CE
.PP
It is \fIimportant\fR to note that the \fBc\fR, \fBs\fR, and \fBS\fR
(and \fBi\fR and \fBI\fR on 64bit systems) will be scanned into
long data size values.  In doing this, values that have their high
bit set (0x80 for chars, 0x8000 for shorts, 0x80000000 for ints),
will be sign extended.  Thus the following will occur:
.PP
.CS
set signShort [\fBbinary format\fR s1 0x8000]
\fBbinary scan\fR $signShort s1 val; \fI# val == 0xFFFF8000\fR
.CE
.PP
If you require unsigned values you can include the
.QW u
flag character following
the field type. For example, to read an unsigned short value:
.PP
.CS
set signShort [\fBbinary format\fR s1 0x8000]
\fBbinary scan\fR $signShort su1 val; \fI# val == 0x00008000\fR
.CE
.PP
Each type-count pair moves an imaginary cursor through the binary data,
................................................................................
scanned into the variable.  If \fIcount\fR is omitted, then one
byte will be scanned.
All bytes scanned will be interpreted as being characters in the
range \eu0000-\eu00ff so the \fBencoding convertfrom\fR command will be
needed if the string is not a binary string or a string encoded in ISO
8859\-1.
For example,
.RS
.PP
.CS
\fBbinary scan\fR abcde\e000fghi a6a10 var1 var2
.CE
.PP
will return \fB1\fR with the string equivalent to \fBabcde\e000\fR
stored in \fIvar1\fR and \fIvar2\fR left unmodified, and
.PP
.CS
\fBbinary scan\fR \e342\e202\e254 a* var1
set var2 [encoding convertfrom utf-8 $var1]
.CE
.PP
will store a Euro-currency character in \fIvar2\fR.
.RE
.IP \fBA\fR 5
This form is the same as \fBa\fR, except trailing blanks and nulls are stripped from
the scanned value before it is stored in the variable.  For example,
.RS
.PP
.CS
\fBbinary scan\fR "abc efghi  \e000" A* var1
.CE
.PP
will return \fB1\fR with \fBabc efghi\fR stored in \fIvar1\fR.
.RE
.IP \fBb\fR 5
The data is turned into a string of \fIcount\fR binary digits in
low-to-high order represented as a sequence of
.QW 1
................................................................................
.QW 0
characters.  The data bytes are scanned in first to last order with
the bits being taken in low-to-high order within each byte.  Any extra
bits in the last byte are ignored.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bits in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one bit will be scanned.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex07\ex87\ex05 b5b* var1 var2
.CE
.PP
will return \fB2\fR with \fB11100\fR stored in \fIvar1\fR and
\fB1110000110100000\fR stored in \fIvar2\fR.
.RE
.IP \fBB\fR 5
This form is the same as \fBb\fR, except the bits are taken in
high-to-low order within each byte.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex70\ex87\ex05 B5B* var1 var2
.CE
.PP
will return \fB2\fR with \fB01110\fR stored in \fIvar1\fR and
\fB1000011100000101\fR stored in \fIvar2\fR.
.RE
.IP \fBH\fR 5
The data is turned into a string of \fIcount\fR hexadecimal digits in
high-to-low order represented as a sequence of characters in the set
................................................................................
The data bytes are scanned in first to last
order with the hex digits being taken in high-to-low order within each
byte. Any extra bits in the last byte are ignored. If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining hex digits in \fIstring\fR will be
scanned. If \fIcount\fR is omitted, then one hex digit will be
scanned. For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex07\exC6\ex05\ex1f\ex34 H3H* var1 var2
.CE
.PP
will return \fB2\fR with \fB07c\fR stored in \fIvar1\fR and
\fB051f34\fR stored in \fIvar2\fR.
.RE
.IP \fBh\fR 5
This form is the same as \fBH\fR, except the digits are taken in
reverse (low-to-high) order within each byte. For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex07\ex86\ex05\ex12\ex34 h3h* var1 var2
.CE
.PP
will return \fB2\fR with \fB706\fR stored in \fIvar1\fR and
\fB502143\fR stored in \fIvar2\fR.
.PP
Note that most code that wishes to parse the hexadecimal digits from
multiple bytes in order should use the \fBH\fR format.
.RE
................................................................................
The data is turned into \fIcount\fR 8-bit signed integers and stored
in the corresponding variable as a list, or as unsigned if \fBu\fR is placed
immediately after the \fBc\fR. If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 8-bit integer will be scanned.  For
example,
.RS
.PP
.CS
\fBbinary scan\fR \ex07\ex86\ex05 c2c* var1 var2
.CE
.PP
will return \fB2\fR with \fB7 -122\fR stored in \fIvar1\fR and \fB5\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBcu\fR in place of \fBc\fR.
.RE
.IP \fBs\fR 5
The data is interpreted as \fIcount\fR 16-bit signed integers
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBs\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 16-bit integer will be scanned.  For
example,
.RS
.PP
.CS
\fBbinary scan\fR \ex05\ex00\ex07\ex00\exf0\exff s2s* var1 var2
.CE
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBsu\fR is used in place of \fBs\fR.
.RE
.IP \fBS\fR 5
This form is the same as \fBs\fR except that the data is interpreted
as \fIcount\fR 16-bit integers represented in big-endian byte
order.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex00\ex05\ex00\ex07\exff\exf0 S2S* var1 var2
.CE
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBt\fR 5
The data is interpreted as \fIcount\fR 16-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBi\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 32-bit integer will be scanned.  For
example,
.RS
.PP
.CS
set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff
\fBbinary scan\fR $str i2i* var1 var2
.CE
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.  Note that the integers returned are signed unless
\fBiu\fR is used in place of \fBi\fR.
.RE
.IP \fBI\fR 5
This form is the same as \fBI\fR except that the data is interpreted
as \fIcount\fR 32-bit signed integers represented in big-endian byte
order, or as unsigned if \fBu\fR is placed
immediately after the \fBI\fR.  For example,
.RS
.PP
.CS
set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0
\fBbinary scan\fR $str I2I* var1 var2
.CE
.PP
will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBn\fR 5
The data is interpreted as \fIcount\fR 32-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
represented in little-endian byte order, or as unsigned if \fBu\fR is placed
immediately after the \fBw\fR.  The integers are stored in
the corresponding variable as a list.  If \fIcount\fR is
.QW \fB*\fR ,
then all of the remaining bytes in \fIstring\fR will be scanned.  If
\fIcount\fR is omitted, then one 64-bit integer will be scanned.  For
example,
.RS
.PP
.CS
set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff
\fBbinary scan\fR $str wi* var1 var2
.CE
.PP
will return \fB2\fR with \fB30064771077\fR stored in \fIvar1\fR and
\fB\-16\fR stored in \fIvar2\fR.
.RE
.IP \fBW\fR 5
This form is the same as \fBw\fR except that the data is interpreted
as \fIcount\fR 64-bit signed integers represented in big-endian byte
order, or as unsigned if \fBu\fR is placed
immediately after the \fBW\fR.  For example,
.RS
.PP
.CS
set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0
\fBbinary scan\fR $str WI* var1 var2
.CE
.PP
will return \fB2\fR with \fB21474836487\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBm\fR 5
The data is interpreted as \fIcount\fR 64-bit signed integers
represented in the native byte order of the machine running the Tcl
................................................................................
\fIstring\fR will be scanned.  If \fIcount\fR is omitted, then one
single-precision floating point number will be scanned.  The size of a
floating point number may vary across architectures, so the number of
bytes that are scanned may vary.  If the data does not represent a
valid floating point number, the resulting value is undefined and
compiler dependent.  For example, on a Windows system running on an
Intel Pentium processor,
.RS
.PP
.CS
\fBbinary scan\fR \ex3f\excc\excc\excd f var1
.CE
.PP
will return \fB1\fR with \fB1.6000000238418579\fR stored in
\fIvar1\fR.
.RE
.IP \fBr\fR 5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR single-precision floating point number in little-endian
................................................................................
order.  This conversion is not portable to the minority of systems not
using IEEE floating point representations.
.IP \fBd\fR 5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR double-precision floating point numbers in the
machine's native representation. For example, on a Windows system
running on an Intel Pentium processor,
.RS
.PP
.CS
\fBbinary scan\fR \ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f d var1
.CE
.PP
will return \fB1\fR with \fB1.6000000000000001\fR
stored in \fIvar1\fR.
.RE
.IP \fBq\fR 5
This form is the same as \fBd\fR except that the data is interpreted
as \fIcount\fR double-precision floating point number in little-endian
................................................................................
\fIcount\fR is
.QW \fB*\fR
or is larger than the number of bytes after the
current cursor position, then the cursor is positioned after
the last byte in \fIstring\fR.  If \fIcount\fR is omitted, then the
cursor is moved forward one byte.  Note that this type does not
consume an argument.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 x2H* var1
.CE
.PP
will return \fB1\fR with \fB0304\fR stored in \fIvar1\fR.
.RE
.IP \fBX\fR 5
Moves the cursor back \fIcount\fR bytes in \fIstring\fR.  If
\fIcount\fR is
.QW \fB*\fR
or is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte
scanned will be the first byte in \fIstring\fR.  If \fIcount\fR
is omitted then the cursor is moved back one byte.  Note that this
type does not consume an argument.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 c2XH* var1 var2
.CE
.PP
will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR
stored in \fIvar2\fR.
.RE
.IP \[email protected]\fR 5
Moves the cursor to the absolute location in the data string specified
by \fIcount\fR.  Note that position 0 refers to the first byte in
\fIstring\fR.  If \fIcount\fR refers to a position beyond the end of
\fIstring\fR, then the cursor is positioned after the last byte.  If
\fIcount\fR is omitted, then an error will be generated.  For example,
.RS
.PP
.CS
\fBbinary scan\fR \ex01\ex02\ex03\ex04 [email protected]* var1 var2
.CE
.PP
will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR
stored in \fIvar2\fR.
.RE
.SH "PORTABILITY ISSUES"
.PP
The \fBr\fR, \fBR\fR, \fBq\fR and \fBQ\fR conversions will only work

Changes to generic/tclCompExpr.c.

2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
		return 2;
	    case 'e':
		*lexemePtr = STR_LEQ;
		return 2;
	    }
	}
	break;
	
    case 'g':
	if ((numBytes > 1)
		&& ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) {
	    switch (start[1]) {
	    case 't':
		*lexemePtr = STR_GT;
		return 2;






|







2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
		return 2;
	    case 'e':
		*lexemePtr = STR_LEQ;
		return 2;
	    }
	}
	break;

    case 'g':
	if ((numBytes > 1)
		&& ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) {
	    switch (start[1]) {
	    case 't':
		*lexemePtr = STR_GT;
		return 2;

Changes to tests/util.test.

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    testdstring append {\\ } -1
    testdstring append \{ -1
    testdstring element foo
    testdstring append \} -1
    list [llength [testdstring get]] [string length [testdstring get]]
} {2 9}

test util-9.0.0 {TclGetIntForIndex} {
    string index abcd 0
} a
test util-9.0.1 {TclGetIntForIndex} {
    string index abcd 0x0
} a
test util-9.0.2 {TclGetIntForIndex} {
    string index abcd -0x0
} a
test util-9.0.3 {TclGetIntForIndex} {
    string index abcd { 0 }
} a
test util-9.0.4 {TclGetIntForIndex} {
    string index abcd { 0x0 }
} a
test util-9.0.5 {TclGetIntForIndex} {
    string index abcd { -0x0 }
} a
test util-9.0.6 {TclGetIntForIndex} {
    string index abcd 01
} b
test util-9.0.7 {TclGetIntForIndex} {
    string index abcd { 01 }
} b
test util-9.0.8 {TclGetIntForIndex} {
    string index abcd { 0d0 }
} a
test util-9.0.9 {TclGetIntForIndex} {
    string index abcd { -0d0 }
} a
test util-9.1.0 {TclGetIntForIndex} {
    string index abcd 3
} d
test util-9.1.1 {TclGetIntForIndex} {
    string index abcd { 3 }
} d
test util-9.1.2 {TclGetIntForIndex} {
    string index abcdefghijk 0xa
} k
test util-9.1.3 {TclGetIntForIndex} {
    string index abcdefghijk { 0xa }
} k
test util-9.1.4 {TclGetIntForIndex} {
    string index abcdefghijk 0d10
} k
test util-9.1.5 {TclGetIntForIndex} {
    string index abcdefghijk { 0d10 }
} k
test util-9.2.0 {TclGetIntForIndex} {
    string index abcd end
} d
test util-9.2.1 {TclGetIntForIndex} -body {
    string index abcd { end}
} -returnCodes error -match glob -result *
test util-9.2.2 {TclGetIntForIndex} -body {
    string index abcd {end }
} -returnCodes error -match glob -result *
test util-9.3 {TclGetIntForIndex} -body {
    # Deprecated
    string index abcd en
} -returnCodes error -match glob -result *
test util-9.4 {TclGetIntForIndex} -body {
    # Deprecated
    string index abcd e
} -returnCodes error -match glob -result *
test util-9.5.0 {TclGetIntForIndex} {
    string index abcd end-1
} c
test util-9.5.1 {TclGetIntForIndex} {
    string index abcd {end-1 }
} c
test util-9.5.2 {TclGetIntForIndex} -body {
    string index abcd { end-1}
} -returnCodes error -match glob -result *
test util-9.6 {TclGetIntForIndex} {
    string index abcd end+-1
} c
test util-9.7 {TclGetIntForIndex} {
    string index abcd end+1
} {}
test util-9.8 {TclGetIntForIndex} {
    string index abcd end--1
} {}
test util-9.9.0 {TclGetIntForIndex} {
    string index abcd 0+0
} a
test util-9.9.1 {TclGetIntForIndex} {
    string index abcd { 0+0 }
} a
test util-9.10 {TclGetIntForIndex} {
    string index abcd 0-0
} a
test util-9.11 {TclGetIntForIndex} {
    string index abcd 1+0
} b
test util-9.12 {TclGetIntForIndex} {
    string index abcd 1-0
} b
test util-9.13 {TclGetIntForIndex} {
    string index abcd 1+1
} c
test util-9.14 {TclGetIntForIndex} {
    string index abcd 1-1
} a
test util-9.15 {TclGetIntForIndex} {
    string index abcd -1+2
} b
test util-9.16 {TclGetIntForIndex} {
    string index abcd -1--2
} b
test util-9.17 {TclGetIntForIndex} {
    string index abcd { -1+2 }
} b
test util-9.18 {TclGetIntForIndex} {
    string index abcd { -1--2 }
} b
test util-9.19 {TclGetIntForIndex} -body {
    string index a {}
} -returnCodes error -match glob -result *
test util-9.20 {TclGetIntForIndex} -body {
    string index a { }
} -returnCodes error -match glob -result *
test util-9.21 {TclGetIntForIndex} -body {
    string index a " \r\t\n"
} -returnCodes error -match glob -result *
test util-9.22 {TclGetIntForIndex} -body {
    string index a +
} -returnCodes error -match glob -result *
test util-9.23 {TclGetIntForIndex} -body {
    string index a -
} -returnCodes error -match glob -result *
test util-9.24 {TclGetIntForIndex} -body {
    string index a x
} -returnCodes error -match glob -result *
test util-9.25 {TclGetIntForIndex} -body {
    string index a +x
} -returnCodes error -match glob -result *
test util-9.26 {TclGetIntForIndex} -body {
    string index a -x
} -returnCodes error -match glob -result *
test util-9.27 {TclGetIntForIndex} -body {
    string index a 0y
} -returnCodes error -match glob -result *
test util-9.28 {TclGetIntForIndex} -body {
    string index a 1*
} -returnCodes error -match glob -result *
test util-9.29 {TclGetIntForIndex} -body {
    string index a 0+
} -returnCodes error -match glob -result *
test util-9.30 {TclGetIntForIndex} -body {
    string index a {0+ }
} -returnCodes error -match glob -result *
test util-9.31 {TclGetIntForIndex} -body {
    string index a 0x
} -returnCodes error -match glob -result *
test util-9.31.1 {TclGetIntForIndex} -body {
    string index a 0d
} -returnCodes error -match glob -result *
test util-9.32 {TclGetIntForIndex} -body {
    string index a 0x1FFFFFFFF+0
} -result {}
test util-9.33 {TclGetIntForIndex} -body {
    string index a 100000000000+0
} -result {}
test util-9.33.1 {TclGetIntForIndex} -body {
    string index a 0d100000000000+0
} -result {}
test util-9.34 {TclGetIntForIndex} -body {
    string index a 1.0
} -returnCodes error -match glob -result *
test util-9.35 {TclGetIntForIndex} -body {
    string index a 1e23
} -returnCodes error -match glob -result *
test util-9.36 {TclGetIntForIndex} -body {
    string index a 1.5e2
} -returnCodes error -match glob -result *
test util-9.37 {TclGetIntForIndex} -body {
    string index a 0+x
} -returnCodes error -match glob -result *
test util-9.38 {TclGetIntForIndex} -body {
    string index a 0+0x
} -returnCodes error -match glob -result *
test util-9.39 {TclGetIntForIndex} -body {
    string index a 0+0xg
} -returnCodes error -match glob -result *
test util-9.40 {TclGetIntForIndex} -body {
    string index a 0+0xg
} -returnCodes error -match glob -result *
test util-9.41 {TclGetIntForIndex} -body {
    string index a 0+1.0
} -returnCodes error -match glob -result *
test util-9.42 {TclGetIntForIndex} -body {
    string index a 0+1e2
} -returnCodes error -match glob -result *
test util-9.43 {TclGetIntForIndex} -body {
    string index a 0+1.5e1
} -returnCodes error -match glob -result *
test util-9.44 {TclGetIntForIndex} -body {
    string index a 0+1000000000000
} -result {}
test util-9.45 {TclGetIntForIndex} {
    string index abcd end+2305843009213693950
} {}
test util-9.46 {TclGetIntForIndex} {
    string index abcd end+4294967294
} {}
# TIP 502
test util-9.47 {TclGetIntForIndex} {
    string index abcd 0x10000000000000000
} {}
test util-9.48 {TclGetIntForIndex} {
    string index abcd -0x10000000000000000
} {}
test util-9.49 {TclGetIntForIndex} -body {
    string index abcd end*1
} -returnCodes error -match glob -result *
test util-9.50 {TclGetIntForIndex} -body {
    string index abcd {end- 1}
} -returnCodes error -match glob -result *
test util-9.51 {TclGetIntForIndex} -body {
    string index abcd end-end
} -returnCodes error -match glob -result *
test util-9.52 {TclGetIntForIndex} -body {
    string index abcd end-x
} -returnCodes error -match glob -result *
test util-9.53 {TclGetIntForIndex} -body {
    string index abcd end-0.1
} -returnCodes error -match glob -result *
test util-9.54 {TclGetIntForIndex} {
    string index abcd end-0x10000000000000000
} {}
test util-9.55 {TclGetIntForIndex} {
    string index abcd end+0x10000000000000000
} {}
test util-9.56 {TclGetIntForIndex} {
    string index abcd end--0x10000000000000000
} {}
test util-9.57 {TclGetIntForIndex} {
    string index abcd end+-0x10000000000000000
} {}
test util-9.58 {TclGetIntForIndex} {
    string index abcd end--0x8000000000000000
} {}

test util-10.1 {Tcl_PrintDouble - rounding} {ieeeFloatingPoint} {
    convertDouble 0x0000000000000000
} {0.0}
test util-10.2 {Tcl_PrintDouble - rounding} {ieeeFloatingPoint} {






|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|



|



|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|


|



|


|


|


|


|


|


|


|


|


|


|


|







449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    testdstring append {\\ } -1
    testdstring append \{ -1
    testdstring element foo
    testdstring append \} -1
    list [llength [testdstring get]] [string length [testdstring get]]
} {2 9}

test util-9.0.0 {Tcl_GetIntForIndex} {
    string index abcd 0
} a
test util-9.0.1 {Tcl_GetIntForIndex} {
    string index abcd 0x0
} a
test util-9.0.2 {Tcl_GetIntForIndex} {
    string index abcd -0x0
} a
test util-9.0.3 {Tcl_GetIntForIndex} {
    string index abcd { 0 }
} a
test util-9.0.4 {Tcl_GetIntForIndex} {
    string index abcd { 0x0 }
} a
test util-9.0.5 {Tcl_GetIntForIndex} {
    string index abcd { -0x0 }
} a
test util-9.0.6 {Tcl_GetIntForIndex} {
    string index abcd 01
} b
test util-9.0.7 {Tcl_GetIntForIndex} {
    string index abcd { 01 }
} b
test util-9.0.8 {Tcl_GetIntForIndex} {
    string index abcd { 0d0 }
} a
test util-9.0.9 {Tcl_GetIntForIndex} {
    string index abcd { -0d0 }
} a
test util-9.1.0 {Tcl_GetIntForIndex} {
    string index abcd 3
} d
test util-9.1.1 {Tcl_GetIntForIndex} {
    string index abcd { 3 }
} d
test util-9.1.2 {Tcl_GetIntForIndex} {
    string index abcdefghijk 0xa
} k
test util-9.1.3 {Tcl_GetIntForIndex} {
    string index abcdefghijk { 0xa }
} k
test util-9.1.4 {Tcl_GetIntForIndex} {
    string index abcdefghijk 0d10
} k
test util-9.1.5 {Tcl_GetIntForIndex} {
    string index abcdefghijk { 0d10 }
} k
test util-9.2.0 {Tcl_GetIntForIndex} {
    string index abcd end
} d
test util-9.2.1 {Tcl_GetIntForIndex} -body {
    string index abcd { end}
} -returnCodes error -match glob -result *
test util-9.2.2 {Tcl_GetIntForIndex} -body {
    string index abcd {end }
} -returnCodes error -match glob -result *
test util-9.3 {Tcl_GetIntForIndex} -body {
    # Deprecated
    string index abcd en
} -returnCodes error -match glob -result *
test util-9.4 {Tcl_GetIntForIndex} -body {
    # Deprecated
    string index abcd e
} -returnCodes error -match glob -result *
test util-9.5.0 {Tcl_GetIntForIndex} {
    string index abcd end-1
} c
test util-9.5.1 {Tcl_GetIntForIndex} {
    string index abcd {end-1 }
} c
test util-9.5.2 {Tcl_GetIntForIndex} -body {
    string index abcd { end-1}
} -returnCodes error -match glob -result *
test util-9.6 {Tcl_GetIntForIndex} {
    string index abcd end+-1
} c
test util-9.7 {Tcl_GetIntForIndex} {
    string index abcd end+1
} {}
test util-9.8 {Tcl_GetIntForIndex} {
    string index abcd end--1
} {}
test util-9.9.0 {Tcl_GetIntForIndex} {
    string index abcd 0+0
} a
test util-9.9.1 {Tcl_GetIntForIndex} {
    string index abcd { 0+0 }
} a
test util-9.10 {Tcl_GetIntForIndex} {
    string index abcd 0-0
} a
test util-9.11 {Tcl_GetIntForIndex} {
    string index abcd 1+0
} b
test util-9.12 {Tcl_GetIntForIndex} {
    string index abcd 1-0
} b
test util-9.13 {Tcl_GetIntForIndex} {
    string index abcd 1+1
} c
test util-9.14 {Tcl_GetIntForIndex} {
    string index abcd 1-1
} a
test util-9.15 {Tcl_GetIntForIndex} {
    string index abcd -1+2
} b
test util-9.16 {Tcl_GetIntForIndex} {
    string index abcd -1--2
} b
test util-9.17 {Tcl_GetIntForIndex} {
    string index abcd { -1+2 }
} b
test util-9.18 {Tcl_GetIntForIndex} {
    string index abcd { -1--2 }
} b
test util-9.19 {Tcl_GetIntForIndex} -body {
    string index a {}
} -returnCodes error -match glob -result *
test util-9.20 {Tcl_GetIntForIndex} -body {
    string index a { }
} -returnCodes error -match glob -result *
test util-9.21 {Tcl_GetIntForIndex} -body {
    string index a " \r\t\n"
} -returnCodes error -match glob -result *
test util-9.22 {Tcl_GetIntForIndex} -body {
    string index a +
} -returnCodes error -match glob -result *
test util-9.23 {Tcl_GetIntForIndex} -body {
    string index a -
} -returnCodes error -match glob -result *
test util-9.24 {Tcl_GetIntForIndex} -body {
    string index a x
} -returnCodes error -match glob -result *
test util-9.25 {Tcl_GetIntForIndex} -body {
    string index a +x
} -returnCodes error -match glob -result *
test util-9.26 {Tcl_GetIntForIndex} -body {
    string index a -x
} -returnCodes error -match glob -result *
test util-9.27 {Tcl_GetIntForIndex} -body {
    string index a 0y
} -returnCodes error -match glob -result *
test util-9.28 {Tcl_GetIntForIndex} -body {
    string index a 1*
} -returnCodes error -match glob -result *
test util-9.29 {Tcl_GetIntForIndex} -body {
    string index a 0+
} -returnCodes error -match glob -result *
test util-9.30 {Tcl_GetIntForIndex} -body {
    string index a {0+ }
} -returnCodes error -match glob -result *
test util-9.31 {Tcl_GetIntForIndex} -body {
    string index a 0x
} -returnCodes error -match glob -result *
test util-9.31.1 {Tcl_GetIntForIndex} -body {
    string index a 0d
} -returnCodes error -match glob -result *
test util-9.32 {Tcl_GetIntForIndex} -body {
    string index a 0x1FFFFFFFF+0
} -result {}
test util-9.33 {Tcl_GetIntForIndex} -body {
    string index a 100000000000+0
} -result {}
test util-9.33.1 {Tcl_GetIntForIndex} -body {
    string index a 0d100000000000+0
} -result {}
test util-9.34 {Tcl_GetIntForIndex} -body {
    string index a 1.0
} -returnCodes error -match glob -result *
test util-9.35 {Tcl_GetIntForIndex} -body {
    string index a 1e23
} -returnCodes error -match glob -result *
test util-9.36 {Tcl_GetIntForIndex} -body {
    string index a 1.5e2
} -returnCodes error -match glob -result *
test util-9.37 {Tcl_GetIntForIndex} -body {
    string index a 0+x
} -returnCodes error -match glob -result *
test util-9.38 {Tcl_GetIntForIndex} -body {
    string index a 0+0x
} -returnCodes error -match glob -result *
test util-9.39 {Tcl_GetIntForIndex} -body {
    string index a 0+0xg
} -returnCodes error -match glob -result *
test util-9.40 {Tcl_GetIntForIndex} -body {
    string index a 0+0xg
} -returnCodes error -match glob -result *
test util-9.41 {Tcl_GetIntForIndex} -body {
    string index a 0+1.0
} -returnCodes error -match glob -result *
test util-9.42 {Tcl_GetIntForIndex} -body {
    string index a 0+1e2
} -returnCodes error -match glob -result *
test util-9.43 {Tcl_GetIntForIndex} -body {
    string index a 0+1.5e1
} -returnCodes error -match glob -result *
test util-9.44 {Tcl_GetIntForIndex} -body {
    string index a 0+1000000000000
} -result {}
test util-9.45 {Tcl_GetIntForIndex} {
    string index abcd end+2305843009213693950
} {}
test util-9.46 {Tcl_GetIntForIndex} {
    string index abcd end+4294967294
} {}
# TIP 502
test util-9.47 {Tcl_GetIntForIndex} {
    string index abcd 0x10000000000000000
} {}
test util-9.48 {Tcl_GetIntForIndex} {
    string index abcd -0x10000000000000000
} {}
test util-9.49 {Tcl_GetIntForIndex} -body {
    string index abcd end*1
} -returnCodes error -match glob -result *
test util-9.50 {Tcl_GetIntForIndex} -body {
    string index abcd {end- 1}
} -returnCodes error -match glob -result *
test util-9.51 {Tcl_GetIntForIndex} -body {
    string index abcd end-end
} -returnCodes error -match glob -result *
test util-9.52 {Tcl_GetIntForIndex} -body {
    string index abcd end-x
} -returnCodes error -match glob -result *
test util-9.53 {Tcl_GetIntForIndex} -body {
    string index abcd end-0.1
} -returnCodes error -match glob -result *
test util-9.54 {Tcl_GetIntForIndex} {
    string index abcd end-0x10000000000000000
} {}
test util-9.55 {Tcl_GetIntForIndex} {
    string index abcd end+0x10000000000000000
} {}
test util-9.56 {Tcl_GetIntForIndex} {
    string index abcd end--0x10000000000000000
} {}
test util-9.57 {Tcl_GetIntForIndex} {
    string index abcd end+-0x10000000000000000
} {}
test util-9.58 {Tcl_GetIntForIndex} {
    string index abcd end--0x8000000000000000
} {}

test util-10.1 {Tcl_PrintDouble - rounding} {ieeeFloatingPoint} {
    convertDouble 0x0000000000000000
} {0.0}
test util-10.2 {Tcl_PrintDouble - rounding} {ieeeFloatingPoint} {