Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | merge 8.6 - timerate is part of Tcl now (since TIP#527 got merged), conflicts resolved, tclDate.c rebuilt with bison, etc. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sebres-8-6-clock-speedup-cr2 |
Files: | files | file ages | folders |
SHA3-256: |
3454e263733041f550bca5146e353580 |
User & Date: | sebres 2019-03-05 22:58:30.702 |
Context
2019-03-13
| ||
00:33 | integrate branch clock-astronomical-jdn: merge pull request #16 from sebres/astronomical-jdn (https:... check-in: 39a21f437a user: sebres tags: sebres-8-6-clock-speedup-cr2 | |
00:21 | implemented scan of astronomical julian day (JDN/ID) with token `%Ej`, corresponds julian date of sq... check-in: b9804722b9 user: sebres tags: clock-astronomical-jdn | |
2019-03-05
| ||
22:58 | merge 8.6 - timerate is part of Tcl now (since TIP#527 got merged), conflicts resolved, tclDate.c re... check-in: 3454e26373 user: sebres tags: sebres-8-6-clock-speedup-cr2 | |
16:59 | integrate sebres-8-6-timerate, merge 8.5 (TIP#527, New measurement facilities in TCL: New command ti... check-in: 49f82cfd7f user: sebres tags: core-8-6-branch | |
2019-01-25
| ||
20:47 | merge 8.6 check-in: 3db32b9237 user: sebres tags: sebres-8-6-clock-speedup-cr2 | |
Changes
Changes to .travis.yml.
1 2 3 4 5 6 | sudo: false language: c matrix: include: - os: linux | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | sudo: false language: c matrix: include: - os: linux dist: xenial compiler: clang env: - BUILD_DIR=unix - os: linux dist: xenial compiler: clang env: - CFGOPT=--disable-shared - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc env: - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc env: - CFGOPT=--disable-shared - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc-4.9 addons: apt: sources: - ubuntu-toolchain-r-test packages: - g++-4.9 env: - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc-5 addons: apt: sources: - ubuntu-toolchain-r-test packages: - g++-5 env: - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc-6 addons: apt: sources: - ubuntu-toolchain-r-test packages: - g++-6 env: - BUILD_DIR=unix - os: linux dist: xenial compiler: gcc-7 addons: apt: sources: - ubuntu-toolchain-r-test packages: - g++-7 |
︙ | ︙ | |||
80 81 82 83 84 85 86 | - NO_DIRECT_CONFIGURE=1 - os: osx osx_image: xcode9 env: - BUILD_DIR=macosx - NO_DIRECT_CONFIGURE=1 - os: osx | | | | | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | - NO_DIRECT_CONFIGURE=1 - os: osx osx_image: xcode9 env: - BUILD_DIR=macosx - NO_DIRECT_CONFIGURE=1 - os: osx osx_image: xcode10.2 env: - BUILD_DIR=macosx - NO_DIRECT_CONFIGURE=1 ### C builds not currently supported on Windows instances # - os: windows # env: # - BUILD_DIR=win ### ... so proxy with a Mingw cross-compile # Test with mingw-w64 (32 bit) - os: linux dist: xenial compiler: i686-w64-mingw32-gcc addons: apt: packages: - gcc-mingw-w64-base - binutils-mingw-w64-i686 - gcc-mingw-w64-i686 - gcc-mingw-w64 - gcc-multilib - wine env: - BUILD_DIR=win - CFGOPT=--host=i686-w64-mingw32 - NO_DIRECT_TEST=1 # Test with mingw-w64 (64 bit) - os: linux dist: xenial compiler: x86_64-w64-mingw32-gcc addons: apt: packages: - gcc-mingw-w64-base - binutils-mingw-w64-x86-64 - gcc-mingw-w64-x86-64 |
︙ | ︙ |
Changes to compat/strtol.c.
︙ | ︙ | |||
49 50 51 52 53 54 55 | long result; /* * Skip any leading blanks. */ p = string; | | | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | long result; /* * Skip any leading blanks. */ p = string; while (TclIsSpaceProc(*p)) { p += 1; } /* * Check for a sign. */ |
︙ | ︙ |
Changes to compat/strtoul.c.
︙ | ︙ | |||
70 71 72 73 74 75 76 | int overflow=0; /* * Skip any leading blanks. */ p = string; | | | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | int overflow=0; /* * Skip any leading blanks. */ p = string; while (TclIsSpaceProc(*p)) { p += 1; } if (*p == '-') { negative = 1; p += 1; } else { if (*p == '+') { |
︙ | ︙ |
Changes to doc/ParseArgs.3.
1 2 3 4 5 | '\" '\" Copyright (c) 2008 Donal K. Fellows '\" '\" See the file "license.terms" for information on usage and redistribution '\" of this file, and for a DISCLAIMER OF ALL WARRANTIES. | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 | '\" '\" Copyright (c) 2008 Donal K. Fellows '\" '\" See the file "license.terms" for information on usage and redistribution '\" of this file, and for a DISCLAIMER OF ALL WARRANTIES. '\" .TH Tcl_ParseArgsObjv 3 8.6 Tcl "Tcl Library Procedures" .so man.macros .BS .SH NAME Tcl_ParseArgsObjv \- parse arguments according to a tabular description .SH SYNOPSIS .nf |
︙ | ︙ | |||
99 100 101 102 103 104 105 | As noted above, the \fItype\fR field is used to describe the interpretation of the argument's value. The following values are acceptable values for \fItype\fR: .TP \fBTCL_ARGV_CONSTANT\fR . The argument does not take any following value argument. If this argument is | | | | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | As noted above, the \fItype\fR field is used to describe the interpretation of the argument's value. The following values are acceptable values for \fItype\fR: .TP \fBTCL_ARGV_CONSTANT\fR . The argument does not take any following value argument. If this argument is present, the \fIsrcPtr\fR field (casted to \fIint\fR) is copied to the variable pointed to by the \fIdstPtr\fR field. The \fIclientData\fR field is ignored. .TP \fBTCL_ARGV_END\fR . This value marks the end of all option descriptors in the table. All other fields are ignored. .TP \fBTCL_ARGV_FLOAT\fR |
︙ | ︙ |
Changes to generic/regc_locale.c.
︙ | ︙ | |||
149 150 151 152 153 154 155 | {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb5f, 0xb61}, {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa}, {0xbae, 0xbb9}, {0xc05, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28}, {0xc2a, 0xc39}, {0xc58, 0xc5a}, {0xc85, 0xc8c}, {0xc8e, 0xc90}, {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9}, {0xd05, 0xd0c}, {0xd0e, 0xd10}, {0xd12, 0xd3a}, {0xd54, 0xd56}, {0xd5f, 0xd61}, {0xd7a, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb}, | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | | | | | | < | | | | | | | | | | | > | | | | | | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb5f, 0xb61}, {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa}, {0xbae, 0xbb9}, {0xc05, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28}, {0xc2a, 0xc39}, {0xc58, 0xc5a}, {0xc85, 0xc8c}, {0xc8e, 0xc90}, {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9}, {0xd05, 0xd0c}, {0xd0e, 0xd10}, {0xd12, 0xd3a}, {0xd54, 0xd56}, {0xd5f, 0xd61}, {0xd7a, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb}, {0xdc0, 0xdc6}, {0xe01, 0xe30}, {0xe40, 0xe46}, {0xe86, 0xe8a}, {0xe8c, 0xea3}, {0xea7, 0xeb0}, {0xec0, 0xec4}, {0xedc, 0xedf}, {0xf40, 0xf47}, {0xf49, 0xf6c}, {0xf88, 0xf8c}, {0x1000, 0x102a}, {0x1050, 0x1055}, {0x105a, 0x105d}, {0x106e, 0x1070}, {0x1075, 0x1081}, {0x10a0, 0x10c5}, {0x10d0, 0x10fa}, {0x10fc, 0x1248}, {0x124a, 0x124d}, {0x1250, 0x1256}, {0x125a, 0x125d}, {0x1260, 0x1288}, {0x128a, 0x128d}, {0x1290, 0x12b0}, {0x12b2, 0x12b5}, {0x12b8, 0x12be}, {0x12c2, 0x12c5}, {0x12c8, 0x12d6}, {0x12d8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135a}, {0x1380, 0x138f}, {0x13a0, 0x13f5}, {0x13f8, 0x13fd}, {0x1401, 0x166c}, {0x166f, 0x167f}, {0x1681, 0x169a}, {0x16a0, 0x16ea}, {0x16f1, 0x16f8}, {0x1700, 0x170c}, {0x170e, 0x1711}, {0x1720, 0x1731}, {0x1740, 0x1751}, {0x1760, 0x176c}, {0x176e, 0x1770}, {0x1780, 0x17b3}, {0x1820, 0x1878}, {0x1880, 0x1884}, {0x1887, 0x18a8}, {0x18b0, 0x18f5}, {0x1900, 0x191e}, {0x1950, 0x196d}, {0x1970, 0x1974}, {0x1980, 0x19ab}, {0x19b0, 0x19c9}, {0x1a00, 0x1a16}, {0x1a20, 0x1a54}, {0x1b05, 0x1b33}, {0x1b45, 0x1b4b}, {0x1b83, 0x1ba0}, {0x1bba, 0x1be5}, {0x1c00, 0x1c23}, {0x1c4d, 0x1c4f}, {0x1c5a, 0x1c7d}, {0x1c80, 0x1c88}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf}, {0x1ce9, 0x1cec}, {0x1cee, 0x1cf3}, {0x1d00, 0x1dbf}, {0x1e00, 0x1f15}, {0x1f18, 0x1f1d}, {0x1f20, 0x1f45}, {0x1f48, 0x1f4d}, {0x1f50, 0x1f57}, {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4}, {0x1fb6, 0x1fbc}, {0x1fc2, 0x1fc4}, {0x1fc6, 0x1fcc}, {0x1fd0, 0x1fd3}, {0x1fd6, 0x1fdb}, {0x1fe0, 0x1fec}, {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffc}, {0x2090, 0x209c}, {0x210a, 0x2113}, {0x2119, 0x211d}, {0x212a, 0x212d}, {0x212f, 0x2139}, {0x213c, 0x213f}, {0x2145, 0x2149}, {0x2c00, 0x2c2e}, {0x2c30, 0x2c5e}, {0x2c60, 0x2ce4}, {0x2ceb, 0x2cee}, {0x2d00, 0x2d25}, {0x2d30, 0x2d67}, {0x2d80, 0x2d96}, {0x2da0, 0x2da6}, {0x2da8, 0x2dae}, {0x2db0, 0x2db6}, {0x2db8, 0x2dbe}, {0x2dc0, 0x2dc6}, {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6}, {0x2dd8, 0x2dde}, {0x3031, 0x3035}, {0x3041, 0x3096}, {0x309d, 0x309f}, {0x30a1, 0x30fa}, {0x30fc, 0x30ff}, {0x3105, 0x312f}, {0x3131, 0x318e}, {0x31a0, 0x31ba}, {0x31f0, 0x31ff}, {0x3400, 0x4db5}, {0x4e00, 0x9fef}, {0xa000, 0xa48c}, {0xa4d0, 0xa4fd}, {0xa500, 0xa60c}, {0xa610, 0xa61f}, {0xa640, 0xa66e}, {0xa67f, 0xa69d}, {0xa6a0, 0xa6e5}, {0xa717, 0xa71f}, {0xa722, 0xa788}, {0xa78b, 0xa7bf}, {0xa7c2, 0xa7c6}, {0xa7f7, 0xa801}, {0xa803, 0xa805}, {0xa807, 0xa80a}, {0xa80c, 0xa822}, {0xa840, 0xa873}, {0xa882, 0xa8b3}, {0xa8f2, 0xa8f7}, {0xa90a, 0xa925}, {0xa930, 0xa946}, {0xa960, 0xa97c}, {0xa984, 0xa9b2}, {0xa9e0, 0xa9e4}, {0xa9e6, 0xa9ef}, {0xa9fa, 0xa9fe}, {0xaa00, 0xaa28}, {0xaa40, 0xaa42}, {0xaa44, 0xaa4b}, {0xaa60, 0xaa76}, {0xaa7e, 0xaaaf}, {0xaab9, 0xaabd}, {0xaadb, 0xaadd}, {0xaae0, 0xaaea}, {0xaaf2, 0xaaf4}, {0xab01, 0xab06}, {0xab09, 0xab0e}, {0xab11, 0xab16}, {0xab20, 0xab26}, {0xab28, 0xab2e}, {0xab30, 0xab5a}, {0xab5c, 0xab67}, {0xab70, 0xabe2}, {0xac00, 0xd7a3}, {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb}, {0xf900, 0xfa6d}, {0xfa70, 0xfad9}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xfb1f, 0xfb28}, {0xfb2a, 0xfb36}, {0xfb38, 0xfb3c}, {0xfb46, 0xfbb1}, {0xfbd3, 0xfd3d}, {0xfd50, 0xfd8f}, {0xfd92, 0xfdc7}, {0xfdf0, 0xfdfb}, {0xfe70, 0xfe74}, {0xfe76, 0xfefc}, {0xff21, 0xff3a}, {0xff41, 0xff5a}, {0xff66, 0xffbe}, {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7}, {0xffda, 0xffdc} #if CHRBITS > 16 ,{0x10000, 0x1000b}, {0x1000d, 0x10026}, {0x10028, 0x1003a}, {0x1003f, 0x1004d}, {0x10050, 0x1005d}, {0x10080, 0x100fa}, {0x10280, 0x1029c}, {0x102a0, 0x102d0}, {0x10300, 0x1031f}, {0x1032d, 0x10340}, {0x10342, 0x10349}, {0x10350, 0x10375}, {0x10380, 0x1039d}, {0x103a0, 0x103c3}, {0x103c8, 0x103cf}, {0x10400, 0x1049d}, {0x104b0, 0x104d3}, {0x104d8, 0x104fb}, {0x10500, 0x10527}, {0x10530, 0x10563}, {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805}, {0x1080a, 0x10835}, {0x1083f, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089e}, {0x108e0, 0x108f2}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109b7}, {0x10a10, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a60, 0x10a7c}, {0x10a80, 0x10a9c}, {0x10ac0, 0x10ac7}, {0x10ac9, 0x10ae4}, {0x10b00, 0x10b35}, {0x10b40, 0x10b55}, {0x10b60, 0x10b72}, {0x10b80, 0x10b91}, {0x10c00, 0x10c48}, {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10d00, 0x10d23}, {0x10f00, 0x10f1c}, {0x10f30, 0x10f45}, {0x10fe0, 0x10ff6}, {0x11003, 0x11037}, {0x11083, 0x110af}, {0x110d0, 0x110e8}, {0x11103, 0x11126}, {0x11150, 0x11172}, {0x11183, 0x111b2}, {0x111c1, 0x111c4}, {0x11200, 0x11211}, {0x11213, 0x1122b}, {0x11280, 0x11286}, {0x1128a, 0x1128d}, {0x1128f, 0x1129d}, {0x1129f, 0x112a8}, {0x112b0, 0x112de}, {0x11305, 0x1130c}, {0x11313, 0x11328}, {0x1132a, 0x11330}, {0x11335, 0x11339}, {0x1135d, 0x11361}, {0x11400, 0x11434}, {0x11447, 0x1144a}, {0x11480, 0x114af}, {0x11580, 0x115ae}, {0x115d8, 0x115db}, {0x11600, 0x1162f}, {0x11680, 0x116aa}, {0x11700, 0x1171a}, {0x11800, 0x1182b}, {0x118a0, 0x118df}, {0x119a0, 0x119a7}, {0x119aa, 0x119d0}, {0x11a0b, 0x11a32}, {0x11a5c, 0x11a89}, {0x11ac0, 0x11af8}, {0x11c00, 0x11c08}, {0x11c0a, 0x11c2e}, {0x11c72, 0x11c8f}, {0x11d00, 0x11d06}, {0x11d0b, 0x11d30}, {0x11d60, 0x11d65}, {0x11d6a, 0x11d89}, {0x11ee0, 0x11ef2}, {0x12000, 0x12399}, {0x12480, 0x12543}, {0x13000, 0x1342e}, {0x14400, 0x14646}, {0x16800, 0x16a38}, {0x16a40, 0x16a5e}, {0x16ad0, 0x16aed}, {0x16b00, 0x16b2f}, {0x16b40, 0x16b43}, {0x16b63, 0x16b77}, {0x16b7d, 0x16b8f}, {0x16e40, 0x16e7f}, {0x16f00, 0x16f4a}, {0x16f93, 0x16f9f}, {0x17000, 0x187f7}, {0x18800, 0x18af2}, {0x1b000, 0x1b11e}, {0x1b150, 0x1b152}, {0x1b164, 0x1b167}, {0x1b170, 0x1b2fb}, {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99}, {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a}, {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544}, {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d6c0}, {0x1d6c2, 0x1d6da}, {0x1d6dc, 0x1d6fa}, {0x1d6fc, 0x1d714}, {0x1d716, 0x1d734}, {0x1d736, 0x1d74e}, {0x1d750, 0x1d76e}, {0x1d770, 0x1d788}, {0x1d78a, 0x1d7a8}, {0x1d7aa, 0x1d7c2}, {0x1d7c4, 0x1d7cb}, {0x1e100, 0x1e12c}, {0x1e137, 0x1e13d}, {0x1e2c0, 0x1e2eb}, {0x1e800, 0x1e8c4}, {0x1e900, 0x1e943}, {0x1ee00, 0x1ee03}, {0x1ee05, 0x1ee1f}, {0x1ee29, 0x1ee32}, {0x1ee34, 0x1ee37}, {0x1ee4d, 0x1ee4f}, {0x1ee67, 0x1ee6a}, {0x1ee6c, 0x1ee72}, {0x1ee74, 0x1ee77}, {0x1ee79, 0x1ee7c}, {0x1ee80, 0x1ee89}, {0x1ee8b, 0x1ee9b}, {0x1eea1, 0x1eea3}, {0x1eea5, 0x1eea9}, {0x1eeab, 0x1eebb}, {0x20000, 0x2a6d6}, {0x2a700, 0x2b734}, {0x2b740, 0x2b81d}, {0x2b820, 0x2cea1}, {0x2ceb0, 0x2ebe0}, {0x2f800, 0x2fa1d} #endif }; #define NUM_ALPHA_RANGE (sizeof(alphaRangeTable)/sizeof(crange)) static const chr alphaCharTable[] = { 0xaa, 0xb5, 0xba, 0x2ec, 0x2ee, 0x376, 0x377, 0x37f, 0x386, 0x38c, 0x559, 0x66e, 0x66f, 0x6d5, 0x6e5, 0x6e6, 0x6ee, 0x6ef, 0x6ff, 0x710, 0x7b1, 0x7f4, 0x7f5, 0x7fa, 0x81a, 0x824, 0x828, 0x93d, 0x950, 0x98f, 0x990, 0x9b2, 0x9bd, 0x9ce, 0x9dc, 0x9dd, 0x9f0, 0x9f1, 0x9fc, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36, 0xa38, 0xa39, 0xa5e, 0xab2, 0xab3, 0xabd, 0xad0, 0xae0, 0xae1, 0xaf9, 0xb0f, 0xb10, 0xb32, 0xb33, 0xb3d, 0xb5c, 0xb5d, 0xb71, 0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4, 0xbd0, 0xc3d, 0xc60, 0xc61, 0xc80, 0xcbd, 0xcde, 0xce0, 0xce1, 0xcf1, 0xcf2, 0xd3d, 0xd4e, 0xdbd, 0xe32, 0xe33, 0xe81, 0xe82, 0xe84, 0xea5, 0xeb2, 0xeb3, 0xebd, 0xec6, 0xf00, 0x103f, 0x1061, 0x1065, 0x1066, 0x108e, 0x10c7, 0x10cd, 0x1258, 0x12c0, 0x17d7, 0x17dc, 0x18aa, 0x1aa7, 0x1bae, 0x1baf, 0x1cf5, 0x1cf6, 0x1cfa, 0x1f59, 0x1f5b, 0x1f5d, 0x1fbe, 0x2071, 0x207f, 0x2102, 0x2107, 0x2115, 0x2124, 0x2126, 0x2128, 0x214e, 0x2183, 0x2184, 0x2cf2, 0x2cf3, 0x2d27, 0x2d2d, 0x2d6f, 0x2e2f, 0x3005, 0x3006, 0x303b, 0x303c, 0xa62a, 0xa62b, 0xa8fb, 0xa8fd, 0xa8fe, 0xa9cf, 0xaa7a, 0xaab1, 0xaab5, 0xaab6, 0xaac0, 0xaac2, 0xfb1d, 0xfb3e, 0xfb40, 0xfb41, 0xfb43, 0xfb44 #if CHRBITS > 16 ,0x1003c, 0x1003d, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4, 0x108f5, 0x109be, 0x109bf, 0x10a00, 0x10f27, 0x11144, 0x11176, 0x111da, 0x111dc, 0x11288, 0x1130f, 0x11310, 0x11332, 0x11333, 0x1133d, 0x11350, 0x1145f, 0x114c4, 0x114c5, 0x114c7, 0x11644, 0x116b8, 0x118ff, 0x119e1, 0x119e3, 0x11a00, 0x11a3a, 0x11a50, 0x11a9d, 0x11c40, 0x11d08, 0x11d09, 0x11d46, 0x11d67, 0x11d68, 0x11d98, 0x16f50, 0x16fe0, 0x16fe1, 0x16fe3, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d4bb, 0x1d546, 0x1e14e, 0x1e94b, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27, 0x1ee39, 0x1ee3b, 0x1ee42, 0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54, 0x1ee57, 0x1ee59, 0x1ee5b, 0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e #endif }; #define NUM_ALPHA_CHAR (sizeof(alphaCharTable)/sizeof(chr)) /* * Unicode: control characters. */ static const crange controlRangeTable[] = { {0x0, 0x1f}, {0x7f, 0x9f}, {0x600, 0x605}, {0x200b, 0x200f}, {0x202a, 0x202e}, {0x2060, 0x2064}, {0x2066, 0x206f}, {0xe000, 0xf8ff}, {0xfff9, 0xfffb} #if CHRBITS > 16 ,{0x13430, 0x13438}, {0x1bca0, 0x1bca3}, {0x1d173, 0x1d17a}, {0xe0020, 0xe007f}, {0xf0000, 0xffffd}, {0x100000, 0x10fffd} #endif }; #define NUM_CONTROL_RANGE (sizeof(controlRangeTable)/sizeof(crange)) static const chr controlCharTable[] = { 0xad, 0x61c, 0x6dd, 0x70f, 0x8e2, 0x180e, 0xfeff |
︙ | ︙ | |||
321 322 323 324 325 326 327 | {0xa9d0, 0xa9d9}, {0xa9f0, 0xa9f9}, {0xaa50, 0xaa59}, {0xabf0, 0xabf9}, {0xff10, 0xff19} #if CHRBITS > 16 ,{0x104a0, 0x104a9}, {0x10d30, 0x10d39}, {0x11066, 0x1106f}, {0x110f0, 0x110f9}, {0x11136, 0x1113f}, {0x111d0, 0x111d9}, {0x112f0, 0x112f9}, {0x11450, 0x11459}, {0x114d0, 0x114d9}, {0x11650, 0x11659}, {0x116c0, 0x116c9}, {0x11730, 0x11739}, {0x118e0, 0x118e9}, {0x11c50, 0x11c59}, {0x11d50, 0x11d59}, {0x11da0, 0x11da9}, | | > | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | {0xa9d0, 0xa9d9}, {0xa9f0, 0xa9f9}, {0xaa50, 0xaa59}, {0xabf0, 0xabf9}, {0xff10, 0xff19} #if CHRBITS > 16 ,{0x104a0, 0x104a9}, {0x10d30, 0x10d39}, {0x11066, 0x1106f}, {0x110f0, 0x110f9}, {0x11136, 0x1113f}, {0x111d0, 0x111d9}, {0x112f0, 0x112f9}, {0x11450, 0x11459}, {0x114d0, 0x114d9}, {0x11650, 0x11659}, {0x116c0, 0x116c9}, {0x11730, 0x11739}, {0x118e0, 0x118e9}, {0x11c50, 0x11c59}, {0x11d50, 0x11d59}, {0x11da0, 0x11da9}, {0x16a60, 0x16a69}, {0x16b50, 0x16b59}, {0x1d7ce, 0x1d7ff}, {0x1e140, 0x1e149}, {0x1e2f0, 0x1e2f9}, {0x1e950, 0x1e959} #endif }; #define NUM_DIGIT_RANGE (sizeof(digitRangeTable)/sizeof(crange)) /* * no singletons of digit characters. |
︙ | ︙ | |||
344 345 346 347 348 349 350 | {0x55a, 0x55f}, {0x66a, 0x66d}, {0x700, 0x70d}, {0x7f7, 0x7f9}, {0x830, 0x83e}, {0xf04, 0xf12}, {0xf3a, 0xf3d}, {0xfd0, 0xfd4}, {0x104a, 0x104f}, {0x1360, 0x1368}, {0x16eb, 0x16ed}, {0x17d4, 0x17d6}, {0x17d8, 0x17da}, {0x1800, 0x180a}, {0x1aa0, 0x1aa6}, {0x1aa8, 0x1aad}, {0x1b5a, 0x1b60}, {0x1bfc, 0x1bff}, {0x1c3b, 0x1c3f}, {0x1cc0, 0x1cc7}, {0x2010, 0x2027}, {0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205e}, {0x2308, 0x230b}, {0x2768, 0x2775}, {0x27e6, 0x27ef}, {0x2983, 0x2998}, | | | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | {0x55a, 0x55f}, {0x66a, 0x66d}, {0x700, 0x70d}, {0x7f7, 0x7f9}, {0x830, 0x83e}, {0xf04, 0xf12}, {0xf3a, 0xf3d}, {0xfd0, 0xfd4}, {0x104a, 0x104f}, {0x1360, 0x1368}, {0x16eb, 0x16ed}, {0x17d4, 0x17d6}, {0x17d8, 0x17da}, {0x1800, 0x180a}, {0x1aa0, 0x1aa6}, {0x1aa8, 0x1aad}, {0x1b5a, 0x1b60}, {0x1bfc, 0x1bff}, {0x1c3b, 0x1c3f}, {0x1cc0, 0x1cc7}, {0x2010, 0x2027}, {0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205e}, {0x2308, 0x230b}, {0x2768, 0x2775}, {0x27e6, 0x27ef}, {0x2983, 0x2998}, {0x29d8, 0x29db}, {0x2cf9, 0x2cfc}, {0x2e00, 0x2e2e}, {0x2e30, 0x2e4f}, {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301f}, {0xa60d, 0xa60f}, {0xa6f2, 0xa6f7}, {0xa874, 0xa877}, {0xa8f8, 0xa8fa}, {0xa9c1, 0xa9cd}, {0xaa5c, 0xaa5f}, {0xfe10, 0xfe19}, {0xfe30, 0xfe52}, {0xfe54, 0xfe61}, {0xff01, 0xff03}, {0xff05, 0xff0a}, {0xff0c, 0xff0f}, {0xff3b, 0xff3d}, {0xff5f, 0xff65} #if CHRBITS > 16 ,{0x10100, 0x10102}, {0x10a50, 0x10a58}, {0x10af0, 0x10af6}, {0x10b39, 0x10b3f}, |
︙ | ︙ | |||
368 369 370 371 372 373 374 | #define NUM_PUNCT_RANGE (sizeof(punctRangeTable)/sizeof(crange)) static const chr punctCharTable[] = { 0x3a, 0x3b, 0x3f, 0x40, 0x5f, 0x7b, 0x7d, 0xa1, 0xa7, 0xab, 0xb6, 0xb7, 0xbb, 0xbf, 0x37e, 0x387, 0x589, 0x58a, 0x5be, 0x5c0, 0x5c3, 0x5c6, 0x5f3, 0x5f4, 0x609, 0x60a, 0x60c, 0x60d, 0x61b, 0x61e, 0x61f, 0x6d4, 0x85e, 0x964, 0x965, 0x970, | | | | | | 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | #define NUM_PUNCT_RANGE (sizeof(punctRangeTable)/sizeof(crange)) static const chr punctCharTable[] = { 0x3a, 0x3b, 0x3f, 0x40, 0x5f, 0x7b, 0x7d, 0xa1, 0xa7, 0xab, 0xb6, 0xb7, 0xbb, 0xbf, 0x37e, 0x387, 0x589, 0x58a, 0x5be, 0x5c0, 0x5c3, 0x5c6, 0x5f3, 0x5f4, 0x609, 0x60a, 0x60c, 0x60d, 0x61b, 0x61e, 0x61f, 0x6d4, 0x85e, 0x964, 0x965, 0x970, 0x9fd, 0xa76, 0xaf0, 0xc77, 0xc84, 0xdf4, 0xe4f, 0xe5a, 0xe5b, 0xf14, 0xf85, 0xfd9, 0xfda, 0x10fb, 0x1400, 0x166e, 0x169b, 0x169c, 0x1735, 0x1736, 0x1944, 0x1945, 0x1a1e, 0x1a1f, 0x1c7e, 0x1c7f, 0x1cd3, 0x207d, 0x207e, 0x208d, 0x208e, 0x2329, 0x232a, 0x27c5, 0x27c6, 0x29fc, 0x29fd, 0x2cfe, 0x2cff, 0x2d70, 0x3030, 0x303d, 0x30a0, 0x30fb, 0xa4fe, 0xa4ff, 0xa673, 0xa67e, 0xa8ce, 0xa8cf, 0xa8fc, 0xa92e, 0xa92f, 0xa95f, 0xa9de, 0xa9df, 0xaade, 0xaadf, 0xaaf0, 0xaaf1, 0xabeb, 0xfd3e, 0xfd3f, 0xfe63, 0xfe68, 0xfe6a, 0xfe6b, 0xff1a, 0xff1b, 0xff1f, 0xff20, 0xff3f, 0xff5b, 0xff5d #if CHRBITS > 16 ,0x1039f, 0x103d0, 0x1056f, 0x10857, 0x1091f, 0x1093f, 0x10a7f, 0x110bb, 0x110bc, 0x11174, 0x11175, 0x111cd, 0x111db, 0x112a9, 0x1145b, 0x1145d, 0x114c6, 0x1183b, 0x119e2, 0x11c70, 0x11c71, 0x11ef7, 0x11ef8, 0x11fff, 0x16a6e, 0x16a6f, 0x16af5, 0x16b44, 0x16fe2, 0x1bc9f, 0x1e95e, 0x1e95f #endif }; #define NUM_PUNCT_CHAR (sizeof(punctCharTable)/sizeof(chr)) /* * Unicode: white space characters. |
︙ | ︙ | |||
420 421 422 423 424 425 426 | {0x10fd, 0x10ff}, {0x13f8, 0x13fd}, {0x1c80, 0x1c88}, {0x1d00, 0x1d2b}, {0x1d6b, 0x1d77}, {0x1d79, 0x1d9a}, {0x1e95, 0x1e9d}, {0x1eff, 0x1f07}, {0x1f10, 0x1f15}, {0x1f20, 0x1f27}, {0x1f30, 0x1f37}, {0x1f40, 0x1f45}, {0x1f50, 0x1f57}, {0x1f60, 0x1f67}, {0x1f70, 0x1f7d}, {0x1f80, 0x1f87}, {0x1f90, 0x1f97}, {0x1fa0, 0x1fa7}, {0x1fb0, 0x1fb4}, {0x1fc2, 0x1fc4}, {0x1fd0, 0x1fd3}, {0x1fe0, 0x1fe7}, {0x1ff2, 0x1ff4}, {0x2146, 0x2149}, {0x2c30, 0x2c5e}, {0x2c76, 0x2c7b}, {0x2d00, 0x2d25}, {0xa72f, 0xa731}, | | | 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | {0x10fd, 0x10ff}, {0x13f8, 0x13fd}, {0x1c80, 0x1c88}, {0x1d00, 0x1d2b}, {0x1d6b, 0x1d77}, {0x1d79, 0x1d9a}, {0x1e95, 0x1e9d}, {0x1eff, 0x1f07}, {0x1f10, 0x1f15}, {0x1f20, 0x1f27}, {0x1f30, 0x1f37}, {0x1f40, 0x1f45}, {0x1f50, 0x1f57}, {0x1f60, 0x1f67}, {0x1f70, 0x1f7d}, {0x1f80, 0x1f87}, {0x1f90, 0x1f97}, {0x1fa0, 0x1fa7}, {0x1fb0, 0x1fb4}, {0x1fc2, 0x1fc4}, {0x1fd0, 0x1fd3}, {0x1fe0, 0x1fe7}, {0x1ff2, 0x1ff4}, {0x2146, 0x2149}, {0x2c30, 0x2c5e}, {0x2c76, 0x2c7b}, {0x2d00, 0x2d25}, {0xa72f, 0xa731}, {0xa771, 0xa778}, {0xa793, 0xa795}, {0xab30, 0xab5a}, {0xab60, 0xab67}, {0xab70, 0xabbf}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xff41, 0xff5a} #if CHRBITS > 16 ,{0x10428, 0x1044f}, {0x104d8, 0x104fb}, {0x10cc0, 0x10cf2}, {0x118c0, 0x118df}, {0x16e60, 0x16e7f}, {0x1d41a, 0x1d433}, {0x1d44e, 0x1d454}, {0x1d456, 0x1d467}, {0x1d482, 0x1d49b}, {0x1d4b6, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d4cf}, {0x1d4ea, 0x1d503}, {0x1d51e, 0x1d537}, {0x1d552, 0x1d56b}, {0x1d586, 0x1d59f}, {0x1d5ba, 0x1d5d3}, {0x1d5ee, 0x1d607}, {0x1d622, 0x1d63b}, {0x1d656, 0x1d66f}, |
︙ | ︙ | |||
500 501 502 503 504 505 506 | 0xa691, 0xa693, 0xa695, 0xa697, 0xa699, 0xa69b, 0xa723, 0xa725, 0xa727, 0xa729, 0xa72b, 0xa72d, 0xa733, 0xa735, 0xa737, 0xa739, 0xa73b, 0xa73d, 0xa73f, 0xa741, 0xa743, 0xa745, 0xa747, 0xa749, 0xa74b, 0xa74d, 0xa74f, 0xa751, 0xa753, 0xa755, 0xa757, 0xa759, 0xa75b, 0xa75d, 0xa75f, 0xa761, 0xa763, 0xa765, 0xa767, 0xa769, 0xa76b, 0xa76d, 0xa76f, 0xa77a, 0xa77c, 0xa77f, 0xa781, 0xa783, 0xa785, 0xa787, 0xa78c, 0xa78e, 0xa791, 0xa797, 0xa799, 0xa79b, 0xa79d, 0xa79f, 0xa7a1, 0xa7a3, 0xa7a5, 0xa7a7, 0xa7a9, | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | 0xa691, 0xa693, 0xa695, 0xa697, 0xa699, 0xa69b, 0xa723, 0xa725, 0xa727, 0xa729, 0xa72b, 0xa72d, 0xa733, 0xa735, 0xa737, 0xa739, 0xa73b, 0xa73d, 0xa73f, 0xa741, 0xa743, 0xa745, 0xa747, 0xa749, 0xa74b, 0xa74d, 0xa74f, 0xa751, 0xa753, 0xa755, 0xa757, 0xa759, 0xa75b, 0xa75d, 0xa75f, 0xa761, 0xa763, 0xa765, 0xa767, 0xa769, 0xa76b, 0xa76d, 0xa76f, 0xa77a, 0xa77c, 0xa77f, 0xa781, 0xa783, 0xa785, 0xa787, 0xa78c, 0xa78e, 0xa791, 0xa797, 0xa799, 0xa79b, 0xa79d, 0xa79f, 0xa7a1, 0xa7a3, 0xa7a5, 0xa7a7, 0xa7a9, 0xa7af, 0xa7b5, 0xa7b7, 0xa7b9, 0xa7bb, 0xa7bd, 0xa7bf, 0xa7c3, 0xa7fa #if CHRBITS > 16 ,0x1d4bb, 0x1d7cb #endif }; #define NUM_LOWER_CHAR (sizeof(lowerCharTable)/sizeof(chr)) |
︙ | ︙ | |||
523 524 525 526 527 528 529 | {0x3d2, 0x3d4}, {0x3fd, 0x42f}, {0x531, 0x556}, {0x10a0, 0x10c5}, {0x13a0, 0x13f5}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf}, {0x1f08, 0x1f0f}, {0x1f18, 0x1f1d}, {0x1f28, 0x1f2f}, {0x1f38, 0x1f3f}, {0x1f48, 0x1f4d}, {0x1f68, 0x1f6f}, {0x1fb8, 0x1fbb}, {0x1fc8, 0x1fcb}, {0x1fd8, 0x1fdb}, {0x1fe8, 0x1fec}, {0x1ff8, 0x1ffb}, {0x210b, 0x210d}, {0x2110, 0x2112}, {0x2119, 0x211d}, {0x212a, 0x212d}, {0x2130, 0x2133}, {0x2c00, 0x2c2e}, {0x2c62, 0x2c64}, {0x2c6d, 0x2c70}, {0x2c7e, 0x2c80}, {0xa7aa, 0xa7ae}, | | | 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | {0x3d2, 0x3d4}, {0x3fd, 0x42f}, {0x531, 0x556}, {0x10a0, 0x10c5}, {0x13a0, 0x13f5}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf}, {0x1f08, 0x1f0f}, {0x1f18, 0x1f1d}, {0x1f28, 0x1f2f}, {0x1f38, 0x1f3f}, {0x1f48, 0x1f4d}, {0x1f68, 0x1f6f}, {0x1fb8, 0x1fbb}, {0x1fc8, 0x1fcb}, {0x1fd8, 0x1fdb}, {0x1fe8, 0x1fec}, {0x1ff8, 0x1ffb}, {0x210b, 0x210d}, {0x2110, 0x2112}, {0x2119, 0x211d}, {0x212a, 0x212d}, {0x2130, 0x2133}, {0x2c00, 0x2c2e}, {0x2c62, 0x2c64}, {0x2c6d, 0x2c70}, {0x2c7e, 0x2c80}, {0xa7aa, 0xa7ae}, {0xa7b0, 0xa7b4}, {0xa7c4, 0xa7c6}, {0xff21, 0xff3a} #if CHRBITS > 16 ,{0x10400, 0x10427}, {0x104b0, 0x104d3}, {0x10c80, 0x10cb2}, {0x118a0, 0x118bf}, {0x16e40, 0x16e5f}, {0x1d400, 0x1d419}, {0x1d434, 0x1d44d}, {0x1d468, 0x1d481}, {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b5}, {0x1d4d0, 0x1d4e9}, {0x1d507, 0x1d50a}, {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544}, {0x1d54a, 0x1d550}, {0x1d56c, 0x1d585}, {0x1d5a0, 0x1d5b9}, {0x1d5d4, 0x1d5ed}, {0x1d608, 0x1d621}, {0x1d63c, 0x1d655}, {0x1d670, 0x1d689}, {0x1d6a8, 0x1d6c0}, |
︙ | ︙ | |||
602 603 604 605 606 607 608 | 0xa698, 0xa69a, 0xa722, 0xa724, 0xa726, 0xa728, 0xa72a, 0xa72c, 0xa72e, 0xa732, 0xa734, 0xa736, 0xa738, 0xa73a, 0xa73c, 0xa73e, 0xa740, 0xa742, 0xa744, 0xa746, 0xa748, 0xa74a, 0xa74c, 0xa74e, 0xa750, 0xa752, 0xa754, 0xa756, 0xa758, 0xa75a, 0xa75c, 0xa75e, 0xa760, 0xa762, 0xa764, 0xa766, 0xa768, 0xa76a, 0xa76c, 0xa76e, 0xa779, 0xa77b, 0xa77d, 0xa77e, 0xa780, 0xa782, 0xa784, 0xa786, 0xa78b, 0xa78d, 0xa790, 0xa792, 0xa796, 0xa798, 0xa79a, 0xa79c, 0xa79e, 0xa7a0, 0xa7a2, 0xa7a4, 0xa7a6, 0xa7a8, 0xa7b6, | | | 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | 0xa698, 0xa69a, 0xa722, 0xa724, 0xa726, 0xa728, 0xa72a, 0xa72c, 0xa72e, 0xa732, 0xa734, 0xa736, 0xa738, 0xa73a, 0xa73c, 0xa73e, 0xa740, 0xa742, 0xa744, 0xa746, 0xa748, 0xa74a, 0xa74c, 0xa74e, 0xa750, 0xa752, 0xa754, 0xa756, 0xa758, 0xa75a, 0xa75c, 0xa75e, 0xa760, 0xa762, 0xa764, 0xa766, 0xa768, 0xa76a, 0xa76c, 0xa76e, 0xa779, 0xa77b, 0xa77d, 0xa77e, 0xa780, 0xa782, 0xa784, 0xa786, 0xa78b, 0xa78d, 0xa790, 0xa792, 0xa796, 0xa798, 0xa79a, 0xa79c, 0xa79e, 0xa7a0, 0xa7a2, 0xa7a4, 0xa7a6, 0xa7a8, 0xa7b6, 0xa7b8, 0xa7ba, 0xa7bc, 0xa7be, 0xa7c2 #if CHRBITS > 16 ,0x1d49c, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d504, 0x1d505, 0x1d538, 0x1d539, 0x1d546, 0x1d7ca #endif }; #define NUM_UPPER_CHAR (sizeof(upperCharTable)/sizeof(chr)) |
︙ | ︙ | |||
636 637 638 639 640 641 642 | {0xae0, 0xae3}, {0xae6, 0xaf1}, {0xaf9, 0xaff}, {0xb01, 0xb03}, {0xb05, 0xb0c}, {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb3c, 0xb44}, {0xb4b, 0xb4d}, {0xb5f, 0xb63}, {0xb66, 0xb77}, {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa}, {0xbae, 0xbb9}, {0xbbe, 0xbc2}, {0xbc6, 0xbc8}, {0xbca, 0xbcd}, {0xbe6, 0xbfa}, {0xc00, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28}, {0xc2a, 0xc39}, {0xc3d, 0xc44}, {0xc46, 0xc48}, {0xc4a, 0xc4d}, | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | > | | > | | | | | | | | | | | | | > | | | < | | | | | | | | | | | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | {0xae0, 0xae3}, {0xae6, 0xaf1}, {0xaf9, 0xaff}, {0xb01, 0xb03}, {0xb05, 0xb0c}, {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb3c, 0xb44}, {0xb4b, 0xb4d}, {0xb5f, 0xb63}, {0xb66, 0xb77}, {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa}, {0xbae, 0xbb9}, {0xbbe, 0xbc2}, {0xbc6, 0xbc8}, {0xbca, 0xbcd}, {0xbe6, 0xbfa}, {0xc00, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28}, {0xc2a, 0xc39}, {0xc3d, 0xc44}, {0xc46, 0xc48}, {0xc4a, 0xc4d}, {0xc58, 0xc5a}, {0xc60, 0xc63}, {0xc66, 0xc6f}, {0xc77, 0xc8c}, {0xc8e, 0xc90}, {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9}, {0xcbc, 0xcc4}, {0xcc6, 0xcc8}, {0xcca, 0xccd}, {0xce0, 0xce3}, {0xce6, 0xcef}, {0xd00, 0xd03}, {0xd05, 0xd0c}, {0xd0e, 0xd10}, {0xd12, 0xd44}, {0xd46, 0xd48}, {0xd4a, 0xd4f}, {0xd54, 0xd63}, {0xd66, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb}, {0xdc0, 0xdc6}, {0xdcf, 0xdd4}, {0xdd8, 0xddf}, {0xde6, 0xdef}, {0xdf2, 0xdf4}, {0xe01, 0xe3a}, {0xe3f, 0xe5b}, {0xe86, 0xe8a}, {0xe8c, 0xea3}, {0xea7, 0xebd}, {0xec0, 0xec4}, {0xec8, 0xecd}, {0xed0, 0xed9}, {0xedc, 0xedf}, {0xf00, 0xf47}, {0xf49, 0xf6c}, {0xf71, 0xf97}, {0xf99, 0xfbc}, {0xfbe, 0xfcc}, {0xfce, 0xfda}, {0x1000, 0x10c5}, {0x10d0, 0x1248}, {0x124a, 0x124d}, {0x1250, 0x1256}, {0x125a, 0x125d}, {0x1260, 0x1288}, {0x128a, 0x128d}, {0x1290, 0x12b0}, {0x12b2, 0x12b5}, {0x12b8, 0x12be}, {0x12c2, 0x12c5}, {0x12c8, 0x12d6}, {0x12d8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135a}, {0x135d, 0x137c}, {0x1380, 0x1399}, {0x13a0, 0x13f5}, {0x13f8, 0x13fd}, {0x1400, 0x167f}, {0x1681, 0x169c}, {0x16a0, 0x16f8}, {0x1700, 0x170c}, {0x170e, 0x1714}, {0x1720, 0x1736}, {0x1740, 0x1753}, {0x1760, 0x176c}, {0x176e, 0x1770}, {0x1780, 0x17dd}, {0x17e0, 0x17e9}, {0x17f0, 0x17f9}, {0x1800, 0x180d}, {0x1810, 0x1819}, {0x1820, 0x1878}, {0x1880, 0x18aa}, {0x18b0, 0x18f5}, {0x1900, 0x191e}, {0x1920, 0x192b}, {0x1930, 0x193b}, {0x1944, 0x196d}, {0x1970, 0x1974}, {0x1980, 0x19ab}, {0x19b0, 0x19c9}, {0x19d0, 0x19da}, {0x19de, 0x1a1b}, {0x1a1e, 0x1a5e}, {0x1a60, 0x1a7c}, {0x1a7f, 0x1a89}, {0x1a90, 0x1a99}, {0x1aa0, 0x1aad}, {0x1ab0, 0x1abe}, {0x1b00, 0x1b4b}, {0x1b50, 0x1b7c}, {0x1b80, 0x1bf3}, {0x1bfc, 0x1c37}, {0x1c3b, 0x1c49}, {0x1c4d, 0x1c88}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cc7}, {0x1cd0, 0x1cfa}, {0x1d00, 0x1df9}, {0x1dfb, 0x1f15}, {0x1f18, 0x1f1d}, {0x1f20, 0x1f45}, {0x1f48, 0x1f4d}, {0x1f50, 0x1f57}, {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4}, {0x1fb6, 0x1fc4}, {0x1fc6, 0x1fd3}, {0x1fd6, 0x1fdb}, {0x1fdd, 0x1fef}, {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffe}, {0x2010, 0x2027}, {0x2030, 0x205e}, {0x2074, 0x208e}, {0x2090, 0x209c}, {0x20a0, 0x20bf}, {0x20d0, 0x20f0}, {0x2100, 0x218b}, {0x2190, 0x2426}, {0x2440, 0x244a}, {0x2460, 0x2b73}, {0x2b76, 0x2b95}, {0x2b98, 0x2c2e}, {0x2c30, 0x2c5e}, {0x2c60, 0x2cf3}, {0x2cf9, 0x2d25}, {0x2d30, 0x2d67}, {0x2d7f, 0x2d96}, {0x2da0, 0x2da6}, {0x2da8, 0x2dae}, {0x2db0, 0x2db6}, {0x2db8, 0x2dbe}, {0x2dc0, 0x2dc6}, {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6}, {0x2dd8, 0x2dde}, {0x2de0, 0x2e4f}, {0x2e80, 0x2e99}, {0x2e9b, 0x2ef3}, {0x2f00, 0x2fd5}, {0x2ff0, 0x2ffb}, {0x3001, 0x303f}, {0x3041, 0x3096}, {0x3099, 0x30ff}, {0x3105, 0x312f}, {0x3131, 0x318e}, {0x3190, 0x31ba}, {0x31c0, 0x31e3}, {0x31f0, 0x321e}, {0x3220, 0x32fe}, {0x3300, 0x4db5}, {0x4dc0, 0x9fef}, {0xa000, 0xa48c}, {0xa490, 0xa4c6}, {0xa4d0, 0xa62b}, {0xa640, 0xa6f7}, {0xa700, 0xa7bf}, {0xa7c2, 0xa7c6}, {0xa7f7, 0xa82b}, {0xa830, 0xa839}, {0xa840, 0xa877}, {0xa880, 0xa8c5}, {0xa8ce, 0xa8d9}, {0xa8e0, 0xa953}, {0xa95f, 0xa97c}, {0xa980, 0xa9cd}, {0xa9cf, 0xa9d9}, {0xa9de, 0xa9fe}, {0xaa00, 0xaa36}, {0xaa40, 0xaa4d}, {0xaa50, 0xaa59}, {0xaa5c, 0xaac2}, {0xaadb, 0xaaf6}, {0xab01, 0xab06}, {0xab09, 0xab0e}, {0xab11, 0xab16}, {0xab20, 0xab26}, {0xab28, 0xab2e}, {0xab30, 0xab67}, {0xab70, 0xabed}, {0xabf0, 0xabf9}, {0xac00, 0xd7a3}, {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb}, {0xf900, 0xfa6d}, {0xfa70, 0xfad9}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xfb1d, 0xfb36}, {0xfb38, 0xfb3c}, {0xfb46, 0xfbc1}, {0xfbd3, 0xfd3f}, {0xfd50, 0xfd8f}, {0xfd92, 0xfdc7}, {0xfdf0, 0xfdfd}, {0xfe00, 0xfe19}, {0xfe20, 0xfe52}, {0xfe54, 0xfe66}, {0xfe68, 0xfe6b}, {0xfe70, 0xfe74}, {0xfe76, 0xfefc}, {0xff01, 0xffbe}, {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7}, {0xffda, 0xffdc}, {0xffe0, 0xffe6}, {0xffe8, 0xffee} #if CHRBITS > 16 ,{0x10000, 0x1000b}, {0x1000d, 0x10026}, {0x10028, 0x1003a}, {0x1003f, 0x1004d}, {0x10050, 0x1005d}, {0x10080, 0x100fa}, {0x10100, 0x10102}, {0x10107, 0x10133}, {0x10137, 0x1018e}, {0x10190, 0x1019b}, {0x101d0, 0x101fd}, {0x10280, 0x1029c}, {0x102a0, 0x102d0}, {0x102e0, 0x102fb}, {0x10300, 0x10323}, {0x1032d, 0x1034a}, {0x10350, 0x1037a}, {0x10380, 0x1039d}, {0x1039f, 0x103c3}, {0x103c8, 0x103d5}, {0x10400, 0x1049d}, {0x104a0, 0x104a9}, {0x104b0, 0x104d3}, {0x104d8, 0x104fb}, {0x10500, 0x10527}, {0x10530, 0x10563}, {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805}, {0x1080a, 0x10835}, {0x1083f, 0x10855}, {0x10857, 0x1089e}, {0x108a7, 0x108af}, {0x108e0, 0x108f2}, {0x108fb, 0x1091b}, {0x1091f, 0x10939}, {0x10980, 0x109b7}, {0x109bc, 0x109cf}, {0x109d2, 0x10a03}, {0x10a0c, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a38, 0x10a3a}, {0x10a3f, 0x10a48}, {0x10a50, 0x10a58}, {0x10a60, 0x10a9f}, {0x10ac0, 0x10ae6}, {0x10aeb, 0x10af6}, {0x10b00, 0x10b35}, {0x10b39, 0x10b55}, {0x10b58, 0x10b72}, {0x10b78, 0x10b91}, {0x10b99, 0x10b9c}, {0x10ba9, 0x10baf}, {0x10c00, 0x10c48}, {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10cfa, 0x10d27}, {0x10d30, 0x10d39}, {0x10e60, 0x10e7e}, {0x10f00, 0x10f27}, {0x10f30, 0x10f59}, {0x10fe0, 0x10ff6}, {0x11000, 0x1104d}, {0x11052, 0x1106f}, {0x1107f, 0x110bc}, {0x110be, 0x110c1}, {0x110d0, 0x110e8}, {0x110f0, 0x110f9}, {0x11100, 0x11134}, {0x11136, 0x11146}, {0x11150, 0x11176}, {0x11180, 0x111cd}, {0x111d0, 0x111df}, {0x111e1, 0x111f4}, {0x11200, 0x11211}, {0x11213, 0x1123e}, {0x11280, 0x11286}, {0x1128a, 0x1128d}, {0x1128f, 0x1129d}, {0x1129f, 0x112a9}, {0x112b0, 0x112ea}, {0x112f0, 0x112f9}, {0x11300, 0x11303}, {0x11305, 0x1130c}, {0x11313, 0x11328}, {0x1132a, 0x11330}, {0x11335, 0x11339}, {0x1133b, 0x11344}, {0x1134b, 0x1134d}, {0x1135d, 0x11363}, {0x11366, 0x1136c}, {0x11370, 0x11374}, {0x11400, 0x11459}, {0x1145d, 0x1145f}, {0x11480, 0x114c7}, {0x114d0, 0x114d9}, {0x11580, 0x115b5}, {0x115b8, 0x115dd}, {0x11600, 0x11644}, {0x11650, 0x11659}, {0x11660, 0x1166c}, {0x11680, 0x116b8}, {0x116c0, 0x116c9}, {0x11700, 0x1171a}, {0x1171d, 0x1172b}, {0x11730, 0x1173f}, {0x11800, 0x1183b}, {0x118a0, 0x118f2}, {0x119a0, 0x119a7}, {0x119aa, 0x119d7}, {0x119da, 0x119e4}, {0x11a00, 0x11a47}, {0x11a50, 0x11aa2}, {0x11ac0, 0x11af8}, {0x11c00, 0x11c08}, {0x11c0a, 0x11c36}, {0x11c38, 0x11c45}, {0x11c50, 0x11c6c}, {0x11c70, 0x11c8f}, {0x11c92, 0x11ca7}, {0x11ca9, 0x11cb6}, {0x11d00, 0x11d06}, {0x11d0b, 0x11d36}, {0x11d3f, 0x11d47}, {0x11d50, 0x11d59}, {0x11d60, 0x11d65}, {0x11d6a, 0x11d8e}, {0x11d93, 0x11d98}, {0x11da0, 0x11da9}, {0x11ee0, 0x11ef8}, {0x11fc0, 0x11ff1}, {0x11fff, 0x12399}, {0x12400, 0x1246e}, {0x12470, 0x12474}, {0x12480, 0x12543}, {0x13000, 0x1342e}, {0x14400, 0x14646}, {0x16800, 0x16a38}, {0x16a40, 0x16a5e}, {0x16a60, 0x16a69}, {0x16ad0, 0x16aed}, {0x16af0, 0x16af5}, {0x16b00, 0x16b45}, {0x16b50, 0x16b59}, {0x16b5b, 0x16b61}, {0x16b63, 0x16b77}, {0x16b7d, 0x16b8f}, {0x16e40, 0x16e9a}, {0x16f00, 0x16f4a}, {0x16f4f, 0x16f87}, {0x16f8f, 0x16f9f}, {0x16fe0, 0x16fe3}, {0x17000, 0x187f7}, {0x18800, 0x18af2}, {0x1b000, 0x1b11e}, {0x1b150, 0x1b152}, {0x1b164, 0x1b167}, {0x1b170, 0x1b2fb}, {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99}, {0x1bc9c, 0x1bc9f}, {0x1d000, 0x1d0f5}, {0x1d100, 0x1d126}, {0x1d129, 0x1d172}, {0x1d17b, 0x1d1e8}, {0x1d200, 0x1d245}, {0x1d2e0, 0x1d2f3}, {0x1d300, 0x1d356}, {0x1d360, 0x1d378}, {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a}, {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544}, {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d7cb}, {0x1d7ce, 0x1da8b}, {0x1da9b, 0x1da9f}, {0x1daa1, 0x1daaf}, {0x1e000, 0x1e006}, {0x1e008, 0x1e018}, {0x1e01b, 0x1e021}, {0x1e026, 0x1e02a}, {0x1e100, 0x1e12c}, {0x1e130, 0x1e13d}, {0x1e140, 0x1e149}, {0x1e2c0, 0x1e2f9}, {0x1e800, 0x1e8c4}, {0x1e8c7, 0x1e8d6}, {0x1e900, 0x1e94b}, {0x1e950, 0x1e959}, {0x1ec71, 0x1ecb4}, {0x1ed01, 0x1ed3d}, {0x1ee00, 0x1ee03}, {0x1ee05, 0x1ee1f}, {0x1ee29, 0x1ee32}, {0x1ee34, 0x1ee37}, {0x1ee4d, 0x1ee4f}, {0x1ee67, 0x1ee6a}, {0x1ee6c, 0x1ee72}, {0x1ee74, 0x1ee77}, {0x1ee79, 0x1ee7c}, {0x1ee80, 0x1ee89}, {0x1ee8b, 0x1ee9b}, {0x1eea1, 0x1eea3}, {0x1eea5, 0x1eea9}, {0x1eeab, 0x1eebb}, {0x1f000, 0x1f02b}, {0x1f030, 0x1f093}, {0x1f0a0, 0x1f0ae}, {0x1f0b1, 0x1f0bf}, {0x1f0c1, 0x1f0cf}, {0x1f0d1, 0x1f0f5}, {0x1f100, 0x1f10c}, {0x1f110, 0x1f16c}, {0x1f170, 0x1f1ac}, {0x1f1e6, 0x1f202}, {0x1f210, 0x1f23b}, {0x1f240, 0x1f248}, {0x1f260, 0x1f265}, {0x1f300, 0x1f6d5}, {0x1f6e0, 0x1f6ec}, {0x1f6f0, 0x1f6fa}, {0x1f700, 0x1f773}, {0x1f780, 0x1f7d8}, {0x1f7e0, 0x1f7eb}, {0x1f800, 0x1f80b}, {0x1f810, 0x1f847}, {0x1f850, 0x1f859}, {0x1f860, 0x1f887}, {0x1f890, 0x1f8ad}, {0x1f900, 0x1f90b}, {0x1f90d, 0x1f971}, {0x1f973, 0x1f976}, {0x1f97a, 0x1f9a2}, {0x1f9a5, 0x1f9aa}, {0x1f9ae, 0x1f9ca}, {0x1f9cd, 0x1fa53}, {0x1fa60, 0x1fa6d}, {0x1fa70, 0x1fa73}, {0x1fa78, 0x1fa7a}, {0x1fa80, 0x1fa82}, {0x1fa90, 0x1fa95}, {0x20000, 0x2a6d6}, {0x2a700, 0x2b734}, {0x2b740, 0x2b81d}, {0x2b820, 0x2cea1}, {0x2ceb0, 0x2ebe0}, {0x2f800, 0x2fa1d}, {0xe0100, 0xe01ef} #endif }; #define NUM_GRAPH_RANGE (sizeof(graphRangeTable)/sizeof(crange)) static const chr graphCharTable[] = { 0x38c, 0x85e, 0x98f, 0x990, 0x9b2, 0x9c7, 0x9c8, 0x9d7, 0x9dc, 0x9dd, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36, 0xa38, 0xa39, 0xa3c, 0xa47, 0xa48, 0xa51, 0xa5e, 0xab2, 0xab3, 0xad0, 0xb0f, 0xb10, 0xb32, 0xb33, 0xb47, 0xb48, 0xb56, 0xb57, 0xb5c, 0xb5d, 0xb82, 0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4, 0xbd0, 0xbd7, 0xc55, 0xc56, 0xcd5, 0xcd6, 0xcde, 0xcf1, 0xcf2, 0xd82, 0xd83, 0xdbd, 0xdca, 0xdd6, 0xe81, 0xe82, 0xe84, 0xea5, 0xec6, 0x10c7, 0x10cd, 0x1258, 0x12c0, 0x1772, 0x1773, 0x1940, 0x1f59, 0x1f5b, 0x1f5d, 0x2070, 0x2071, 0x2d27, 0x2d2d, 0x2d6f, 0x2d70, 0xfb3e, 0xfb40, 0xfb41, 0xfb43, 0xfb44, 0xfffc, 0xfffd #if CHRBITS > 16 ,0x1003c, 0x1003d, 0x101a0, 0x1056f, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4, 0x108f5, 0x1093f, 0x10a05, 0x10a06, 0x11288, 0x1130f, 0x11310, 0x11332, 0x11333, 0x11347, 0x11348, 0x11350, 0x11357, 0x1145b, 0x118ff, 0x11d08, 0x11d09, 0x11d3a, 0x11d3c, 0x11d3d, 0x11d67, 0x11d68, 0x11d90, 0x11d91, 0x16a6e, 0x16a6f, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d4bb, 0x1d546, 0x1e023, 0x1e024, 0x1e14e, 0x1e14f, 0x1e2ff, 0x1e95e, 0x1e95f, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27, 0x1ee39, 0x1ee3b, 0x1ee42, 0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54, 0x1ee57, 0x1ee59, 0x1ee5b, 0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e, 0x1eef0, 0x1eef1, 0x1f250, 0x1f251 #endif }; #define NUM_GRAPH_CHAR (sizeof(graphCharTable)/sizeof(chr)) /* * End of auto-generated Unicode character ranges declarations. |
︙ | ︙ |
Changes to generic/tclBasic.c.
︙ | ︙ | |||
453 454 455 456 457 458 459 | { Interp *iPtr; Tcl_Interp *interp; Command *cmdPtr; const BuiltinFuncDef *builtinFuncPtr; const OpCmdInfo *opcmdInfoPtr; const CmdInfo *cmdInfoPtr; | | | 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | { Interp *iPtr; Tcl_Interp *interp; Command *cmdPtr; const BuiltinFuncDef *builtinFuncPtr; const OpCmdInfo *opcmdInfoPtr; const CmdInfo *cmdInfoPtr; Tcl_Namespace *nsPtr; Tcl_HashEntry *hPtr; int isNew; CancelInfo *cancelInfo; union { char c[sizeof(short)]; short s; } order; |
︙ | ︙ | |||
844 845 846 847 848 849 850 | "::tcl::unsupported::assemble", Tcl_AssembleObjCmd, TclNRAssembleObjCmd, NULL, NULL); cmdPtr->compileProc = &TclCompileAssembleCmd; Tcl_NRCreateCommand(interp, "::tcl::unsupported::inject", NULL, NRCoroInjectObjCmd, NULL, NULL); | | | > > > > > > | | | | | | | 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | "::tcl::unsupported::assemble", Tcl_AssembleObjCmd, TclNRAssembleObjCmd, NULL, NULL); cmdPtr->compileProc = &TclCompileAssembleCmd; Tcl_NRCreateCommand(interp, "::tcl::unsupported::inject", NULL, NRCoroInjectObjCmd, NULL, NULL); /* Create an unsupported command for timerate */ Tcl_CreateObjCommand(interp, "::tcl::unsupported::timerate", Tcl_TimeRateObjCmd, NULL, NULL); /* Export unsupported commands */ nsPtr = Tcl_FindNamespace(interp, "::tcl::unsupported", NULL, 0); if (nsPtr) { Tcl_Export(interp, nsPtr, "*", 1); } #ifdef USE_DTRACE /* * Register the tcl::dtrace command. */ Tcl_CreateObjCommand(interp, "::tcl::dtrace", DTraceObjCmd, NULL, NULL); #endif /* USE_DTRACE */ /* * Register the builtin math functions. */ nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathfunc", NULL,NULL); if (nsPtr == NULL) { Tcl_Panic("Can't create math function namespace"); } #define MATH_FUNC_PREFIX_LEN 17 /* == strlen("::tcl::mathfunc::") */ memcpy(mathFuncName, "::tcl::mathfunc::", MATH_FUNC_PREFIX_LEN); for (builtinFuncPtr = BuiltinFuncTable; builtinFuncPtr->name != NULL; builtinFuncPtr++) { strcpy(mathFuncName+MATH_FUNC_PREFIX_LEN, builtinFuncPtr->name); Tcl_CreateObjCommand(interp, mathFuncName, builtinFuncPtr->objCmdProc, builtinFuncPtr->clientData, NULL); Tcl_Export(interp, nsPtr, builtinFuncPtr->name, 0); } /* * Register the mathematical "operator" commands. [TIP #174] */ nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathop", NULL, NULL); if (nsPtr == NULL) { Tcl_Panic("can't create math operator namespace"); } Tcl_Export(interp, nsPtr, "*", 1); #define MATH_OP_PREFIX_LEN 15 /* == strlen("::tcl::mathop::") */ memcpy(mathFuncName, "::tcl::mathop::", MATH_OP_PREFIX_LEN); for (opcmdInfoPtr=mathOpCmds ; opcmdInfoPtr->name!=NULL ; opcmdInfoPtr++){ TclOpCmdClientData *occdPtr = ckalloc(sizeof(TclOpCmdClientData)); occdPtr->op = opcmdInfoPtr->name; occdPtr->i.numArgs = opcmdInfoPtr->i.numArgs; |
︙ | ︙ |
Changes to generic/tclBinary.c.
︙ | ︙ | |||
1207 1208 1209 1210 1211 1212 1213 | badIndex: errorString = "not enough arguments for all format specifiers"; goto error; badField: { Tcl_UniChar ch = 0; | | | 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 | badIndex: errorString = "not enough arguments for all format specifiers"; goto error; badField: { Tcl_UniChar ch = 0; char buf[TCL_UTF_MAX + 1] = ""; TclUtfToUniChar(errorString, &ch); buf[Tcl_UniCharToUtf(ch, buf)] = '\0'; Tcl_SetObjResult(interp, Tcl_ObjPrintf( "bad field specifier \"%s\"", buf)); return TCL_ERROR; } |
︙ | ︙ | |||
1577 1578 1579 1580 1581 1582 1583 | badIndex: errorString = "not enough arguments for all format specifiers"; goto error; badField: { Tcl_UniChar ch = 0; | | | 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 | badIndex: errorString = "not enough arguments for all format specifiers"; goto error; badField: { Tcl_UniChar ch = 0; char buf[TCL_UTF_MAX + 1] = ""; TclUtfToUniChar(errorString, &ch); buf[Tcl_UniCharToUtf(ch, buf)] = '\0'; Tcl_SetObjResult(interp, Tcl_ObjPrintf( "bad field specifier \"%s\"", buf)); return TCL_ERROR; } |
︙ | ︙ | |||
2391 2392 2393 2394 2395 2396 2397 | if (data >= dataend) { value <<= 4; break; } c = *data++; if (!isxdigit((int) c)) { | | | 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 | if (data >= dataend) { value <<= 4; break; } c = *data++; if (!isxdigit((int) c)) { if (strict || !TclIsSpaceProc(c)) { goto badChar; } i--; continue; } value <<= 4; |
︙ | ︙ | |||
2738 2739 2740 2741 2742 2743 2744 | while (data < dataend) { char d[4] = {0, 0, 0, 0}; if (lineLen < 0) { c = *data++; if (c < 32 || c > 96) { | | | | 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 | while (data < dataend) { char d[4] = {0, 0, 0, 0}; if (lineLen < 0) { c = *data++; if (c < 32 || c > 96) { if (strict || !TclIsSpaceProc(c)) { goto badUu; } i--; continue; } lineLen = (c - 32) & 0x3f; } /* * Now we read a four-character grouping. */ for (i=0 ; i<4 ; i++) { if (data < dataend) { d[i] = c = *data++; if (c < 32 || c > 96) { if (strict) { if (!TclIsSpaceProc(c)) { goto badUu; } else if (c == '\n') { goto shortUu; } } i--; continue; |
︙ | ︙ | |||
2800 2801 2802 2803 2804 2805 2806 | do { c = *data++; if (c == '\n') { break; } else if (c >= 32 && c <= 96) { data--; break; | | | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 | do { c = *data++; if (c == '\n') { break; } else if (c >= 32 && c <= 96) { data--; break; } else if (strict || !TclIsSpaceProc(c)) { goto badUu; } } while (data < dataend); } } /* |
︙ | ︙ | |||
2930 2931 2932 2933 2934 2935 2936 | * input whitespace characters. */ if (cut) { if (c == '=' && i > 1) { value <<= 6; cut++; | | | | | 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 | * input whitespace characters. */ if (cut) { if (c == '=' && i > 1) { value <<= 6; cut++; } else if (!strict && TclIsSpaceProc(c)) { i--; } else { goto bad64; } } else if (c >= 'A' && c <= 'Z') { value = (value << 6) | ((c - 'A') & 0x3f); } else if (c >= 'a' && c <= 'z') { value = (value << 6) | ((c - 'a' + 26) & 0x3f); } else if (c >= '0' && c <= '9') { value = (value << 6) | ((c - '0' + 52) & 0x3f); } else if (c == '+') { value = (value << 6) | 0x3e; } else if (c == '/') { value = (value << 6) | 0x3f; } else if (c == '=' && ( !strict || i > 1) /* "=" and "a=" is rather bad64 error case in strict mode */ ) { value <<= 6; if (i) cut++; } else if (strict || !TclIsSpaceProc(c)) { goto bad64; } else { i--; } } *cursor++ = UCHAR((value >> 16) & 0xff); *cursor++ = UCHAR((value >> 8) & 0xff); *cursor++ = UCHAR(value & 0xff); /* * Since = is only valid within the final block, if it was encountered * but there are still more input characters, confirm that strict mode * is off and all subsequent characters are whitespace. */ if (cut && data < dataend) { if (strict) { goto bad64; } for (; data < dataend; data++) { if (!TclIsSpaceProc(*data)) { goto bad64; } } } } Tcl_SetByteArrayLength(resultObj, cursor - begin - cut); Tcl_SetObjResult(interp, resultObj); |
︙ | ︙ |
Changes to generic/tclCmdMZ.c.
︙ | ︙ | |||
1082 1083 1084 1085 1086 1087 1088 | for ( ; stringPtr < end; stringPtr += len) { int fullchar; len = TclUtfToUniChar(stringPtr, &ch); fullchar = ch; #if TCL_UTF_MAX == 4 | | | | 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 | for ( ; stringPtr < end; stringPtr += len) { int fullchar; len = TclUtfToUniChar(stringPtr, &ch); fullchar = ch; #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) { len += TclUtfToUniChar(stringPtr + len, &ch); fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000; } #endif /* * Assume Tcl_UniChar is an integral type... */ |
︙ | ︙ | |||
1422 1423 1424 1425 1426 1427 1428 | */ if (TclIsPureByteArray(objv[1])) { unsigned char uch = (unsigned char) ch; Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(&uch, 1)); } else { | | > > > > > | 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 | */ if (TclIsPureByteArray(objv[1])) { unsigned char uch = (unsigned char) ch; Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(&uch, 1)); } else { char buf[TCL_UTF_MAX] = ""; length = Tcl_UniCharToUtf(ch, buf); #if TCL_UTF_MAX > 3 if ((ch >= 0xD800) && (length < 3)) { length += Tcl_UniCharToUtf(-1, buf + length); } #endif Tcl_SetObjResult(interp, Tcl_NewStringObj(buf, length)); } } return TCL_OK; } /* |
︙ | ︙ | |||
1792 1793 1794 1795 1796 1797 1798 | } end = string1 + length1; for (; string1 < end; string1 += length2, failat++) { int fullchar; length2 = TclUtfToUniChar(string1, &ch); fullchar = ch; #if TCL_UTF_MAX == 4 | | | | 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 | } end = string1 + length1; for (; string1 < end; string1 += length2, failat++) { int fullchar; length2 = TclUtfToUniChar(string1, &ch); fullchar = ch; #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (length2 < 3)) { length2 += TclUtfToUniChar(string1 + length2, &ch); fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000; } #endif if (!chcomp(fullchar)) { result = 0; break; } |
︙ | ︙ | |||
1873 1874 1875 1876 1877 1878 1879 | return TCL_ERROR; } if (objc == 4) { const char *string = TclGetStringFromObj(objv[1], &length2); if ((length2 > 1) && | | | 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 | return TCL_ERROR; } if (objc == 4) { const char *string = TclGetStringFromObj(objv[1], &length2); if ((length2 > 1) && strncmp(string, "-nocase", length2) == 0) { nocase = 1; } else { Tcl_SetObjResult(interp, Tcl_ObjPrintf( "bad option \"%s\": must be -nocase", string)); Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option", string, NULL); return TCL_ERROR; |
︙ | ︙ | |||
2140 2141 2142 2143 2144 2145 2146 | } if (objc == 4) { int length; const char *string = TclGetStringFromObj(objv[1], &length); if ((length > 1) && | | | 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 | } if (objc == 4) { int length; const char *string = TclGetStringFromObj(objv[1], &length); if ((length > 1) && strncmp(string, "-nocase", length) == 0) { nocase = TCL_MATCH_NOCASE; } else { Tcl_SetObjResult(interp, Tcl_ObjPrintf( "bad option \"%s\": must be -nocase", string)); Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option", string, NULL); return TCL_ERROR; |
︙ | ︙ | |||
2608 2609 2610 2611 2612 2613 2614 | Tcl_WrongNumArgs(interp, 1, objv, "?-nocase? ?-length int? string1 string2"); return TCL_ERROR; } for (i = 1; i < objc-2; i++) { string2 = TclGetStringFromObj(objv[i], &length2); | | | | 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 | Tcl_WrongNumArgs(interp, 1, objv, "?-nocase? ?-length int? string1 string2"); return TCL_ERROR; } for (i = 1; i < objc-2; i++) { string2 = TclGetStringFromObj(objv[i], &length2); if ((length2 > 1) && !strncmp(string2, "-nocase", length2)) { nocase = 1; } else if ((length2 > 1) && !strncmp(string2, "-length", length2)) { if (i+1 >= objc-2) { goto str_cmp_args; } i++; if (TclGetIntFromObj(interp, objv[i], &reqlength) != TCL_OK) { return TCL_ERROR; } |
︙ | ︙ | |||
2885 2886 2887 2888 2889 2890 2891 | Tcl_WrongNumArgs(interp, 1, objv, "?-nocase? ?-length int? string1 string2"); return TCL_ERROR; } for (i = 1; i < objc-2; i++) { string = TclGetStringFromObj(objv[i], &length); | | | | 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 | Tcl_WrongNumArgs(interp, 1, objv, "?-nocase? ?-length int? string1 string2"); return TCL_ERROR; } for (i = 1; i < objc-2; i++) { string = TclGetStringFromObj(objv[i], &length); if ((length > 1) && !strncmp(string, "-nocase", length)) { *nocase = 1; } else if ((length > 1) && !strncmp(string, "-length", length)) { if (i+1 >= objc-2) { goto str_cmp_args; } i++; if (TclGetIntFromObj(interp, objv[i], reqlength) != TCL_OK) { return TCL_ERROR; } |
︙ | ︙ | |||
4222 4223 4224 4225 4226 4227 4228 | i = count; #ifndef TCL_WIDE_CLICKS Tcl_GetTime(&start); #else start = TclpGetWideClicks(); #endif while (i-- > 0) { | | | | 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 | i = count; #ifndef TCL_WIDE_CLICKS Tcl_GetTime(&start); #else start = TclpGetWideClicks(); #endif while (i-- > 0) { result = TclEvalObjEx(interp, objPtr, 0, NULL, 0); if (result != TCL_OK) { return result; } } #ifndef TCL_WIDE_CLICKS Tcl_GetTime(&stop); totalMicroSec = ((double) (stop.sec - start.sec)) * 1.0e6 + (stop.usec - start.usec); #else stop = TclpGetWideClicks(); totalMicroSec = ((double) TclpWideClicksToNanoseconds(stop - start))/1.0e3; #endif if (count <= 1) { /* * Use int obj since we know time is not fractional. [Bug 1202178] */ objs[0] = Tcl_NewWideIntObj((count <= 0) ? 0 : (Tcl_WideInt)totalMicroSec); } else { objs[0] = Tcl_NewDoubleObj(totalMicroSec/count); } /* * Construct the result as a list because many programs have always parsed * as such (extracting the first element, typically). |
︙ | ︙ | |||
4265 4266 4267 4268 4269 4270 4271 | /* *---------------------------------------------------------------------- * * Tcl_TimeRateObjCmd -- * * This object-based procedure is invoked to process the "timerate" Tcl | | | | 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 | /* *---------------------------------------------------------------------- * * Tcl_TimeRateObjCmd -- * * This object-based procedure is invoked to process the "timerate" Tcl * command. * This is similar to command "time", except the execution limited by * given time (in milliseconds) instead of repetition count. * * Example: * timerate {after 5} 1000 ; # equivalent for `time {after 5} [expr 1000/5]` * * Results: * A standard Tcl object result. |
︙ | ︙ | |||
4288 4289 4290 4291 4292 4293 4294 | int Tcl_TimeRateObjCmd( ClientData dummy, /* Not used. */ Tcl_Interp *interp, /* Current interpreter. */ int objc, /* Number of arguments. */ Tcl_Obj *const objv[]) /* Argument objects. */ { | > | | | > > | | > > | 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 | int Tcl_TimeRateObjCmd( ClientData dummy, /* Not used. */ Tcl_Interp *interp, /* Current interpreter. */ int objc, /* Number of arguments. */ Tcl_Obj *const objv[]) /* Argument objects. */ { static double measureOverhead = 0; /* global measure-overhead */ double overhead = -1; /* given measure-overhead */ register Tcl_Obj *objPtr; register int result, i; Tcl_Obj *calibrate = NULL, *direct = NULL; Tcl_WideUInt count = 0; /* Holds repetition count */ Tcl_WideInt maxms = WIDE_MIN; /* Maximal running time (in milliseconds) */ Tcl_WideUInt maxcnt = WIDE_MAX; /* Maximal count of iterations. */ Tcl_WideUInt threshold = 1; /* Current threshold for check time (faster * repeat count without time check) */ Tcl_WideUInt maxIterTm = 1; /* Max time of some iteration as max threshold * additionally avoid divide to zero (never < 1) */ unsigned short factor = 50; /* Factor (4..50) limiting threshold to avoid * growth of execution time. */ register Tcl_WideInt start, middle, stop; #ifndef TCL_WIDE_CLICKS Tcl_Time now; #endif static const char *const options[] = { "-direct", "-overhead", "-calibrate", "--", NULL |
︙ | ︙ | |||
4343 4344 4345 4346 4347 4348 4349 | break; case TMRT_CALIBRATE: calibrate = objv[i]; break; } } | | | | > > > > > > | | | > > | | | | | | | 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 | break; case TMRT_CALIBRATE: calibrate = objv[i]; break; } } if (i >= objc || i < objc-3) { usage: Tcl_WrongNumArgs(interp, 1, objv, "?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??"); return TCL_ERROR; } objPtr = objv[i++]; if (i < objc) { /* max-time */ result = Tcl_GetWideIntFromObj(interp, objv[i++], &maxms); if (result != TCL_OK) { return result; } if (i < objc) { /* max-count*/ Tcl_WideInt v; result = Tcl_GetWideIntFromObj(interp, objv[i], &v); if (result != TCL_OK) { return result; } maxcnt = (v > 0) ? v : 0; } } /* if calibrate */ if (calibrate) { /* if no time specified for the calibration */ if (maxms == WIDE_MIN) { Tcl_Obj *clobjv[6]; Tcl_WideInt maxCalTime = 5000; double lastMeasureOverhead = measureOverhead; clobjv[0] = objv[0]; i = 1; if (direct) { clobjv[i++] = direct; } clobjv[i++] = objPtr; /* reset last measurement overhead */ measureOverhead = (double)0; /* self-call with 100 milliseconds to warm-up, * before entering the calibration cycle */ TclNewLongObj(clobjv[i], 100); Tcl_IncrRefCount(clobjv[i]); result = Tcl_TimeRateObjCmd(dummy, interp, i+1, clobjv); Tcl_DecrRefCount(clobjv[i]); if (result != TCL_OK) { return result; } i--; clobjv[i++] = calibrate; clobjv[i++] = objPtr; /* set last measurement overhead to max */ measureOverhead = (double)UWIDE_MAX; /* calibration cycle until it'll be preciser */ maxms = -1000; do { lastMeasureOverhead = measureOverhead; TclNewLongObj(clobjv[i], (int)maxms); Tcl_IncrRefCount(clobjv[i]); |
︙ | ︙ | |||
4424 4425 4426 4427 4428 4429 4430 | Tcl_SetObjResult(interp, Tcl_NewLongObj(0)); return TCL_OK; } /* if time is negative - make current overhead more precise */ if (maxms > 0) { /* set last measurement overhead to max */ | | | | > > > | | > > > > | > | | | > > > > > | > > > > > > > > | > > | > > > > | | | 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 | Tcl_SetObjResult(interp, Tcl_NewLongObj(0)); return TCL_OK; } /* if time is negative - make current overhead more precise */ if (maxms > 0) { /* set last measurement overhead to max */ measureOverhead = (double)UWIDE_MAX; } else { maxms = -maxms; } } if (maxms == WIDE_MIN) { maxms = 1000; } if (overhead == -1) { overhead = measureOverhead; } /* be sure that resetting of result will not smudge the further measurement */ Tcl_ResetResult(interp); /* compile object */ if (!direct) { if (TclInterpReady(interp) != TCL_OK) { return TCL_ERROR; } codePtr = TclCompileObj(interp, objPtr, NULL, 0); TclPreserveByteCode(codePtr); } /* get start and stop time */ #ifdef TCL_WIDE_CLICKS start = middle = TclpGetWideClicks(); /* time to stop execution (in wide clicks) */ stop = start + (maxms * 1000 / TclpWideClickInMicrosec()); #else Tcl_GetTime(&now); start = now.sec; start *= 1000000; start += now.usec; middle = start; /* time to stop execution (in microsecs) */ stop = start + maxms * 1000; #endif /* start measurement */ if (maxcnt > 0) while (1) { /* eval single iteration */ count++; if (!direct) { /* precompiled */ rootPtr = TOP_CB(interp); result = TclNRExecuteByteCode(interp, codePtr); result = TclNRRunCallbacks(interp, result, rootPtr); } else { /* eval */ result = TclEvalObjEx(interp, objPtr, 0, NULL, 0); } if (result != TCL_OK) { /* allow break from measurement cycle (used for conditional stop) */ if (result != TCL_BREAK) { goto done; } /* force stop immediately */ threshold = 1; maxcnt = 0; result = TCL_OK; } /* don't check time up to threshold */ if (--threshold > 0) continue; /* check stop time reached, estimate new threshold */ #ifdef TCL_WIDE_CLICKS middle = TclpGetWideClicks(); #else Tcl_GetTime(&now); middle = now.sec; middle *= 1000000; middle += now.usec; #endif if (middle >= stop || count >= maxcnt) { break; } /* don't calculate threshold by few iterations, because sometimes first * iteration(s) can be too fast or slow (cached, delayed clean up, etc) */ if (count < 10) { threshold = 1; continue; } /* average iteration time in microsecs */ threshold = (middle - start) / count; if (threshold > maxIterTm) { maxIterTm = threshold; /* interations seems to be longer */ if (threshold > (maxIterTm * 2)) { if ((factor *= 2) > 50) factor = 50; } else { if (factor < 50) factor++; } } else if (factor > 4) { /* interations seems to be shorter */ if (threshold < (maxIterTm / 2)) { if ((factor /= 2) < 4) factor = 4; } else { factor--; } } /* as relation between remaining time and time since last check, * maximal some % of time (by factor), so avoid growing of the execution time * if iterations are not consistent, e. g. wax continuously on time) */ threshold = ((stop - middle) / maxIterTm) / factor + 1; if (threshold > 100000) { /* fix for too large threshold */ threshold = 100000; } /* consider max-count */ if (threshold > maxcnt - count) { threshold = maxcnt - count; } } { Tcl_Obj *objarr[8], **objs = objarr; Tcl_WideInt val; const char *fmt; middle -= start; /* execution time in microsecs */ #ifdef TCL_WIDE_CLICKS /* convert execution time in wide clicks to microsecs */ middle *= TclpWideClickInMicrosec(); #endif /* if not calibrate */ if (!calibrate) { /* minimize influence of measurement overhead */ if (overhead > 0) { /* estimate the time of overhead (microsecs) */ Tcl_WideUInt curOverhead = overhead * count; if (middle > curOverhead) { middle -= curOverhead; } else { middle = 0; } } } else { /* calibration - obtaining new measurement overhead */ if (measureOverhead > (double)middle / count) { measureOverhead = (double)middle / count; } |
︙ | ︙ | |||
4560 4561 4562 4563 4564 4565 4566 | if (val < 1000) { fmt = "%.3f"; } else if (val < 10000) { fmt = "%.2f"; } else { fmt = "%.1f"; }; objs[0] = Tcl_ObjPrintf(fmt, ((double)middle)/count); } objs[2] = Tcl_NewWideIntObj(count); /* iterations */ | | | | 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 | if (val < 1000) { fmt = "%.3f"; } else if (val < 10000) { fmt = "%.2f"; } else { fmt = "%.1f"; }; objs[0] = Tcl_ObjPrintf(fmt, ((double)middle)/count); } objs[2] = Tcl_NewWideIntObj(count); /* iterations */ /* calculate speed as rate (count) per sec */ if (!middle) middle++; /* +1 ms, just to avoid divide by zero */ if (count < (WIDE_MAX / 1000000)) { val = (count * 1000000) / middle; if (val < 100000) { if (val < 100) { fmt = "%.3f"; } else if (val < 1000) { fmt = "%.2f"; } else { fmt = "%.1f"; }; objs[4] = Tcl_ObjPrintf(fmt, ((double)(count * 1000000)) / middle); } else { |
︙ | ︙ | |||
4596 4597 4598 4599 4600 4601 4602 | TclNewLiteralStringObj(objs[3], "#"); TclNewLiteralStringObj(objs[5], "#/sec"); Tcl_SetObjResult(interp, Tcl_NewListObj(8, objarr)); } done: | | < | | 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 | TclNewLiteralStringObj(objs[3], "#"); TclNewLiteralStringObj(objs[5], "#/sec"); Tcl_SetObjResult(interp, Tcl_NewListObj(8, objarr)); } done: if (codePtr != NULL) { TclReleaseByteCode(codePtr); } return result; } /* *---------------------------------------------------------------------- |
︙ | ︙ |
Changes to generic/tclCompCmds.c.
︙ | ︙ | |||
3404 3405 3406 3407 3408 3409 3410 | Tcl_Token *varTokenPtr, /* Points to a variable token. */ CompileEnv *envPtr, /* Holds resulting instructions. */ int flags, /* TCL_NO_LARGE_INDEX | TCL_NO_ELEMENT. */ int *localIndexPtr, /* Must not be NULL. */ int *isScalarPtr) /* Must not be NULL. */ { register const char *p; | | | | | | | > > | | | | | | > | | > | | | | | | | | | | 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 | Tcl_Token *varTokenPtr, /* Points to a variable token. */ CompileEnv *envPtr, /* Holds resulting instructions. */ int flags, /* TCL_NO_LARGE_INDEX | TCL_NO_ELEMENT. */ int *localIndexPtr, /* Must not be NULL. */ int *isScalarPtr) /* Must not be NULL. */ { register const char *p; const char *last, *name, *elName; register int n; Tcl_Token *elemTokenPtr = NULL; int nameLen, elNameLen, simpleVarName, localIndex; int elemTokenCount = 0, allocedTokens = 0, removedParen = 0; /* * Decide if we can use a frame slot for the var/array name or if we need * to emit code to compute and push the name at runtime. We use a frame * slot (entry in the array of local vars) if we are compiling a procedure * body and if the name is simple text that does not include namespace * qualifiers. */ simpleVarName = 0; name = elName = NULL; nameLen = elNameLen = 0; localIndex = -1; if (varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) { /* * A simple variable name. Divide it up into "name" and "elName" * strings. If it is not a local variable, look it up at runtime. */ simpleVarName = 1; name = varTokenPtr[1].start; nameLen = varTokenPtr[1].size; if (name[nameLen-1] == ')') { /* * last char is ')' => potential array reference. */ last = Tcl_UtfPrev(name + nameLen, name); if (*last == ')') { for (p = name; p < last; p = Tcl_UtfNext(p)) { if (*p == '(') { elName = p + 1; elNameLen = last - elName; nameLen = p - name; break; } } } if (!(flags & TCL_NO_ELEMENT) && elNameLen) { /* * An array element, the element name is a simple string: * assemble the corresponding token. */ elemTokenPtr = TclStackAlloc(interp, sizeof(Tcl_Token)); allocedTokens = 1; elemTokenPtr->type = TCL_TOKEN_TEXT; elemTokenPtr->start = elName; elemTokenPtr->size = elNameLen; elemTokenPtr->numComponents = 0; elemTokenCount = 1; } } } else if (interp && ((n = varTokenPtr->numComponents) > 1) && (varTokenPtr[1].type == TCL_TOKEN_TEXT) && (varTokenPtr[n].type == TCL_TOKEN_TEXT) && (*((p = varTokenPtr[n].start + varTokenPtr[n].size)-1) == ')') && (*Tcl_UtfPrev(p, varTokenPtr[n].start) == ')')) { /* * Check for parentheses inside first token. */ simpleVarName = 0; for (p = varTokenPtr[1].start, last = p + varTokenPtr[1].size; p < last; p = Tcl_UtfNext(p)) { if (*p == '(') { simpleVarName = 1; break; } } if (simpleVarName) { int remainingLen; /* * Check the last token: if it is just ')', do not count it. * Otherwise, remove the ')' and flag so that it is restored at * the end. */ if (varTokenPtr[n].size == 1) { n--; } else { varTokenPtr[n].size--; removedParen = n; } name = varTokenPtr[1].start; nameLen = p - varTokenPtr[1].start; elName = p + 1; remainingLen = (varTokenPtr[2].start - p) - 1; elNameLen = (varTokenPtr[n].start-p) + varTokenPtr[n].size - 1; if (!(flags & TCL_NO_ELEMENT)) { if (remainingLen) { /* * Make a first token with the extra characters in the first * token. */ elemTokenPtr = TclStackAlloc(interp, n * sizeof(Tcl_Token)); allocedTokens = 1; elemTokenPtr->type = TCL_TOKEN_TEXT; elemTokenPtr->start = elName; elemTokenPtr->size = remainingLen; elemTokenPtr->numComponents = 0; elemTokenCount = n; /* * Copy the remaining tokens. */ |
︙ | ︙ | |||
3540 3541 3542 3543 3544 3545 3546 | if (simpleVarName) { /* * See whether name has any namespace separators (::'s). */ int hasNsQualifiers = 0; | | | | | | | 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 | if (simpleVarName) { /* * See whether name has any namespace separators (::'s). */ int hasNsQualifiers = 0; for (p = name, last = p + nameLen-1; p < last; p = Tcl_UtfNext(p)) { if ((*p == ':') && (*(p+1) == ':')) { hasNsQualifiers = 1; break; } } /* * Look up the var name's index in the array of local vars in the proc * frame. If retrieving the var's value and it doesn't already exist, * push its name and look it up at runtime. */ if (!hasNsQualifiers) { localIndex = TclFindCompiledLocal(name, nameLen, 1, envPtr); if ((flags & TCL_NO_LARGE_INDEX) && (localIndex > 255)) { /* * We'll push the name. */ localIndex = -1; } } if (interp && localIndex < 0) { PushLiteral(envPtr, name, nameLen); } /* * Compile the element script, if any, and only if not inhibited. [Bug * 3600328] */ if (elName != NULL && !(flags & TCL_NO_ELEMENT)) { if (elNameLen) { TclCompileTokens(interp, elemTokenPtr, elemTokenCount, envPtr); } else { PushStringLiteral(envPtr, ""); } } } else if (interp) { |
︙ | ︙ |
Changes to generic/tclCompCmdsSZ.c.
︙ | ︙ | |||
1492 1493 1494 1495 1496 1497 1498 | PUSH(""); count++; } for (endTokenPtr = tokenPtr + parse.numTokens; tokenPtr < endTokenPtr; tokenPtr = TokenAfter(tokenPtr)) { int length, literal, catchRange, breakJump; | | | 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 | PUSH(""); count++; } for (endTokenPtr = tokenPtr + parse.numTokens; tokenPtr < endTokenPtr; tokenPtr = TokenAfter(tokenPtr)) { int length, literal, catchRange, breakJump; char buf[TCL_UTF_MAX] = ""; JumpFixup startFixup, okFixup, returnFixup, breakFixup; JumpFixup continueFixup, otherFixup, endFixup; switch (tokenPtr->type) { case TCL_TOKEN_TEXT: literal = TclRegisterNewLiteral(envPtr, tokenPtr->start, tokenPtr->size); |
︙ | ︙ |
Changes to generic/tclCompile.c.
︙ | ︙ | |||
1719 1720 1721 1722 1723 1724 1725 | if (tempPtr != NULL) { Tcl_AppendToObj(tempPtr, tokenPtr->start, tokenPtr->size); } break; case TCL_TOKEN_BS: if (tempPtr != NULL) { | | | 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 | if (tempPtr != NULL) { Tcl_AppendToObj(tempPtr, tokenPtr->start, tokenPtr->size); } break; case TCL_TOKEN_BS: if (tempPtr != NULL) { char utfBuf[TCL_UTF_MAX] = ""; int length = TclParseBackslash(tokenPtr->start, tokenPtr->size, NULL, utfBuf); Tcl_AppendToObj(tempPtr, utfBuf, length); } break; |
︙ | ︙ | |||
2333 2334 2335 2336 2337 2338 2339 | * compile. */ int count, /* Number of tokens to consider at tokenPtr. * Must be at least 1. */ CompileEnv *envPtr) /* Holds the resulting instructions. */ { Tcl_DString textBuffer; /* Holds concatenated chars from adjacent * TCL_TOKEN_TEXT, TCL_TOKEN_BS tokens. */ | | | 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 | * compile. */ int count, /* Number of tokens to consider at tokenPtr. * Must be at least 1. */ CompileEnv *envPtr) /* Holds the resulting instructions. */ { Tcl_DString textBuffer; /* Holds concatenated chars from adjacent * TCL_TOKEN_TEXT, TCL_TOKEN_BS tokens. */ char buffer[TCL_UTF_MAX] = ""; int i, numObjsToConcat, length, adjust; unsigned char *entryCodeNext = envPtr->codeNext; #define NUM_STATIC_POS 20 int isLiteral, maxNumCL, numCL; int *clPosition = NULL; int depth = TclGetStackDepth(envPtr); |
︙ | ︙ |
Changes to generic/tclCompile.h.
︙ | ︙ | |||
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 | Tcl_Obj *objPtr, int maxChars); MODULE_SCOPE void TclPrintSource(FILE *outFile, const char *string, int maxChars); MODULE_SCOPE void TclPushVarName(Tcl_Interp *interp, Tcl_Token *varTokenPtr, CompileEnv *envPtr, int flags, int *localIndexPtr, int *isScalarPtr); MODULE_SCOPE void TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr); MODULE_SCOPE void TclInvalidateCmdLiteral(Tcl_Interp *interp, const char *name, Namespace *nsPtr); MODULE_SCOPE int TclSingleOpCmd(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]); MODULE_SCOPE int TclSortingOpCmd(ClientData clientData, | > > > > > > > > > > > > > > > > > > > | 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 | Tcl_Obj *objPtr, int maxChars); MODULE_SCOPE void TclPrintSource(FILE *outFile, const char *string, int maxChars); MODULE_SCOPE void TclPushVarName(Tcl_Interp *interp, Tcl_Token *varTokenPtr, CompileEnv *envPtr, int flags, int *localIndexPtr, int *isScalarPtr); static inline void TclPreserveByteCode( register ByteCode *codePtr) { codePtr->refCount++; } static inline void TclReleaseByteCode( register ByteCode *codePtr) { if (codePtr->refCount-- > 1) { return; } /* Just dropped to refcount==0. Clean up. */ TclCleanupByteCode(codePtr); } MODULE_SCOPE void TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr); MODULE_SCOPE void TclInvalidateCmdLiteral(Tcl_Interp *interp, const char *name, Namespace *nsPtr); MODULE_SCOPE int TclSingleOpCmd(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]); MODULE_SCOPE int TclSortingOpCmd(ClientData clientData, |
︙ | ︙ |
Changes to generic/tclDate.c.
︙ | ︙ | |||
2505 2506 2507 2508 2509 2510 2511 | { NULL, 0, 0 } }; static inline const char * bypassSpaces( register const char *s) { | | < | < | 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 | { NULL, 0, 0 } }; static inline const char * bypassSpaces( register const char *s) { while (TclIsSpaceProc(*s)) { s++; } return s; } /* * Dump error messages in the bit bucket. */ |
︙ | ︙ |
Changes to generic/tclEncoding.c.
︙ | ︙ | |||
2361 2362 2363 2364 2365 2366 2367 | src += 1; dst += Tcl_UniCharToUtf(*chPtr, dst); } else { int len = TclUtfToUniChar(src, chPtr); src += len; dst += Tcl_UniCharToUtf(*chPtr, dst); #if TCL_UTF_MAX == 4 | | | | 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 | src += 1; dst += Tcl_UniCharToUtf(*chPtr, dst); } else { int len = TclUtfToUniChar(src, chPtr); src += len; dst += Tcl_UniCharToUtf(*chPtr, dst); #if TCL_UTF_MAX == 4 if ((*chPtr >= 0xD800) && (len < 3)) { src += TclUtfToUniChar(src + len, chPtr); dst += Tcl_UniCharToUtf(*chPtr, dst); } #endif } } *srcReadPtr = src - srcStart; |
︙ | ︙ | |||
2983 2984 2985 2986 2987 2988 2989 | /* * Check for illegal characters. */ if (ch > 0xff #if TCL_UTF_MAX == 4 | | | | 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 | /* * Check for illegal characters. */ if (ch > 0xff #if TCL_UTF_MAX == 4 || ((ch >= 0xD800) && (len < 3)) #endif ) { if (flags & TCL_ENCODING_STOPONERROR) { result = TCL_CONVERT_UNKNOWN; break; } #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) len = 4; #endif /* * Plunge on, using '?' as a fallback character. */ ch = (Tcl_UniChar) '?'; |
︙ | ︙ | |||
3421 3422 3423 3424 3425 3426 3427 | */ state = oldState; result = TCL_CONVERT_NOSPACE; break; } memcpy(dst, subTablePtr->sequence, | | | 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 | */ state = oldState; result = TCL_CONVERT_NOSPACE; break; } memcpy(dst, subTablePtr->sequence, subTablePtr->sequenceLen); dst += subTablePtr->sequenceLen; } } if (tablePrefixBytes[(word >> 8)] != 0) { if (dst + 1 > dstEnd) { result = TCL_CONVERT_NOSPACE; |
︙ | ︙ |
Changes to generic/tclExecute.c.
︙ | ︙ | |||
5511 5512 5513 5514 5515 5516 5517 | } else if (TclIsPureByteArray(valuePtr)) { objResultPtr = Tcl_NewByteArrayObj( Tcl_GetByteArrayFromObj(valuePtr, NULL)+index, 1); } else if (valuePtr->bytes && length == valuePtr->length) { objResultPtr = Tcl_NewStringObj((const char *) valuePtr->bytes+index, 1); } else { | | | 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 | } else if (TclIsPureByteArray(valuePtr)) { objResultPtr = Tcl_NewByteArrayObj( Tcl_GetByteArrayFromObj(valuePtr, NULL)+index, 1); } else if (valuePtr->bytes && length == valuePtr->length) { objResultPtr = Tcl_NewStringObj((const char *) valuePtr->bytes+index, 1); } else { char buf[TCL_UTF_MAX] = ""; Tcl_UniChar ch = Tcl_GetUniChar(valuePtr, index); /* * This could be: Tcl_NewUnicodeObj((const Tcl_UniChar *)&ch, 1) * but creating the object as a string seems to be faster in * practical use. */ |
︙ | ︙ |
Changes to generic/tclGetDate.y.
︙ | ︙ | |||
679 680 681 682 683 684 685 | { NULL, 0, 0 } }; static inline const char * bypassSpaces( register const char *s) { | | < | < | 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | { NULL, 0, 0 } }; static inline const char * bypassSpaces( register const char *s) { while (TclIsSpaceProc(*s)) { s++; } return s; } /* * Dump error messages in the bit bucket. */ |
︙ | ︙ |
Changes to generic/tclInt.h.
︙ | ︙ | |||
898 899 900 901 902 903 904 | */ typedef struct CompiledLocal { struct CompiledLocal *nextPtr; /* Next compiler-recognized local variable for * this procedure, or NULL if this is the last * local. */ | | | < | 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | */ typedef struct CompiledLocal { struct CompiledLocal *nextPtr; /* Next compiler-recognized local variable for * this procedure, or NULL if this is the last * local. */ int nameLength; /* The number of bytes in local variable's name. * Among others used to speed up var lookups. */ int frameIndex; /* Index in the array of compiler-assigned * variables in the procedure call frame. */ int flags; /* Flag bits for the local variable. Same as * the flags for the Var structure above, * although only VAR_ARGUMENT, VAR_TEMPORARY, * and VAR_RESOLVED make sense. */ Tcl_Obj *defValuePtr; /* Pointer to the default value of an |
︙ | ︙ | |||
3022 3023 3024 3025 3026 3027 3028 | MODULE_SCOPE void TclInitIOSubsystem(void); MODULE_SCOPE void TclInitLimitSupport(Tcl_Interp *interp); MODULE_SCOPE void TclInitNamespaceSubsystem(void); MODULE_SCOPE void TclInitNotifier(void); MODULE_SCOPE void TclInitObjSubsystem(void); MODULE_SCOPE void TclInitSubsystems(void); MODULE_SCOPE int TclInterpReady(Tcl_Interp *interp); | | | | 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 | MODULE_SCOPE void TclInitIOSubsystem(void); MODULE_SCOPE void TclInitLimitSupport(Tcl_Interp *interp); MODULE_SCOPE void TclInitNamespaceSubsystem(void); MODULE_SCOPE void TclInitNotifier(void); MODULE_SCOPE void TclInitObjSubsystem(void); MODULE_SCOPE void TclInitSubsystems(void); MODULE_SCOPE int TclInterpReady(Tcl_Interp *interp); MODULE_SCOPE int TclIsSpaceProc(int byte); MODULE_SCOPE int TclIsBareword(int byte); MODULE_SCOPE Tcl_Obj * TclJoinPath(int elements, Tcl_Obj * const objv[], int forceRelative); MODULE_SCOPE int TclJoinThread(Tcl_ThreadId id, int *result); MODULE_SCOPE void TclLimitRemoveAllHandlers(Tcl_Interp *interp); MODULE_SCOPE Tcl_Obj * TclLindexList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *argPtr); MODULE_SCOPE Tcl_Obj * TclLindexFlat(Tcl_Interp *interp, Tcl_Obj *listPtr, |
︙ | ︙ |
Changes to generic/tclIntDecls.h.
︙ | ︙ | |||
11 12 13 14 15 16 17 | * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. */ #ifndef _TCLINTDECLS #define _TCLINTDECLS | < | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. */ #ifndef _TCLINTDECLS #define _TCLINTDECLS #undef TCL_STORAGE_CLASS #ifdef BUILD_tcl # define TCL_STORAGE_CLASS DLLEXPORT #else # ifdef USE_TCL_STUBS # define TCL_STORAGE_CLASS |
︙ | ︙ |
Changes to generic/tclParse.c.
︙ | ︙ | |||
609 610 611 612 613 614 615 | * None. * *---------------------------------------------------------------------- */ int TclIsSpaceProc( | | | 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 | * None. * *---------------------------------------------------------------------- */ int TclIsSpaceProc( int byte) { return CHAR_TYPE(byte) & (TYPE_SPACE) || byte == '\n'; } /* *---------------------------------------------------------------------- * |
︙ | ︙ | |||
638 639 640 641 642 643 644 | * None. * *---------------------------------------------------------------------- */ int TclIsBareword( | | | 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | * None. * *---------------------------------------------------------------------- */ int TclIsBareword( int byte) { if (byte < '0' || byte > 'z') { return 0; } if (byte <= '9' || byte >= 'a') { return 1; } |
︙ | ︙ | |||
840 841 842 843 844 845 846 | * written. At most TCL_UTF_MAX bytes will be * written there. */ { register const char *p = src+1; Tcl_UniChar unichar = 0; int result; int count; | | | 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 | * written. At most TCL_UTF_MAX bytes will be * written there. */ { register const char *p = src+1; Tcl_UniChar unichar = 0; int result; int count; char buf[TCL_UTF_MAX] = ""; if (numBytes == 0) { if (readPtr != NULL) { *readPtr = 0; } return 0; } |
︙ | ︙ | |||
989 990 991 992 993 994 995 | done: if (readPtr != NULL) { *readPtr = count; } count = Tcl_UniCharToUtf(result, dst); #if TCL_UTF_MAX > 3 | | | | 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 | done: if (readPtr != NULL) { *readPtr = count; } count = Tcl_UniCharToUtf(result, dst); #if TCL_UTF_MAX > 3 if ((result >= 0xD800) && (count < 3)) { count += Tcl_UniCharToUtf(-1, dst + count); } #endif return count; } /* *---------------------------------------------------------------------- |
︙ | ︙ | |||
2213 2214 2215 2216 2217 2218 2219 | adjust = 0; result = NULL; for (; count>0 && code==TCL_OK ; count--, tokenPtr++) { Tcl_Obj *appendObj = NULL; const char *append = NULL; int appendByteLength = 0; | | | 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 | adjust = 0; result = NULL; for (; count>0 && code==TCL_OK ; count--, tokenPtr++) { Tcl_Obj *appendObj = NULL; const char *append = NULL; int appendByteLength = 0; char utfCharBytes[TCL_UTF_MAX] = ""; switch (tokenPtr->type) { case TCL_TOKEN_TEXT: append = tokenPtr->start; appendByteLength = tokenPtr->size; break; |
︙ | ︙ |
Changes to generic/tclParse.h.
︙ | ︙ | |||
8 9 10 11 12 13 14 | #define TYPE_COMMAND_END 0x2 #define TYPE_SUBS 0x4 #define TYPE_QUOTE 0x8 #define TYPE_CLOSE_PAREN 0x10 #define TYPE_CLOSE_BRACK 0x20 #define TYPE_BRACE 0x40 | | | 8 9 10 11 12 13 14 15 16 17 | #define TYPE_COMMAND_END 0x2 #define TYPE_SUBS 0x4 #define TYPE_QUOTE 0x8 #define TYPE_CLOSE_PAREN 0x10 #define TYPE_CLOSE_BRACK 0x20 #define TYPE_BRACE 0x40 #define CHAR_TYPE(c) (tclCharTypeTable+128)[(unsigned char)(c)] MODULE_SCOPE const char tclCharTypeTable[]; |
Changes to generic/tclPort.h.
︙ | ︙ | |||
35 36 37 38 39 40 41 42 43 | # define LLONG_MIN ((Tcl_WideInt)(Tcl_LongAsWide(1)<<63)) # endif # endif /* Assume that if LLONG_MIN is undefined, then so is LLONG_MAX */ # define LLONG_MAX (~LLONG_MIN) #endif #endif /* _TCLPORT */ | > > > | 35 36 37 38 39 40 41 42 43 44 45 46 | # define LLONG_MIN ((Tcl_WideInt)(Tcl_LongAsWide(1)<<63)) # endif # endif /* Assume that if LLONG_MIN is undefined, then so is LLONG_MAX */ # define LLONG_MAX (~LLONG_MIN) #endif #define UWIDE_MAX ((Tcl_WideUInt)-1) #define WIDE_MAX ((Tcl_WideInt)(UWIDE_MAX >> 1)) #define WIDE_MIN ((Tcl_WideInt)((Tcl_WideUInt)WIDE_MAX+1)) #endif /* _TCLPORT */ |
Changes to generic/tclProc.c.
︙ | ︙ | |||
367 368 369 370 371 372 373 | Tcl_Obj *argsPtr, /* Description of arguments. */ Tcl_Obj *bodyPtr, /* Command body. */ Proc **procPtrPtr) /* Returns: pointer to proc data. */ { Interp *iPtr = (Interp *) interp; register Proc *procPtr; | | < < | | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | Tcl_Obj *argsPtr, /* Description of arguments. */ Tcl_Obj *bodyPtr, /* Command body. */ Proc **procPtrPtr) /* Returns: pointer to proc data. */ { Interp *iPtr = (Interp *) interp; register Proc *procPtr; int i, result, numArgs; register CompiledLocal *localPtr = NULL; Tcl_Obj **argArray; int precompiled = 0; if (bodyPtr->typePtr == &tclProcBodyType) { /* * Because the body is a TclProProcBody, the actual body is already * compiled, and it is not shared with anyone else, so it's OK not to * unshare it (as a matter of fact, it is bad to unshare it, because |
︙ | ︙ | |||
408 409 410 411 412 413 414 415 416 417 418 419 420 421 | * means that the same code can not be shared by two procedures that * have a different number of arguments, even if their bodies are * identical. Note that we don't use Tcl_DuplicateObj since we would * not want any bytecode internal representation. */ if (Tcl_IsShared(bodyPtr)) { int length; Tcl_Obj *sharedBodyPtr = bodyPtr; bytes = TclGetStringFromObj(bodyPtr, &length); bodyPtr = Tcl_NewStringObj(bytes, length); /* | > | 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | * means that the same code can not be shared by two procedures that * have a different number of arguments, even if their bodies are * identical. Note that we don't use Tcl_DuplicateObj since we would * not want any bytecode internal representation. */ if (Tcl_IsShared(bodyPtr)) { const char *bytes; int length; Tcl_Obj *sharedBodyPtr = bodyPtr; bytes = TclGetStringFromObj(bodyPtr, &length); bodyPtr = Tcl_NewStringObj(bytes, length); /* |
︙ | ︙ | |||
470 471 472 473 474 475 476 | localPtr = procPtr->firstLocalPtr; } else { procPtr->numArgs = numArgs; procPtr->numCompiledLocals = numArgs; } for (i = 0; i < numArgs; i++) { | > | | | < < < < < < < | | | | | > | | 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | localPtr = procPtr->firstLocalPtr; } else { procPtr->numArgs = numArgs; procPtr->numCompiledLocals = numArgs; } for (i = 0; i < numArgs; i++) { const char *argname, *argnamei, *argnamelast; int fieldCount, nameLength; Tcl_Obj **fieldValues; /* * Now divide the specifier up into name and default. */ result = Tcl_ListObjGetElements(interp, argArray[i], &fieldCount, &fieldValues); if (result != TCL_OK) { goto procError; } if (fieldCount > 2) { Tcl_Obj *errorObj = Tcl_NewStringObj( "too many fields in argument specifier \"", -1); Tcl_AppendObjToObj(errorObj, argArray[i]); Tcl_AppendToObj(errorObj, "\"", -1); Tcl_SetObjResult(interp, errorObj); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "FORMALARGUMENTFORMAT", NULL); goto procError; } if ((fieldCount == 0) || (fieldValues[0]->length == 0)) { Tcl_SetObjResult(interp, Tcl_NewStringObj( "argument with no name", -1)); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "FORMALARGUMENTFORMAT", NULL); goto procError; } argname = Tcl_GetStringFromObj(fieldValues[0], &nameLength); /* * Check that the formal parameter name is a scalar. */ argnamei = argname; argnamelast = Tcl_UtfPrev(argname + nameLength, argname); while (argnamei < argnamelast) { if (*argnamei == '(') { if (*argnamelast == ')') { /* We have an array element. */ Tcl_SetObjResult(interp, Tcl_ObjPrintf( "formal parameter \"%s\" is an array element", Tcl_GetString(fieldValues[0]))); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "FORMALARGUMENTFORMAT", NULL); goto procError; } } else if (*argnamei == ':' && *(argnamei+1) == ':') { Tcl_Obj *errorObj = Tcl_NewStringObj( "formal parameter \"", -1); Tcl_AppendObjToObj(errorObj, fieldValues[0]); Tcl_AppendToObj(errorObj, "\" is not a simple name", -1); Tcl_SetObjResult(interp, errorObj); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "FORMALARGUMENTFORMAT", NULL); goto procError; } |
︙ | ︙ | |||
550 551 552 553 554 555 556 | * * The only other flag vlaue that is important to retrieve from * precompiled procs is VAR_TEMPORARY (also unchanged). It is * needed later when retrieving the variable names. */ if ((localPtr->nameLength != nameLength) | | | > > | | > | | | 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | * * The only other flag vlaue that is important to retrieve from * precompiled procs is VAR_TEMPORARY (also unchanged). It is * needed later when retrieving the variable names. */ if ((localPtr->nameLength != nameLength) || (memcmp(localPtr->name, argname, nameLength) != 0) || (localPtr->frameIndex != i) || !(localPtr->flags & VAR_ARGUMENT) || (localPtr->defValuePtr == NULL && fieldCount == 2) || (localPtr->defValuePtr != NULL && fieldCount != 2)) { Tcl_SetObjResult(interp, Tcl_ObjPrintf( "procedure \"%s\": formal parameter %d is " "inconsistent with precompiled body", procName, i)); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "BYTECODELIES", NULL); goto procError; } /* * Compare the default value if any. */ if (localPtr->defValuePtr != NULL) { int tmpLength, valueLength; const char *tmpPtr = TclGetStringFromObj(localPtr->defValuePtr, &tmpLength); const char *value = TclGetStringFromObj(fieldValues[1], &valueLength); if ((valueLength != tmpLength) || memcmp(value, tmpPtr, tmpLength) != 0 ) { Tcl_Obj *errorObj = Tcl_ObjPrintf( "procedure \"%s\": formal parameter \"", procName); Tcl_AppendObjToObj(errorObj, fieldValues[0]); Tcl_AppendToObj(errorObj, "\" has " "default value inconsistent with precompiled body", -1); Tcl_SetObjResult(interp, errorObj); Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC", "BYTECODELIES", NULL); goto procError; |
︙ | ︙ | |||
622 623 624 625 626 627 628 | } else { localPtr->defValuePtr = NULL; } memcpy(localPtr->name, argname, fieldValues[0]->length + 1); if ((i == numArgs - 1) && (localPtr->nameLength == 4) && (localPtr->name[0] == 'a') | | | < | | 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | } else { localPtr->defValuePtr = NULL; } memcpy(localPtr->name, argname, fieldValues[0]->length + 1); if ((i == numArgs - 1) && (localPtr->nameLength == 4) && (localPtr->name[0] == 'a') && (memcmp(localPtr->name, "args", 4) == 0)) { localPtr->flags |= VAR_IS_ARGS; } } } *procPtrPtr = procPtr; return TCL_OK; procError: if (precompiled) { procPtr->refCount--; } else { Tcl_DecrRefCount(bodyPtr); while (procPtr->firstLocalPtr != NULL) { localPtr = procPtr->firstLocalPtr; procPtr->firstLocalPtr = localPtr->nextPtr; if (localPtr->defValuePtr != NULL) { Tcl_DecrRefCount(localPtr->defValuePtr); } ckfree(localPtr); } ckfree(procPtr); } return TCL_ERROR; |
︙ | ︙ |
Changes to generic/tclScan.c.
︙ | ︙ | |||
256 257 258 259 260 261 262 | * required. */ { int gotXpg, gotSequential, value, i, flags; char *end; Tcl_UniChar ch = 0; int objIndex, xpgSize, nspace = numVars; int *nassign = TclStackAlloc(interp, nspace * sizeof(int)); | | | 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | * required. */ { int gotXpg, gotSequential, value, i, flags; char *end; Tcl_UniChar ch = 0; int objIndex, xpgSize, nspace = numVars; int *nassign = TclStackAlloc(interp, nspace * sizeof(int)); char buf[TCL_UTF_MAX+1] = ""; Tcl_Obj *errorMsg; /* Place to build an error messages. Note that * these are messy operations because we do * not want to use the formatting engine; * we're inside there! */ /* * Initialize an array that records the number of times a variable is |
︙ | ︙ | |||
884 885 886 887 888 889 890 | /* * Scan a single Unicode character. */ offset = TclUtfToUniChar(string, &sch); i = (int)sch; #if TCL_UTF_MAX == 4 | | | | 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 | /* * Scan a single Unicode character. */ offset = TclUtfToUniChar(string, &sch); i = (int)sch; #if TCL_UTF_MAX == 4 if ((sch >= 0xD800) && (offset < 3)) { offset += TclUtfToUniChar(string+offset, &sch); i = (((i<<10) & 0x0FFC00) + 0x10000) + (sch & 0x3FF); } #endif string += offset; if (!(flags & SCAN_SUPPRESS)) { objPtr = Tcl_NewIntObj(i); Tcl_IncrRefCount(objPtr); |
︙ | ︙ |
Changes to generic/tclStringObj.c.
︙ | ︙ | |||
1998 1999 2000 2001 2002 2003 2004 | int code, length; if (TclGetIntFromObj(interp, segment, &code) != TCL_OK) { goto error; } length = Tcl_UniCharToUtf(code, buf); #if TCL_UTF_MAX > 3 | | | | | 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | int code, length; if (TclGetIntFromObj(interp, segment, &code) != TCL_OK) { goto error; } length = Tcl_UniCharToUtf(code, buf); #if TCL_UTF_MAX > 3 if ((code >= 0xD800) && (length < 3)) { /* Special case for handling high surrogates. */ length += Tcl_UniCharToUtf(-1, buf + length); } #endif segment = Tcl_NewStringObj(buf, length); Tcl_IncrRefCount(segment); allocSegment = 1; break; } |
︙ | ︙ | |||
3172 3173 3174 3175 3176 3177 3178 | if (size > stringPtr->allocated) { GrowStringBuffer(objPtr, size, 1); } copyBytes: dst = objPtr->bytes + origLength; for (i = 0; i < numChars; i++) { | | | 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 | if (size > stringPtr->allocated) { GrowStringBuffer(objPtr, size, 1); } copyBytes: dst = objPtr->bytes + origLength; for (i = 0; i < numChars; i++) { dst += Tcl_UniCharToUtf(unicode[i], dst); } *dst = '\0'; objPtr->length = dst - objPtr->bytes; return numChars; } /* |
︙ | ︙ |
Changes to generic/tclStubInit.c.
︙ | ︙ | |||
278 279 280 281 282 283 284 | Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4); result = Tcl_DStringValue(dsPtr) + oldLength; p = result; wEnd = (wchar_t *)string + len; for (w = (wchar_t *)string; w < wEnd; ) { if (!blen && ((*w & 0xFC00) != 0xDC00)) { | | > > > > | | 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4); result = Tcl_DStringValue(dsPtr) + oldLength; p = result; wEnd = (wchar_t *)string + len; for (w = (wchar_t *)string; w < wEnd; ) { if (!blen && ((*w & 0xFC00) != 0xDC00)) { /* Special case for handling high surrogates. */ p += Tcl_UniCharToUtf(-1, p); } blen = Tcl_UniCharToUtf(*w, p); p += blen; if ((*w >= 0xD800) && (blen < 3)) { /* Indication that high surrogate is handled */ blen = 0; } w++; } if (!blen) { /* Special case for handling high surrogates. */ p += Tcl_UniCharToUtf(-1, p); } Tcl_DStringSetLength(dsPtr, oldLength + (p - result)); return result; #else return Tcl_UniCharToUtfDString((Tcl_UniChar *)string, len, dsPtr); |
︙ | ︙ | |||
845 846 847 848 849 850 851 852 853 854 855 856 857 858 | TclBN_s_mp_sub, /* 60 */ TclBN_mp_init_set_int, /* 61 */ TclBN_mp_set_int, /* 62 */ TclBN_mp_cnt_lsb, /* 63 */ TclBNInitBignumFromLong, /* 64 */ TclBNInitBignumFromWideInt, /* 65 */ TclBNInitBignumFromWideUInt, /* 66 */ }; static const TclStubHooks tclStubHooks = { &tclPlatStubs, &tclIntStubs, &tclIntPlatStubs }; | > | 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | TclBN_s_mp_sub, /* 60 */ TclBN_mp_init_set_int, /* 61 */ TclBN_mp_set_int, /* 62 */ TclBN_mp_cnt_lsb, /* 63 */ TclBNInitBignumFromLong, /* 64 */ TclBNInitBignumFromWideInt, /* 65 */ TclBNInitBignumFromWideUInt, /* 66 */ TclBN_mp_expt_d_ex, /* 67 */ }; static const TclStubHooks tclStubHooks = { &tclPlatStubs, &tclIntStubs, &tclIntPlatStubs }; |
︙ | ︙ |
Changes to generic/tclTomMath.decls.
︙ | ︙ | |||
26 27 28 29 30 31 32 | int TclBN_epoch(void) } declare 1 { int TclBN_revision(void) } declare 2 { | | | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | int TclBN_epoch(void) } declare 1 { int TclBN_revision(void) } declare 2 { int TclBN_mp_add(const mp_int *a, const mp_int *b, mp_int *c) } declare 3 { int TclBN_mp_add_d(const mp_int *a, mp_digit b, mp_int *c) } declare 4 { int TclBN_mp_and(const mp_int *a, const mp_int *b, mp_int *c) } declare 5 { void TclBN_mp_clamp(mp_int *a) } declare 6 { void TclBN_mp_clear(mp_int *a) } |
︙ | ︙ | |||
59 60 61 62 63 64 65 | declare 11 { int TclBN_mp_copy(const mp_int *a, mp_int *b) } declare 12 { int TclBN_mp_count_bits(const mp_int *a) } declare 13 { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | declare 11 { int TclBN_mp_copy(const mp_int *a, mp_int *b) } declare 12 { int TclBN_mp_count_bits(const mp_int *a) } declare 13 { int TclBN_mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) } declare 14 { int TclBN_mp_div_d(const mp_int *a, mp_digit b, mp_int *q, mp_digit *r) } declare 15 { int TclBN_mp_div_2(const mp_int *a, mp_int *q) } declare 16 { int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r) } declare 17 { int TclBN_mp_div_3(const mp_int *a, mp_int *q, mp_digit *r) } declare 18 { void TclBN_mp_exch(mp_int *a, mp_int *b) } declare 19 { int TclBN_mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) } declare 20 { int TclBN_mp_grow(mp_int *a, int size) } declare 21 { int TclBN_mp_init(mp_int *a) } declare 22 { int TclBN_mp_init_copy(mp_int *a, const mp_int *b) } declare 23 { int TclBN_mp_init_multi(mp_int *a, ...) } declare 24 { int TclBN_mp_init_set(mp_int *a, mp_digit b) } declare 25 { int TclBN_mp_init_size(mp_int *a, int size) } declare 26 { int TclBN_mp_lshd(mp_int *a, int shift) } declare 27 { int TclBN_mp_mod(const mp_int *a, const mp_int *b, mp_int *r) } declare 28 { int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r) } declare 29 { int TclBN_mp_mul(const mp_int *a, const mp_int *b, mp_int *p) } declare 30 { int TclBN_mp_mul_d(const mp_int *a, mp_digit b, mp_int *p) } declare 31 { int TclBN_mp_mul_2(const mp_int *a, mp_int *p) } declare 32 { int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p) } declare 33 { int TclBN_mp_neg(const mp_int *a, mp_int *b) } declare 34 { int TclBN_mp_or(const mp_int *a, const mp_int *b, mp_int *c) } declare 35 { int TclBN_mp_radix_size(const mp_int *a, int radix, int *size) } declare 36 { int TclBN_mp_read_radix(mp_int *a, const char *str, int radix) } declare 37 { void TclBN_mp_rshd(mp_int *a, int shift) } declare 38 { int TclBN_mp_shrink(mp_int *a) } declare 39 { void TclBN_mp_set(mp_int *a, mp_digit b) } declare 40 { int TclBN_mp_sqr(const mp_int *a, mp_int *b) } declare 41 { int TclBN_mp_sqrt(const mp_int *a, mp_int *b) } declare 42 { int TclBN_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) } declare 43 { int TclBN_mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) } declare 44 { int TclBN_mp_to_unsigned_bin(const mp_int *a, unsigned char *b) } declare 45 { int TclBN_mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) } declare 46 { int TclBN_mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) } declare 47 { int TclBN_mp_unsigned_bin_size(const mp_int *a) } declare 48 { int TclBN_mp_xor(const mp_int *a, const mp_int *b, mp_int *c) } declare 49 { void TclBN_mp_zero(mp_int *a) } # internal routines to libtommath - should not be called but must be # exported to accommodate the "tommath" extension declare 50 { void TclBN_reverse(unsigned char *s, int len) } declare 51 { int TclBN_fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) } declare 52 { int TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b) } declare 53 { int TclBN_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) } declare 54 { int TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b) } declare 55 { int TclBN_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) } declare 56 { int TclBN_mp_toom_sqr(const mp_int *a, mp_int *b) } declare 57 { int TclBN_s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) } declare 58 { int TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) } declare 59 { int TclBN_s_mp_sqr(const mp_int *a, mp_int *b) } declare 60 { int TclBN_s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) } declare 61 { int TclBN_mp_init_set_int(mp_int *a, unsigned long i) } declare 62 { int TclBN_mp_set_int(mp_int *a, unsigned long i) } |
︙ | ︙ | |||
228 229 230 231 232 233 234 235 236 237 238 | } declare 65 { void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal) } declare 66 { void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal) } # Local Variables: # mode: tcl # End: | > > > > > | 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | } declare 65 { void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal) } declare 66 { void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal) } # Added in libtommath 1.0 declare 67 { int TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) } # Local Variables: # mode: tcl # End: |
Changes to generic/tclTomMath.h.
1 2 3 4 5 6 7 8 9 10 11 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. | < < < < < < < < < < | < < < | < | | < | | > > | > > > > | > | > > > > > > | < < < | | | | | < | | < | < < < | < | < < < < | | < > > > > > | > | > > | | | | | | | | < < < < < < < < < < < < < < < < < < < < | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. */ #ifndef BN_H_ #define BN_H_ #include "tclTomMathDecls.h" #ifndef MODULE_SCOPE #define MODULE_SCOPE extern #endif #ifdef __cplusplus extern "C" { #endif /* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */ #if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__) # define MP_32BIT #endif /* detect 64-bit mode if possible */ #if defined(NEVER) # if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) # if defined(__GNUC__) /* we support 128bit integers only via: __attribute__((mode(TI))) */ # define MP_64BIT # else /* otherwise we fall back to MP_32BIT even on 64bit platforms */ # define MP_32BIT # endif # endif #endif /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT #ifndef MP_DIGIT_DECLARED typedef unsigned char mp_digit; #define MP_DIGIT_DECLARED #endif #ifndef MP_WORD_DECLARED typedef unsigned short mp_word; #define MP_WORD_DECLARED #endif # define MP_SIZEOF_MP_DIGIT 1 # ifdef DIGIT_BIT # error You must not define DIGIT_BIT when using MP_8BIT # endif #elif defined(MP_16BIT) #ifndef MP_DIGIT_DECLARED typedef unsigned short mp_digit; #define MP_DIGIT_DECLARED #endif #ifndef MP_WORD_DECLARED typedef unsigned int mp_word; #define MP_WORD_DECLARED #endif # define MP_SIZEOF_MP_DIGIT 2 # ifdef DIGIT_BIT # error You must not define DIGIT_BIT when using MP_16BIT # endif #elif defined(MP_64BIT) /* for GCC only on supported platforms */ #ifndef MP_DIGIT_DECLARED typedef unsigned long long mp_digit; #define MP_DIGIT_DECLARED #endif typedef unsigned long mp_word __attribute__((mode(TI))); # define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ /* this is to make porting into LibTomCrypt easier :-) */ #ifndef MP_DIGIT_DECLARED typedef unsigned int mp_digit; #define MP_DIGIT_DECLARED #endif #ifndef MP_WORD_DECLARED typedef unsigned long long mp_word; #define MP_WORD_DECLARED #endif # ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ # define DIGIT_BIT 31 # else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ # define DIGIT_BIT 28 # define MP_28BIT # endif #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT # define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ typedef unsigned long mp_min_u32; #else typedef mp_digit mp_min_u32; #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ |
︙ | ︙ | |||
166 167 168 169 170 171 172 | #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* you'll have to tune these... */ #if defined(BUILD_tcl) || !defined(_WIN32) MODULE_SCOPE int KARATSUBA_MUL_CUTOFF, | | | | | | | | | | | | | | | < | < | 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* you'll have to tune these... */ #if defined(BUILD_tcl) || !defined(_WIN32) MODULE_SCOPE int KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; #endif /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC # ifndef MP_LOW_MEM # define MP_PREC 32 /* default digits of precision */ # else # define MP_PREC 8 /* default digits of precision */ # endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ #ifndef MP_INT_DECLARED #define MP_INT_DECLARED typedef struct mp_int mp_int; #endif struct mp_int { int used, alloc, sign; mp_digit *dp; }; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define USED(m) ((m)->used) #define DIGIT(m, k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) /* error code to char* string */ const char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ /* int mp_init(mp_int *a); */ |
︙ | ︙ | |||
252 253 254 255 256 257 258 | /* init to a given number of digits */ /* int mp_init_size(mp_int *a, int size); */ /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | | | > > > > > > > > > > > > | > > > > > > > > > > > | | | > > > > > > > > > > | | | | | > > > > > > > > | | > > | > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | > > > | | | | | | | | | | > > > | > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 | /* init to a given number of digits */ /* int mp_init_size(mp_int *a, int size); */ /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) #define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ /* void mp_zero(mp_int *a); */ /* set to a digit */ /* void mp_set(mp_int *a, mp_digit b); */ /* set a 32-bit const */ /* int mp_set_int(mp_int *a, unsigned long b); */ /* set a platform dependent unsigned long value */ /* int mp_set_long(mp_int *a, unsigned long b); */ /* set a platform dependent unsigned long long value */ /* int mp_set_long_long(mp_int *a, unsigned long long b); */ /* get a 32-bit value */ /* unsigned long mp_get_int(const mp_int *a); */ /* get a platform dependent unsigned long value */ /* unsigned long mp_get_long(const mp_int *a); */ /* get a platform dependent unsigned long long value */ /* unsigned long long mp_get_long_long(const mp_int *a); */ /* initialize and set a digit */ /* int mp_init_set(mp_int *a, mp_digit b); */ /* initialize and set 32-bit value */ /* int mp_init_set_int(mp_int *a, unsigned long b); */ /* copy, b = a */ /* int mp_copy(const mp_int *a, mp_int *b); */ /* inits and copies, a = b */ /* int mp_init_copy(mp_int *a, const mp_int *b); */ /* trim unused digits */ /* void mp_clamp(mp_int *a); */ /* import binary data */ /* int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); */ /* export binary data */ /* int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op); */ /* ---> digit manipulation <--- */ /* right shift by "b" digits */ /* void mp_rshd(mp_int *a, int b); */ /* left shift by "b" digits */ /* int mp_lshd(mp_int *a, int b); */ /* c = a / 2**b, implemented as c = a >> b */ /* int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); */ /* b = a/2 */ /* int mp_div_2(const mp_int *a, mp_int *b); */ /* c = a * 2**b, implemented as c = a << b */ /* int mp_mul_2d(const mp_int *a, int b, mp_int *c); */ /* b = a*2 */ /* int mp_mul_2(const mp_int *a, mp_int *b); */ /* c = a mod 2**b */ /* int mp_mod_2d(const mp_int *a, int b, mp_int *c); */ /* computes a = 2**b */ /* int mp_2expt(mp_int *a, int b); */ /* Counts the number of lsbs which are zero before the first zero bit */ /* int mp_cnt_lsb(const mp_int *a); */ /* I Love Earth! */ /* makes a pseudo-random int of a given size */ /* int mp_rand(mp_int *a, int digits); */ #ifdef MP_PRNG_ENABLE_LTM_RNG /* as last resort we will fall back to libtomcrypt's rng_get_bytes() * in case you don't use libtomcrypt or use it w/o rng_get_bytes() * you have to implement it somewhere else, as it's required */ extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); extern void (*ltm_rng_callback)(void); #endif /* ---> binary operations <--- */ /* c = a XOR b */ /* int mp_xor(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a OR b */ /* int mp_or(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a AND b */ /* int mp_and(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a XOR b (two complement) */ /* int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a OR b (two complement) */ /* int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a AND b (two complement) */ /* int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c); */ /* right shift (two complement) */ /* int mp_tc_div_2d(const mp_int *a, int b, mp_int *c); */ /* ---> Basic arithmetic <--- */ /* b = ~a */ /* int mp_complement(const mp_int *a, mp_int *b); */ /* b = -a */ /* int mp_neg(const mp_int *a, mp_int *b); */ /* b = |a| */ /* int mp_abs(const mp_int *a, mp_int *b); */ /* compare a to b */ /* int mp_cmp(const mp_int *a, const mp_int *b); */ /* compare |a| to |b| */ /* int mp_cmp_mag(const mp_int *a, const mp_int *b); */ /* c = a + b */ /* int mp_add(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a - b */ /* int mp_sub(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = a * b */ /* int mp_mul(const mp_int *a, const mp_int *b, mp_int *c); */ /* b = a*a */ /* int mp_sqr(const mp_int *a, mp_int *b); */ /* a/b => cb + d == a */ /* int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); */ /* c = a mod b, 0 <= c < b */ /* int mp_mod(const mp_int *a, const mp_int *b, mp_int *c); */ /* ---> single digit functions <--- */ /* compare against a single digit */ /* int mp_cmp_d(const mp_int *a, mp_digit b); */ /* c = a + b */ /* int mp_add_d(const mp_int *a, mp_digit b, mp_int *c); */ /* c = a - b */ /* int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c); */ /* c = a * b */ /* int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c); */ /* a/b => cb + d == a */ /* int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d); */ /* a/3 => 3c + d == a */ /* int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d); */ /* c = a**b */ /* int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c); */ /* int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); */ /* c = a mod b, 0 <= c < b */ /* int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c); */ /* ---> number theory <--- */ /* d = a + b (mod c) */ /* int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); */ /* d = a - b (mod c) */ /* int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); */ /* d = a * b (mod c) */ /* int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); */ /* c = a * a (mod b) */ /* int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = 1/a (mod b) */ /* int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); */ /* c = (a, b) */ /* int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); */ /* produces value such that U1*a + U2*b = U3 */ /* int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); */ /* c = [a, b] or (a*b)/(a, b) */ /* int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); */ /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ /* int mp_n_root(const mp_int *a, mp_digit b, mp_int *c); */ /* int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); */ /* special sqrt algo */ /* int mp_sqrt(const mp_int *arg, mp_int *ret); */ /* special sqrt (mod prime) */ /* int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret); */ /* is number a square? */ /* int mp_is_square(const mp_int *arg, int *ret); */ /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ /* int mp_jacobi(const mp_int *a, const mp_int *n, int *c); */ /* used to setup the Barrett reduction for a given modulus b */ /* int mp_reduce_setup(mp_int *a, const mp_int *b); */ /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code]. */ /* int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); */ /* setups the montgomery reduction */ /* int mp_montgomery_setup(const mp_int *n, mp_digit *rho); */ /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ /* int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b); */ /* computes x/R == x (mod N) via Montgomery Reduction */ /* int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); */ /* returns 1 if a is a valid DR modulus */ /* int mp_dr_is_modulus(const mp_int *a); */ /* sets the value of "d" required for mp_dr_reduce */ /* void mp_dr_setup(const mp_int *a, mp_digit *d); */ /* reduces a modulo n using the Diminished Radix method */ /* int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k); */ /* returns true if a can be reduced with mp_reduce_2k */ /* int mp_reduce_is_2k(const mp_int *a); */ /* determines k value for 2k reduction */ /* int mp_reduce_2k_setup(const mp_int *a, mp_digit *d); */ /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ /* int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d); */ /* returns true if a can be reduced with mp_reduce_2k_l */ /* int mp_reduce_is_2k_l(const mp_int *a); */ /* determines k value for 2k reduction */ /* int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d); */ /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ /* int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d); */ /* Y = G**X (mod P) */ /* int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y); */ /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT # define PRIME_SIZE 31 #else # define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ #if defined(BUILD_tcl) || !defined(_WIN32) MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE]; #endif /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ /* int mp_prime_is_divisible(const mp_int *a, int *result); */ /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ /* int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result); */ /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ /* int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result); */ /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ /* int mp_prime_rabin_miller_trials(int size); */ /* performs t rounds of Miller-Rabin on "a" using the first * t prime bases. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * * Sets result to 1 if probably prime, 0 otherwise */ /* int mp_prime_is_prime(const mp_int *a, int t, int *result); */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ |
︙ | ︙ | |||
685 686 687 688 689 690 691 | /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | < | | | | | | | | | > | > | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < | > > > > | 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ /* int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); */ /* ---> radix conversion <--- */ /* int mp_count_bits(const mp_int *a); */ /* int mp_unsigned_bin_size(const mp_int *a); */ /* int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); */ /* int mp_to_unsigned_bin(const mp_int *a, unsigned char *b); */ /* int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); */ /* int mp_signed_bin_size(const mp_int *a); */ /* int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); */ /* int mp_to_signed_bin(const mp_int *a, unsigned char *b); */ /* int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); */ /* int mp_read_radix(mp_int *a, const char *str, int radix); */ /* int mp_toradix(const mp_int *a, char *str, int radix); */ /* int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen); */ /* int mp_radix_size(const mp_int *a, int radix, int *size); */ #ifndef LTM_NO_FILE /* int mp_fread(mp_int *a, int radix, FILE *stream); */ /* int mp_fwrite(const mp_int *a, int radix, FILE *stream); */ #endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) #ifdef __cplusplus } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to generic/tclTomMathDecls.h.
︙ | ︙ | |||
69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #define mp_div TclBN_mp_div #define mp_div_2 TclBN_mp_div_2 #define mp_div_2d TclBN_mp_div_2d #define mp_div_3 TclBN_mp_div_3 #define mp_div_d TclBN_mp_div_d #define mp_exch TclBN_mp_exch #define mp_expt_d TclBN_mp_expt_d #define mp_grow TclBN_mp_grow #define mp_init TclBN_mp_init #define mp_init_copy TclBN_mp_init_copy #define mp_init_multi TclBN_mp_init_multi #define mp_init_set TclBN_mp_init_set #define mp_init_set_int TclBN_mp_init_set_int #define mp_init_size TclBN_mp_init_size | > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | #define mp_div TclBN_mp_div #define mp_div_2 TclBN_mp_div_2 #define mp_div_2d TclBN_mp_div_2d #define mp_div_3 TclBN_mp_div_3 #define mp_div_d TclBN_mp_div_d #define mp_exch TclBN_mp_exch #define mp_expt_d TclBN_mp_expt_d #define mp_expt_d_ex TclBN_mp_expt_d_ex #define mp_grow TclBN_mp_grow #define mp_init TclBN_mp_init #define mp_init_copy TclBN_mp_init_copy #define mp_init_multi TclBN_mp_init_multi #define mp_init_set TclBN_mp_init_set #define mp_init_set_int TclBN_mp_init_set_int #define mp_init_size TclBN_mp_init_size |
︙ | ︙ | |||
90 91 92 93 94 95 96 | #define mp_mul_2d TclBN_mp_mul_2d #define mp_mul_d TclBN_mp_mul_d #define mp_neg TclBN_mp_neg #define mp_or TclBN_mp_or #define mp_radix_size TclBN_mp_radix_size #define mp_read_radix TclBN_mp_read_radix #define mp_rshd TclBN_mp_rshd | < | 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #define mp_mul_2d TclBN_mp_mul_2d #define mp_mul_d TclBN_mp_mul_d #define mp_neg TclBN_mp_neg #define mp_or TclBN_mp_or #define mp_radix_size TclBN_mp_radix_size #define mp_read_radix TclBN_mp_read_radix #define mp_rshd TclBN_mp_rshd #define mp_set TclBN_mp_set #define mp_set_int TclBN_mp_set_int #define mp_shrink TclBN_mp_shrink #define mp_sqr TclBN_mp_sqr #define mp_sqrt TclBN_mp_sqrt #define mp_sub TclBN_mp_sub #define mp_sub_d TclBN_mp_sub_d |
︙ | ︙ | |||
143 144 145 146 147 148 149 | */ /* 0 */ EXTERN int TclBN_epoch(void); /* 1 */ EXTERN int TclBN_revision(void); /* 2 */ | | > | > | > | | | | | | > | > | | > | > | > | | > | > | | | > | > | > | | | | | > | | | | | | | > | | > | | | | > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | */ /* 0 */ EXTERN int TclBN_epoch(void); /* 1 */ EXTERN int TclBN_revision(void); /* 2 */ EXTERN int TclBN_mp_add(const mp_int *a, const mp_int *b, mp_int *c); /* 3 */ EXTERN int TclBN_mp_add_d(const mp_int *a, mp_digit b, mp_int *c); /* 4 */ EXTERN int TclBN_mp_and(const mp_int *a, const mp_int *b, mp_int *c); /* 5 */ EXTERN void TclBN_mp_clamp(mp_int *a); /* 6 */ EXTERN void TclBN_mp_clear(mp_int *a); /* 7 */ EXTERN void TclBN_mp_clear_multi(mp_int *a, ...); /* 8 */ EXTERN int TclBN_mp_cmp(const mp_int *a, const mp_int *b); /* 9 */ EXTERN int TclBN_mp_cmp_d(const mp_int *a, mp_digit b); /* 10 */ EXTERN int TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b); /* 11 */ EXTERN int TclBN_mp_copy(const mp_int *a, mp_int *b); /* 12 */ EXTERN int TclBN_mp_count_bits(const mp_int *a); /* 13 */ EXTERN int TclBN_mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r); /* 14 */ EXTERN int TclBN_mp_div_d(const mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 15 */ EXTERN int TclBN_mp_div_2(const mp_int *a, mp_int *q); /* 16 */ EXTERN int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r); /* 17 */ EXTERN int TclBN_mp_div_3(const mp_int *a, mp_int *q, mp_digit *r); /* 18 */ EXTERN void TclBN_mp_exch(mp_int *a, mp_int *b); /* 19 */ EXTERN int TclBN_mp_expt_d(const mp_int *a, mp_digit b, mp_int *c); /* 20 */ EXTERN int TclBN_mp_grow(mp_int *a, int size); /* 21 */ EXTERN int TclBN_mp_init(mp_int *a); /* 22 */ EXTERN int TclBN_mp_init_copy(mp_int *a, const mp_int *b); /* 23 */ EXTERN int TclBN_mp_init_multi(mp_int *a, ...); /* 24 */ EXTERN int TclBN_mp_init_set(mp_int *a, mp_digit b); /* 25 */ EXTERN int TclBN_mp_init_size(mp_int *a, int size); /* 26 */ EXTERN int TclBN_mp_lshd(mp_int *a, int shift); /* 27 */ EXTERN int TclBN_mp_mod(const mp_int *a, const mp_int *b, mp_int *r); /* 28 */ EXTERN int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r); /* 29 */ EXTERN int TclBN_mp_mul(const mp_int *a, const mp_int *b, mp_int *p); /* 30 */ EXTERN int TclBN_mp_mul_d(const mp_int *a, mp_digit b, mp_int *p); /* 31 */ EXTERN int TclBN_mp_mul_2(const mp_int *a, mp_int *p); /* 32 */ EXTERN int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p); /* 33 */ EXTERN int TclBN_mp_neg(const mp_int *a, mp_int *b); /* 34 */ EXTERN int TclBN_mp_or(const mp_int *a, const mp_int *b, mp_int *c); /* 35 */ EXTERN int TclBN_mp_radix_size(const mp_int *a, int radix, int *size); /* 36 */ EXTERN int TclBN_mp_read_radix(mp_int *a, const char *str, int radix); /* 37 */ EXTERN void TclBN_mp_rshd(mp_int *a, int shift); /* 38 */ EXTERN int TclBN_mp_shrink(mp_int *a); /* 39 */ EXTERN void TclBN_mp_set(mp_int *a, mp_digit b); /* 40 */ EXTERN int TclBN_mp_sqr(const mp_int *a, mp_int *b); /* 41 */ EXTERN int TclBN_mp_sqrt(const mp_int *a, mp_int *b); /* 42 */ EXTERN int TclBN_mp_sub(const mp_int *a, const mp_int *b, mp_int *c); /* 43 */ EXTERN int TclBN_mp_sub_d(const mp_int *a, mp_digit b, mp_int *c); /* 44 */ EXTERN int TclBN_mp_to_unsigned_bin(const mp_int *a, unsigned char *b); /* 45 */ EXTERN int TclBN_mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); /* 46 */ EXTERN int TclBN_mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen); /* 47 */ EXTERN int TclBN_mp_unsigned_bin_size(const mp_int *a); /* 48 */ EXTERN int TclBN_mp_xor(const mp_int *a, const mp_int *b, mp_int *c); /* 49 */ EXTERN void TclBN_mp_zero(mp_int *a); /* 50 */ EXTERN void TclBN_reverse(unsigned char *s, int len); /* 51 */ EXTERN int TclBN_fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 52 */ EXTERN int TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b); /* 53 */ EXTERN int TclBN_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c); /* 54 */ EXTERN int TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b); /* 55 */ EXTERN int TclBN_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c); /* 56 */ EXTERN int TclBN_mp_toom_sqr(const mp_int *a, mp_int *b); /* 57 */ EXTERN int TclBN_s_mp_add(const mp_int *a, const mp_int *b, mp_int *c); /* 58 */ EXTERN int TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 59 */ EXTERN int TclBN_s_mp_sqr(const mp_int *a, mp_int *b); /* 60 */ EXTERN int TclBN_s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c); /* 61 */ EXTERN int TclBN_mp_init_set_int(mp_int *a, unsigned long i); /* 62 */ EXTERN int TclBN_mp_set_int(mp_int *a, unsigned long i); /* 63 */ EXTERN int TclBN_mp_cnt_lsb(const mp_int *a); /* 64 */ EXTERN void TclBNInitBignumFromLong(mp_int *bignum, long initVal); /* 65 */ EXTERN void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal); /* 66 */ EXTERN void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal); /* 67 */ EXTERN int TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); typedef struct TclTomMathStubs { int magic; void *hooks; int (*tclBN_epoch) (void); /* 0 */ int (*tclBN_revision) (void); /* 1 */ int (*tclBN_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 2 */ int (*tclBN_mp_add_d) (const mp_int *a, mp_digit b, mp_int *c); /* 3 */ int (*tclBN_mp_and) (const mp_int *a, const mp_int *b, mp_int *c); /* 4 */ void (*tclBN_mp_clamp) (mp_int *a); /* 5 */ void (*tclBN_mp_clear) (mp_int *a); /* 6 */ void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */ int (*tclBN_mp_cmp) (const mp_int *a, const mp_int *b); /* 8 */ int (*tclBN_mp_cmp_d) (const mp_int *a, mp_digit b); /* 9 */ int (*tclBN_mp_cmp_mag) (const mp_int *a, const mp_int *b); /* 10 */ int (*tclBN_mp_copy) (const mp_int *a, mp_int *b); /* 11 */ int (*tclBN_mp_count_bits) (const mp_int *a); /* 12 */ int (*tclBN_mp_div) (const mp_int *a, const mp_int *b, mp_int *q, mp_int *r); /* 13 */ int (*tclBN_mp_div_d) (const mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */ int (*tclBN_mp_div_2) (const mp_int *a, mp_int *q); /* 15 */ int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */ int (*tclBN_mp_div_3) (const mp_int *a, mp_int *q, mp_digit *r); /* 17 */ void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */ int (*tclBN_mp_expt_d) (const mp_int *a, mp_digit b, mp_int *c); /* 19 */ int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */ int (*tclBN_mp_init) (mp_int *a); /* 21 */ int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */ int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */ int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */ int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */ int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */ int (*tclBN_mp_mod) (const mp_int *a, const mp_int *b, mp_int *r); /* 27 */ int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */ int (*tclBN_mp_mul) (const mp_int *a, const mp_int *b, mp_int *p); /* 29 */ int (*tclBN_mp_mul_d) (const mp_int *a, mp_digit b, mp_int *p); /* 30 */ int (*tclBN_mp_mul_2) (const mp_int *a, mp_int *p); /* 31 */ int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */ int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */ int (*tclBN_mp_or) (const mp_int *a, const mp_int *b, mp_int *c); /* 34 */ int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */ int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */ void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */ int (*tclBN_mp_shrink) (mp_int *a); /* 38 */ void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */ int (*tclBN_mp_sqr) (const mp_int *a, mp_int *b); /* 40 */ int (*tclBN_mp_sqrt) (const mp_int *a, mp_int *b); /* 41 */ int (*tclBN_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 42 */ int (*tclBN_mp_sub_d) (const mp_int *a, mp_digit b, mp_int *c); /* 43 */ int (*tclBN_mp_to_unsigned_bin) (const mp_int *a, unsigned char *b); /* 44 */ int (*tclBN_mp_to_unsigned_bin_n) (const mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */ int (*tclBN_mp_toradix_n) (const mp_int *a, char *str, int radix, int maxlen); /* 46 */ int (*tclBN_mp_unsigned_bin_size) (const mp_int *a); /* 47 */ int (*tclBN_mp_xor) (const mp_int *a, const mp_int *b, mp_int *c); /* 48 */ void (*tclBN_mp_zero) (mp_int *a); /* 49 */ void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */ int (*tclBN_fast_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 51 */ int (*tclBN_fast_s_mp_sqr) (const mp_int *a, mp_int *b); /* 52 */ int (*tclBN_mp_karatsuba_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 53 */ int (*tclBN_mp_karatsuba_sqr) (const mp_int *a, mp_int *b); /* 54 */ int (*tclBN_mp_toom_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 55 */ int (*tclBN_mp_toom_sqr) (const mp_int *a, mp_int *b); /* 56 */ int (*tclBN_s_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 57 */ int (*tclBN_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 58 */ int (*tclBN_s_mp_sqr) (const mp_int *a, mp_int *b); /* 59 */ int (*tclBN_s_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 60 */ int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */ int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */ int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */ void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */ void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */ void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */ int (*tclBN_mp_expt_d_ex) (const mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */ } TclTomMathStubs; extern const TclTomMathStubs *tclTomMathStubsPtr; #ifdef __cplusplus } #endif |
︙ | ︙ | |||
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | (tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */ #define TclBNInitBignumFromLong \ (tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */ #define TclBNInitBignumFromWideInt \ (tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */ #define TclBNInitBignumFromWideUInt \ (tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */ #endif /* defined(USE_TCL_STUBS) */ /* !END!: Do not edit above this line. */ #undef TCL_STORAGE_CLASS #define TCL_STORAGE_CLASS DLLIMPORT #endif /* _TCLINTDECLS */ | > > | 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | (tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */ #define TclBNInitBignumFromLong \ (tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */ #define TclBNInitBignumFromWideInt \ (tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */ #define TclBNInitBignumFromWideUInt \ (tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */ #define TclBN_mp_expt_d_ex \ (tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */ #endif /* defined(USE_TCL_STUBS) */ /* !END!: Do not edit above this line. */ #undef TCL_STORAGE_CLASS #define TCL_STORAGE_CLASS DLLIMPORT #endif /* _TCLINTDECLS */ |
Changes to generic/tclUniData.c.
︙ | ︙ | |||
48 49 50 51 52 53 54 | 6144, 6176, 6208, 6240, 6272, 6304, 6336, 6368, 6400, 6432, 6464, 6496, 6528, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6592, 6624, 4928, 6656, 6688, 6720, 6752, 6784, 4928, 6816, 6848, 6880, 6912, 6944, 6976, 7008, 4928, 4928, 4928, 4928, 4928, 7040, 7072, 7104, 4928, 4928, 4928, 7136, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 7168, 7200, 4928, 7232, 7264, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 6560, 6560, 6560, 6560, 7296, 6560, 7328, 7360, 6560, 6560, 6560, 6560, 6560, 6560, 6560, | | | | | | | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | 6144, 6176, 6208, 6240, 6272, 6304, 6336, 6368, 6400, 6432, 6464, 6496, 6528, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6592, 6624, 4928, 6656, 6688, 6720, 6752, 6784, 4928, 6816, 6848, 6880, 6912, 6944, 6976, 7008, 4928, 4928, 4928, 4928, 4928, 7040, 7072, 7104, 4928, 4928, 4928, 7136, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 7168, 7200, 4928, 7232, 7264, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 6560, 6560, 6560, 6560, 7296, 6560, 7328, 7360, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 4928, 7392, 7424, 7456, 7488, 4928, 4928, 4928, 7520, 7552, 7584, 7616, 224, 224, 224, 7648, 7680, 7712, 1344, 7744, 7776, 7808, 7808, 704, 7840, 7872, 7904, 1824, 7936, 4928, 4928, 7968, 4928, 4928, 4928, 4928, 4928, 4928, 8000, 8032, 8064, 8096, 3232, 1344, 8128, 4192, 1344, 8160, 8192, 8224, 1344, 1344, 8256, 8288, 4928, 8320, 8352, 8384, 8416, 4928, 8384, 8448, 4928, 8352, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, |
︙ | ︙ | |||
126 127 128 129 130 131 132 | 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, | | | | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 8480, 8512, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 8544, 4928, 8576, 5408, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 8608, 8640, 224, 8672, 8704, 1344, 1344, 8736, 8768, 8800, 224, 8832, 8864, 8896, 8928, 8960, 8992, 9024, 1344, 9056, 9088, 9120, 9152, 9184, 1632, 9216, 9248, 9280, 1952, 9312, 9344, 9376, 1344, 9408, 9440, 9472, 1344, 9504, 9536, 9568, 9600, 9632, 9664, 9696, 9728, 9728, 1344, 9760, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, |
︙ | ︙ | |||
192 193 194 195 196 197 198 | 9920, 9920, 9920, 9920, 9920, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9952, 1344, 1344, 9984, 1824, 10016, 10048, 10080, 1344, 1344, 10112, 10144, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 10176, 10208, 1344, 10240, 1344, 10272, 10304, 10336, 10368, 10400, 10432, 1344, 1344, 1344, 10464, 10496, 64, 10528, 10560, 10592, 4736, 10624, 10656 #if TCL_UTF_MAX > 3 | | | | | | | | | | | | | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | 9920, 9920, 9920, 9920, 9920, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9952, 1344, 1344, 9984, 1824, 10016, 10048, 10080, 1344, 1344, 10112, 10144, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 10176, 10208, 1344, 10240, 1344, 10272, 10304, 10336, 10368, 10400, 10432, 1344, 1344, 1344, 10464, 10496, 64, 10528, 10560, 10592, 4736, 10624, 10656 #if TCL_UTF_MAX > 3 ,10688, 10720, 10752, 1824, 1344, 1344, 1344, 8288, 10784, 10816, 10848, 10880, 10912, 10944, 10976, 11008, 1824, 1824, 1824, 1824, 9280, 1344, 11040, 11072, 1344, 11104, 11136, 11168, 11200, 1344, 11232, 1824, 11264, 11296, 11328, 1344, 11360, 11392, 11424, 11456, 1344, 11488, 1344, 11520, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 7776, 4704, 10272, 1824, 1824, 1824, 1824, 11552, 11584, 11616, 11648, 4736, 11680, 1824, 11712, 11744, 11776, 1824, 1824, 1344, 11808, 11840, 6880, 11872, 11904, 11936, 11968, 12000, 1824, 12032, 12064, 1344, 12096, 12128, 12160, 12192, 12224, 1824, 1824, 1344, 1344, 12256, 1824, 12288, 12320, 12352, 12384, 1344, 12416, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 12448, 1824, 1824, 1824, 1824, 12000, 12480, 12512, 1824, 1824, 1824, 1824, 7776, 12544, 12576, 12608, 12640, 5248, 12672, 12704, 12736, 12768, 12800, 12832, 12864, 5248, 12896, 12928, 12960, 12992, 13024, 1824, 1824, 13056, 13088, 13120, 13152, 13184, 13216, 13248, 13280, 1824, 1824, 1824, 1824, 1344, 13312, 13344, 1824, 1344, 13376, 13408, 1824, 1824, 1824, 1824, 1824, 1344, 13440, 13472, 1824, 1344, 13504, 13536, 13568, 1344, 13600, 13632, 1824, 4032, 13664, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 13696, 1824, 1824, 1824, 13728, 13760, 13792, 1824, 1824, 1824, 1824, 1824, 13824, 13856, 13888, 13920, 13952, 13984, 1344, 14016, 14048, 1344, 4608, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 14080, 14112, 14144, 14176, 14208, 14240, 1824, 1824, 14272, 14304, 14336, 14368, 14400, 13632, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 14432, 1824, 1824, 1824, 1824, 1824, 1824, 14464, 14496, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9984, 1824, 1824, 1824, 10848, 10848, 10848, 14528, 1344, 1344, 1344, 1344, 1344, 1344, 14560, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14592, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14624, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, |
︙ | ︙ | |||
265 266 267 268 269 270 271 | 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, | | | | | | | | 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 4608, 4736, 14656, 1824, 1824, 10208, 14688, 1344, 14720, 14752, 14784, 8480, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 13728, 13760, 14816, 1824, 1824, 1824, 1344, 1344, 14848, 14880, 14912, 1824, 1824, 14944, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14976, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 15008, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, |
︙ | ︙ | |||
313 314 315 316 317 318 319 | 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, | | | | | | < | | > | | | | | | | | < | | > | | | | | | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | > | 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 4736, 1824, 15040, 15072, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9856, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 15104, 15136, 15168, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 8000, 4928, 15200, 4928, 15232, 15264, 15296, 4928, 15328, 4928, 4928, 15360, 1824, 1824, 1824, 1824, 15392, 4928, 4928, 15424, 15456, 1824, 1824, 1824, 1824, 15488, 15520, 15552, 15584, 15616, 15648, 15680, 15712, 15744, 15776, 15808, 15840, 15872, 15488, 15520, 15904, 15584, 15936, 15968, 16000, 15712, 16032, 16064, 16096, 16128, 16160, 16192, 16224, 16256, 16288, 16320, 16352, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 704, 16384, 704, 16416, 16448, 16480, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 16512, 16544, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 16576, 16608, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 16640, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 16672, 1824, 16704, 16736, 16768, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 16800, 6880, 16832, 1824, 1824, 16864, 16896, 1824, 1824, 1824, 1824, 1824, 1824, 16928, 16960, 16992, 17024, 17056, 17088, 1824, 17120, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 4928, 17152, 4928, 4928, 7968, 17184, 17216, 8000, 17248, 4928, 4928, 17280, 4928, 17312, 1824, 17344, 17376, 17408, 17440, 17472, 1824, 1824, 1824, 1824, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 17504, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 8000, 17536, 4928, 4928, 4928, 7968, 4928, 4928, 17568, 17600, 17152, 4928, 17632, 4928, 17664, 17696, 1824, 1824, 17728, 4928, 4928, 17760, 4928, 17792, 17824, 4928, 4928, 4928, 7968, 17856, 17888, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 7776, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 17920, 1344, 1344, 1344, 1344, 1344, 1344, 11360, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 17952, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 17984, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 11360 #endif /* TCL_UTF_MAX > 3 */ }; /* * The groupMap is indexed by combining the alternate page number with * the page offset and returns a group number that identifies a unique * set of character attributes. |
︙ | ︙ | |||
577 578 579 580 581 582 583 | 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 48, 49, 50, 23, 24, 52, 53, 23, 24, 23, 24, 23, 24, 23, 24, 54, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 21, 21, 21, 21, 55, 23, 24, 56, 57, 58, 58, 23, 24, 59, 60, 61, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 62, 63, 64, 65, 66, 21, 67, 67, 21, 68, 21, 69, 70, 21, 21, 21, 67, 71, 21, 72, 21, 73, 74, 21, 75, 76, 74, 77, 78, 21, 21, 76, 21, 79, 80, 21, 21, 81, | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < | > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < | < < < | > | | > | | | > > > > | | | | | | | | | | < | | | < < < | < | | < < < > > > > > | > | | | | | | | | > | < > > | | | | < < < | | | | | < < | | > > | | > > | | | | | | | < < > > > | | | | | | | | | | | | | | | | | | < | > | | < | < > | | | < < < | < < | | > > > > > | | | | | | | | | | | | | | > | | | | | | | | | | | | | | > > | < < | | | < | | | | | > | | | | | | | | | | | | | | | | | | | | | | | < > | | | < | > | | | < | | | | | | | | | | | > > > < < < < | < < | | < < < | > > > | | | | < < < > > > | | | | | | | | | | | | | | | | | | | < | | > | | | | | | | | | > | | | | | | | | | | | | | | | | | < > | | | > | | | | | | > | | | | | | | | | | | < > | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | > | | | | | < | | | > | | | | | | | | | | | | | | | | | | | | | | > | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | | > | > > | | | < > | | | | | | | | | | | < | > | | > > > > | | | | | | | | | | | | | | > > > > > > | < < < | > > | | < | | | | | | | | | | | | | | | | | | > > | | < < | | < > | | < > | | < > | > > | | > | | > | > > | | < < | | < | | | > | | > > > | < | > > | < | < > | | | < > | < < < | | < < > | < < < | | | | < > | | > > > > > > > > > > > | | | | > > | | | < < | < < < | | | > | | > > > > > > > > | < < < < < < < < | | > | | | | > | > | > | > > > > > | > > > | < < | | | | < | | | | | | | | < | | | | | | | | | | 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 48, 49, 50, 23, 24, 52, 53, 23, 24, 23, 24, 23, 24, 23, 24, 54, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 21, 21, 21, 21, 55, 23, 24, 56, 57, 58, 58, 23, 24, 59, 60, 61, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 62, 63, 64, 65, 66, 21, 67, 67, 21, 68, 21, 69, 70, 21, 21, 21, 67, 71, 21, 72, 21, 73, 74, 21, 75, 76, 74, 77, 78, 21, 21, 76, 21, 79, 80, 21, 21, 81, 21, 21, 21, 21, 21, 21, 21, 82, 21, 21, 83, 21, 84, 83, 21, 21, 21, 85, 83, 86, 87, 87, 88, 21, 21, 21, 21, 21, 89, 21, 15, 21, 21, 21, 21, 21, 21, 21, 21, 90, 91, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 11, 11, 11, 11, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 92, 92, 92, 92, 92, 11, 11, 11, 11, 11, 11, 11, 92, 11, 92, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 23, 24, 23, 24, 92, 11, 23, 24, 0, 0, 92, 42, 42, 42, 3, 95, 0, 0, 0, 0, 11, 11, 96, 3, 97, 97, 97, 0, 98, 0, 99, 99, 21, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 100, 101, 101, 101, 21, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 102, 13, 13, 13, 13, 13, 13, 13, 13, 13, 103, 104, 104, 105, 106, 107, 108, 108, 108, 109, 110, 111, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 112, 113, 114, 115, 116, 117, 7, 23, 24, 118, 23, 24, 21, 54, 54, 54, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 23, 24, 14, 93, 93, 93, 93, 93, 120, 120, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 121, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 122, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 0, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 0, 0, 92, 3, 3, 3, 3, 3, 3, 21, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 21, 21, 3, 8, 0, 0, 14, 14, 4, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 8, 93, 3, 93, 93, 3, 93, 93, 3, 93, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 17, 17, 17, 7, 7, 7, 3, 3, 4, 3, 3, 14, 14, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 17, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 15, 93, 93, 93, 93, 93, 93, 93, 17, 14, 93, 93, 93, 93, 93, 93, 92, 92, 93, 93, 14, 93, 93, 93, 93, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 14, 14, 15, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 17, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 14, 3, 3, 3, 92, 0, 0, 93, 4, 4, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 93, 93, 93, 92, 93, 93, 93, 93, 93, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 0, 0, 3, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 17, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 93, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 125, 125, 93, 125, 125, 15, 93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 0, 0, 15, 15, 15, 15, 0, 0, 93, 15, 125, 125, 125, 93, 93, 93, 93, 0, 0, 125, 125, 0, 0, 125, 125, 93, 15, 0, 0, 0, 0, 0, 0, 0, 0, 125, 0, 0, 0, 0, 15, 15, 0, 15, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 4, 4, 18, 18, 18, 18, 18, 18, 14, 4, 15, 3, 93, 0, 0, 93, 93, 125, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 0, 15, 15, 0, 0, 93, 0, 125, 125, 125, 93, 93, 0, 0, 0, 0, 93, 93, 0, 0, 93, 93, 93, 0, 0, 0, 93, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 15, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 93, 93, 15, 15, 15, 93, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0, 93, 15, 125, 125, 125, 93, 93, 93, 93, 93, 0, 93, 93, 125, 0, 125, 125, 93, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 0, 0, 0, 0, 0, 0, 0, 15, 93, 93, 93, 93, 93, 93, 0, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0, 93, 15, 125, 93, 125, 93, 93, 93, 93, 0, 0, 125, 125, 0, 0, 125, 125, 93, 0, 0, 0, 0, 0, 0, 0, 0, 93, 125, 0, 0, 0, 0, 15, 15, 0, 15, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 14, 15, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 0, 15, 15, 0, 15, 0, 15, 15, 0, 0, 0, 15, 15, 0, 0, 0, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 125, 125, 93, 125, 125, 0, 0, 0, 125, 125, 125, 0, 125, 125, 125, 93, 0, 0, 15, 0, 0, 0, 0, 0, 0, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 14, 14, 14, 14, 14, 14, 4, 14, 0, 0, 0, 0, 0, 93, 125, 125, 125, 93, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 93, 93, 93, 125, 125, 125, 125, 0, 93, 93, 93, 0, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 93, 93, 0, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 3, 18, 18, 18, 18, 18, 18, 18, 14, 15, 93, 125, 125, 3, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0, 93, 15, 125, 93, 125, 125, 125, 125, 125, 0, 93, 125, 125, 0, 125, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 125, 125, 0, 0, 0, 0, 0, 0, 0, 15, 0, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 15, 125, 125, 125, 93, 93, 93, 93, 0, 125, 125, 125, 0, 125, 125, 125, 93, 15, 14, 0, 0, 0, 0, 15, 15, 15, 125, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 15, 15, 15, 15, 15, 15, 0, 0, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 93, 0, 0, 0, 0, 125, 125, 125, 93, 93, 93, 0, 93, 0, 125, 125, 125, 125, 125, 125, 125, 125, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 125, 125, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 15, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 4, 15, 15, 15, 15, 15, 15, 92, 93, 93, 93, 93, 93, 93, 93, 93, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 0, 0, 0, 0, 0, 15, 15, 0, 15, 0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15, 0, 0, 15, 15, 15, 15, 15, 0, 92, 0, 93, 93, 93, 93, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 15, 15, 15, 15, 15, 14, 14, 14, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 14, 3, 14, 14, 14, 93, 93, 14, 14, 14, 14, 14, 14, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 93, 14, 93, 14, 93, 5, 6, 5, 6, 125, 125, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 3, 93, 93, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 14, 14, 14, 14, 14, 14, 14, 14, 93, 14, 14, 14, 14, 14, 14, 0, 14, 14, 3, 3, 3, 3, 3, 14, 14, 14, 14, 3, 3, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 93, 125, 93, 93, 125, 125, 93, 93, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 125, 125, 93, 93, 15, 15, 15, 15, 93, 93, 93, 15, 125, 125, 125, 15, 15, 125, 125, 125, 125, 125, 125, 125, 15, 15, 15, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 125, 93, 93, 125, 125, 125, 125, 125, 125, 93, 15, 125, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 125, 125, 125, 93, 14, 14, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 0, 126, 0, 0, 0, 0, 0, 126, 0, 0, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 3, 92, 127, 127, 127, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 3, 3, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 105, 105, 105, 105, 105, 105, 0, 0, 111, 111, 111, 111, 111, 111, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 2, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 5, 6, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 129, 129, 129, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 125, 93, 93, 93, 93, 93, 93, 93, 125, 125, 125, 125, 125, 125, 125, 125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 3, 3, 92, 3, 3, 3, 4, 15, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 8, 3, 3, 3, 3, 93, 93, 93, 17, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 93, 93, 93, 125, 125, 125, 125, 93, 93, 125, 125, 125, 0, 0, 0, 0, 125, 125, 93, 125, 125, 125, 125, 125, 125, 93, 93, 93, 0, 0, 0, 0, 14, 0, 0, 0, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 125, 125, 93, 0, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 93, 125, 93, 93, 93, 93, 93, 93, 93, 0, 93, 125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 125, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 93, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 92, 3, 3, 3, 3, 3, 3, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 120, 0, 93, 93, 93, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 93, 93, 93, 93, 93, 125, 93, 125, 125, 125, 125, 125, 93, 125, 125, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 93, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 93, 93, 93, 93, 125, 125, 93, 93, 125, 93, 93, 93, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 93, 93, 125, 125, 125, 93, 125, 93, 93, 93, 125, 125, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 15, 15, 15, 15, 125, 125, 125, 125, 125, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93, 0, 0, 0, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 3, 3, 130, 131, 132, 133, 133, 134, 135, 136, 137, 0, 0, 0, 0, 0, 0, 0, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 0, 0, 138, 138, 138, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 3, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 93, 15, 15, 15, 15, 15, 15, 93, 15, 15, 125, 93, 93, 15, 0, 0, 0, 0, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 139, 21, 21, 21, 140, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 141, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 21, 21, 21, 142, 21, 21, 143, 21, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 144, 144, 144, 144, 144, 144, 0, 0, 145, 145, 145, 145, 145, 145, 0, 0, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 144, 144, 144, 144, 144, 144, 0, 0, 145, 145, 145, 145, 145, 145, 0, 0, 21, 144, 21, 144, 21, 144, 21, 144, 0, 145, 0, 145, 0, 145, 0, 145, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145, 145, 146, 146, 147, 147, 147, 147, 148, 148, 149, 149, 150, 150, 151, 151, 0, 0, 144, 144, 144, 144, 144, 144, 144, 144, 152, 152, 152, 152, 152, 152, 152, 152, 144, 144, 144, 144, 144, 144, 144, 144, 152, 152, 152, 152, 152, 152, 152, 152, 144, 144, 144, 144, 144, 144, 144, 144, 152, 152, 152, 152, 152, 152, 152, 152, 144, 144, 21, 153, 21, 0, 21, 21, 145, 145, 154, 154, 155, 11, 156, 11, 11, 11, 21, 153, 21, 0, 21, 21, 157, 157, 157, 157, 155, 11, 11, 11, 144, 144, 21, 21, 0, 0, 21, 21, 145, 145, 158, 158, 0, 11, 11, 11, 144, 144, 21, 21, 21, 114, 21, 21, 145, 145, 159, 159, 118, 11, 11, 11, 0, 0, 21, 153, 21, 0, 21, 21, 160, 160, 161, 161, 155, 11, 11, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 17, 17, 17, 17, 17, 8, 8, 8, 8, 8, 8, 3, 3, 16, 20, 5, 16, 16, 20, 5, 16, 3, 3, 3, 3, 3, 3, 3, 3, 162, 163, 17, 17, 17, 17, 17, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 16, 20, 3, 3, 3, 3, 12, 12, 3, 3, 3, 7, 5, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 3, 12, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 17, 17, 17, 17, 17, 0, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 92, 0, 0, 18, 18, 18, 18, 18, 18, 7, 7, 7, 5, 6, 92, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 7, 7, 7, 5, 6, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 120, 120, 120, 120, 93, 120, 120, 120, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 108, 14, 14, 14, 14, 108, 14, 14, 21, 108, 108, 108, 21, 21, 108, 108, 108, 21, 14, 108, 14, 14, 7, 108, 108, 108, 108, 108, 14, 14, 14, 14, 14, 14, 108, 14, 164, 14, 108, 14, 165, 166, 108, 108, 14, 21, 108, 108, 167, 108, 21, 15, 15, 15, 15, 21, 14, 14, 21, 21, 108, 108, 7, 7, 7, 7, 7, 108, 21, 21, 21, 21, 14, 7, 14, 14, 168, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 129, 129, 129, 23, 24, 129, 129, 129, 129, 18, 14, 14, 0, 0, 0, 0, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 7, 7, 14, 14, 14, 14, 7, 14, 14, 7, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 14, 14, 7, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 5, 6, 5, 6, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 14, 14, 14, 14, 14, 14, 14, 5, 6, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 0, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 0, 23, 24, 173, 174, 175, 176, 177, 23, 24, 23, 24, 23, 24, 178, 179, 180, 181, 21, 23, 24, 21, 23, 24, 21, 21, 21, 21, 21, 92, 92, 182, 182, 23, 24, 23, 24, 21, 14, 14, 14, 14, 14, 14, 23, 24, 23, 24, 93, 93, 93, 23, 24, 0, 0, 0, 0, 0, 3, 3, 3, 3, 18, 3, 3, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 0, 183, 0, 0, 0, 0, 0, 183, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 92, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 3, 3, 16, 20, 16, 20, 3, 3, 3, 16, 20, 3, 16, 20, 3, 3, 3, 3, 3, 3, 3, 3, 3, 8, 3, 3, 8, 3, 16, 20, 3, 3, 16, 20, 5, 6, 5, 6, 5, 6, 5, 6, 3, 3, 3, 3, 3, 92, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 8, 8, 3, 3, 3, 3, 8, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 2, 3, 3, 3, 14, 92, 15, 129, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 14, 14, 5, 6, 5, 6, 5, 6, 5, 6, 8, 5, 6, 6, 14, 129, 129, 129, 129, 129, 129, 129, 129, 129, 93, 93, 93, 93, 125, 125, 8, 92, 92, 92, 92, 92, 14, 14, 129, 129, 129, 92, 15, 3, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 11, 11, 92, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 92, 92, 92, 15, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 14, 14, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 15, 93, 120, 120, 120, 3, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 92, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 92, 92, 93, 93, 15, 15, 15, 15, 15, 15, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 93, 93, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 92, 92, 92, 92, 92, 92, 92, 92, 92, 11, 11, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 92, 21, 21, 21, 21, 21, 21, 21, 21, 23, 24, 23, 24, 184, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 92, 11, 11, 23, 24, 185, 21, 15, 23, 24, 23, 24, 186, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 187, 188, 189, 190, 187, 21, 191, 192, 193, 194, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 0, 0, 23, 24, 195, 196, 197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 92, 92, 21, 15, 15, 15, 15, 15, 15, 15, 93, 15, 15, 15, 93, 15, 15, 15, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 93, 93, 125, 14, 14, 14, 14, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 14, 14, 4, 14, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 125, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15, 3, 3, 3, 15, 3, 15, 15, 93, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 125, 93, 93, 93, 93, 125, 125, 93, 93, 125, 125, 125, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 92, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 15, 15, 15, 15, 15, 93, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93, 125, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 14, 14, 14, 15, 125, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 93, 93, 93, 15, 15, 93, 93, 15, 15, 15, 15, 15, 93, 93, 15, 93, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 92, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 93, 93, 125, 125, 3, 3, 15, 92, 92, 125, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 198, 21, 21, 21, 21, 21, 21, 21, 11, 92, 92, 92, 92, 21, 21, 21, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 15, 15, 15, 125, 125, 93, 125, 125, 93, 125, 125, 3, 125, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 21, 21, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 7, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 4, 14, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 5, 6, 3, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 8, 8, 12, 12, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 3, 3, 5, 6, 3, 3, 3, 3, 12, 12, 12, 3, 3, 3, 0, 3, 3, 3, 3, 8, 5, 6, 5, 6, 5, 6, 3, 3, 3, 7, 8, 7, 7, 7, 0, 3, 4, 3, 3, 0, 0, 0, 0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 17, 0, 3, 3, 3, 4, 3, 3, 3, 5, 6, 3, 7, 3, 8, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 7, 7, 7, 3, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 5, 7, 6, 7, 5, 6, 3, 5, 6, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 0, 0, 0, 4, 4, 7, 11, 14, 4, 4, 0, 14, 7, 7, 7, 7, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 14, 14, 0, 0 #if TCL_UTF_MAX > 3 ,15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 93, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 129, 15, 15, 15, 15, 15, 15, 15, 15, 129, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 3, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 3, 129, 129, 129, 129, 129, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 0, 0, 0, 0, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 0, 0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 3, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 0, 0, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 18, 18, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 15, 93, 93, 93, 0, 93, 93, 0, 0, 0, 0, 0, 93, 93, 93, 93, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 0, 0, 0, 0, 93, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 0, 0, 0, 0, 18, 18, 18, 18, 18, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 18, 18, 18, 18, 18, 18, 18, 15, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 18, 18, 18, 18, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 125, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 125, 125, 93, 93, 3, 3, 17, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 93, 93, 93, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 125, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 3, 3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 15, 15, 15, 15, 3, 3, 3, 3, 93, 93, 93, 93, 3, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 3, 15, 3, 3, 3, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 125, 125, 93, 125, 93, 93, 3, 3, 3, 3, 3, 3, 93, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 93, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 0, 93, 93, 15, 125, 125, 93, 125, 125, 125, 125, 0, 0, 125, 125, 0, 0, 125, 125, 125, 0, 0, 15, 0, 0, 0, 0, 0, 0, 125, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 125, 125, 0, 0, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93, 93, 125, 93, 15, 15, 15, 15, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 3, 0, 3, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 125, 93, 125, 125, 125, 125, 93, 93, 125, 93, 93, 15, 15, 3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 0, 0, 125, 125, 125, 125, 93, 93, 125, 93, 93, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 93, 93, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 93, 125, 93, 93, 3, 3, 3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 125, 93, 15, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125, 125, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 3, 3, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 3, 0, 0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 0, 0, 93, 93, 125, 125, 125, 125, 93, 15, 3, 15, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 125, 15, 93, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 3, 93, 0, 0, 0, 0, 0, 0, 0, 0, 15, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 3, 3, 3, 15, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93, 125, 93, 15, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 125, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 0, 0, 0, 93, 0, 93, 93, 0, 93, 93, 93, 93, 93, 93, 93, 15, 93, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 125, 125, 0, 93, 93, 0, 125, 125, 93, 125, 93, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 125, 125, 3, 3, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 4, 4, 4, 4, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 17, 17, 17, 17, 17, 17, 17, 17, 17, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 93, 93, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 3, 3, 3, 3, 3, 14, 14, 14, 14, 92, 92, 92, 92, 3, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 18, 18, 18, 18, 18, 18, 18, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 3, 3, 3, 3, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 93, 15, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 3, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 14, 93, 93, 3, 17, 17, 17, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 125, 125, 93, 93, 93, 14, 14, 14, 125, 125, 125, 125, 125, 125, 17, 17, 17, 17, 17, 17, 17, 17, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 93, 93, 93, 93, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 93, 93, 93, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 0, 108, 108, 0, 0, 108, 0, 0, 108, 108, 0, 0, 108, 108, 108, 108, 0, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 0, 21, 0, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 0, 108, 108, 108, 108, 0, 0, 108, 108, 108, 108, 108, 108, 108, 108, 0, 108, 108, 108, 108, 108, 108, 108, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 0, 108, 108, 108, 108, 0, 108, 108, 108, 108, 108, 0, 108, 0, 0, 0, 108, 108, 108, 108, 108, 108, 108, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 0, 0, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 21, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 14, 14, 14, 14, 93, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 93, 14, 14, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 0, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 15, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 4, 15, 15, 15, 15, 15, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 93, 93, 93, 93, 93, 93, 93, 92, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 4, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 0, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 0, 15, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 15, 0, 15, 0, 15, 0, 15, 15, 15, 0, 15, 15, 0, 15, 0, 0, 15, 0, 15, 0, 15, 0, 15, 0, 15, 0, 15, 15, 0, 15, 0, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 11, 11, 11, 11, 11, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 0, 0, 0, 0, 14, 14, 14, 0, 0, 0, 0, 0, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 #endif /* TCL_UTF_MAX > 3 */ }; /* * Each group represents a unique set of character attributes. The attributes * are encoded into a 32-bit value as follows: * |
︙ | ︙ | |||
1560 1561 1562 1563 1564 1565 1566 | 5, 23, 16, 11, -190078, 24, 2, -30846, 321, 386, -50879, 59522, -30911, 76930, -49790, 53825, 52801, 52545, 20289, 51777, 52033, 53057, -24702, 54081, 53569, -41598, 54593, -33150, 54849, 55873, 55617, 56129, -14206, 609, 451, 674, 20354, -24767, -14271, -33215, 2763585, -41663, 2762817, -2768510, -49855, 17729, 18241, -2760318, -2759550, -2760062, 53890, 52866, 52610, 51842, 52098, -10833534, -10832510, 53122, -10823550, -10830718, 53634, 54146, -2750078, | | | | | | | | | | | | | | | > | 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 | 5, 23, 16, 11, -190078, 24, 2, -30846, 321, 386, -50879, 59522, -30911, 76930, -49790, 53825, 52801, 52545, 20289, 51777, 52033, 53057, -24702, 54081, 53569, -41598, 54593, -33150, 54849, 55873, 55617, 56129, -14206, 609, 451, 674, 20354, -24767, -14271, -33215, 2763585, -41663, 2762817, -2768510, -49855, 17729, 18241, -2760318, -2759550, -2760062, 53890, 52866, 52610, 51842, 52098, -10833534, -10832510, 53122, -10823550, -10830718, 53634, 54146, -2750078, -10829950, -2751614, 54658, 54914, -2745982, 55938, -10830462, -10824062, 17794, 55682, 18306, 56194, -10818686, -10817918, 4, 6, -21370, 29761, 9793, 9537, 16449, 16193, 9858, 9602, 8066, 16514, 16258, 2113, 16002, 14722, 1, 12162, 13954, 2178, 22146, 20610, -1662, 29826, -15295, 24706, -1727, 20545, 7, 3905, 3970, 12353, 12418, 8, 1859649, -769822, 9949249, 10, 1601154, 1600898, 1598594, 1598082, 1598338, 1596546, 1582466, -9027966, -769983, -9044862, -976254, -9058174, 15234, -1949375, -1918, -1983, -18814, -21886, -25470, -32638, -28542, -32126, -1981, -2174, -18879, -2237, 1844610, -21951, -25535, -28607, -32703, -32191, 13, 14, -1924287, -2145983, -2115007, 7233, 7298, 4170, 4234, 6749, 6813, -2750143, -976319, -2746047, 2763650, 2762882, -2759615, -2751679, -2760383, -2760127, -2768575, 1859714, -9044927, -10823615, -12158, -10830783, -10833599, -10832575, -10830015, -10817983, -10824127, -10818751, 237633, -12223, -10830527, -9058239, 237698, 9949314, 18, 17, 10305, 10370, 8769, 8834 }; #if TCL_UTF_MAX > 3 # define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1fffff) >= 0x2fa20) #else # define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1f0000) != 0) |
︙ | ︙ |
Changes to generic/tclUtf.c.
︙ | ︙ | |||
154 155 156 157 158 159 160 | return 2; } if (ch <= 0xFFFF) { #if TCL_UTF_MAX > 3 if ((ch & 0xF800) == 0xD800) { if (ch & 0x0400) { /* Low surrogate */ | | < | | | | | | | | | | | > > > | | 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | return 2; } if (ch <= 0xFFFF) { #if TCL_UTF_MAX > 3 if ((ch & 0xF800) == 0xD800) { if (ch & 0x0400) { /* Low surrogate */ if (((buf[0] & 0xC0) == 0x80) && ((buf[1] & 0xCF) == 0)) { /* Previous Tcl_UniChar was a high surrogate, so combine */ buf[2] = (char) ((ch & 0x3F) | 0x80); buf[1] |= (char) (((ch >> 6) & 0x0F) | 0x80); return 3; } /* Previous Tcl_UniChar was not a high surrogate, so just output */ } else { /* High surrogate */ ch += 0x40; /* Fill buffer with specific 3-byte (invalid) byte combination, so following low surrogate can recognize it and combine */ buf[2] = (char) ((ch << 4) & 0x30); buf[1] = (char) (((ch >> 2) & 0x3F) | 0x80); buf[0] = (char) (((ch >> 8) & 0x07) | 0xF0); return 1; } } #endif goto three; } #if TCL_UTF_MAX > 3 if (ch <= 0x10FFFF) { buf[3] = (char) ((ch | 0x80) & 0xBF); buf[2] = (char) (((ch >> 6) | 0x80) & 0xBF); buf[1] = (char) (((ch >> 12) | 0x80) & 0xBF); buf[0] = (char) ((ch >> 18) | 0xF0); return 4; } } else if (ch == -1) { if (((buf[0] & 0xC0) == 0x80) && ((buf[1] & 0xCF) == 0) && ((buf[-1] & 0xF8) == 0xF0)) { ch = 0xD7C0 + ((buf[-1] & 0x07) << 8) + ((buf[0] & 0x3F) << 2) + ((buf[1] & 0x30) >> 4); buf[1] = (char) ((ch | 0x80) & 0xBF); buf[0] = (char) (((ch >> 6) | 0x80) & 0xBF); buf[-1] = (char) ((ch >> 12) | 0xE0); return 2; } #endif } ch = 0xFFFD; three: buf[2] = (char) ((ch | 0x80) & 0xBF); |
︙ | ︙ | |||
294 295 296 297 298 299 300 | int Tcl_UtfToUniChar( register const char *src, /* The UTF-8 string. */ register Tcl_UniChar *chPtr)/* Filled with the Tcl_UniChar represented by * the UTF-8 string. */ { | | > > > > > > > > > > > > > > | | | | < < | < | < < < < | | | | | | | 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | int Tcl_UtfToUniChar( register const char *src, /* The UTF-8 string. */ register Tcl_UniChar *chPtr)/* Filled with the Tcl_UniChar represented by * the UTF-8 string. */ { Tcl_UniChar byte; /* * Unroll 1 to 3 (or 4) byte UTF-8 sequences. */ byte = *((unsigned char *) src); if (byte < 0xC0) { /* * Handles properly formed UTF-8 characters between 0x01 and 0x7F. * Also treats \0 and naked trail bytes 0x80 to 0xBF as valid * characters representing themselves. */ #if TCL_UTF_MAX == 4 /* If *chPtr contains a high surrogate (produced by a previous * Tcl_UtfToUniChar() call) and the next 3 bytes are UTF-8 continuation * bytes, then we must produce a follow-up low surrogate. We only * do that if the high surrogate matches the bits we encounter. */ if ((byte >= 0x80) && (((((byte - 0x10) << 2) & 0xFC) | 0xD800) == (*chPtr & 0xFCFC)) && ((src[1] & 0xF0) == (((*chPtr << 4) & 0x30) | 0x80)) && ((src[2] & 0xC0) == 0x80)) { *chPtr = ((src[1] & 0x0F) << 6) + (src[2] & 0x3F) + 0xDC00; return 3; } #endif *chPtr = byte; return 1; } else if (byte < 0xE0) { if ((src[1] & 0xC0) == 0x80) { /* * Two-byte-character lead-byte followed by a trail-byte. */ *chPtr = (((byte & 0x1F) << 6) | (src[1] & 0x3F)); if ((unsigned)(*chPtr - 1) >= (UNICODE_SELF - 1)) { return 2; } } /* * A two-byte-character lead-byte not followed by trail-byte * represents itself. */ } else if (byte < 0xF0) { if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80)) { /* * Three-byte-character lead byte followed by two trail bytes. */ *chPtr = (((byte & 0x0F) << 12) | ((src[1] & 0x3F) << 6) | (src[2] & 0x3F)); if (*chPtr > 0x7FF) { return 3; } } /* * A three-byte-character lead-byte not followed by two trail-bytes * represents itself. */ } #if TCL_UTF_MAX > 3 else if (byte < 0xF8) { if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80) && ((src[3] & 0xC0) == 0x80)) { /* * Four-byte-character lead byte followed by three trail bytes. */ #if TCL_UTF_MAX == 4 Tcl_UniChar high = (((byte & 0x07) << 8) | ((src[1] & 0x3F) << 2) | ((src[2] & 0x3F) >> 4)) - 0x40; if (high >= 0x400) { /* out of range, < 0x10000 or > 0x10ffff */ } else { /* produce high surrogate, advance source pointer */ *chPtr = 0xD800 + high; return 1; } #else *chPtr = (((byte & 0x07) << 18) | ((src[1] & 0x3F) << 12) | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F)); if ((*chPtr - 0x10000) <= 0xFFFFF) { return 4; } #endif } /* * A four-byte-character lead-byte not followed by two trail-bytes * represents itself. */ } #endif *chPtr = byte; return 1; } /* *--------------------------------------------------------------------------- * * Tcl_UtfToUniCharDString -- |
︙ | ︙ | |||
574 575 576 577 578 579 580 | int len, fullchar; Tcl_UniChar find = 0; while (1) { len = TclUtfToUniChar(src, &find); fullchar = find; #if TCL_UTF_MAX == 4 | | | | 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 | int len, fullchar; Tcl_UniChar find = 0; while (1) { len = TclUtfToUniChar(src, &find); fullchar = find; #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) { len += TclUtfToUniChar(src + len, &find); fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000; } #endif if (fullchar == ch) { return src; } if (*src == '\0') { |
︙ | ︙ | |||
622 623 624 625 626 627 628 | const char *last; last = NULL; while (1) { len = TclUtfToUniChar(src, &find); fullchar = find; #if TCL_UTF_MAX == 4 | | | | 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 | const char *last; last = NULL; while (1) { len = TclUtfToUniChar(src, &find); fullchar = find; #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) { len += TclUtfToUniChar(src + len, &find); fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000; } #endif if (fullchar == ch) { last = src; } if (*src == '\0') { |
︙ | ︙ | |||
665 666 667 668 669 670 671 | Tcl_UtfNext( const char *src) /* The current location in the string. */ { Tcl_UniChar ch = 0; int len = TclUtfToUniChar(src, &ch); #if TCL_UTF_MAX == 4 | | | | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | Tcl_UtfNext( const char *src) /* The current location in the string. */ { Tcl_UniChar ch = 0; int len = TclUtfToUniChar(src, &ch); #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) { len += TclUtfToUniChar(src + len, &ch); } #endif return src + len; } /* *--------------------------------------------------------------------------- |
︙ | ︙ | |||
775 776 777 778 779 780 781 | const char * Tcl_UtfAtIndex( register const char *src, /* The UTF-8 string. */ register int index) /* The position of the desired character. */ { Tcl_UniChar ch = 0; | | | | | 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 | const char * Tcl_UtfAtIndex( register const char *src, /* The UTF-8 string. */ register int index) /* The position of the desired character. */ { Tcl_UniChar ch = 0; int len = 0; while (index-- > 0) { len = TclUtfToUniChar(src, &ch); src += len; } #if TCL_UTF_MAX == 4 if ((ch >= 0xD800) && (len < 3)) { /* Index points at character following high Surrogate */ src += TclUtfToUniChar(src, &ch); } #endif return src; } /* |
︙ | ︙ | |||
867 868 869 870 871 872 873 | int Tcl_UtfToUpper( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, upChar; char *src, *dst; | | | | | | | | 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | int Tcl_UtfToUpper( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, upChar; char *src, *dst; int len; /* * Iterate over the string until we hit the terminating null. */ src = dst = str; while (*src) { len = TclUtfToUniChar(src, &ch); upChar = Tcl_UniCharToUpper(ch); /* * To keep badly formed Utf strings from getting inflated by the * conversion (thereby causing a segfault), only copy the upper case * char to dst if its size is <= the original char. */ if (len < UtfCount(upChar)) { memcpy(dst, src, len); dst += len; } else { dst += Tcl_UniCharToUtf(upChar, dst); } src += len; } *dst = '\0'; return (dst - str); } /* *---------------------------------------------------------------------- |
︙ | ︙ | |||
920 921 922 923 924 925 926 | int Tcl_UtfToLower( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, lowChar; char *src, *dst; | | | | | | | | 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 | int Tcl_UtfToLower( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, lowChar; char *src, *dst; int len; /* * Iterate over the string until we hit the terminating null. */ src = dst = str; while (*src) { len = TclUtfToUniChar(src, &ch); lowChar = Tcl_UniCharToLower(ch); /* * To keep badly formed Utf strings from getting inflated by the * conversion (thereby causing a segfault), only copy the lower case * char to dst if its size is <= the original char. */ if (len < UtfCount(lowChar)) { memcpy(dst, src, len); dst += len; } else { dst += Tcl_UniCharToUtf(lowChar, dst); } src += len; } *dst = '\0'; return (dst - str); } /* *---------------------------------------------------------------------- |
︙ | ︙ | |||
974 975 976 977 978 979 980 | int Tcl_UtfToTitle( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, titleChar, lowChar; char *src, *dst; | | | | | | | | | | | | | 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 | int Tcl_UtfToTitle( char *str) /* String to convert in place. */ { Tcl_UniChar ch = 0, titleChar, lowChar; char *src, *dst; int len; /* * Capitalize the first character and then lowercase the rest of the * characters until we get to a null. */ src = dst = str; if (*src) { len = TclUtfToUniChar(src, &ch); titleChar = Tcl_UniCharToTitle(ch); if (len < UtfCount(titleChar)) { memcpy(dst, src, len); dst += len; } else { dst += Tcl_UniCharToUtf(titleChar, dst); } src += len; } while (*src) { len = TclUtfToUniChar(src, &ch); lowChar = ch; /* Special exception for Georgian Asomtavruli chars, no titlecase. */ if ((unsigned)(lowChar - 0x1C90) >= 0x30) { lowChar = Tcl_UniCharToLower(lowChar); } if (len < UtfCount(lowChar)) { memcpy(dst, src, len); dst += len; } else { dst += Tcl_UniCharToUtf(lowChar, dst); } src += len; } *dst = '\0'; return (dst - str); } /* *---------------------------------------------------------------------- |
︙ | ︙ |
Changes to generic/tclUtil.c.
︙ | ︙ | |||
1645 1646 1647 1648 1649 1650 1651 | char Tcl_Backslash( const char *src, /* Points to the backslash character of a * backslash sequence. */ int *readPtr) /* Fill in with number of characters read from * src, unless NULL. */ { | | | 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 | char Tcl_Backslash( const char *src, /* Points to the backslash character of a * backslash sequence. */ int *readPtr) /* Fill in with number of characters read from * src, unless NULL. */ { char buf[TCL_UTF_MAX] = ""; Tcl_UniChar ch = 0; Tcl_UtfBackslash(src, readPtr, buf); TclUtfToUniChar(buf, &ch); return (char) ch; } |
︙ | ︙ |
Changes to library/tclIndex.
︙ | ︙ | |||
69 70 71 72 73 74 75 | set auto_index(::tcl::tm::add) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::remove) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::list) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::Defaults) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::UnknownHandler) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::roots) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::path) [list source [file join $dir tm.tcl]] | > > > | 69 70 71 72 73 74 75 76 77 78 | set auto_index(::tcl::tm::add) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::remove) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::list) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::Defaults) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::UnknownHandler) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::roots) [list source [file join $dir tm.tcl]] set auto_index(::tcl::tm::path) [list source [file join $dir tm.tcl]] if {[namespace exists ::tcl::unsupported]} { set auto_index(timerate) {namespace import ::tcl::unsupported::timerate} } |
Changes to libtommath/LICENSE.
|
| > | > > > > > | > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | The LibTom license This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to <http://unlicense.org/> |
Added libtommath/README.md.
> > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # libtommath This is the git repository for [LibTomMath](http://www.libtom.net/LibTomMath/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C. ## Build Status master: [](https://travis-ci.org/libtom/libtommath) develop: [](https://travis-ci.org/libtom/libtommath) API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/) ## Summary The `develop` branch contains the in-development version. Stable releases are tagged. Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`. There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used. The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms. ## Testing Tests are located in `demo/` and can be built in two flavors. * `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm * `make test_standalone` creates a stand-alone test binary that executes several test routines. |
Changes to libtommath/bn_error.c.
|
| | | < < < | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_ERROR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ static const struct { int code; const char *msg; } msgs[] = { { MP_OKAY, "Successful" }, { MP_MEM, "Out of heap" }, { MP_VAL, "Value out of range" } }; /* return a char * string for a given code */ const char *mp_error_to_string(int code) { size_t x; /* scan the lookup table for the given message */ for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) { if (msgs[x].code == code) { return msgs[x].msg; } } /* generic reply for invalid code */ return "Invalid error code"; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_fast_mp_invmod.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > | | | > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | #include "tommath_private.h" #ifdef BN_FAST_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; int res, neg; /* 2. [modified] b must be odd */ if (mp_iseven(b) == MP_YES) { return MP_VAL; } /* init all our temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return res; } /* x == modulus, y == value to invert */ if ((res = mp_copy(b, &x)) != MP_OKAY) { goto LBL_ERR; } /* we need y = |a| */ if ((res = mp_mod(a, b, &y)) != MP_OKAY) { goto LBL_ERR; } /* if one of x,y is zero return an error! */ if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) { res = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&D, 1uL); top: /* 4. while u is even do */ while (mp_iseven(&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ if (mp_isodd(&B) == MP_YES) { if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* B = B/2 */ if ((res = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven(&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ if (mp_isodd(&D) == MP_YES) { /* D = (D-x)/2 */ if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* D = D/2 */ if ((res = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, D = D - B */ if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero(&u) == MP_NO) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((res = mp_add(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&D, b) != MP_LT) { if ((res = mp_sub(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } mp_exch(&D, c); c->sign = neg; res = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_fast_mp_montgomery_reduce.c.
|
| | | < < < | | | > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #include "tommath_private.h" #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { int ix, res, olduse; mp_word W[MP_WARRAY]; if (x->used > (int)MP_WARRAY) { return MP_VAL; } /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < (n->used + 1)) { if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) { return res; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { mp_word *_W; mp_digit *tmpx; /* alias for the W[] array */ _W = W; /* alias for the digits of x*/ tmpx = x->dp; /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ for (; ix < ((n->used * 2) + 1); ix++) { *_W++ = 0; } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { /* mu = ai * m' mod b * * We avoid a double precision multiplication (which isn't required) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ mp_digit mu; mu = ((W[ix] & MP_MASK) * rho) & MP_MASK; /* a = a + mu * m * b**i * * This is computed in place and on the fly. The multiplication * by b**i is handled by offseting which columns the results * are added to. * * Note the comba method normally doesn't handle carries in the * inner loop In this case we fix the carry from the previous * column since the Montgomery reduction requires digits of the * result (so far) [see above] to work. This is * handled by fixing up one carry after the inner loop. The * carry fixups are done in order so after these loops the * first m->used words of W[] have the carries fixed */ { int iy; mp_digit *tmpn; mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; /* Alias for the columns set by an offset of ix */ _W = W + ix; /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += (mp_word)mu * (mp_word)*tmpn++; } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT; } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { mp_digit *tmpx; mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for (; ix <= ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> (mp_word)DIGIT_BIT; } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order */ /* alias for destination word */ tmpx = x->dp; /* alias for shifted double precision result */ _W = W + n->used; for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = *_W++ & (mp_word)MP_MASK; } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ for (; ix < olduse; ix++) { *tmpx++ = 0; } } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp(x); /* if A >= m then A = A - m */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_fast_s_mp_mul_digs.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #include "tommath_private.h" #ifdef BN_FAST_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ if (c->alloc < digs) { if ((res = mp_grow(c, digs)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = MIN(digs, a->used + b->used); /* clear the carry */ _W = 0; for (ix = 0; ix < pa; ix++) { int tx, ty; int iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; ++iz) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)DIGIT_BIT; } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp; for (ix = 0; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_fast_s_mp_mul_high_digs.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | #include "tommath_private.h" #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* this is a modified version of fast_s_mul_digs that only produces * output digits *above* digs. See the comments for fast_s_mul_digs * to see how it works. * * This is used in the Barrett reduction since for one of the multiplications * only the higher digits were needed. This essentially halves the work. * * Based on Algorithm 14.12 on pp.595 of HAC. */ int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ pa = a->used + b->used; if (c->alloc < pa) { if ((res = mp_grow(c, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = a->used + b->used; _W = 0; for (ix = digs; ix < pa; ix++) { int tx, ty, iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)DIGIT_BIT; } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp + digs; for (ix = digs; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_fast_s_mp_sqr.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | #include "tommath_private.h" #ifdef BN_FAST_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* the jist of squaring... * you do like mult except the offset of the tmpx [one that * starts closer to zero] can't equal the offset of tmpy. * So basically you set up iy like before then you min it with * (ty-tx) so that it never happens. You double all those * you add in the inner loop After that loop you do the squares and add them in. */ int fast_s_mp_sqr(const mp_int *a, mp_int *b) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY], *tmpx; mp_word W1; /* grow the destination as required */ pa = a->used + a->used; if (b->alloc < pa) { if ((res = mp_grow(b, pa)) != MP_OKAY) { return res; } } /* number of output digits to produce */ W1 = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; /* clear counter */ _W = 0; /* get offsets into the two bignums */ ty = MIN(a->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = a->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ iy = MIN(iy, ((ty-tx)+1)>>1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* double the inner product and add carry */ _W = _W + _W + W1; /* even columns have the square term in them */ if (((unsigned)ix & 1u) == 0u) { _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1]; } /* store it */ W[ix] = _W & MP_MASK; /* make next carry */ W1 = _W >> (mp_word)DIGIT_BIT; } /* setup dest */ olduse = b->used; b->used = a->used+a->used; { mp_digit *tmpb; tmpb = b->dp; for (ix = 0; ix < pa; ix++) { *tmpb++ = W[ix] & MP_MASK; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpb++ = 0; } } mp_clamp(b); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_2expt.c.
|
| | | < < < | < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_MP_2EXPT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. */ int mp_2expt(mp_int *a, int b) { int res; /* zero a as per default */ mp_zero(a); /* grow a to accomodate the single bit */ if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } /* set the used count of where the bit will go */ a->used = (b / DIGIT_BIT) + 1; /* put the single bit in its place */ a->dp[b / DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % DIGIT_BIT); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_abs.c.
|
| | | < < < | < | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "tommath_private.h" #ifdef BN_MP_ABS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* b = |a| * * Simple function copies the input and fixes the sign to positive */ int mp_abs(const mp_int *a, mp_int *b) { int res; /* copy a to b */ if (a != b) { if ((res = mp_copy(a, b)) != MP_OKAY) { return res; } } /* force the sign of b to positive */ b->sign = MP_ZPOS; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_add.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #include "tommath_private.h" #ifdef BN_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* high level addition (handles signs) */ int mp_add(const mp_int *a, const mp_int *b, mp_int *c) { int sa, sb, res; /* get sign of both inputs */ sa = a->sign; sb = b->sign; /* handle two cases, not four */ if (sa == sb) { /* both positive or both negative */ /* add their magnitudes, copy the sign */ c->sign = sa; res = s_mp_add(a, b, c); } else { /* one positive, the other negative */ /* subtract the one with the greater magnitude from */ /* the one of the lesser magnitude. The result gets */ /* the sign of the one with the greater magnitude. */ if (mp_cmp_mag(a, b) == MP_LT) { c->sign = sb; res = s_mp_sub(b, a, c); } else { c->sign = sa; res = s_mp_sub(a, b, c); } } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_add_d.c.
|
| | | < < < < | | | | | | | | | | | > | | | | | | | | | | | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | #include "tommath_private.h" #ifdef BN_MP_ADD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* single digit addition */ int mp_add_d(const mp_int *a, mp_digit b, mp_int *c) { int res, ix, oldused; mp_digit *tmpa, *tmpc, mu; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative and |a| >= b, call c = |a| - b */ if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) { mp_int a_ = *a; /* temporarily fix sign of a */ a_.sign = MP_ZPOS; /* c = |a| - b */ res = mp_sub_d(&a_, b, c); /* fix sign */ c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* old number of used digits in c */ oldused = c->used; /* source alias */ tmpa = a->dp; /* destination alias */ tmpc = c->dp; /* if a is positive */ if (a->sign == MP_ZPOS) { /* add digit, after this we're propagating * the carry. */ *tmpc = *tmpa++ + b; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; /* now handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ + mu; mu = *tmpc >> DIGIT_BIT; *tmpc++ &= MP_MASK; } /* set final carry */ ix++; *tmpc++ = mu; /* setup size */ c->used = a->used + 1; } else { /* a was negative and |a| < b */ c->used = 1; /* the result is a single digit */ if (a->used == 1) { *tmpc++ = b - a->dp[0]; } else { *tmpc++ = b; } /* setup count so the clearing of oldused * can fall through correctly */ ix = 1; } /* sign always positive */ c->sign = MP_ZPOS; /* now zero to oldused */ while (ix++ < oldused) { *tmpc++ = 0; } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_addmod.c.
|
| | | < < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_ADDMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* d = a + b (mod c) */ int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_add(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_and.c.
|
| | | < < < < | | | > | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include "tommath_private.h" #ifdef BN_MP_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* AND two ints together */ int mp_and(const mp_int *a, const mp_int *b, mp_int *c) { int res, ix, px; mp_int t; const mp_int *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] &= x->dp[ix]; } /* zero digits above the last from the smallest mp_int */ for (; ix < t.used; ix++) { t.dp[ix] = 0; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_clamp.c.
|
| | | < < < | < | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include "tommath_private.h" #ifdef BN_MP_CLAMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* trim unused digits * * This is used to ensure that leading zero digits are * trimed and the leading "used" digit will be non-zero * Typically very fast. Also fixes the sign if there * are no more leading digits */ void mp_clamp(mp_int *a) { /* decrease used while the most significant digit is * zero. */ while ((a->used > 0) && (a->dp[a->used - 1] == 0u)) { --(a->used); } /* reset the sign flag if used == 0 */ if (a->used == 0) { a->sign = MP_ZPOS; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_clear.c.
|
| | | < < < < | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* clear one (frees) */ void mp_clear(mp_int *a) { int i; /* only do anything if a hasn't been freed previously */ if (a->dp != NULL) { /* first zero the digits */ for (i = 0; i < a->used; i++) { a->dp[i] = 0; } /* free ram */ XFREE(a->dp); /* reset members to make debugging easier */ a->dp = NULL; a->alloc = a->used = 0; a->sign = MP_ZPOS; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_clear_multi.c.
|
| | | < | | < | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #include <stdarg.h> void mp_clear_multi(mp_int *mp, ...) { mp_int *next_mp = mp; va_list args; va_start(args, mp); while (next_mp != NULL) { mp_clear(next_mp); next_mp = va_arg(args, mp_int *); } va_end(args); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_cmp.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "tommath_private.h" #ifdef BN_MP_CMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* compare two ints (signed)*/ int mp_cmp(const mp_int *a, const mp_int *b) { /* compare based on sign */ if (a->sign != b->sign) { if (a->sign == MP_NEG) { return MP_LT; } else { return MP_GT; } } /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ return mp_cmp_mag(b, a); } else { return mp_cmp_mag(a, b); } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_cmp_d.c.
|
| | | < < < | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_CMP_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* compare a digit */ int mp_cmp_d(const mp_int *a, mp_digit b) { /* compare based on sign */ if (a->sign == MP_NEG) { return MP_LT; } /* compare based on magnitude */ if (a->used > 1) { return MP_GT; } /* compare the only digit of a to b */ if (a->dp[0] > b) { return MP_GT; } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_cmp_mag.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #include "tommath_private.h" #ifdef BN_MP_CMP_MAG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* compare maginitude of two ints (unsigned) */ int mp_cmp_mag(const mp_int *a, const mp_int *b) { int n; mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { return MP_GT; } if (a->used < b->used) { return MP_LT; } /* alias for a */ tmpa = a->dp + (a->used - 1); /* alias for b */ tmpb = b->dp + (a->used - 1); /* compare based on digits */ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { if (*tmpa > *tmpb) { return MP_GT; } if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_cnt_lsb.c.
|
| | | < < < | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #include "tommath_private.h" #ifdef BN_MP_CNT_LSB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(const mp_int *a) { int x; mp_digit q, qq; /* easy out */ if (mp_iszero(a) == MP_YES) { return 0; } /* scan lower digits until non-zero */ for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {} q = a->dp[x]; x *= DIGIT_BIT; /* now scan this digit until a 1 is found */ if ((q & 1u) == 0u) { do { qq = q & 15u; x += lnz[qq]; q >>= 4; } while (qq == 0u); } return x; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_complement.c.
> > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_MP_COMPLEMENT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* b = ~a */ int mp_complement(const mp_int *a, mp_int *b) { int res = mp_neg(a, b); return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_copy.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #include "tommath_private.h" #ifdef BN_MP_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* copy, b = a */ int mp_copy(const mp_int *a, mp_int *b) { int res, n; /* if dst == src do nothing */ if (a == b) { return MP_OKAY; } /* grow dest */ if (b->alloc < a->used) { if ((res = mp_grow(b, a->used)) != MP_OKAY) { return res; } } /* zero b and copy the parameters over */ { mp_digit *tmpa, *tmpb; /* pointer aliases */ /* source */ tmpa = a->dp; /* destination */ tmpb = b->dp; /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ for (; n < b->used; n++) { *tmpb++ = 0; } } /* copy used count and sign */ b->used = a->used; b->sign = a->sign; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_count_bits.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_COUNT_BITS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* returns the number of bits in an int */ int mp_count_bits(const mp_int *a) { int r; mp_digit q; /* shortcut */ if (a->used == 0) { return 0; } /* get number of digits and add that */ r = (a->used - 1) * DIGIT_BIT; /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; while (q > (mp_digit)0) { ++r; q >>= (mp_digit)1; } return r; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_div.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | | | | > | > | > | > | > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | #include "tommath_private.h" #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; int res, n, n2; /* is divisor zero ? */ if (mp_iszero(b) == MP_YES) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } /* init our temps */ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return res; } mp_set(&tq, 1uL); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; } while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { goto LBL_ERR; } } if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { goto LBL_ERR; } } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return res; } #else /* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; int res, n, t, i, norm, neg; /* is divisor zero ? */ if (mp_iszero(b) == MP_YES) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) { return res; } q.used = a->used + 2; if ((res = mp_init(&t1)) != MP_OKAY) { goto LBL_Q; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init_copy(&x, a)) != MP_OKAY) { goto LBL_T2; } if ((res = mp_init_copy(&y, b)) != MP_OKAY) { goto LBL_X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = mp_count_bits(&y) % DIGIT_BIT; if (norm < (DIGIT_BIT - 1)) { norm = (DIGIT_BIT - 1) - norm; if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) { goto LBL_Y; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ goto LBL_Y; } while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) { goto LBL_Y; } } /* reset y by shifting it back down */ mp_rshd(&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1; } else { mp_word tmp; tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT; tmp |= (mp_word)x.dp[i - 1]; tmp /= (mp_word)y.dp[t]; if (tmp > (mp_word)MP_MASK) { tmp = MP_MASK; } q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK; do { q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2]; t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((res = mp_copy(&y, &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = (x.used == 0) ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) { goto LBL_Y; } mp_exch(&x, d); } res = MP_OKAY; LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); LBL_Q: mp_clear(&q); return res; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_div_2.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #include "tommath_private.h" #ifdef BN_MP_DIV_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* b = a/2 */ int mp_div_2(const mp_int *a, mp_int *b) { int x, res, oldused; /* copy */ if (b->alloc < a->used) { if ((res = mp_grow(b, a->used)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { mp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = a->dp + b->used - 1; /* dest alias */ tmpb = b->dp + b->used - 1; /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1u; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero excess digits */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; mp_clamp(b); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_div_2d.c.
|
| | | < < < | | | < < | | | | | | | | > | | | > | | | < | | | < < < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | #include "tommath_private.h" #ifdef BN_MP_DIV_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) { mp_digit D, r, rr; int x, res; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { res = mp_copy(a, c); if (d != NULL) { mp_zero(d); } return res; } /* copy */ if ((res = mp_copy(a, c)) != MP_OKAY) { return res; } /* 'a' should not be used after here - it might be the same as d */ /* get the remainder */ if (d != NULL) { if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) { return res; } } /* shift by as many digits in the bit count */ if (b >= DIGIT_BIT) { mp_rshd(c, b / DIGIT_BIT); } /* shift any bit count < DIGIT_BIT */ D = (mp_digit)(b % DIGIT_BIT); if (D != 0u) { mp_digit *tmpc, mask, shift; /* mask */ mask = ((mp_digit)1 << D) - 1uL; /* shift for lsb */ shift = (mp_digit)DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); /* carry */ r = 0; for (x = c->used - 1; x >= 0; x--) { /* get the lower bits of this word in a temp */ rr = *tmpc & mask; /* shift the current word and mix in the carry bits from the previous word */ *tmpc = (*tmpc >> D) | (r << shift); --tmpc; /* set the carry to the carry bits of the current word found above */ r = rr; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_div_3.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include "tommath_private.h" #ifdef BN_MP_DIV_3_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* divide by three (based on routine from MPI and the GMP manual) */ int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) { mp_int q; mp_word w, t; mp_digit b; int res, ix; /* b = 2**DIGIT_BIT / 3 */ b = ((mp_word)1 << (mp_word)DIGIT_BIT) / (mp_word)3; if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= 3u) { /* multiply w by [1/3] */ t = (w * (mp_word)b) >> (mp_word)DIGIT_BIT; /* now subtract 3 * [w/3] from w, to get the remainder */ w -= t+t+t; /* fixup the remainder as required since * the optimization is not exact. */ while (w >= 3u) { t += 1u; w -= 3u; } } else { t = 0; } q.dp[ix] = (mp_digit)t; } /* [optional] store the remainder */ if (d != NULL) { *d = (mp_digit)w; } /* [optional] store the quotient */ if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_div_d.c.
|
| | | < < < < < < < < < < < < < < < < < < < < | | | | | | | | | | | | | | | | | | | | | > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | #include "tommath_private.h" #ifdef BN_MP_DIV_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* single digit division (based on routine from MPI) */ int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) { mp_int q; mp_word w; mp_digit t; int res, ix; /* cannot divide by zero */ if (b == 0u) { return MP_VAL; } /* quick outs */ if ((b == 1u) || (mp_iszero(a) == MP_YES)) { if (d != NULL) { *d = 0; } if (c != NULL) { return mp_copy(a, c); } return MP_OKAY; } /* power of two ? */ if (((b & (b-1)) == 0)) { for (ix = 1; ix < DIGIT_BIT; ix++) { if (b == (((mp_digit)1)<<ix)) { break; } } if (d != NULL) { *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL); } if (c != NULL) { return mp_div_2d(a, ix, c, NULL); } return MP_OKAY; } #ifdef BN_MP_DIV_3_C /* three? */ if (b == 3u) { return mp_div_3(a, c, d); } #endif /* no easy answer [c'est la vie]. Just division */ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= b) { t = (mp_digit)(w / b); w -= (mp_word)t * (mp_word)b; } else { t = 0; } q.dp[ix] = t; } if (d != NULL) { *d = (mp_digit)w; } if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_dr_is_modulus.c.
|
| | | < < < | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include "tommath_private.h" #ifdef BN_MP_DR_IS_MODULUS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines if a number is a valid DR modulus */ int mp_dr_is_modulus(const mp_int *a) { int ix; /* must be at least two digits */ if (a->used < 2) { return 0; } /* must be of the form b**k - a [a <= b] so all * but the first digit must be equal to -1 (mod b). */ for (ix = 1; ix < a->used; ix++) { if (a->dp[ix] != MP_MASK) { return 0; } } return 1; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_dr_reduce.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | #include "tommath_private.h" #ifdef BN_MP_DR_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * * Based on algorithm from the paper * * "Generating Efficient Primes for Discrete Log Cryptosystems" * Chae Hoon Lim, Pil Joong Lee, * POSTECH Information Research Laboratories * * The modulus must be of a special format [see manual] * * Has been modified to use algorithm 7.10 from the LTM book instead * * Input x must be in the range 0 <= x <= (n-1)**2 */ int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) { int err, i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; /* m = digits in modulus */ m = n->used; /* ensure that "x" has at least 2m digits */ if (x->alloc < (m + m)) { if ((err = mp_grow(x, m + m)) != MP_OKAY) { return err; } } /* top of loop, this is where the code resumes if * another reduction pass is required. */ top: /* aliases for digits */ /* alias for lower half of x */ tmpx1 = x->dp; /* alias for upper half of x, or x/B**m */ tmpx2 = x->dp + m; /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ for (i = m + 1; i < x->used; i++) { *tmpx1++ = 0; } /* clamp, sub and return */ mp_clamp(x); /* if x >= n then subtract and reduce again * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag(x, n) != MP_LT) { if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { return err; } goto top; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_dr_setup.c.
|
| | | < < < | | < > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_DR_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines the setup value */ void mp_dr_setup(const mp_int *a, mp_digit *d) { /* the casts are required if DIGIT_BIT is one less than * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] */ *d = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - (mp_word)a->dp[0]); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_exch.c.
|
| | | < < < | < | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include "tommath_private.h" #ifdef BN_MP_EXCH_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around */ void mp_exch(mp_int *a, mp_int *b) { mp_int t; t = *a; *a = *b; *b = t; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_export.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | #include "tommath_private.h" #ifdef BN_MP_EXPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* based on gmp's mpz_export. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op) { int result; size_t odd_nails, nail_bytes, i, j, bits, count; unsigned char odd_nail_mask; mp_int t; if ((result = mp_init_copy(&t, op)) != MP_OKAY) { return result; } if (endian == 0) { union { unsigned int i; char c[4]; } lint; lint.i = 0x01020304; endian = (lint.c[0] == '\x04') ? -1 : 1; } odd_nails = (nails % 8u); odd_nail_mask = 0xff; for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (unsigned char)(1u << (7u - i)); } nail_bytes = nails / 8u; bits = (size_t)mp_count_bits(&t); count = (bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u); for (i = 0; i < count; ++i) { for (j = 0; j < size; ++j) { unsigned char *byte = (unsigned char *)rop + (((order == -1) ? i : ((count - 1u) - i)) * size) + ((endian == -1) ? j : ((size - 1u) - j)); if (j >= (size - nail_bytes)) { *byte = 0; continue; } *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL)); if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) { mp_clear(&t); return result; } } } mp_clear(&t); if (countp != NULL) { *countp = count; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_expt_d.c.
|
| | | < < < < | < < | | < | | < < | < < < < < | | < < < < < < < | < < < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_MP_EXPT_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* wrapper function for mp_expt_d_ex() */ int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) { return mp_expt_d_ex(a, b, c, 0); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_expt_d_ex.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | #include "tommath_private.h" #ifdef BN_MP_EXPT_D_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* calculate c = a**b using a square-multiply algorithm */ int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) { int res; unsigned int x; mp_int g; if ((res = mp_init_copy(&g, a)) != MP_OKAY) { return res; } /* set initial result */ mp_set(c, 1uL); if (fast != 0) { while (b > 0u) { /* if the bit is set multiply */ if ((b & 1u) != 0u) { if ((res = mp_mul(c, &g, c)) != MP_OKAY) { mp_clear(&g); return res; } } /* square */ if (b > 1u) { if ((res = mp_sqr(&g, &g)) != MP_OKAY) { mp_clear(&g); return res; } } /* shift to next bit */ b >>= 1; } } else { for (x = 0; x < (unsigned)DIGIT_BIT; x++) { /* square */ if ((res = mp_sqr(c, c)) != MP_OKAY) { mp_clear(&g); return res; } /* if the bit is set multiply */ if ((b & ((mp_digit)1 << (DIGIT_BIT - 1))) != 0u) { if ((res = mp_mul(c, &g, c)) != MP_OKAY) { mp_clear(&g); return res; } } /* shift to next bit */ b <<= 1; } } /* if ... else */ mp_clear(&g); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_exptmod.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | #include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { #ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; int err; /* first compute 1/G mod P */ if ((err = mp_init(&tmpG)) != MP_OKAY) { return err; } if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { mp_clear(&tmpG); return err; } /* now get |X| */ if ((err = mp_init(&tmpX)) != MP_OKAY) { mp_clear(&tmpG); return err; } if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); mp_clear_multi(&tmpG, &tmpX, NULL); return err; #else /* no invmod */ return MP_VAL; #endif } /* modified diminished radix reduction */ #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); } #endif #ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ dr = mp_dr_is_modulus(P); #else /* default to no */ dr = 0; #endif #ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ if (dr == 0) { dr = mp_reduce_is_2k(P) << 1; } #endif /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_MP_EXPTMOD_FAST_C if ((mp_isodd(P) == MP_YES) || (dr != 0)) { return mp_exptmod_fast(G, X, P, Y, dr); } else { #endif #ifdef BN_S_MP_EXPTMOD_C /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); #else /* no exptmod for evens */ return MP_VAL; #endif #ifdef BN_MP_EXPTMOD_FAST_C } #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_exptmod_fast.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < | | | | > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | #include "tommath_private.h" #ifdef BN_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 #else # define TAB_SIZE 256 #endif int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ int (*redux)(mp_int *x, const mp_int *n, mp_digit rho); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* determine and setup reduction code */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_SETUP_C /* now setup montgomery */ if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) { goto LBL_M; } #else err = MP_VAL; goto LBL_M; #endif /* automatically pick the comba one if available (saves quite a few calls/ifs) */ #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C if ((((P->used * 2) + 1) < (int)MP_WARRAY) && (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { redux = fast_mp_montgomery_reduce; } else #endif { #ifdef BN_MP_MONTGOMERY_REDUCE_C /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; #else err = MP_VAL; goto LBL_M; #endif } } else if (redmode == 1) { #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) /* setup DR reduction for moduli of the form B**k - b */ mp_dr_setup(P, &mp); redux = mp_dr_reduce; #else err = MP_VAL; goto LBL_M; #endif } else { #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) /* setup DR reduction for moduli of the form 2**k - b */ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { goto LBL_M; } redux = mp_reduce_2k; #else err = MP_VAL; goto LBL_M; #endif } /* setup result */ if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) { goto LBL_M; } /* create M table * * * The first half of the table is not computed though accept for M[0] and M[1] */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* now we need R mod m */ if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) { goto LBL_RES; } /* now set M[1] to G * R mod m */ if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) { goto LBL_RES; } #else err = MP_VAL; goto LBL_RES; #endif } else { mp_set(&res, 1uL); if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto LBL_RES; } } /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } for (x = 0; x < (winsize - 1); x++) { if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&M[x], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } } } if (redmode == 0) { /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* swap res with Y */ mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_exteuclid.c.
|
| | | < < < | | | | | > | > | | > > | | > | > | | > > | > > | > > | > > | > > | > | > | | > > | > > | > | > | | > > | > > | > > | > > | > > | > | | > | > > | > > | > | > > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | #include "tommath_private.h" #ifdef BN_MP_EXTEUCLID_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) { mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp; int err; if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { return err; } /* initialize, (u1,u2,u3) = (1,0,a) */ mp_set(&u1, 1uL); if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto LBL_ERR; } /* initialize, (v1,v2,v3) = (0,1,b) */ mp_set(&v2, 1uL); if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto LBL_ERR; } /* loop while v3 != 0 */ while (mp_iszero(&v3) == MP_NO) { /* q = u3/v3 */ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto LBL_ERR; } /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto LBL_ERR; } /* (u1,u2,u3) = (v1,v2,v3) */ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto LBL_ERR; } /* (v1,v2,v3) = (t1,t2,t3) */ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto LBL_ERR; } } /* make sure U3 >= 0 */ if (u3.sign == MP_NEG) { if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto LBL_ERR; } } /* copy result out */ if (U1 != NULL) { mp_exch(U1, &u1); } if (U2 != NULL) { mp_exch(U2, &u2); } if (U3 != NULL) { mp_exch(U3, &u3); } err = MP_OKAY; LBL_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_fread.c.
|
| | | < < < > > | | | | < | | | | | > | > | | | | | | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | #include "tommath_private.h" #ifdef BN_MP_FREAD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifndef LTM_NO_FILE /* read a bigint from a file stream in ASCII */ int mp_fread(mp_int *a, int radix, FILE *stream) { int err, ch, neg, y; unsigned pos; /* clear a */ mp_zero(a); /* if first digit is - then set negative */ ch = fgetc(stream); if (ch == (int)'-') { neg = MP_NEG; ch = fgetc(stream); } else { neg = MP_ZPOS; } for (;;) { pos = (unsigned)(ch - (int)'('); if (mp_s_rmap_reverse_sz < pos) { break; } y = (int)mp_s_rmap_reverse[pos]; if ((y == 0xff) || (y >= radix)) { break; } /* shift up and add */ if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) { return err; } if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return err; } ch = fgetc(stream); } if (mp_cmp_d(a, 0uL) != MP_EQ) { a->sign = neg; } return MP_OKAY; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_fwrite.c.
|
| | | < < < > | | | | | | | | | | | | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include "tommath_private.h" #ifdef BN_MP_FWRITE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifndef LTM_NO_FILE int mp_fwrite(const mp_int *a, int radix, FILE *stream) { char *buf; int err, len, x; if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { return err; } buf = OPT_CAST(char) XMALLOC((size_t)len); if (buf == NULL) { return MP_MEM; } if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { XFREE(buf); return err; } for (x = 0; x < len; x++) { if (fputc((int)buf[x], stream) == EOF) { XFREE(buf); return MP_VAL; } } XFREE(buf); return MP_OKAY; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_gcd.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #include "tommath_private.h" #ifdef BN_MP_GCD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Greatest Common Divisor using the binary method */ int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) { mp_int u, v; int k, u_lsb, v_lsb, res; /* either zero than gcd is the largest */ if (mp_iszero(a) == MP_YES) { return mp_abs(b, c); } if (mp_iszero(b) == MP_YES) { return mp_abs(a, c); } /* get copies of a and b we can modify */ if ((res = mp_init_copy(&u, a)) != MP_OKAY) { return res; } if ((res = mp_init_copy(&v, b)) != MP_OKAY) { goto LBL_U; } /* must be positive for the remainder of the algorithm */ u.sign = v.sign = MP_ZPOS; /* B1. Find the common power of two for u and v */ u_lsb = mp_cnt_lsb(&u); v_lsb = mp_cnt_lsb(&v); k = MIN(u_lsb, v_lsb); if (k > 0) { /* divide the power of two out */ if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { goto LBL_V; } if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* divide any remaining factors of two out */ if (u_lsb != k) { if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { goto LBL_V; } } if (v_lsb != k) { if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } while (mp_iszero(&v) == MP_NO) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ mp_exch(&u, &v); } /* subtract smallest from largest */ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } /* Divide out all factors of two */ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* multiply by 2**k which we divided out at the beginning */ if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) { goto LBL_V; } c->sign = MP_ZPOS; res = MP_OKAY; LBL_V: mp_clear(&u); LBL_U: mp_clear(&v); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_get_bit.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include "tommath_private.h" #ifdef BN_MP_GET_BIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Checks the bit at position b and returns MP_YES if the bit is 1, MP_NO if it is 0 and MP_VAL in case of error */ int mp_get_bit(const mp_int *a, int b) { int limb; mp_digit bit, isset; if (b < 0) { return MP_VAL; } limb = b / DIGIT_BIT; /* * Zero is a special value with the member "used" set to zero. * Needs to be tested before the check for the upper boundary * otherwise (limb >= a->used) would be true for a = 0 */ if (mp_iszero(a) != MP_NO) { return MP_NO; } if (limb >= a->used) { return MP_VAL; } bit = (mp_digit)(1) << (b % DIGIT_BIT); isset = a->dp[limb] & bit; return (isset != 0u) ? MP_YES : MP_NO; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_get_double.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #include "tommath_private.h" #ifdef BN_MP_GET_DOUBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ double mp_get_double(const mp_int *a) { int i; double d = 0.0, fac = 1.0; for (i = 0; i < DIGIT_BIT; ++i) { fac *= 2.0; } for (i = USED(a); i --> 0;) { d = (d * fac) + (double)DIGIT(a, i); } return (mp_isneg(a) != MP_NO) ? -d : d; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_get_int.c.
|
| | | < < < | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | #include "tommath_private.h" #ifdef BN_MP_GET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* get the lower 32-bits of an mp_int */ unsigned long mp_get_int(const mp_int *a) { int i; mp_min_u32 res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } /* force result to 32-bits always so it is consistent on non 32-bit platforms */ return res & 0xFFFFFFFFUL; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_get_long.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | #include "tommath_private.h" #ifdef BN_MP_GET_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* get the lower unsigned long of an mp_int, platform dependent */ unsigned long mp_get_long(const mp_int *a) { int i; unsigned long res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); #if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32) while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } #endif return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_get_long_long.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | #include "tommath_private.h" #ifdef BN_MP_GET_LONG_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* get the lower unsigned long long of an mp_int, platform dependent */ unsigned long long mp_get_long_long(const mp_int *a) { int i; unsigned long long res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ i = MIN(a->used, ((((int)sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a, i); #if DIGIT_BIT < 64 while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a, i); } #endif return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_grow.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include "tommath_private.h" #ifdef BN_MP_GROW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* grow as required */ int mp_grow(mp_int *a, int size) { int i; mp_digit *tmp; /* if the alloc size is smaller alloc more ram */ if (a->alloc < size) { /* ensure there are always at least MP_PREC digits extra on top */ size += (MP_PREC * 2) - (size % MP_PREC); /* reallocate the array a->dp * * We store the return in a temporary variable * in case the operation failed we don't want * to overwrite the dp member of a. */ tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * (size_t)size); if (tmp == NULL) { /* reallocation failed but "a" is still valid [can be freed] */ return MP_MEM; } /* reallocation succeeded so set a->dp */ a->dp = tmp; /* zero excess digits */ i = a->alloc; a->alloc = size; for (; i < a->alloc; i++) { a->dp[i] = 0; } } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_import.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | #include "tommath_private.h" #ifdef BN_MP_IMPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* based on gmp's mpz_import. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op) { int result; size_t odd_nails, nail_bytes, i, j; unsigned char odd_nail_mask; mp_zero(rop); if (endian == 0) { union { unsigned int i; char c[4]; } lint; lint.i = 0x01020304; endian = (lint.c[0] == '\x04') ? -1 : 1; } odd_nails = (nails % 8u); odd_nail_mask = 0xff; for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (unsigned char)(1u << (7u - i)); } nail_bytes = nails / 8u; for (i = 0; i < count; ++i) { for (j = 0; j < (size - nail_bytes); ++j) { unsigned char byte = *((unsigned char *)op + (((order == 1) ? i : ((count - 1u) - i)) * size) + ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes))); if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) { return result; } rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte; rop->used += 1; } } mp_clamp(rop); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init.c.
|
| | | < < < | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | #include "tommath_private.h" #ifdef BN_MP_INIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* init a new mp_int */ int mp_init(mp_int *a) { int i; /* allocate memory required and clear it */ a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)MP_PREC); if (a->dp == NULL) { return MP_MEM; } /* set the digits to zero */ for (i = 0; i < MP_PREC; i++) { a->dp[i] = 0; } /* set the used to zero, allocated digits to the default precision * and sign to positive */ a->used = 0; a->alloc = MP_PREC; a->sign = MP_ZPOS; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init_copy.c.
|
| | | < < < | | | | | > > > > > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | #include "tommath_private.h" #ifdef BN_MP_INIT_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* creates "a" then copies b into it */ int mp_init_copy(mp_int *a, const mp_int *b) { int res; if ((res = mp_init_size(a, b->used)) != MP_OKAY) { return res; } if ((res = mp_copy(b, a)) != MP_OKAY) { mp_clear(a); } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init_multi.c.
|
| | | < | | < | | | | | | | | | | | | | < < < | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #include "tommath_private.h" #ifdef BN_MP_INIT_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #include <stdarg.h> int mp_init_multi(mp_int *mp, ...) { mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ int n = 0; /* Number of ok inits */ mp_int *cur_arg = mp; va_list args; va_start(args, mp); /* init args to next argument from caller */ while (cur_arg != NULL) { if (mp_init(cur_arg) != MP_OKAY) { /* Oops - error! Back-track and mp_clear what we already succeeded in init-ing, then return error. */ va_list clean_args; /* now start cleaning up */ cur_arg = mp; va_start(clean_args, mp); while (n-- != 0) { mp_clear(cur_arg); cur_arg = va_arg(clean_args, mp_int *); } va_end(clean_args); res = MP_MEM; break; } n++; cur_arg = va_arg(args, mp_int *); } va_end(args); return res; /* Assumed ok, if error flagged above. */ } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init_set.c.
|
| | | < < < | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #include "tommath_private.h" #ifdef BN_MP_INIT_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* initialize and set a digit */ int mp_init_set(mp_int *a, mp_digit b) { int err; if ((err = mp_init(a)) != MP_OKAY) { return err; } mp_set(a, b); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init_set_int.c.
|
| | | < < < | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_INIT_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* initialize and set a digit */ int mp_init_set_int(mp_int *a, unsigned long b) { int err; if ((err = mp_init(a)) != MP_OKAY) { return err; } return mp_set_int(a, b); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_init_size.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #include "tommath_private.h" #ifdef BN_MP_INIT_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* init an mp_init for a given size */ int mp_init_size(mp_int *a, int size) { int x; /* pad size so there are always extra digits */ size += (MP_PREC * 2) - (size % MP_PREC); /* alloc mem */ a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)size); if (a->dp == NULL) { return MP_MEM; } /* set the members */ a->used = 0; a->alloc = size; a->sign = MP_ZPOS; /* zero the digits */ for (x = 0; x < size; x++) { a->dp[x] = 0; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_invmod.c.
|
| | | < < < | | | | | | | | | | | < | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include "tommath_private.h" #ifdef BN_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { /* b cannot be negative and has to be >1 */ if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) { return MP_VAL; } #ifdef BN_FAST_MP_INVMOD_C /* if the modulus is odd we can use a faster routine instead */ if ((mp_isodd(b) == MP_YES)) { return fast_mp_invmod(a, b, c); } #endif #ifdef BN_MP_INVMOD_SLOW_C return mp_invmod_slow(a, b, c); #else return MP_VAL; #endif } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_invmod_slow.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #include "tommath_private.h" #ifdef BN_MP_INVMOD_SLOW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, A, B, C, D; int res; /* b cannot be negative */ if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { return MP_VAL; } /* init temps */ if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return res; } /* x = a, y = b */ if ((res = mp_mod(a, b, &x)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 2. [modified] if x,y are both even then return an error! */ if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) { res = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((res = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&A, 1uL); mp_set(&D, 1uL); top: /* 4. while u is even do */ while (mp_iseven(&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if A or B is odd then */ if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) { /* A = (A+y)/2, B = (B-x)/2 */ if ((res = mp_add(&A, &y, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* A = A/2, B = B/2 */ if ((res = mp_div_2(&A, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (mp_iseven(&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if C or D is odd then */ if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) { /* C = (C+y)/2, D = (D-x)/2 */ if ((res = mp_add(&C, &y, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* C = C/2, D = D/2 */ if ((res = mp_div_2(&C, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, A = A - C, B = B - D */ if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, C = C - A, D = D - B */ if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (mp_iszero(&u) == MP_NO) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { res = MP_VAL; goto LBL_ERR; } /* if its too low */ while (mp_cmp_d(&C, 0uL) == MP_LT) { if ((res = mp_add(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* C is now the inverse */ mp_exch(&C, c); res = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_is_square.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | #include "tommath_private.h" #ifdef BN_MP_IS_SQUARE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Check if remainders are possible squares - fast exclude non-squares */ static const char rem_128[128] = { 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 }; static const char rem_105[105] = { 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 }; /* Store non-zero to ret if arg is square, and zero if not */ int mp_is_square(const mp_int *arg, int *ret) { int res; mp_digit c; mp_int t; unsigned long r; /* Default to Non-square :) */ *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; } /* digits used? (TSD) */ if (arg->used == 0) { return MP_OKAY; } /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ if (rem_128[127u & DIGIT(arg, 0)] == (char)1) { return MP_OKAY; } /* Next check mod 105 (3*5*7) */ if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) { return res; } if (rem_105[c] == (char)1) { return MP_OKAY; } if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { return res; } if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) { goto LBL_ERR; } r = mp_get_int(&t); /* Check for other prime modules, note it's not an ERROR but we must * free "t" so the easiest way is to goto LBL_ERR. We know that res * is already equal to MP_OKAY from the mp_mod call */ if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR; if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR; if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((res = mp_sqrt(arg, &t)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sqr(&t, &t)) != MP_OKAY) { goto LBL_ERR; } *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO; LBL_ERR: mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_jacobi.c.
|
| | | < < < | | < < < < | | | | < < < | < < < | < | | < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | #include "tommath_private.h" #ifdef BN_MP_JACOBI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes the jacobi c = (a | n) (or Legendre if n is prime) * Kept for legacy reasons, please use mp_kronecker() instead */ int mp_jacobi(const mp_int *a, const mp_int *n, int *c) { /* if a < 0 return MP_VAL */ if (mp_isneg(a) == MP_YES) { return MP_VAL; } /* if n <= 0 return MP_VAL */ if (mp_cmp_d(n, 0uL) != MP_GT) { return MP_VAL; } return mp_kronecker(a, n, c); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_karatsuba_mul.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | > | > | > | > | > | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | #include "tommath_private.h" #ifdef BN_MP_KARATSUBA_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * * Let B represent the radix [e.g. 2**DIGIT_BIT] and * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b => a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 * * Note that a1b1 and a0b0 are used twice and only need to be * computed once. So in total three half size (half # of * digit) multiplications are performed, a0b0, a1b1 and * (a1+b1)(a0+b0) * * Note that a multiplication of half the digits requires * 1/4th the number of single precision multiplications so in * total after one call 25% of the single precision multiplications * are saved. Note also that the call to mp_mul can end up back * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x0, x1, y0, y1, t1, x0y0, x1y1; int B, err; /* default the return code to an error */ err = MP_MEM; /* min # of digits */ B = MIN(a->used, b->used); /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto LBL_ERR; if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0; if (mp_init_size(&y0, B) != MP_OKAY) goto X1; if (mp_init_size(&y1, b->used - B) != MP_OKAY) goto Y0; /* init temps */ if (mp_init_size(&t1, B * 2) != MP_OKAY) goto Y1; if (mp_init_size(&x0y0, B * 2) != MP_OKAY) goto T1; if (mp_init_size(&x1y1, B * 2) != MP_OKAY) goto X0Y0; /* now shift the digits */ x0.used = y0.used = B; x1.used = a->used - B; y1.used = b->used - B; { int x; mp_digit *tmpa, *tmpb, *tmpx, *tmpy; /* we copy the digits directly instead of using higher level functions * since we also need to shift the digits */ tmpa = a->dp; tmpb = b->dp; tmpx = x0.dp; tmpy = y0.dp; for (x = 0; x < B; x++) { *tmpx++ = *tmpa++; *tmpy++ = *tmpb++; } tmpx = x1.dp; for (x = B; x < a->used; x++) { *tmpx++ = *tmpa++; } tmpy = y1.dp; for (x = B; x < b->used; x++) { *tmpy++ = *tmpb++; } } /* only need to clamp the lower words since by definition the * upper words x1/y1 must have a known number of digits */ mp_clamp(&x0); mp_clamp(&y0); /* now calc the products x0y0 and x1y1 */ /* after this x0 is no longer required, free temp [x0==t2]! */ if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1; /* x0y0 = x0*y0 */ if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1; /* x1y1 = x1*y1 */ /* now calc x1+x0 and y1+y0 */ if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = x1 - x0 */ if (s_mp_add(&y1, &y0, &x0) != MP_OKAY) goto X1Y1; /* t2 = y1 - y0 */ if (mp_mul(&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ /* add x0y0 */ if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY) goto X1Y1; /* t2 = x0y0 + x1y1 */ if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY) goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ /* shift by B */ if (mp_lshd(&t1, B) != MP_OKAY) goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ if (mp_lshd(&x1y1, B * 2) != MP_OKAY) goto X1Y1; /* x1y1 = x1y1 << 2*B */ if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 */ if (mp_add(&t1, &x1y1, c) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ /* Algorithm succeeded set the return code to MP_OKAY */ err = MP_OKAY; X1Y1: mp_clear(&x1y1); X0Y0: mp_clear(&x0y0); T1: mp_clear(&t1); Y1: mp_clear(&y1); Y0: mp_clear(&y0); X1: mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_karatsuba_sqr.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | > | > | > | > | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | #include "tommath_private.h" #ifdef BN_MP_KARATSUBA_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Karatsuba squaring, computes b = a*a using three * half size squarings * * See comments of karatsuba_mul for details. It * is essentially the same algorithm but merely * tuned to perform recursive squarings. */ int mp_karatsuba_sqr(const mp_int *a, mp_int *b) { mp_int x0, x1, t1, t2, x0x0, x1x1; int B, err; err = MP_MEM; /* min # of digits */ B = a->used; /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto LBL_ERR; if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0; /* init temps */ if (mp_init_size(&t1, a->used * 2) != MP_OKAY) goto X1; if (mp_init_size(&t2, a->used * 2) != MP_OKAY) goto T1; if (mp_init_size(&x0x0, B * 2) != MP_OKAY) goto T2; if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) goto X0X0; { int x; mp_digit *dst, *src; src = a->dp; /* now shift the digits */ dst = x0.dp; for (x = 0; x < B; x++) { *dst++ = *src++; } dst = x1.dp; for (x = B; x < a->used; x++) { *dst++ = *src++; } } x0.used = B; x1.used = a->used - B; mp_clamp(&x0); /* now calc the products x0*x0 and x1*x1 */ if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1; /* x0x0 = x0*x0 */ if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1; /* x1x1 = x1*x1 */ /* now calc (x1+x0)**2 */ if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) goto X1X1; /* t1 = x1 - x0 */ if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ /* add x0y0 */ if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) goto X1X1; /* t2 = x0x0 + x1x1 */ if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */ /* shift by B */ if (mp_lshd(&t1, B) != MP_OKAY) goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ if (mp_lshd(&x1x1, B * 2) != MP_OKAY) goto X1X1; /* x1x1 = x1x1 << 2*B */ if (mp_add(&x0x0, &t1, &t1) != MP_OKAY) goto X1X1; /* t1 = x0x0 + t1 */ if (mp_add(&t1, &x1x1, b) != MP_OKAY) goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ err = MP_OKAY; X1X1: mp_clear(&x1x1); X0X0: mp_clear(&x0x0); T2: mp_clear(&t2); T1: mp_clear(&t1); X1: mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_kronecker.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | #include "tommath_private.h" #ifdef BN_MP_KRONECKER_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Kronecker symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory" @book{cohen2013course, title={A course in computational algebraic number theory}, author={Cohen, Henri}, volume={138}, year={2013}, publisher={Springer Science \& Business Media} } */ int mp_kronecker(const mp_int *a, const mp_int *p, int *c) { mp_int a1, p1, r; int e = MP_OKAY; int v, k; static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1}; if (mp_iszero(p) != MP_NO) { if ((a->used == 1) && (a->dp[0] == 1u)) { *c = 1; return e; } else { *c = 0; return e; } } if ((mp_iseven(a) != MP_NO) && (mp_iseven(p) != MP_NO)) { *c = 0; return e; } if ((e = mp_init_copy(&a1, a)) != MP_OKAY) { return e; } if ((e = mp_init_copy(&p1, p)) != MP_OKAY) { goto LBL_KRON_0; } v = mp_cnt_lsb(&p1); if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) { goto LBL_KRON_1; } if ((v & 0x1) == 0) { k = 1; } else { k = table[a->dp[0] & 7u]; } if (p1.sign == MP_NEG) { p1.sign = MP_ZPOS; if (a1.sign == MP_NEG) { k = -k; } } if ((e = mp_init(&r)) != MP_OKAY) { goto LBL_KRON_1; } for (;;) { if (mp_iszero(&a1) != MP_NO) { if (mp_cmp_d(&p1, 1uL) == MP_EQ) { *c = k; goto LBL_KRON; } else { *c = 0; goto LBL_KRON; } } v = mp_cnt_lsb(&a1); if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) { goto LBL_KRON; } if ((v & 0x1) == 1) { k = k * table[p1.dp[0] & 7u]; } if (a1.sign == MP_NEG) { /* * Compute k = (-1)^((a1)*(p1-1)/4) * k * a1.dp[0] + 1 cannot overflow because the MSB * of the type mp_digit is not set by definition */ if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) { k = -k; } } else { /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */ if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) { k = -k; } } if ((e = mp_copy(&a1, &r)) != MP_OKAY) { goto LBL_KRON; } r.sign = MP_ZPOS; if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) { goto LBL_KRON; } if ((e = mp_copy(&r, &p1)) != MP_OKAY) { goto LBL_KRON; } } LBL_KRON: mp_clear(&r); LBL_KRON_1: mp_clear(&p1); LBL_KRON_0: mp_clear(&a1); return e; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_lcm.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | #include "tommath_private.h" #ifdef BN_MP_LCM_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes least common multiple as |a*b|/(a, b) */ int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) { int res; mp_int t1, t2; if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { return res; } /* t1 = get the GCD of the two inputs */ if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) { goto LBL_T; } /* divide the smallest by the GCD */ if (mp_cmp_mag(a, b) == MP_LT) { /* store quotient in t2 such that t2 * b is the LCM */ if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } res = mp_mul(b, &t2, c); } else { /* store quotient in t2 such that t2 * a is the LCM */ if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } res = mp_mul(a, &t2, c); } /* fix the sign to positive */ c->sign = MP_ZPOS; LBL_T: mp_clear_multi(&t1, &t2, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_lshd.c.
|
| | | < < < | | | | | | > > > | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | #include "tommath_private.h" #ifdef BN_MP_LSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* shift left a certain amount of digits */ int mp_lshd(mp_int *a, int b) { int x, res; /* if its less than zero return */ if (b <= 0) { return MP_OKAY; } /* no need to shift 0 around */ if (mp_iszero(a) == MP_YES) { return MP_OKAY; } /* grow to fit the new digits */ if (a->alloc < (a->used + b)) { if ((res = mp_grow(a, a->used + b)) != MP_OKAY) { return res; } } { mp_digit *top, *bottom; /* increment the used by the shift amount then copy upwards */ a->used += b; /* top */ top = a->dp + a->used - 1; /* base */ bottom = (a->dp + a->used - 1) - b; /* much like mp_rshd this is implemented using a sliding window * except the window goes the otherway around. Copying from * the bottom to the top. see bn_mp_rshd.c for more info. */ for (x = a->used - 1; x >= b; x--) { *top-- = *bottom--; } /* zero the lower digits */ top = a->dp; for (x = 0; x < b; x++) { *top++ = 0; } } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mod.c.
|
| | | < < < | < | | | | | | | | | | | > | | < | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_MP_MOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */ int mp_mod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int t; int res; if ((res = mp_init_size(&t, b->used)) != MP_OKAY) { return res; } if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) { mp_clear(&t); return res; } if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) { res = MP_OKAY; mp_exch(&t, c); } else { res = mp_add(b, &t, c); } mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mod_2d.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include "tommath_private.h" #ifdef BN_MP_MOD_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* calc a value mod 2**b */ int mp_mod_2d(const mp_int *a, int b, mp_int *c) { int x, res; /* if b is <= 0 then zero the int */ if (b <= 0) { mp_zero(c); return MP_OKAY; } /* if the modulus is larger than the value than return */ if (b >= (a->used * DIGIT_BIT)) { res = mp_copy(a, c); return res; } /* copy */ if ((res = mp_copy(a, c)) != MP_OKAY) { return res; } /* zero digits above the last digit of the modulus */ for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) { c->dp[x] = 0; } /* clear the digit that is not completely outside/inside the modulus */ c->dp[b / DIGIT_BIT] &= ((mp_digit)1 << (mp_digit)(b % DIGIT_BIT)) - (mp_digit)1; mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mod_d.c.
|
| | | < < < < | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #include "tommath_private.h" #ifdef BN_MP_MOD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) { return mp_div_d(a, b, NULL, c); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_montgomery_calc_normalization.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* * shifts with subtractions when the result is greater than b. * * The method is slightly modified to shift B unconditionally upto just under * the leading bit of b. This saves alot of multiple precision shifting. */ int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) { int x, bits, res; /* how many bits of last digit does b use */ bits = mp_count_bits(b) % DIGIT_BIT; if (b->used > 1) { if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) { return res; } } else { mp_set(a, 1uL); bits = 1; } /* now compute C = A * B mod b */ for (x = bits - 1; x < (int)DIGIT_BIT; x++) { if ((res = mp_mul_2(a, a)) != MP_OKAY) { return res; } if (mp_cmp_mag(a, b) != MP_LT) { if ((res = s_mp_sub(a, b, a)) != MP_OKAY) { return res; } } } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_montgomery_reduce.c.
|
| | | < < < < | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { int ix, res, digs; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; if ((digs < (int)MP_WARRAY) && (x->used <= (int)MP_WARRAY) && (n->used < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { return fast_mp_montgomery_reduce(x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((res = mp_grow(x, digs)) != MP_OKAY) { return res; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * * The value of rho must be precalculated via * montgomery_setup() such that * it equals -1/n0 mod b this allows the * following inner loop to reduce the * input one digit at a time */ mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { int iy; mp_digit *tmpn, *tmpx, u; mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; /* alias for the digits of x [the input] */ tmpx = x->dp + ix; /* set the carry to zero */ u = 0; /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word)*tmpn++) + (mp_word)u + (mp_word)*tmpx; /* get carry */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); /* fix digit */ *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u != 0u) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero * which means we can shift x to the * right by n.used digits and the * residue is unchanged. */ /* x = x/b**n.used */ mp_clamp(x); mp_rshd(x, n->used); /* if x >= n then x = x - n */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_montgomery_setup.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* setups the montgomery reduction stuff */ int mp_montgomery_setup(const mp_int *n, mp_digit *rho) { mp_digit x, b; /* fast inversion mod 2**k * * Based on the fact that * * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) * => 2*X*A - X*X*A*A = 1 * => 2*(1) - (1) = 1 */ b = n->dp[0]; if ((b & 1u) == 0u) { return MP_VAL; } x = (((b + 2u) & 4u) << 1) + b; /* here x*a==1 mod 2**4 */ x *= 2u - (b * x); /* here x*a==1 mod 2**8 */ #if !defined(MP_8BIT) x *= 2u - (b * x); /* here x*a==1 mod 2**16 */ #endif #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) x *= 2u - (b * x); /* here x*a==1 mod 2**32 */ #endif #ifdef MP_64BIT x *= 2u - (b * x); /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ *rho = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - x) & MP_MASK; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mul.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #include "tommath_private.h" #ifdef BN_MP_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* high level multiplication (handles sign) */ int mp_mul(const mp_int *a, const mp_int *b, mp_int *c) { int res, neg; neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; /* use Toom-Cook? */ #ifdef BN_MP_TOOM_MUL_C if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) { res = mp_toom_mul(a, b, c); } else #endif #ifdef BN_MP_KARATSUBA_MUL_C /* use Karatsuba? */ if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { res = mp_karatsuba_mul(a, b, c); } else #endif { /* can we use the fast multiplier? * * The fast multiplier can be used if the output will * have less than MP_WARRAY digits and the number of * digits won't affect carry propagation */ int digs = a->used + b->used + 1; #ifdef BN_FAST_S_MP_MUL_DIGS_C if ((digs < (int)MP_WARRAY) && (MIN(a->used, b->used) <= (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { res = fast_s_mp_mul_digs(a, b, c, digs); } else #endif { #ifdef BN_S_MP_MUL_DIGS_C res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */ #else res = MP_VAL; #endif } } c->sign = (c->used > 0) ? neg : MP_ZPOS; return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mul_2.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | #include "tommath_private.h" #ifdef BN_MP_MUL_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* b = a*2 */ int mp_mul_2(const mp_int *a, mp_int *b) { int x, res, oldused; /* grow to accomodate result */ if (b->alloc < (a->used + 1)) { if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) { return res; } } oldused = b->used; b->used = a->used; { mp_digit r, rr, *tmpa, *tmpb; /* alias for source */ tmpa = a->dp; /* alias for dest */ tmpb = b->dp; /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ rr = *tmpa >> (mp_digit)(DIGIT_BIT - 1); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK; /* copy the carry that would be from the source * digit into the next iteration */ r = rr; } /* new leading digit? */ if (r != 0u) { /* add a MSB which is always 1 at this point */ *tmpb = 1; ++(b->used); } /* now zero any excess digits on the destination * that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mul_2d.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include "tommath_private.h" #ifdef BN_MP_MUL_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* shift left by a certain bit count */ int mp_mul_2d(const mp_int *a, int b, mp_int *c) { mp_digit d; int res; /* copy */ if (a != c) { if ((res = mp_copy(a, c)) != MP_OKAY) { return res; } } if (c->alloc < (c->used + (b / DIGIT_BIT) + 1)) { if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } } /* shift by as many digits in the bit count */ if (b >= DIGIT_BIT) { if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) { return res; } } /* shift any bit count < DIGIT_BIT */ d = (mp_digit)(b % DIGIT_BIT); if (d != 0u) { mp_digit *tmpc, shift, mask, r, rr; int x; /* bitmask for carries */ mask = ((mp_digit)1 << d) - (mp_digit)1; /* shift for msbs */ shift = (mp_digit)DIGIT_BIT - d; /* alias */ tmpc = c->dp; /* carry */ r = 0; for (x = 0; x < c->used; x++) { /* get the higher bits of the current word */ rr = (*tmpc >> shift) & mask; /* shift the current word and OR in the carry */ *tmpc = ((*tmpc << d) | r) & MP_MASK; ++tmpc; /* set the carry to the carry bits of the current word */ r = rr; } /* set final carry */ if (r != 0u) { c->dp[(c->used)++] = r; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mul_d.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include "tommath_private.h" #ifdef BN_MP_MUL_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* multiply by a digit */ int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit u, *tmpa, *tmpc; mp_word r; int ix, res, olduse; /* make sure c is big enough to hold a*b */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* get the original destinations used count */ olduse = c->used; /* set the sign */ c->sign = a->sign; /* alias for a->dp [source] */ tmpa = a->dp; /* alias for c->dp [dest] */ tmpc = c->dp; /* zero carry */ u = 0; /* compute columns */ for (ix = 0; ix < a->used; ix++) { /* compute product and carry sum for this term */ r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK); /* send carry into next iteration */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); } /* store final carry [if any] and increment ix offset */ *tmpc++ = u; ++ix; /* now zero digits above the top */ while (ix++ < olduse) { *tmpc++ = 0; } /* set used count */ c->used = a->used + 1; mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_mulmod.c.
|
| | | < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_MULMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* d = a * b (mod c) */ int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init_size(&t, c->used)) != MP_OKAY) { return res; } if ((res = mp_mul(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_n_root.c.
|
| | | < < < < < > | < < < < < < | < < < < < < < < < | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | < < < | | < < < < < | < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | #include "tommath_private.h" #ifdef BN_MP_N_ROOT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* wrapper function for mp_n_root_ex() * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a */ int mp_n_root(const mp_int *a, mp_digit b, mp_int *c) { return mp_n_root_ex(a, b, c, 0); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_n_root_ex.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | #include "tommath_private.h" #ifdef BN_MP_N_ROOT_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* find the n'th root of an integer * * Result found such that (c)**b <= a and (c+1)**b > a * * This algorithm uses Newton's approximation * x[i+1] = x[i] - f(x[i])/f'(x[i]) * which will find the root in log(N) time where * each step involves a fair bit. This is not meant to * find huge roots [square and cube, etc]. */ int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) { mp_int t1, t2, t3, a_; int res; /* input must be positive if b is even */ if (((b & 1u) == 0u) && (a->sign == MP_NEG)) { return MP_VAL; } if ((res = mp_init(&t1)) != MP_OKAY) { return res; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init(&t3)) != MP_OKAY) { goto LBL_T2; } /* if a is negative fudge the sign but keep track */ a_ = *a; a_.sign = MP_ZPOS; /* t2 = 2 */ mp_set(&t2, 2uL); do { /* t1 = t2 */ if ((res = mp_copy(&t2, &t1)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t3 = t1**(b-1) */ if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) { goto LBL_T3; } /* numerator */ /* t2 = t1**b */ if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1**b - a */ if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) { goto LBL_T3; } /* denominator */ /* t3 = t1**(b-1) * b */ if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { goto LBL_T3; } /* t3 = (t1**b - a)/(b * t1**(b-1)) */ if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { goto LBL_T3; } if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) { goto LBL_T3; } } while (mp_cmp(&t1, &t2) != MP_EQ); /* result can be off by a few so check */ for (;;) { if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) { goto LBL_T3; } if (mp_cmp(&t2, &a_) == MP_GT) { if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) { goto LBL_T3; } } else { break; } } /* set the result */ mp_exch(&t1, c); /* set the sign of the result */ c->sign = a->sign; res = MP_OKAY; LBL_T3: mp_clear(&t3); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_neg.c.
|
| | | < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_NEG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* b = -a */ int mp_neg(const mp_int *a, mp_int *b) { int res; if (a != b) { if ((res = mp_copy(a, b)) != MP_OKAY) { return res; } } if (mp_iszero(b) != MP_YES) { b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; } else { b->sign = MP_ZPOS; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_or.c.
|
| | | < < < | | | > | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include "tommath_private.h" #ifdef BN_MP_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* OR two ints together */ int mp_or(const mp_int *a, const mp_int *b, mp_int *c) { int res, ix, px; mp_int t; const mp_int *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] |= x->dp[ix]; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_fermat.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* performs one Fermat test. * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). * * Sets result to 1 if the congruence holds, or zero otherwise. */ int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result) { mp_int t; int err; /* default to composite */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1uL) != MP_GT) { return MP_VAL; } /* init t */ if ((err = mp_init(&t)) != MP_OKAY) { return err; } /* compute t = b**a mod a */ if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) { goto LBL_T; } /* is it equal to b? */ if (mp_cmp(&t, b) == MP_EQ) { *result = MP_YES; } err = MP_OKAY; LBL_T: mp_clear(&t); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_prime_frobenius_underwood.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_FIPS_ONLY #ifdef MP_8BIT /* * floor of positive solution of * (2^16)-1 = (a+4)*(2*a+5) * TODO: Both values are smaller than N^(1/4), would have to use a bigint * for a instead but any a biger than about 120 are already so rare that * it is possible to ignore them and still get enough pseudoprimes. * But it is still a restriction of the set of available pseudoprimes * which makes this implementation less secure if used stand-alone. */ #define LTM_FROBENIUS_UNDERWOOD_A 177 #else #define LTM_FROBENIUS_UNDERWOOD_A 32764 #endif int mp_prime_frobenius_underwood(const mp_int *N, int *result) { mp_int T1z, T2z, Np1z, sz, tz; int a, ap2, length, i, j, isset; int e; *result = MP_NO; if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) { return e; } for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) { /* TODO: That's ugly! No, really, it is! */ if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) || (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) { continue; } /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */ if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) { goto LBL_FU_ERR; } if (j == -1) { break; } if (j == 0) { /* composite */ goto LBL_FU_ERR; } } /* Tell it a composite and set return value accordingly */ if (a >= LTM_FROBENIUS_UNDERWOOD_A) { e = MP_ITER; goto LBL_FU_ERR; } /* Composite if N and (a+4)*(2*a+5) are not coprime */ if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) { goto LBL_FU_ERR; } ap2 = a + 2; if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) { goto LBL_FU_ERR; } mp_set(&sz, 1uL); mp_set(&tz, 2uL); length = mp_count_bits(&Np1z); for (i = length - 2; i >= 0; i--) { /* * temp = (sz*(a*sz+2*tz))%N; * tz = ((tz-sz)*(tz+sz))%N; * sz = temp; */ if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } /* a = 0 at about 50% of the cases (non-square and odd input) */ if (a != 0) { if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) { e = isset; goto LBL_FU_ERR; } if (isset == MP_YES) { /* * temp = (a+2) * sz + tz * tz = 2 * tz - sz * sz = temp */ if (a == 0) { if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } else { if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } mp_exch(&sz, &T1z); } } if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) { goto LBL_FU_ERR; } if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((mp_iszero(&sz) != MP_NO) && (mp_cmp(&tz, &T1z) == MP_EQ)) { *result = MP_YES; goto LBL_FU_ERR; } LBL_FU_ERR: mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL); return e; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_is_divisible.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #include "tommath_private.h" #ifdef BN_MP_PRIME_IS_DIVISIBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines if an integers is divisible by one * of the first PRIME_SIZE primes or not * * sets result to 0 if not, 1 if yes */ int mp_prime_is_divisible(const mp_int *a, int *result) { int err, ix; mp_digit res; /* default to not */ *result = MP_NO; for (ix = 0; ix < PRIME_SIZE; ix++) { /* what is a mod LBL_prime_tab[ix] */ if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) { return err; } /* is the residue zero? */ if (res == 0u) { *result = MP_YES; return MP_OKAY; } } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_is_prime.c.
|
| | | < | | < > > | | < > | | > > | | < | | | > | | | | | | < > > > > | | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > | > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | > | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | #include "tommath_private.h" #ifdef BN_MP_PRIME_IS_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* portable integer log of two with small footprint */ static unsigned int s_floor_ilog2(int value) { unsigned int r = 0; while ((value >>= 1) != 0) { r++; } return r; } int mp_prime_is_prime(const mp_int *a, int t, int *result) { mp_int b; int ix, err, res, p_max = 0, size_a, len; unsigned int fips_rand, mask; /* default to no */ *result = MP_NO; /* valid value of t? */ if (t > PRIME_SIZE) { return MP_VAL; } /* Some shortcuts */ /* N > 3 */ if (a->used == 1) { if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) { *result = 0; return MP_OKAY; } if (a->dp[0] == 2u) { *result = 1; return MP_OKAY; } } /* N must be odd */ if (mp_iseven(a) == MP_YES) { return MP_OKAY; } /* N is not a perfect square: floor(sqrt(N))^2 != N */ if ((err = mp_is_square(a, &res)) != MP_OKAY) { return err; } if (res != 0) { return MP_OKAY; } /* is the input equal to one of the primes in the table? */ for (ix = 0; ix < PRIME_SIZE; ix++) { if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { *result = MP_YES; return MP_OKAY; } } #ifdef MP_8BIT /* The search in the loop above was exhaustive in this case */ if ((a->used == 1) && (PRIME_SIZE >= 31)) { return MP_OKAY; } #endif /* first perform trial division */ if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) { return err; } /* return if it was trivially divisible */ if (res == MP_YES) { return MP_OKAY; } /* Run the Miller-Rabin test with base 2 for the BPSW test. */ if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) { return err; } if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } /* Rumours have it that Mathematica does a second M-R test with base 3. Other rumours have it that their strong L-S test is slightly different. It does not hurt, though, beside a bit of extra runtime. */ b.dp[0]++; if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } /* * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite * slow so if speed is an issue, define LTM_USE_FIPS_ONLY to use M-R tests with * bases 2, 3 and t random bases. */ #ifndef LTM_USE_FIPS_ONLY if (t >= 0) { /* * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit * integers but the necesssary analysis is on the todo-list). */ #if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST) err = mp_prime_frobenius_underwood(a, &res); if ((err != MP_OKAY) && (err != MP_ITER)) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } #else if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } #endif } #endif /* run at least one Miller-Rabin test with a random base */ if (t == 0) { t = 1; } /* abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0. Only recommended if the input range is known to be < 3317044064679887385961981 It uses the bases for a deterministic M-R test if input < 3317044064679887385961981 The caller has to check the size. Not for cryptographic use because with known bases strong M-R pseudoprimes can be constructed. Use at least one M-R test with a random base (t >= 1). The 1119 bit large number 80383745745363949125707961434194210813883768828755814583748891752229742737653\ 33652186502336163960045457915042023603208766569966760987284043965408232928738\ 79185086916685732826776177102938969773947016708230428687109997439976544144845\ 34115587245063340927902227529622941498423068816854043264575340183297861112989\ 60644845216191652872597534901 has been constructed by F. Arnault (F. Arnault, "Rabin-Miller primality test: composite numbers which pass it.", Mathematics of Computation, 1995, 64. Jg., Nr. 209, S. 355-361), is a semiprime with the two factors 40095821663949960541830645208454685300518816604113250877450620473800321707011\ 96242716223191597219733582163165085358166969145233813917169287527980445796800\ 452592031836601 20047910831974980270915322604227342650259408302056625438725310236900160853505\ 98121358111595798609866791081582542679083484572616906958584643763990222898400\ 226296015918301 and it is a strong pseudoprime to all forty-six prime M-R bases up to 200 It does not fail the strong Bailley-PSP test as implemented here, it is just given as an example, if not the reason to use the BPSW-test instead of M-R-tests with a sequence of primes 2...n. */ if (t < 0) { t = -t; /* Sorenson, Jonathan; Webster, Jonathan (2015). "Strong Pseudoprimes to Twelve Prime Bases". */ /* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */ if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) { goto LBL_B; } if (mp_cmp(a, &b) == MP_LT) { p_max = 12; } else { /* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */ if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) { goto LBL_B; } if (mp_cmp(a, &b) == MP_LT) { p_max = 13; } else { err = MP_VAL; goto LBL_B; } } /* for compatibility with the current API (well, compatible within a sign's width) */ if (p_max < t) { p_max = t; } if (p_max > PRIME_SIZE) { err = MP_VAL; goto LBL_B; } /* we did bases 2 and 3 already, skip them */ for (ix = 2; ix < p_max; ix++) { mp_set(&b, ltm_prime_tab[ix]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } } /* Do "t" M-R tests with random bases between 3 and "a". See Fips 186.4 p. 126ff */ else if (t > 0) { /* * The mp_digit's have a defined bit-size but the size of the * array a.dp is a simple 'int' and this library can not assume full * compliance to the current C-standard (ISO/IEC 9899:2011) because * it gets used for small embeded processors, too. Some of those MCUs * have compilers that one cannot call standard compliant by any means. * Hence the ugly type-fiddling in the following code. */ size_a = mp_count_bits(a); mask = (1u << s_floor_ilog2(size_a)) - 1u; /* Assuming the General Rieman hypothesis (never thought to write that in a comment) the upper bound can be lowered to 2*(log a)^2. E. Bach, "Explicit bounds for primality testing and related problems," Math. Comp. 55 (1990), 355-380. size_a = (size_a/10) * 7; len = 2 * (size_a * size_a); E.g.: a number of size 2^2048 would be reduced to the upper limit floor(2048/10)*7 = 1428 2 * 1428^2 = 4078368 (would have been ~4030331.9962 with floats and natural log instead) That number is smaller than 2^28, the default bit-size of mp_digit. */ /* How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame does exactly 1. In words: one. Look at the end of _GMP_is_prime() in Math-Prime-Util-GMP-0.50/primality.c if you do not believe it. The function mp_rand() goes to some length to use a cryptographically good PRNG. That also means that the chance to always get the same base in the loop is non-zero, although very low. If the BPSW test and/or the addtional Frobenious test have been performed instead of just the Miller-Rabin test with the bases 2 and 3, a single extra test should suffice, so such a very unlikely event will not do much harm. To preemptivly answer the dangling question: no, a witness does not need to be prime. */ for (ix = 0; ix < t; ix++) { /* mp_rand() guarantees the first digit to be non-zero */ if ((err = mp_rand(&b, 1)) != MP_OKAY) { goto LBL_B; } /* * Reduce digit before casting because mp_digit might be bigger than * an unsigned int and "mask" on the other side is most probably not. */ fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask); #ifdef MP_8BIT /* * One 8-bit digit is too small, so concatenate two if the size of * unsigned int allows for it. */ if (((sizeof(unsigned int) * CHAR_BIT)/2) >= (sizeof(mp_digit) * CHAR_BIT)) { if ((err = mp_rand(&b, 1)) != MP_OKAY) { goto LBL_B; } fips_rand <<= sizeof(mp_digit) * CHAR_BIT; fips_rand |= (unsigned int) b.dp[0]; fips_rand &= mask; } #endif if (fips_rand > (unsigned int)(INT_MAX - DIGIT_BIT)) { len = INT_MAX / DIGIT_BIT; } else { len = (((int)fips_rand + DIGIT_BIT) / DIGIT_BIT); } /* Unlikely. */ if (len < 0) { ix--; continue; } /* * As mentioned above, one 8-bit digit is too small and * although it can only happen in the unlikely case that * an "unsigned int" is smaller than 16 bit a simple test * is cheap and the correction even cheaper. */ #ifdef MP_8BIT /* All "a" < 2^8 have been caught before */ if (len == 1) { len++; } #endif if ((err = mp_rand(&b, len)) != MP_OKAY) { goto LBL_B; } /* * That number might got too big and the witness has to be * smaller than or equal to "a" */ len = mp_count_bits(&b); if (len > size_a) { len = len - size_a; if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) { goto LBL_B; } } /* Although the chance for b <= 3 is miniscule, try again. */ if (mp_cmp_d(&b, 3uL) != MP_GT) { ix--; continue; } if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } } /* passed the test */ *result = MP_YES; LBL_B: mp_clear(&b); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_miller_rabin.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | #include "tommath_private.h" #ifdef BN_MP_PRIME_MILLER_RABIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. * Randomly the chance of error is no more than 1/4 and often * very much lower. */ int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result) { mp_int n1, y, r; int s, j, err; /* default */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1uL) != MP_GT) { return MP_VAL; } /* get n1 = a - 1 */ if ((err = mp_init_copy(&n1, a)) != MP_OKAY) { return err; } if ((err = mp_sub_d(&n1, 1uL, &n1)) != MP_OKAY) { goto LBL_N1; } /* set 2**s * r = n1 */ if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) { goto LBL_N1; } /* count the number of least significant bits * which are zero */ s = mp_cnt_lsb(&r); /* now divide n - 1 by 2**s */ if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) { goto LBL_R; } /* compute y = b**r mod a */ if ((err = mp_init(&y)) != MP_OKAY) { goto LBL_R; } if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y != 1 and y != n1 do */ if ((mp_cmp_d(&y, 1uL) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) { j = 1; /* while j <= s-1 and y != n1 */ while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) { if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) { goto LBL_Y; } /* if y == 1 then composite */ if (mp_cmp_d(&y, 1uL) == MP_EQ) { goto LBL_Y; } ++j; } /* if y != n1 then composite */ if (mp_cmp(&y, &n1) != MP_EQ) { goto LBL_Y; } } /* probably prime now */ *result = MP_YES; LBL_Y: mp_clear(&y); LBL_R: mp_clear(&r); LBL_N1: mp_clear(&n1); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_next_prime.c.
|
| | | < < < | < < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | > > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_MP_PRIME_NEXT_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { int err, res = MP_NO, x, y; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; /* force positive */ a->sign = MP_ZPOS; /* simple algo if a is less than the largest prime in the table */ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { /* find which prime it is bigger than */ for (x = PRIME_SIZE - 2; x >= 0; x--) { if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { if (bbs_style == 1) { /* ok we found a prime smaller or * equal [so the next is larger] * * however, the prime must be * congruent to 3 mod 4 */ if ((ltm_prime_tab[x + 1] & 3u) != 3u) { /* scan upwards for a prime congruent to 3 mod 4 */ for (y = x + 1; y < PRIME_SIZE; y++) { if ((ltm_prime_tab[y] & 3u) == 3u) { mp_set(a, ltm_prime_tab[y]); return MP_OKAY; } } } } else { mp_set(a, ltm_prime_tab[x + 1]); return MP_OKAY; } } } /* at this point a maybe 1 */ if (mp_cmp_d(a, 1uL) == MP_EQ) { mp_set(a, 2uL); return MP_OKAY; } /* fall through to the sieve */ } /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ if (bbs_style == 1) { kstep = 4; } else { kstep = 2; } /* at this point we will use a combination of a sieve and Miller-Rabin */ if (bbs_style == 1) { /* if a mod 4 != 3 subtract the correct value to make it so */ if ((a->dp[0] & 3u) != 3u) { if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) { return err; }; } } else { if (mp_iseven(a) == MP_YES) { /* force odd */ if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) { return err; } } } /* generate the restable */ for (x = 1; x < PRIME_SIZE; x++) { |
︙ | ︙ | |||
112 113 114 115 116 117 118 | y = 0; /* increase step to next candidate */ step += kstep; /* compute the new residue without using division */ for (x = 1; x < PRIME_SIZE; x++) { | | | | | | | | | | | | | < < < | | | < < < < < > > > > | 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | y = 0; /* increase step to next candidate */ step += kstep; /* compute the new residue without using division */ for (x = 1; x < PRIME_SIZE; x++) { /* add the step to each residue */ res_tab[x] += kstep; /* subtract the modulus [instead of using division] */ if (res_tab[x] >= ltm_prime_tab[x]) { res_tab[x] -= ltm_prime_tab[x]; } /* set flag if zero */ if (res_tab[x] == 0u) { y = 1; } } } while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep))); /* add the step */ if ((err = mp_add_d(a, step, a)) != MP_OKAY) { goto LBL_ERR; } /* if didn't pass sieve and step == MAX then skip test */ if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) { continue; } if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto LBL_ERR; } if (res == MP_YES) { break; } } err = MP_OKAY; LBL_ERR: mp_clear(&b); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_rabin_miller_trials.c.
|
| | | < < < > > > | > > | | | | | | | > > | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ static const struct { int k, t; } sizes[] = { { 80, -1 }, /* Use deterministic algorithm for size <= 80 bits */ { 81, 39 }, { 96, 37 }, { 128, 32 }, { 160, 27 }, { 192, 21 }, { 256, 16 }, { 384, 10 }, { 512, 7 }, { 640, 6 }, { 768, 5 }, { 896, 4 }, { 1024, 4 }, { 2048, 2 }, { 4096, 1 }, }; /* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/ int mp_prime_rabin_miller_trials(int size) { int x; for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { if (sizes[x].k == size) { return sizes[x].t; } else if (sizes[x].k > size) { return (x == 0) ? sizes[0].t : sizes[x - 1].t; } } return sizes[x-1].t + 1; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_prime_random_ex.c.
|
| | | < < < | < | | | | | | | | > | > | > > | | | > > | > | > | > > | | > > | > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | #include "tommath_private.h" #ifdef BN_MP_PRIME_RANDOM_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ /* This is possibly the mother of all prime generation functions, muahahahahaha! */ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) { unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; int res, err, bsize, maskOR_msb_offset; /* sanity check the input */ if ((size <= 1) || (t <= 0)) { return MP_VAL; } /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ if ((flags & LTM_PRIME_SAFE) != 0) { flags |= LTM_PRIME_BBS; } /* calc the byte size */ bsize = (size>>3) + ((size&7)?1:0); /* we need a buffer of bsize bytes */ tmp = OPT_CAST(unsigned char) XMALLOC((size_t)bsize); if (tmp == NULL) { return MP_MEM; } /* calc the maskAND value for the MSbyte*/ maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); /* calc the maskOR_msb */ maskOR_msb = 0; maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; if ((flags & LTM_PRIME_2MSB_ON) != 0) { maskOR_msb |= 0x80 >> ((9 - size) & 7); } /* get the maskOR_lsb */ maskOR_lsb = 1; if ((flags & LTM_PRIME_BBS) != 0) { maskOR_lsb |= 3; } do { /* read the bytes */ if (cb(tmp, bsize, dat) != bsize) { err = MP_VAL; goto error; } /* work over the MSbyte */ tmp[0] &= maskAND; tmp[0] |= 1 << ((size - 1) & 7); /* mix in the maskORs */ tmp[maskOR_msb_offset] |= maskOR_msb; tmp[bsize-1] |= maskOR_lsb; /* read it in */ if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; } /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } if (res == MP_NO) { continue; } if ((flags & LTM_PRIME_SAFE) != 0) { /* see if (a-1)/2 is prime */ if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) { goto error; } if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } } } while (res == MP_NO); if ((flags & LTM_PRIME_SAFE) != 0) { /* restore a to the original value */ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) { goto error; } } err = MP_OKAY; error: XFREE(tmp); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_prime_strong_lucas_selfridge.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | #include "tommath_private.h" #ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_FIPS_ONLY /* * 8-bit is just too small. You can try the Frobenius test * but that frobenius test can fail, too, for the same reason. */ #ifndef MP_8BIT /* * multiply bigint a with int d and put the result in c * Like mp_mul_d() but with a signed long as the small input */ static int s_mp_mul_si(const mp_int *a, long d, mp_int *c) { mp_int t; int err, neg = 0; if ((err = mp_init(&t)) != MP_OKAY) { return err; } if (d < 0) { neg = 1; d = -d; } /* * mp_digit might be smaller than a long, which excludes * the use of mp_mul_d() here. */ if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) { goto LBL_MPMULSI_ERR; } if ((err = mp_mul(a, &t, c)) != MP_OKAY) { goto LBL_MPMULSI_ERR; } if (neg == 1) { c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG; } LBL_MPMULSI_ERR: mp_clear(&t); return err; } /* Strong Lucas-Selfridge test. returns MP_YES if it is a strong L-S prime, MP_NO if it is composite Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. Released into the public domain by the author, who disclaims any legal liability arising from its use The multi-line comments are made by Thomas R. Nicely and are copied verbatim. Additional comments marked "CZ" (without the quotes) are by the code-portist. (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium (P5x, I think) Intel processor) */ int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result) { /* CZ TODO: choose better variable names! */ mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz; /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */ int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits; int e; int isset, oddness; *result = MP_NO; /* Find the first element D in the sequence {5, -7, 9, -11, 13, ...} such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory indicates that, if N is not a perfect square, D will "nearly always" be "small." Just in case, an overflow trap for D is included. */ if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, NULL)) != MP_OKAY) { return e; } D = 5; sign = 1; for (;;) { Ds = sign * D; sign = -sign; if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) { goto LBL_LS_ERR; } /* if 1 < GCD < N then N is composite with factor "D", and Jacobi(D,N) is technically undefined (but often returned as zero). */ if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) { goto LBL_LS_ERR; } if (Ds < 0) { Dz.sign = MP_NEG; } if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) { goto LBL_LS_ERR; } if (J == -1) { break; } D += 2; if (D > (INT_MAX - 2)) { e = MP_VAL; goto LBL_LS_ERR; } } P = 1; /* Selfridge's choice */ Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */ /* NOTE: The conditions (a) N does not divide Q, and (b) D is square-free or not a perfect square, are included by some authors; e.g., "Prime numbers and computer methods for factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston), p. 130. For this particular application of Lucas sequences, these conditions were found to be immaterial. */ /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the odd positive integer d and positive integer s for which N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test). The strong Lucas-Selfridge test then returns N as a strong Lucas probable prime (slprp) if any of the following conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0, V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0 (all equalities mod N). Thus d is the highest index of U that must be computed (since V_2m is independent of U), compared to U_{N+1} for the standard Lucas-Selfridge test; and no index of V beyond (N+1)/2 is required, just as in the standard Lucas-Selfridge test. However, the quantity Q^d must be computed for use (if necessary) in the latter stages of the test. The result is that the strong Lucas-Selfridge test has a running time only slightly greater (order of 10 %) than that of the standard Lucas-Selfridge test, while producing only (roughly) 30 % as many pseudoprimes (and every strong Lucas pseudoprime is also a standard Lucas pseudoprime). Thus the evidence indicates that the strong Lucas-Selfridge test is more effective than the standard Lucas-Selfridge test, and a Baillie-PSW test based on the strong Lucas-Selfridge test should be more reliable. */ if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) { goto LBL_LS_ERR; } s = mp_cnt_lsb(&Np1); /* CZ * This should round towards zero because * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp() * and mp_div_2d() is equivalent. Additionally: * dividing an even number by two does not produce * any leftovers. */ if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) { goto LBL_LS_ERR; } /* We must now compute U_d and V_d. Since d is odd, the accumulated values U and V are initialized to U_1 and V_1 (if the target index were even, U and V would be initialized instead to U_0=0 and V_0=2). The values of U_2m and V_2m are also initialized to U_1 and V_1; the FOR loop calculates in succession U_2 and V_2, U_4 and V_4, U_8 and V_8, etc. If the corresponding bits (1, 2, 3, ...) of t are on (the zero bit having been accounted for in the initialization of U and V), these values are then combined with the previous totals for U and V, using the composition formulas for addition of indices. */ mp_set(&Uz, 1uL); /* U=U_1 */ mp_set(&Vz, (mp_digit)P); /* V=V_1 */ mp_set(&U2mz, 1uL); /* U_1 */ mp_set(&V2mz, (mp_digit)P); /* V_1 */ if (Q < 0) { Q = -Q; if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } Qmz.sign = MP_NEG; Q2mz.sign = MP_NEG; Qkdz.sign = MP_NEG; Q = -Q; } else { if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { goto LBL_LS_ERR; } } Nbits = mp_count_bits(&Dz); for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */ /* Formulas for doubling of indices (carried out mod N). Note that * the indices denoted as "2m" are actually powers of 2, specifically * 2^(ul-1) beginning each loop and 2^ul ending each loop. * * U_2m = U_m*V_m * V_2m = V_m*V_m - 2*Q^m */ if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Must calculate powers of Q for use in V_2m, also for Q^d later */ if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } /* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */ if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) { e = isset; goto LBL_LS_ERR; } if (isset == MP_YES) { /* Formulas for addition of indices (carried out mod N); * * U_(m+n) = (U_m*V_n + U_n*V_m)/2 * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2 * * Be careful with division by 2 (mod N)! */ if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_isodd(&Uz) != MP_NO) { if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } /* CZ * This should round towards negative infinity because * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp(). * But mp_div_2() does not do so, it is truncating instead. */ oddness = mp_isodd(&Uz); if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) { if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_isodd(&Vz) != MP_NO) { if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } oddness = mp_isodd(&Vz); if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) { if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Calculating Q^d for later use */ if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) { *result = MP_YES; goto LBL_LS_ERR; } /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed., 1995/6) omits the condition V0 on p.142, but includes it on p. 130. The condition is NECESSARY; otherwise the test will return false negatives---e.g., the primes 29 and 2000029 will be returned as composite. */ /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d} by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of these are congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ /* Initialize 2*Q^(d*2^r) for V_2m */ if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } for (r = 1; r < s; r++) { if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (mp_iszero(&Vz) != MP_NO) { *result = MP_YES; goto LBL_LS_ERR; } /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */ if (r < (s - 1)) { if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } LBL_LS_ERR: mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL); return e; } #endif #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_radix_size.c.
|
| | | < < < | | | | | | | < | | < | > | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* returns size of ASCII reprensentation */ int mp_radix_size(const mp_int *a, int radix, int *size) { int res, digs; mp_int t; mp_digit d; *size = 0; /* make sure the radix is in range */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } if (mp_iszero(a) == MP_YES) { *size = 2; return MP_OKAY; } /* special case for binary */ if (radix == 2) { *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; return MP_OKAY; } /* digs is the digit count */ digs = 0; /* if it's negative add one for the sign */ if (a->sign == MP_NEG) { ++digs; } /* init a copy of the input */ if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } /* force temp to positive */ t.sign = MP_ZPOS; /* fetch out all of the digits */ while (mp_iszero(&t) == MP_NO) { if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return res; } ++digs; } mp_clear(&t); /* return digs + 1, the 1 is for the NULL byte that would be required. */ *size = digs + 1; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_radix_smap.c.
|
| | | < < < | > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SMAP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* chars used in radix conversions */ const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; const unsigned char mp_s_rmap_reverse[] = { 0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */ 0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */ 0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */ 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */ 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */ 0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */ 0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */ 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */ 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */ 0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */ }; const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse); #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_rand.c.
|
| | > > | > > > > > > > > | > > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | > | > | | | | | | | | > > > | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | #include "tommath_private.h" #ifdef BN_MP_RAND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* First the OS-specific special cases * - *BSD * - Windows */ #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) #define MP_ARC4RANDOM #define MP_GEN_RANDOM_MAX 0xffffffffu #define MP_GEN_RANDOM_SHIFT 32 static int s_read_arc4random(mp_digit *p) { mp_digit d = 0, msk = 0; do { d <<= MP_GEN_RANDOM_SHIFT; d |= ((mp_digit) arc4random()); msk <<= MP_GEN_RANDOM_SHIFT; msk |= (MP_MASK & MP_GEN_RANDOM_MAX); } while ((MP_MASK & msk) != MP_MASK); *p = d; return MP_OKAY; } #endif #if defined(_WIN32) || defined(_WIN32_WCE) #define MP_WIN_CSP #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0400 #endif #ifdef _WIN32_WCE #define UNDER_CE #define ARM #endif #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <wincrypt.h> static HCRYPTPROV hProv = 0; static void s_cleanup_win_csp(void) { CryptReleaseContext(hProv, 0); hProv = 0; } static int s_read_win_csp(mp_digit *p) { int ret = -1; if (hProv == 0) { if (!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL, (CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) && !CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) { hProv = 0; return ret; } atexit(s_cleanup_win_csp); } if (CryptGenRandom(hProv, sizeof(*p), (void *)p) == TRUE) { ret = MP_OKAY; } return ret; } #endif /* WIN32 */ #if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ) #if __GLIBC_PREREQ(2, 25) #define MP_GETRANDOM #include <sys/random.h> #include <errno.h> static int s_read_getrandom(mp_digit *p) { int ret; do { ret = getrandom(p, sizeof(*p), 0); } while ((ret == -1) && (errno == EINTR)); if (ret == sizeof(*p)) return MP_OKAY; return -1; } #endif #endif /* We assume all platforms besides windows provide "/dev/urandom". * In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time. */ #if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM) #ifndef MP_DEV_URANDOM #define MP_DEV_URANDOM "/dev/urandom" #endif #include <fcntl.h> #include <errno.h> #include <unistd.h> static int s_read_dev_urandom(mp_digit *p) { ssize_t r; int fd; do { fd = open(MP_DEV_URANDOM, O_RDONLY); } while ((fd == -1) && (errno == EINTR)); if (fd == -1) return -1; do { r = read(fd, p, sizeof(*p)); } while ((r == -1) && (errno == EINTR)); close(fd); if (r != sizeof(*p)) return -1; return MP_OKAY; } #endif #if defined(MP_PRNG_ENABLE_LTM_RNG) unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); void (*ltm_rng_callback)(void); static int s_read_ltm_rng(mp_digit *p) { unsigned long ret; if (ltm_rng == NULL) return -1; ret = ltm_rng((void *)p, sizeof(*p), ltm_rng_callback); if (ret != sizeof(*p)) return -1; return MP_OKAY; } #endif static int s_rand_digit(mp_digit *p) { int ret = -1; #if defined(MP_ARC4RANDOM) ret = s_read_arc4random(p); if (ret == MP_OKAY) return ret; #endif #if defined(MP_WIN_CSP) ret = s_read_win_csp(p); if (ret == MP_OKAY) return ret; #else #if defined(MP_GETRANDOM) ret = s_read_getrandom(p); if (ret == MP_OKAY) return ret; #endif #if defined(MP_DEV_URANDOM) ret = s_read_dev_urandom(p); if (ret == MP_OKAY) return ret; #endif #endif /* MP_WIN_CSP */ #if defined(MP_PRNG_ENABLE_LTM_RNG) ret = s_read_ltm_rng(p); if (ret == MP_OKAY) return ret; #endif return ret; } /* makes a pseudo-random int of a given size */ int mp_rand_digit(mp_digit *r) { int ret = s_rand_digit(r); *r &= MP_MASK; return ret; } int mp_rand(mp_int *a, int digits) { int res; mp_digit d; mp_zero(a); if (digits <= 0) { return MP_OKAY; } /* first place a random non-zero digit */ do { if (mp_rand_digit(&d) != MP_OKAY) { return MP_VAL; } } while (d == 0u); if ((res = mp_add_d(a, d, a)) != MP_OKAY) { return res; } while (--digits > 0) { if ((res = mp_lshd(a, 1)) != MP_OKAY) { return res; } if (mp_rand_digit(&d) != MP_OKAY) { return MP_VAL; } if ((res = mp_add_d(a, d, a)) != MP_OKAY) { return res; } } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_read_radix.c.
|
| | | < < < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | < > | | | | | < | | < > | | | | | | | < | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | #include "tommath_private.h" #ifdef BN_MP_READ_RADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* read a string [ASCII] in a given radix */ int mp_read_radix(mp_int *a, const char *str, int radix) { int y, res, neg; unsigned pos; char ch; /* zero the digit bignum */ mp_zero(a); /* make sure the radix is ok */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* if the leading digit is a * minus set the sign to negative. */ if (*str == '-') { ++str; neg = MP_NEG; } else { neg = MP_ZPOS; } /* set the integer to the default of zero */ mp_zero(a); /* process each digit of the string */ while (*str != '\0') { /* if the radix <= 36 the conversion is case insensitive * this allows numbers like 1AB and 1ab to represent the same value * [e.g. in hex] */ ch = (radix <= 36) ? (char)toupper((int)*str) : *str; pos = (unsigned)(ch - '('); if (mp_s_rmap_reverse_sz < pos) { break; } y = (int)mp_s_rmap_reverse[pos]; /* if the char was found in the map * and is less than the given radix add it * to the number, otherwise exit the loop. */ if ((y == 0xff) || (y >= radix)) { break; } if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) { return res; } if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return res; } ++str; } /* if an illegal character was found, fail. */ if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) { mp_zero(a); return MP_VAL; } /* set the sign only if a != 0 */ if (mp_iszero(a) != MP_YES) { a->sign = neg; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_read_signed_bin.c.
|
| | | < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_READ_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* read signed bin, big endian, first byte is 0==positive or 1==negative */ int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) { int res; /* read magnitude */ if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) { return res; } /* first byte is 0 for positive, non-zero for negative */ if (b[0] == (unsigned char)0) { a->sign = MP_ZPOS; } else { a->sign = MP_NEG; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_read_unsigned_bin.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #include "tommath_private.h" #ifdef BN_MP_READ_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reads a unsigned char array, assumes the msb is stored first [big endian] */ int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) { int res; /* make sure there are at least two digits */ if (a->alloc < 2) { if ((res = mp_grow(a, 2)) != MP_OKAY) { return res; } } /* zero the int */ mp_zero(a); /* read the bytes in */ while (c-- > 0) { if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { return res; } #ifndef MP_8BIT a->dp[0] |= *b++; a->used += 1; #else a->dp[0] = (*b & MP_MASK); a->dp[1] |= ((*b++ >> 7) & 1u); a->used += 2; #endif } mp_clamp(a); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reduces x mod m, assumes 0 < x < m**2, mu is * precomputed via mp_reduce_setup. * From HAC pp.604 Algorithm 14.42 */ int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) { mp_int q; int res, um = m->used; /* q = x */ if ((res = mp_init_copy(&q, x)) != MP_OKAY) { return res; } /* q1 = x / b**(k-1) */ mp_rshd(&q, um - 1); /* according to HAC this optimization is ok */ if ((mp_digit)um > ((mp_digit)1 << (DIGIT_BIT - 1))) { if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) { goto CLEANUP; } } else { #ifdef BN_S_MP_MUL_HIGH_DIGS_C if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) if ((res = fast_s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #else { res = MP_VAL; goto CLEANUP; } #endif } /* q3 = q2 / b**(k+1) */ mp_rshd(&q, um + 1); /* x = x mod b**(k+1), quick (no division) */ if ((res = mp_mod_2d(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { goto CLEANUP; } /* q = q * m mod b**(k+1), quick (no division) */ if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) { goto CLEANUP; } /* x = x - q */ if ((res = mp_sub(x, &q, x)) != MP_OKAY) { goto CLEANUP; } /* If x < 0, add b**(k+1) to it */ if (mp_cmp_d(x, 0uL) == MP_LT) { mp_set(&q, 1uL); if ((res = mp_lshd(&q, um + 1)) != MP_OKAY) goto CLEANUP; if ((res = mp_add(x, &q, x)) != MP_OKAY) goto CLEANUP; } /* Back off if it's too big */ while (mp_cmp(x, m) != MP_LT) { if ((res = s_mp_sub(x, m, x)) != MP_OKAY) { goto CLEANUP; } } CLEANUP: mp_clear(&q); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_2k.c.
|
| | | < < < | | | | | | | | | | | | | > > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reduces a modulo n where n is of the form 2**p - d */ int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (d != 1u) { /* q = q * d */ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto LBL_ERR; } } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto LBL_ERR; } goto top; } LBL_ERR: mp_clear(&q); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_2k_l.c.
|
| | | < < < | | | | | | | | | | | | | > > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto LBL_ERR; } /* q = q * d */ if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { goto LBL_ERR; } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto LBL_ERR; } goto top; } LBL_ERR: mp_clear(&q); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_2k_setup.c.
|
| | | < < < | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines the setup value */ int mp_reduce_2k_setup(const mp_int *a, mp_digit *d) { int res, p; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } p = mp_count_bits(a); if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { mp_clear(&tmp); return res; } if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { mp_clear(&tmp); return res; } *d = tmp.dp[0]; mp_clear(&tmp); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_2k_setup_l.c.
|
| | | < < < | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines the setup value */ int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) { int res; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { goto LBL_ERR; } if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { goto LBL_ERR; } LBL_ERR: mp_clear(&tmp); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_is_2k.c.
|
| | | < < < | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines if mp_reduce_2k can be used */ int mp_reduce_is_2k(const mp_int *a) { int ix, iy, iw; mp_digit iz; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { iy = mp_count_bits(a); iz = 1; iw = 1; /* Test every bit from the second digit up, must be 1 */ for (ix = DIGIT_BIT; ix < iy; ix++) { if ((a->dp[iw] & iz) == 0u) { return MP_NO; } iz <<= 1; if (iz > (mp_digit)MP_MASK) { ++iw; iz = 1; } } } return MP_YES; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_is_2k_l.c.
|
| | | < < < | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* determines if reduce_2k_l can be used */ int mp_reduce_is_2k_l(const mp_int *a) { int ix, iy; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { /* if more than half of the digits are -1 we're sold */ for (iy = ix = 0; ix < a->used; ix++) { if (a->dp[ix] == MP_MASK) { ++iy; } } return (iy >= (a->used/2)) ? MP_YES : MP_NO; } return MP_NO; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_reduce_setup.c.
|
| | | < < < | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* pre-calculate the value required for Barrett reduction * For a given modulus "b" it calulates the value required in "a" */ int mp_reduce_setup(mp_int *a, const mp_int *b) { int res; if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { return res; } return mp_div(a, b, a, NULL); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_rshd.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #include "tommath_private.h" #ifdef BN_MP_RSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* shift right a certain amount of digits */ void mp_rshd(mp_int *a, int b) { int x; /* if b <= 0 then ignore it */ if (b <= 0) { return; } /* if b > used then simply zero it and return */ if (a->used <= b) { mp_zero(a); return; } { mp_digit *bottom, *top; /* shift the digits down */ /* bottom */ bottom = a->dp; /* top [offset into digits] */ top = a->dp + b; /* this is implemented as a sliding window where * the window is b-digits long and digits from * the top of the window are copied to the bottom * * e.g. b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> /\ | ----> \-------------------/ ----> */ for (x = 0; x < (a->used - b); x++) { *bottom++ = *top++; } /* zero the top digits */ for (; x < a->used; x++) { *bottom++ = 0; } } /* remove excess digits */ a->used -= b; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_set.c.
|
| | | < < < | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include "tommath_private.h" #ifdef BN_MP_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* set to a digit */ void mp_set(mp_int *a, mp_digit b) { mp_zero(a); a->dp[0] = b & MP_MASK; a->used = (a->dp[0] != 0u) ? 1 : 0; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_set_double.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | #include "tommath_private.h" #ifdef BN_MP_SET_DOUBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559) int mp_set_double(mp_int *a, double b) { uint64_t frac; int exp, res; union { double dbl; uint64_t bits; } cast; cast.dbl = b; exp = (int)((unsigned)(cast.bits >> 52) & 0x7FFU); frac = (cast.bits & ((1ULL << 52) - 1ULL)) | (1ULL << 52); if (exp == 0x7FF) { /* +-inf, NaN */ return MP_VAL; } exp -= 1023 + 52; res = mp_set_long_long(a, frac); if (res != MP_OKAY) { return res; } res = (exp < 0) ? mp_div_2d(a, -exp, a, NULL) : mp_mul_2d(a, exp, a); if (res != MP_OKAY) { return res; } if (((cast.bits >> 63) != 0ULL) && (mp_iszero(a) == MP_NO)) { SIGN(a) = MP_NEG; } return MP_OKAY; } #else /* pragma message() not supported by several compilers (in mostly older but still used versions) */ # ifdef _MSC_VER # pragma message("mp_set_double implementation is only available on platforms with IEEE754 floating point format") # else # warning "mp_set_double implementation is only available on platforms with IEEE754 floating point format" # endif #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_set_int.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #include "tommath_private.h" #ifdef BN_MP_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b) { int x, res; mp_zero(a); /* set four bits at a time */ for (x = 0; x < 8; x++) { /* shift the number up four bits */ if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) { return res; } /* OR in the top four bits of the source */ a->dp[0] |= (mp_digit)(b >> 28) & 15uL; /* shift the source up to the next four bits */ b <<= 4; /* ensure that digits are not clamped off */ a->used += 1; } mp_clamp(a); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_set_long.c.
> > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #include "tommath_private.h" #ifdef BN_MP_SET_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* set a platform dependent unsigned long int */ MP_SET_XLONG(mp_set_long, unsigned long) #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_set_long_long.c.
> > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #include "tommath_private.h" #ifdef BN_MP_SET_LONG_LONG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* set a platform dependent unsigned long long int */ MP_SET_XLONG(mp_set_long_long, Tcl_WideUInt) #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_shrink.c.
|
| | | < < < | | | | | | | > | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_SHRINK_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* shrink a bignum */ int mp_shrink(mp_int *a) { mp_digit *tmp; int used = 1; if (a->used > 0) { used = a->used; } if (a->alloc != used) { if ((tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * (size_t)used)) == NULL) { return MP_MEM; } a->dp = tmp; a->alloc = used; } return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_signed_bin_size.c.
|
| | | < < < | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_SIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* get the size for an signed equivalent */ int mp_signed_bin_size(const mp_int *a) { return 1 + mp_unsigned_bin_size(a); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_sqr.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | > | | | > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* computes b = a*a */ int mp_sqr(const mp_int *a, mp_int *b) { int res; #ifdef BN_MP_TOOM_SQR_C /* use Toom-Cook? */ if (a->used >= TOOM_SQR_CUTOFF) { res = mp_toom_sqr(a, b); /* Karatsuba? */ } else #endif #ifdef BN_MP_KARATSUBA_SQR_C if (a->used >= KARATSUBA_SQR_CUTOFF) { res = mp_karatsuba_sqr(a, b); } else #endif { #ifdef BN_FAST_S_MP_SQR_C /* can we use the fast comba multiplier? */ if ((((a->used * 2) + 1) < (int)MP_WARRAY) && (a->used < (int)(1u << (((sizeof(mp_word) * (size_t)CHAR_BIT) - (2u * (size_t)DIGIT_BIT)) - 1u)))) { res = fast_s_mp_sqr(a, b); } else #endif { #ifdef BN_S_MP_SQR_C res = s_mp_sqr(a, b); #else res = MP_VAL; #endif } } b->sign = MP_ZPOS; return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_sqrmod.c.
|
| | | < < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_SQRMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* c = a * a (mod b) */ int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_sqr(a, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, b, c); mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_sqrt.c.
|
| | < | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | #include "tommath_private.h" #ifdef BN_MP_SQRT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifndef NO_FLOATING_POINT #include <math.h> #endif /* this function is less generic than mp_n_root, simpler and faster */ int mp_sqrt(const mp_int *arg, mp_int *ret) { int res; mp_int t1, t2; int i, j, k; #ifndef NO_FLOATING_POINT volatile double d; mp_digit dig; #endif /* must be positive */ if (arg->sign == MP_NEG) { return MP_VAL; } /* easy out */ if (mp_iszero(arg) == MP_YES) { mp_zero(ret); return MP_OKAY; } i = (arg->used / 2) - 1; j = 2 * i; if ((res = mp_init_size(&t1, i+2)) != MP_OKAY) { return res; } if ((res = mp_init(&t2)) != MP_OKAY) { goto E2; } for (k = 0; k < i; ++k) { t1.dp[k] = (mp_digit) 0; } #ifndef NO_FLOATING_POINT /* Estimate the square root using the hardware floating point unit. */ d = 0.0; for (k = arg->used-1; k >= j; --k) { d = ldexp(d, DIGIT_BIT) + (double)(arg->dp[k]); } /* * At this point, d is the nearest floating point number to the most * significant 1 or 2 mp_digits of arg. Extract its square root. */ d = sqrt(d); /* dig is the most significant mp_digit of the square root */ dig = (mp_digit) ldexp(d, -DIGIT_BIT); /* * If the most significant digit is nonzero, find the next digit down * by subtracting DIGIT_BIT times thie most significant digit. * Subtract one from the result so that our initial estimate is always * low. */ if (dig) { t1.used = i+2; d -= ldexp((double) dig, DIGIT_BIT); if (d >= 1.0) { t1.dp[i+1] = dig; t1.dp[i] = ((mp_digit) d) - 1; } else { t1.dp[i+1] = dig-1; t1.dp[i] = MP_DIGIT_MAX; } } else { t1.used = i+1; t1.dp[i] = ((mp_digit) d) - 1; } #else /* Estimate the square root as having 1 in the most significant place. */ t1.used = i + 2; t1.dp[i+1] = (mp_digit) 1; t1.dp[i] = (mp_digit) 0; #endif /* t1 > 0 */ if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* And now t1 > sqrt(arg) */ do { if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* t1 >= sqrt(arg) >= t2 at this point */ } while (mp_cmp_mag(&t1, &t2) == MP_GT); mp_exch(&t1, ret); E1: mp_clear(&t2); E2: mp_clear(&t1); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_sqrtmod_prime.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | #include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { int res, legendre; mp_int t1, C, Q, S, Z, M, T, R, two; mp_digit i; /* first handle the simple cases */ if (mp_cmp_d(n, 0uL) == MP_EQ) { mp_zero(ret); return MP_OKAY; } if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { return res; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: res = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; if (i == 3u) { if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; /* Q = prime - 1 */ mp_zero(&S); /* S = 0 */ while (mp_iseven(&Q) != MP_NO) { if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; /* Q = Q / 2 */ if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY) goto cleanup; /* Z = 2 */ while (1) { if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; if (legendre == -1) break; if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; /* Z = Z + 1 */ } if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; /* C = Z ^ Q mod prime */ if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; /* t1 = (Q + 1) / 2 */ if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; /* T = n ^ Q mod prime */ if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; /* M = S */ if ((res = mp_set_int(&two, 2uL)) != MP_OKAY) goto cleanup; res = MP_VAL; while (1) { if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; i = 0; while (1) { if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; i++; } if (i == 0u) { if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; res = MP_OKAY; goto cleanup; } if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = 2 ^ (M - i - 1) */ if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; /* C = (t1 * t1) mod prime */ if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = (R * t1) mod prime */ if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; /* T = (T * C) mod prime */ mp_set(&M, i); /* M = i */ } cleanup: mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_sub.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #include "tommath_private.h" #ifdef BN_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* high level subtraction (handles signs) */ int mp_sub(const mp_int *a, const mp_int *b, mp_int *c) { int sa, sb, res; sa = a->sign; sb = b->sign; if (sa != sb) { /* subtract a negative from a positive, OR */ /* subtract a positive from a negative. */ /* In either case, ADD their magnitudes, */ /* and use the sign of the first number. */ c->sign = sa; res = s_mp_add(a, b, c); } else { /* subtract a positive from a positive, OR */ /* subtract a negative from a negative. */ /* First, take the difference between their */ /* magnitudes, then... */ if (mp_cmp_mag(a, b) != MP_LT) { /* Copy the sign from the first */ c->sign = sa; /* The first has a larger or equal magnitude */ res = s_mp_sub(a, b, c); } else { /* The result has the *opposite* sign from */ /* the first number. */ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; /* The second has a larger magnitude */ res = s_mp_sub(b, a, c); } } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_sub_d.c.
|
| | | < < < < | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_MP_SUB_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* single digit subtraction */ int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit *tmpa, *tmpc, mu; int res, ix, oldused; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative just do an unsigned * addition [with fudged signs] */ if (a->sign == MP_NEG) { mp_int a_ = *a; a_.sign = MP_ZPOS; res = mp_add_d(&a_, b, c); c->sign = MP_NEG; /* clamp */ mp_clamp(c); return res; } /* setup regs */ oldused = c->used; tmpa = a->dp; tmpc = c->dp; /* if a <= b simply fix the single digit */ if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { if (a->used == 1) { *tmpc++ = b - *tmpa; } else { *tmpc++ = b; } ix = 1; /* negative/1digit */ c->sign = MP_NEG; c->used = 1; } else { /* positive/size */ c->sign = MP_ZPOS; c->used = a->used; /* subtract first digit */ *tmpc = *tmpa++ - b; mu = *tmpc >> ((sizeof(mp_digit) * (size_t)CHAR_BIT) - 1u); *tmpc++ &= MP_MASK; /* handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ - mu; mu = *tmpc >> ((sizeof(mp_digit) * (size_t)CHAR_BIT) - 1u); *tmpc++ &= MP_MASK; } } /* zero excess digits */ while (ix++ < oldused) { *tmpc++ = 0; } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_submod.c.
|
| | | < < < < | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_SUBMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* d = a - b (mod c) */ int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { int res; mp_int t; if ((res = mp_init(&t)) != MP_OKAY) { return res; } if ((res = mp_sub(a, b, &t)) != MP_OKAY) { mp_clear(&t); return res; } res = mp_mod(&t, c, d); mp_clear(&t); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_tc_and.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_MP_TC_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* two complement and */ int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits, abits, bbits; int as = mp_isneg(a), bs = mp_isneg(b); mp_int *mx = NULL, _mx, acpy, bcpy; if ((as != MP_NO) || (bs != MP_NO)) { abits = mp_count_bits(a); bbits = mp_count_bits(b); bits = MAX(abits, bbits); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (as != MP_NO) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (bs != MP_NO) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_and(a, b, c); if ((as != MP_NO) && (bs != MP_NO) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_tc_div_2d.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #include "tommath_private.h" #ifdef BN_MP_TC_DIV_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* two complement right shift */ int mp_tc_div_2d(const mp_int *a, int b, mp_int *c) { int res; if (mp_isneg(a) == MP_NO) { return mp_div_2d(a, b, c, NULL); } res = mp_add_d(a, 1uL, c); if (res != MP_OKAY) { return res; } res = mp_div_2d(c, b, c, NULL); return (res == MP_OKAY) ? mp_sub_d(c, 1uL, c) : res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_tc_or.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_MP_TC_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* two complement or */ int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits, abits, bbits; int as = mp_isneg(a), bs = mp_isneg(b); mp_int *mx = NULL, _mx, acpy, bcpy; if ((as != MP_NO) || (bs != MP_NO)) { abits = mp_count_bits(a); bbits = mp_count_bits(b); bits = MAX(abits, bbits); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (as != MP_NO) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (bs != MP_NO) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_or(a, b, c); if (((as != MP_NO) || (bs != MP_NO)) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/bn_mp_tc_xor.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_MP_TC_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* two complement xor */ int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits, abits, bbits; int as = mp_isneg(a), bs = mp_isneg(b); mp_int *mx = NULL, _mx, acpy, bcpy; if ((as != MP_NO) || (bs != MP_NO)) { abits = mp_count_bits(a); bbits = mp_count_bits(b); bits = MAX(abits, bbits); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (as != MP_NO) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (bs != MP_NO) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_xor(a, b, c); if ((as != bs) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_to_signed_bin.c.
|
| | | < < < | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* store in signed [big endian] format */ int mp_to_signed_bin(const mp_int *a, unsigned char *b) { int res; if ((res = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) { return res; } b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1; return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_to_signed_bin_n.c.
|
| | | < < < | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* store in signed [big endian] format */ int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) { if (*outlen < (unsigned long)mp_signed_bin_size(a)) { return MP_VAL; } *outlen = (unsigned long)mp_signed_bin_size(a); return mp_to_signed_bin(a, b); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_to_unsigned_bin.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* store in unsigned [big endian] format */ int mp_to_unsigned_bin(const mp_int *a, unsigned char *b) { int x, res; mp_int t; if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } x = 0; while (mp_iszero(&t) == MP_NO) { #ifndef MP_8BIT b[x++] = (unsigned char)(t.dp[0] & 255u); #else b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 1u) << 7)); #endif if ((res = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) { mp_clear(&t); return res; } } bn_reverse(b, x); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_to_unsigned_bin_n.c.
|
| | | < < < | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* store in unsigned [big endian] format */ int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) { if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) { return MP_VAL; } *outlen = (unsigned long)mp_unsigned_bin_size(a); return mp_to_unsigned_bin(a, b); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_toom_mul.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | #include "tommath_private.h" #ifdef BN_MP_TOOM_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* multiplication using the Toom-Cook 3-way algorithm * * Much more complicated than Karatsuba but has a lower * asymptotic running time of O(N**1.464). This algorithm is * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; int res, B; /* init temps */ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { return res; } /* B */ B = MIN(a->used, b->used) / 3; /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a1)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a1, B); if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a2, B*2); /* b = b2 * B**2 + b1 * B + b0 */ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(b, &b1)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&b1, B); (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1); if ((res = mp_copy(b, &b2)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&b2, B*2); /* w0 = a0*b0 */ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { goto LBL_ERR; } /* w4 = a2 * b2 */ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { goto LBL_ERR; } /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { goto LBL_ERR; } /* now solve the matrix 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication */ /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r0 */ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/2 */ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3/2 */ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r2 - r0 - r4 */ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1 - 8r0 */ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - 8r4 */ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { goto LBL_ERR; } /* 3r2 - r1 - r3 */ if ((res = mp_mul_d(&w2, 3uL, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/3 */ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { goto LBL_ERR; } /* r3/3 */ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto LBL_ERR; } /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { goto LBL_ERR; } LBL_ERR: mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_toom_sqr.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | > | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | #include "tommath_private.h" #ifdef BN_MP_TOOM_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* squaring using Toom-Cook 3-way algorithm */ int mp_toom_sqr(const mp_int *a, mp_int *b) { mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; int res, B; /* init temps */ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { return res; } /* B */ B = a->used / 3; /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a1)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a1, B); if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto LBL_ERR; } mp_rshd(&a2, B*2); /* w0 = a0*a0 */ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { goto LBL_ERR; } /* w4 = a2 * a2 */ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { goto LBL_ERR; } /* w1 = (a2 + 2(a1 + 2a0))**2 */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* w3 = (a0 + 2(a1 + 2a2))**2 */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { goto LBL_ERR; } /* w2 = (a2 + a1 + a0)**2 */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { goto LBL_ERR; } /* now solve the matrix 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. */ /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r0 */ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/2 */ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3/2 */ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r2 - r0 - r4 */ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1 - 8r0 */ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - 8r4 */ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { goto LBL_ERR; } /* 3r2 - r1 - r3 */ if ((res = mp_mul_d(&w2, 3uL, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { goto LBL_ERR; } /* r1 - r2 */ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { goto LBL_ERR; } /* r3 - r2 */ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { goto LBL_ERR; } /* r1/3 */ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { goto LBL_ERR; } /* r3/3 */ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto LBL_ERR; } /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { goto LBL_ERR; } if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { goto LBL_ERR; } LBL_ERR: mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); return res; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_toradix.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* stores a bignum as a ASCII string in a given radix (2..64) */ int mp_toradix(const mp_int *a, char *str, int radix) { int res, digs; mp_int t; mp_digit d; char *_s = str; /* check range of the radix */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ if (mp_iszero(a) == MP_YES) { *str++ = '0'; *str = '\0'; return MP_OKAY; } if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } /* if it is negative output a - */ if (t.sign == MP_NEG) { ++_s; *str++ = '-'; t.sign = MP_ZPOS; } digs = 0; while (mp_iszero(&t) == MP_NO) { if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return res; } *str++ = mp_s_rmap[d]; ++digs; } /* reverse the digits of the string. In this case _s points * to the first digit [exluding the sign] of the number] */ bn_reverse((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_toradix_n.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* stores a bignum as a ASCII string in a given radix (2..64) * * Stores upto maxlen-1 chars and always a NULL byte */ int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) { int res, digs; mp_int t; mp_digit d; char *_s = str; /* check range of the maxlen, radix */ if ((maxlen < 2) || (radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ if (mp_iszero(a) == MP_YES) { *str++ = '0'; *str = '\0'; return MP_OKAY; } if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } /* if it is negative output a - */ if (t.sign == MP_NEG) { /* we have to reverse our digits later... but not the - sign!! */ ++_s; /* store the flag and mark the number as positive */ *str++ = '-'; t.sign = MP_ZPOS; /* subtract a char */ --maxlen; } digs = 0; while (mp_iszero(&t) == MP_NO) { if (--maxlen < 1) { /* no more room */ break; } if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return res; } *str++ = mp_s_rmap[d]; ++digs; } /* reverse the digits of the string. In this case _s points * to the first digit [exluding the sign] of the number */ bn_reverse((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_unsigned_bin_size.c.
|
| | | < < < | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_MP_UNSIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* get the size for an unsigned equivalent */ int mp_unsigned_bin_size(const mp_int *a) { int size = mp_count_bits(a); return (size / 8) + ((((unsigned)size & 7u) != 0u) ? 1 : 0); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_xor.c.
|
| | | < < < < | | | > | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include "tommath_private.h" #ifdef BN_MP_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* XOR two ints together */ int mp_xor(const mp_int *a, const mp_int *b, mp_int *c) { int res, ix, px; mp_int t; const mp_int *x; if (a->used > b->used) { if ((res = mp_init_copy(&t, a)) != MP_OKAY) { return res; } px = b->used; x = b; } else { if ((res = mp_init_copy(&t, b)) != MP_OKAY) { return res; } px = a->used; x = a; } for (ix = 0; ix < px; ix++) { t.dp[ix] ^= x->dp[ix]; } mp_clamp(&t); mp_exch(c, &t); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_mp_zero.c.
|
| | | < < < | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #include "tommath_private.h" #ifdef BN_MP_ZERO_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* set to zero */ void mp_zero(mp_int *a) { int n; mp_digit *tmp; a->sign = MP_ZPOS; a->used = 0; tmp = a->dp; for (n = 0; n < a->alloc; n++) { *tmp++ = 0; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_prime_tab.c.
|
| | | < | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #include "tommath_private.h" #ifdef BN_PRIME_TAB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ const mp_digit ltm_prime_tab[] = { 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, #ifndef MP_8BIT 0x0083, 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 #endif }; #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_reverse.c.
|
| | | < < < < | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #include "tommath_private.h" #ifdef BN_REVERSE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* reverse an array, used for radix code */ void bn_reverse(unsigned char *s, int len) { int ix, iy; unsigned char t; ix = 0; iy = len - 1; while (ix < iy) { t = s[ix]; s[ix] = s[iy]; s[iy] = t; ++ix; --iy; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_add.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | #include "tommath_private.h" #ifdef BN_S_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* low level addition, based on HAC pp.594, Algorithm 14.7 */ int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) { const mp_int *x; int olduse, res, min, max; /* find sizes, we let |a| <= |b| which means we have to sort * them. "x" will point to the input with the most digits */ if (a->used > b->used) { min = b->used; max = a->used; x = a; } else { min = a->used; max = b->used; x = b; } /* init result */ if (c->alloc < (max + 1)) { if ((res = mp_grow(c, max + 1)) != MP_OKAY) { return res; } } /* get old used digit count and set new one */ olduse = c->used; c->used = max + 1; { mp_digit u, *tmpa, *tmpb, *tmpc; int i; /* alias for digit pointers */ /* first input */ tmpa = a->dp; /* second input */ tmpb = b->dp; /* destination */ tmpc = c->dp; /* zero the carry */ u = 0; for (i = 0; i < min; i++) { /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ *tmpc = *tmpa++ + *tmpb++ + u; /* U = carry bit of T[i] */ u = *tmpc >> (mp_digit)DIGIT_BIT; /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, that is in A+B * if A or B has more digits add those in */ if (min != max) { for (; i < max; i++) { /* T[i] = X[i] + U */ *tmpc = x->dp[i] + u; /* U = carry bit of T[i] */ u = *tmpc >> (mp_digit)DIGIT_BIT; /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } } /* add carry */ *tmpc++ = u; /* clear digits above oldused */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_exptmod.c.
|
| | | < | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | #include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 #else # define TAB_SIZE 256 #endif int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res, mu; mp_digit buf; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; int (*redux)(mp_int *x, const mp_int *m, const mp_int *mu); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init(&M[x])) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* create mu, used for Barrett reduction */ if ((err = mp_init(&mu)) != MP_OKAY) { goto LBL_M; } if (redmode == 0) { if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce; } else { if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) { goto LBL_MU; } redux = mp_reduce_2k_l; } /* create M table * * The M table contains powers of the base, * e.g. M[x] = G**x mod P * * The first half of the table is not * computed though accept for M[0] and M[1] */ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto LBL_MU; } /* compute the value at M[1<<(winsize-1)] by squaring * M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } for (x = 0; x < (winsize - 1); x++) { /* square it */ if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } /* reduce modulo P */ if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_MU; } if ((err = redux(&M[x], P, &mu)) != MP_OKAY) { goto LBL_MU; } } /* setup result */ if ((err = mp_init(&res)) != MP_OKAY) { goto LBL_MU; } mp_set(&res, 1uL); /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux(&res, P, &mu)) != MP_OKAY) { goto LBL_RES; } } } } mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_MU: mp_clear(&mu); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_mul_digs.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* multiplies |a| * |b| and only computes upto digs digits of result * HAC pp. 595, Algorithm 14.12 Modified so you can control how * many digits of output are created. */ int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { mp_int t; int res, pa, pb, ix, iy; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ if ((digs < (int)MP_WARRAY) && (MIN(a->used, b->used) < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { return fast_s_mp_mul_digs(a, b, c, digs); } if ((res = mp_init_size(&t, digs)) != MP_OKAY) { return res; } t.used = digs; /* compute the digits of the product directly */ pa = a->used; for (ix = 0; ix < pa; ix++) { /* set the carry to zero */ u = 0; /* limit ourselves to making digs digits of output */ pb = MIN(b->used, digs - ix); /* setup some aliases */ /* copy of the digit from a used within the nested loop */ tmpx = a->dp[ix]; /* an alias for the destination shifted ix places */ tmpt = t.dp + ix; /* an alias for the digits of b */ tmpy = b->dp; /* compute the columns of the output and propagate the carry */ for (iy = 0; iy < pb; iy++) { /* compute the column as a mp_word */ r = (mp_word)*tmpt + ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* the new column is the lower part of the result */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* get the carry word from the result */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); } /* set carry if it is placed below digs */ if ((ix + iy) < digs) { *tmpt = u; } } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_mul_high_digs.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* multiplies |a| * |b| and does not compute the lower digs digits * [meant to get the higher part of the product] */ int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { mp_int t; int res, pa, pb, ix, iy; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C if (((a->used + b->used + 1) < (int)MP_WARRAY) && (MIN(a->used, b->used) < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) { return fast_s_mp_mul_high_digs(a, b, c, digs); } #endif if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) { return res; } t.used = a->used + b->used + 1; pa = a->used; pb = b->used; for (ix = 0; ix < pa; ix++) { /* clear the carry */ u = 0; /* left hand side of A[ix] * B[iy] */ tmpx = a->dp[ix]; /* alias to the address of where the digits will be stored */ tmpt = &(t.dp[digs]); /* alias for where to read the right hand side from */ tmpy = b->dp + (digs - ix); for (iy = digs - ix; iy < pb; iy++) { /* calculate the double precision result */ r = (mp_word)*tmpt + ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* get the lower part */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* carry the carry */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); } *tmpt = u; } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_sqr.c.
|
| | | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #include "tommath_private.h" #ifdef BN_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ int s_mp_sqr(const mp_int *a, mp_int *b) { mp_int t; int res, ix, iy, pa; mp_word r; mp_digit u, tmpx, *tmpt; pa = a->used; if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) { return res; } /* default used is maximum possible size */ t.used = (2 * pa) + 1; for (ix = 0; ix < pa; ix++) { /* first calculate the digit at 2*ix */ /* calculate double precision result */ r = (mp_word)t.dp[2*ix] + ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); /* store lower part in result */ t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK); /* get the carry */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); /* left hand side of A[ix] * A[iy] */ tmpx = a->dp[ix]; /* alias for where to store the results */ tmpt = t.dp + ((2 * ix) + 1); for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ r = (mp_word)tmpx * (mp_word)a->dp[iy]; /* now calculate the double precision result, note we use * addition instead of *2 since it's easier to optimize */ r = (mp_word)*tmpt + r + r + (mp_word)u; /* store lower part */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* get carry */ u = (mp_digit)(r >> (mp_word)DIGIT_BIT); } /* propagate upwards */ while (u != 0uL) { r = (mp_word)*tmpt + (mp_word)u; *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); u = (mp_digit)(r >> (mp_word)DIGIT_BIT); } } mp_clamp(&t); mp_exch(&t, b); mp_clear(&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bn_s_mp_sub.c.
|
| | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #include "tommath_private.h" #ifdef BN_S_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) { int olduse, res, min, max; /* find sizes */ min = b->used; max = a->used; /* init result */ if (c->alloc < max) { if ((res = mp_grow(c, max)) != MP_OKAY) { return res; } } olduse = c->used; c->used = max; { mp_digit u, *tmpa, *tmpb, *tmpc; int i; /* alias for digit pointers */ tmpa = a->dp; tmpb = b->dp; tmpc = c->dp; /* set carry to zero */ u = 0; for (i = 0; i < min; i++) { /* T[i] = A[i] - B[i] - U */ *tmpc = (*tmpa++ - *tmpb++) - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ u = *tmpc >> (((size_t)CHAR_BIT * sizeof(mp_digit)) - 1u); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, e.g. if A has more digits than B */ for (; i < max; i++) { /* T[i] = A[i] - U */ *tmpc = *tmpa++ - u; /* U = carry bit of T[i] */ u = *tmpc >> (((size_t)CHAR_BIT * sizeof(mp_digit)) - 1u); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* clear digits above used (since we may not have grown result above) */ for (i = c->used; i < olduse; i++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/bncore.c.
|
| | | < < < | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #include "tommath_private.h" #ifdef BNCORE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* Known optimal configurations CPU /Compiler /MUL CUTOFF/SQR CUTOFF ------------------------------------------------------------- Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-) AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35 */ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */ KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ TOOM_SQR_CUTOFF = 400; #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/callgraph.txt.
more than 10,000 changes
Changes to libtommath/changes.txt.
1 2 3 4 | July 23rd, 2010 v0.42.0 -- Fix for mp_prime_next_prime() bug when checking generated prime -- allow mp_shrink to shrink initialized, but empty MPI's | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | Jan 28th, 2019 v1.1.0 -- Christoph Zurnieden contributed FIPS 186.4 compliant prime-checking (PR #113), several other fixes and a load of documentation -- Daniel Mendler provided two's-complement functions (PR #124) and mp_{set,get}_double() (PR #123) -- Francois Perrad took care of linting the sources, provided all fixes and a astylerc to auto-format the sources. -- A bunch of patches by Kevin B Kenny have been back-ported from TCL -- Jan Nijtmans provided the patches to `const`ify all API function arguments (also from TCL) -- mp_rand() has now several native random provider implementations and doesn't rely on `rand()` anymore -- Karel Miko provided fixes when building for MS Windows and re-worked the makefile generating process -- The entire environment and build logic has been extended and improved regarding auto-detection of platforms, libtool and a lot more -- Prevent some potential BOF cases -- Improved/fixed mp_lshd() and mp_invmod() -- A load more bugs were fixed by various contributors Aug 29th, 2017 v1.0.1 -- Dmitry Kovalenko provided fixes to mp_add_d() and mp_init_copy() -- Matt Johnston contributed some improvements to mp_div_2d(), mp_exptmod_fast(), mp_mod() and mp_mulmod() -- Julien Nabet provided a fix to the error handling in mp_init_multi() -- Ben Gardner provided a fix regarding usage of reserved keywords -- Fixed mp_rand() to fill the correct number of bits -- Fixed mp_invmod() -- Use the same 64-bit detection code as in libtomcrypt -- Correct usage of DESTDIR, PREFIX, etc. when installing the library -- Francois Perrad updated all the perl scripts to an actual perl version Feb 5th, 2016 v1.0 -- Bump to 1.0 -- Dirkjan Bussink provided a faster version of mp_expt_d() -- Moritz Lenz contributed a fix to mp_mod() and provided mp_get_long() and mp_set_long() -- Fixed bugs in mp_read_radix(), mp_radix_size Thanks to shameister, Gerhard R, -- Christopher Brown provided mp_export() and mp_import() -- Improvements in the code of mp_init_copy() Thanks to ramkumarkoppu, -- lomereiter provided mp_balance_mul() -- Alexander Boström from the heimdal project contributed patches to mp_prime_next_prime() and mp_invmod() and added a mp_isneg() macro -- Fix build issues for Linux x32 ABI -- Added mp_get_long_long() and mp_set_long_long() -- Carlin provided a patch to use arc4random() instead of rand() on platforms where it is supported -- Karel Miko provided mp_sqrtmod_prime() July 23rd, 2010 v0.42.0 -- Fix for mp_prime_next_prime() bug when checking generated prime -- allow mp_shrink to shrink initialized, but empty MPI's -- Added project and solution files for Visual Studio 2005 and Visual Studio 2008. March 10th, 2007 v0.41 -- Wolfgang Ehrhardt suggested a quick fix to mp_div_d() which makes the detection of powers of two quicker. -- [CRI] Added libtommath.dsp for Visual C++ users. December 24th, 2006 v0.40 -- Updated makefile to properly support LIBNAME -- Fixed bug in fast_s_mp_mul_high_digs() which overflowed (line 83), thanks Valgrind! April 4th, 2006 v0.39 -- Jim Wigginton pointed out my Montgomery examples in figures 6.4 and 6.6 were off by one, k should be 9 not 8 -- Bruce Guenter suggested I use --tag=CC for libtool builds where the compiler may think it's C++. -- "mm" from sci.crypt pointed out that my mp_gcd was sub-optimal (I also updated and corrected the book) -- updated some of the @@ tags in tommath.src to reflect source changes. -- updated email and url info in all source files Jan 26th, 2006 v0.38 -- broken makefile.shared fixed -- removed some carry stores that were not required [updated text] November 18th, 2005 v0.37 -- [Don Porter] reported on a TCL list [HEY SEND ME BUGREPORTS ALREADY!!!] that mp_add_d() would compute -0 with some inputs. Fixed. -- [[email protected]] reported the makefile.bcc was messed up. Fixed. -- [Kevin Kenny] reported some issues with mp_toradix_n(). Now it doesn't require a min of 3 chars of output. -- Made the make command renamable. Wee August 1st, 2005 v0.36 -- LTM_PRIME_2MSB_ON was fixed and the "OFF" flag was removed. -- [Peter LaDow] found a typo in the XREALLOC macro -- [Peter LaDow] pointed out that mp_read_(un)signed_bin should have "const" on the input -- Ported LTC patch to fix the prime_random_ex() function to get the bitsize correct [and the maskOR flags] -- Kevin Kenny pointed out a stray // -- David Hulton pointed out a typo in the textbook [mp_montgomery_setup() pseudo-code] -- Neal Hamilton (Elliptic Semiconductor) pointed out that my Karatsuba notation was backwards and that I could use unsigned operations in the routine. -- Paul Schmidt pointed out a linking error in mp_exptmod() when BN_S_MP_EXPTMOD_C is undefined (and another for read_radix) -- Updated makefiles to be way more flexible March 12th, 2005 v0.35 -- Stupid XOR function missing line again... oops. -- Fixed bug in invmod not handling negative inputs correctly [Wolfgang Ehrhardt] -- Made exteuclid always give positive u3 output...[ Wolfgang Ehrhardt ] -- [Wolfgang Ehrhardt] Suggested a fix for mp_reduce() which avoided underruns. ;-) -- mp_rand() would emit one too many digits and it was possible to get a 0 out of it ... oops -- Added montgomery to the testing to make sure it handles 1..10 digit moduli correctly -- Fixed bug in comba that would lead to possible erroneous outputs when "pa < digs" -- Fixed bug in mp_toradix_size for "0" [Kevin Kenny] -- Updated chapters 1-5 of the textbook ;-) It now talks about the new comba code! February 12th, 2005 v0.34 -- Fixed two more small errors in mp_prime_random_ex() -- Fixed overflow in mp_mul_d() [Kevin Kenny] -- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size] -- Added "large" diminished radix support. Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4) -- Updated the manual a bit -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the end of Feb/05. Once I get back I'll have tons of free time and I plan to go to town on the book. As of this release the API will freeze. At least until the book catches up with all the changes. I welcome bug reports but new algorithms will have to wait. December 23rd, 2004 v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends... -- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when no special flags were set -- Fixed overflow [minor] bug in fast_s_mp_sqr() -- Made the makefiles easier to configure the group/user that ltm will install as -- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan) -- Matt Johnston pointed out a missing semi-colon in mp_exptmod October 29th, 2004 v0.32 -- Added "makefile.shared" for shared object support -- Added more to the build options/configs in the manual -- Started the Depends framework, wrote dep.pl to scan deps and produce "callgraph.txt" ;-) -- Wrote SC_RSA_1 which will enable close to the minimum required to perform RSA on 32-bit [or 64-bit] platforms with LibTomCrypt -- Merged in the small/slower mp_div replacement. You can now toggle which you want to use as your mp_div() at build time. Saves roughly 8KB or so. -- Renamed a few files and changed some comments to make depends system work better. (No changes to function names) -- Merged in new Combas that perform 2 reads per inner loop instead of the older 3reads/2writes per inner loop of the old code. Really though if you want speed learn to use TomsFastMath ;-) August 9th, 2004 v0.31 -- "profiled" builds now :-) new timings for Intel Northwoods -- Added "pretty" build target -- Update mp_init() to actually assign 0's instead of relying on calloc() |
︙ | ︙ | |||
109 110 111 112 113 114 115 | is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-) -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square(). I've cleaned them all up to be a little more consistent [along with one bug fix] for this release. -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function call. -- Removed /etclib directory [um LibTomPoly deprecates this]. -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus. | | | | 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-) -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square(). I've cleaned them all up to be a little more consistent [along with one bug fix] for this release. -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function call. -- Removed /etclib directory [um LibTomPoly deprecates this]. -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus. ++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org website. Jan 25th, 2004 v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-) -- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???] -- Made the mp_prime_rabin_miller_trials() function internal table smaller and also set the minimum number of tests to two (sounds a bit safer). -- Added a mp_exteuclid() which computes the extended euclidean algorithm. |
︙ | ︙ |
Added libtommath/libtommath.pc.in.
> > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 | prefix=@to-be-replaced@ exec_prefix=${prefix} libdir=${exec_prefix}/lib includedir=${prefix}/include Name: LibTomMath Description: public domain library for manipulating large integer numbers Version: @to-be-replaced@ Libs: -L${libdir} -ltommath Cflags: -I${includedir} |
Added libtommath/libtommath_VS2008.sln.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Microsoft Visual Studio Solution File, Format Version 10.00 # Visual Studio 2008 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "tommath", "libtommath_VS2008.vcproj", "{42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}" EndProject Global GlobalSection(SolutionConfigurationPlatforms) = preSolution Debug|Win32 = Debug|Win32 Debug|x64 = Debug|x64 Release|Win32 = Release|Win32 Release|x64 = Release|x64 EndGlobalSection GlobalSection(ProjectConfigurationPlatforms) = postSolution {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Debug|Win32.ActiveCfg = Debug|Win32 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Debug|Win32.Build.0 = Debug|Win32 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Debug|x64.ActiveCfg = Debug|x64 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Debug|x64.Build.0 = Debug|x64 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Release|Win32.ActiveCfg = Release|Win32 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Release|Win32.Build.0 = Release|Win32 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Release|x64.ActiveCfg = Release|x64 {42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}.Release|x64.Build.0 = Release|x64 EndGlobalSection GlobalSection(SolutionProperties) = preSolution HideSolutionNode = FALSE EndGlobalSection GlobalSection(ExtensibilityGlobals) = postSolution SolutionGuid = {83B84178-7B4F-4B78-9C5D-17B8201D5B61} EndGlobalSection EndGlobal |
Added libtommath/libtommath_VS2008.vcproj.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 | <?xml version="1.0" encoding="Windows-1252"?> <VisualStudioProject ProjectType="Visual C++" Version="9.00" Name="tommath" ProjectGUID="{42109FEE-B0B9-4FCD-9E56-2863BF8C55D2}" RootNamespace="tommath" TargetFrameworkVersion="0" > <Platforms> <Platform Name="Win32" /> <Platform Name="x64" /> </Platforms> <ToolFiles> </ToolFiles> <Configurations> <Configuration Name="Debug|Win32" OutputDirectory="MSVC_$(PlatformName)_$(ConfigurationName)" IntermediateDirectory="MSVC_$(PlatformName)_$(ConfigurationName)\Intermediate" ConfigurationType="4" UseOfMFC="0" ATLMinimizesCRunTimeLibraryUsage="false" CharacterSet="0" > <Tool Name="VCPreBuildEventTool" /> <Tool Name="VCCustomBuildTool" /> <Tool Name="VCXMLDataGeneratorTool" /> <Tool Name="VCMIDLTool" /> <Tool Name="VCCLCompilerTool" Optimization="0" AdditionalIncludeDirectories="." PreprocessorDefinitions="WIN32;_DEBUG;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE" MinimalRebuild="true" ExceptionHandling="0" BasicRuntimeChecks="3" RuntimeLibrary="1" PrecompiledHeaderFile="$(IntDir)\libtomcrypt.pch" AssemblerListingLocation="$(IntDir)\" ObjectFile="$(IntDir)\" ProgramDataBaseFileName="$(IntDir)\" WarningLevel="3" SuppressStartupBanner="true" DebugInformationFormat="4" CompileAs="1" /> <Tool Name="VCManagedResourceCompilerTool" /> <Tool Name="VCResourceCompilerTool" PreprocessorDefinitions="_DEBUG" Culture="1033" /> <Tool Name="VCPreLinkEventTool" /> <Tool Name="VCLibrarianTool" OutputFile="$(OutDir)\tommath.lib" SuppressStartupBanner="true" /> <Tool Name="VCALinkTool" /> <Tool Name="VCXDCMakeTool" /> <Tool Name="VCBscMakeTool" SuppressStartupBanner="true" OutputFile="$(OutDir)\tommath.bsc" /> <Tool Name="VCFxCopTool" /> <Tool Name="VCPostBuildEventTool" /> </Configuration> <Configuration Name="Debug|x64" OutputDirectory="MSVC_$(PlatformName)_$(ConfigurationName)" IntermediateDirectory="MSVC_$(PlatformName)_$(ConfigurationName)\Intermediate" ConfigurationType="4" UseOfMFC="0" ATLMinimizesCRunTimeLibraryUsage="false" CharacterSet="0" > <Tool Name="VCPreBuildEventTool" /> <Tool Name="VCCustomBuildTool" /> <Tool Name="VCXMLDataGeneratorTool" /> <Tool Name="VCMIDLTool" TargetEnvironment="3" /> <Tool Name="VCCLCompilerTool" Optimization="0" AdditionalIncludeDirectories="." PreprocessorDefinitions="WIN32;_DEBUG;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE" MinimalRebuild="true" ExceptionHandling="0" BasicRuntimeChecks="3" RuntimeLibrary="1" PrecompiledHeaderFile="$(IntDir)\libtomcrypt.pch" AssemblerListingLocation="$(IntDir)\" ObjectFile="$(IntDir)\" ProgramDataBaseFileName="$(IntDir)\" WarningLevel="3" SuppressStartupBanner="true" DebugInformationFormat="3" CompileAs="1" /> <Tool Name="VCManagedResourceCompilerTool" /> <Tool Name="VCResourceCompilerTool" PreprocessorDefinitions="_DEBUG" Culture="1033" /> <Tool Name="VCPreLinkEventTool" /> <Tool Name="VCLibrarianTool" OutputFile="$(OutDir)\tommath.lib" SuppressStartupBanner="true" /> <Tool Name="VCALinkTool" /> <Tool Name="VCXDCMakeTool" /> <Tool Name="VCBscMakeTool" SuppressStartupBanner="true" OutputFile="$(OutDir)\tommath.bsc" /> <Tool Name="VCFxCopTool" /> <Tool Name="VCPostBuildEventTool" /> </Configuration> <Configuration Name="Release|Win32" OutputDirectory="MSVC_$(PlatformName)_$(ConfigurationName)" IntermediateDirectory="MSVC_$(PlatformName)_$(ConfigurationName)\Intermediate" ConfigurationType="4" UseOfMFC="0" ATLMinimizesCRunTimeLibraryUsage="false" CharacterSet="0" > <Tool Name="VCPreBuildEventTool" /> <Tool Name="VCCustomBuildTool" /> <Tool Name="VCXMLDataGeneratorTool" /> <Tool Name="VCMIDLTool" /> <Tool Name="VCCLCompilerTool" Optimization="2" InlineFunctionExpansion="1" AdditionalIncludeDirectories="." PreprocessorDefinitions="WIN32;NDEBUG;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE" StringPooling="true" RuntimeLibrary="0" EnableFunctionLevelLinking="true" PrecompiledHeaderFile="$(IntDir)\libtomcrypt.pch" AssemblerListingLocation="$(IntDir)\" ObjectFile="$(IntDir)\" ProgramDataBaseFileName="$(IntDir)\" WarningLevel="3" SuppressStartupBanner="true" /> <Tool Name="VCManagedResourceCompilerTool" /> <Tool Name="VCResourceCompilerTool" PreprocessorDefinitions="NDEBUG" Culture="1033" /> <Tool Name="VCPreLinkEventTool" /> <Tool Name="VCLibrarianTool" OutputFile="$(OutDir)\tommath.lib" SuppressStartupBanner="true" /> <Tool Name="VCALinkTool" /> <Tool Name="VCXDCMakeTool" /> <Tool Name="VCBscMakeTool" SuppressStartupBanner="true" OutputFile="$(OutDir)\tommath.bsc" /> <Tool Name="VCFxCopTool" /> <Tool Name="VCPostBuildEventTool" /> </Configuration> <Configuration Name="Release|x64" OutputDirectory="MSVC_$(PlatformName)_$(ConfigurationName)" IntermediateDirectory="MSVC_$(PlatformName)_$(ConfigurationName)\Intermediate" ConfigurationType="4" UseOfMFC="0" ATLMinimizesCRunTimeLibraryUsage="false" CharacterSet="0" > <Tool Name="VCPreBuildEventTool" /> <Tool Name="VCCustomBuildTool" /> <Tool Name="VCXMLDataGeneratorTool" /> <Tool Name="VCMIDLTool" TargetEnvironment="3" /> <Tool Name="VCCLCompilerTool" Optimization="2" InlineFunctionExpansion="1" AdditionalIncludeDirectories="." PreprocessorDefinitions="WIN32;NDEBUG;_CRT_SECURE_NO_WARNINGS;_CRT_NONSTDC_NO_DEPRECATE" StringPooling="true" RuntimeLibrary="0" EnableFunctionLevelLinking="true" PrecompiledHeaderFile="$(IntDir)\libtomcrypt.pch" AssemblerListingLocation="$(IntDir)\" ObjectFile="$(IntDir)\" ProgramDataBaseFileName="$(IntDir)\" WarningLevel="3" SuppressStartupBanner="true" /> <Tool Name="VCManagedResourceCompilerTool" /> <Tool Name="VCResourceCompilerTool" PreprocessorDefinitions="NDEBUG" Culture="1033" /> <Tool Name="VCPreLinkEventTool" /> <Tool Name="VCLibrarianTool" OutputFile="$(OutDir)\tommath.lib" SuppressStartupBanner="true" /> <Tool Name="VCALinkTool" /> <Tool Name="VCXDCMakeTool" /> <Tool Name="VCBscMakeTool" SuppressStartupBanner="true" OutputFile="$(OutDir)\tommath.bsc" /> <Tool Name="VCFxCopTool" /> <Tool Name="VCPostBuildEventTool" /> </Configuration> </Configurations> <References> </References> <Files> <File RelativePath="bn_error.c" > </File> <File RelativePath="bn_fast_mp_invmod.c" > </File> <File RelativePath="bn_fast_mp_montgomery_reduce.c" > </File> <File RelativePath="bn_fast_s_mp_mul_digs.c" > </File> <File RelativePath="bn_fast_s_mp_mul_high_digs.c" > </File> <File RelativePath="bn_fast_s_mp_sqr.c" > </File> <File RelativePath="bn_mp_2expt.c" > </File> <File RelativePath="bn_mp_abs.c" > </File> <File RelativePath="bn_mp_add.c" > </File> <File RelativePath="bn_mp_add_d.c" > </File> <File RelativePath="bn_mp_addmod.c" > </File> <File RelativePath="bn_mp_and.c" > </File> <File RelativePath="bn_mp_clamp.c" > </File> <File RelativePath="bn_mp_clear.c" > </File> <File RelativePath="bn_mp_clear_multi.c" > </File> <File RelativePath="bn_mp_cmp.c" > </File> <File RelativePath="bn_mp_cmp_d.c" > </File> <File RelativePath="bn_mp_cmp_mag.c" > </File> <File RelativePath="bn_mp_cnt_lsb.c" > </File> <File RelativePath="bn_mp_complement.c" > </File> <File RelativePath="bn_mp_copy.c" > </File> <File RelativePath="bn_mp_count_bits.c" > </File> <File RelativePath="bn_mp_div.c" > </File> <File RelativePath="bn_mp_div_2.c" > </File> <File RelativePath="bn_mp_div_2d.c" > </File> <File RelativePath="bn_mp_div_3.c" > </File> <File RelativePath="bn_mp_div_d.c" > </File> <File RelativePath="bn_mp_dr_is_modulus.c" > </File> <File RelativePath="bn_mp_dr_reduce.c" > </File> <File RelativePath="bn_mp_dr_setup.c" > </File> <File RelativePath="bn_mp_exch.c" > </File> <File RelativePath="bn_mp_export.c" > </File> <File RelativePath="bn_mp_expt_d.c" > </File> <File RelativePath="bn_mp_expt_d_ex.c" > </File> <File RelativePath="bn_mp_exptmod.c" > </File> <File RelativePath="bn_mp_exptmod_fast.c" > </File> <File RelativePath="bn_mp_exteuclid.c" > </File> <File RelativePath="bn_mp_fread.c" > </File> <File RelativePath="bn_mp_fwrite.c" > </File> <File RelativePath="bn_mp_gcd.c" > </File> <File RelativePath="bn_mp_get_bit.c" > </File> <File RelativePath="bn_mp_get_double.c" > </File> <File RelativePath="bn_mp_get_int.c" > </File> <File RelativePath="bn_mp_get_long.c" > </File> <File RelativePath="bn_mp_get_long_long.c" > </File> <File RelativePath="bn_mp_grow.c" > </File> <File RelativePath="bn_mp_import.c" > </File> <File RelativePath="bn_mp_init.c" > </File> <File RelativePath="bn_mp_init_copy.c" > </File> <File RelativePath="bn_mp_init_multi.c" > </File> <File RelativePath="bn_mp_init_set.c" > </File> <File RelativePath="bn_mp_init_set_int.c" > </File> <File RelativePath="bn_mp_init_size.c" > </File> <File RelativePath="bn_mp_invmod.c" > </File> <File RelativePath="bn_mp_invmod_slow.c" > </File> <File RelativePath="bn_mp_is_square.c" > </File> <File RelativePath="bn_mp_jacobi.c" > </File> <File RelativePath="bn_mp_karatsuba_mul.c" > </File> <File RelativePath="bn_mp_karatsuba_sqr.c" > </File> <File RelativePath="bn_mp_kronecker.c" > </File> <File RelativePath="bn_mp_lcm.c" > </File> <File RelativePath="bn_mp_lshd.c" > </File> <File RelativePath="bn_mp_mod.c" > </File> <File RelativePath="bn_mp_mod_2d.c" > </File> <File RelativePath="bn_mp_mod_d.c" > </File> <File RelativePath="bn_mp_montgomery_calc_normalization.c" > </File> <File RelativePath="bn_mp_montgomery_reduce.c" > </File> <File RelativePath="bn_mp_montgomery_setup.c" > </File> <File RelativePath="bn_mp_mul.c" > </File> <File RelativePath="bn_mp_mul_2.c" > </File> <File RelativePath="bn_mp_mul_2d.c" > </File> <File RelativePath="bn_mp_mul_d.c" > </File> <File RelativePath="bn_mp_mulmod.c" > </File> <File RelativePath="bn_mp_n_root.c" > </File> <File RelativePath="bn_mp_n_root_ex.c" > </File> <File RelativePath="bn_mp_neg.c" > </File> <File RelativePath="bn_mp_or.c" > </File> <File RelativePath="bn_mp_prime_fermat.c" > </File> <File RelativePath="bn_mp_prime_frobenius_underwood.c" > </File> <File RelativePath="bn_mp_prime_is_divisible.c" > </File> <File RelativePath="bn_mp_prime_is_prime.c" > </File> <File RelativePath="bn_mp_prime_miller_rabin.c" > </File> <File RelativePath="bn_mp_prime_next_prime.c" > </File> <File RelativePath="bn_mp_prime_rabin_miller_trials.c" > </File> <File RelativePath="bn_mp_prime_random_ex.c" > </File> <File RelativePath="bn_mp_prime_strong_lucas_selfridge.c" > </File> <File RelativePath="bn_mp_radix_size.c" > </File> <File RelativePath="bn_mp_radix_smap.c" > </File> <File RelativePath="bn_mp_rand.c" > </File> <File RelativePath="bn_mp_read_radix.c" > </File> <File RelativePath="bn_mp_read_signed_bin.c" > </File> <File RelativePath="bn_mp_read_unsigned_bin.c" > </File> <File RelativePath="bn_mp_reduce.c" > </File> <File RelativePath="bn_mp_reduce_2k.c" > </File> <File RelativePath="bn_mp_reduce_2k_l.c" > </File> <File RelativePath="bn_mp_reduce_2k_setup.c" > </File> <File RelativePath="bn_mp_reduce_2k_setup_l.c" > </File> <File RelativePath="bn_mp_reduce_is_2k.c" > </File> <File RelativePath="bn_mp_reduce_is_2k_l.c" > </File> <File RelativePath="bn_mp_reduce_setup.c" > </File> <File RelativePath="bn_mp_rshd.c" > </File> <File RelativePath="bn_mp_set.c" > </File> <File RelativePath="bn_mp_set_double.c" > </File> <File RelativePath="bn_mp_set_int.c" > </File> <File RelativePath="bn_mp_set_long.c" > </File> <File RelativePath="bn_mp_set_long_long.c" > </File> <File RelativePath="bn_mp_shrink.c" > </File> <File RelativePath="bn_mp_signed_bin_size.c" > </File> <File RelativePath="bn_mp_sqr.c" > </File> <File RelativePath="bn_mp_sqrmod.c" > </File> <File RelativePath="bn_mp_sqrt.c" > </File> <File RelativePath="bn_mp_sqrtmod_prime.c" > </File> <File RelativePath="bn_mp_sub.c" > </File> <File RelativePath="bn_mp_sub_d.c" > </File> <File RelativePath="bn_mp_submod.c" > </File> <File RelativePath="bn_mp_tc_and.c" > </File> <File RelativePath="bn_mp_tc_div_2d.c" > </File> <File RelativePath="bn_mp_tc_or.c" > </File> <File RelativePath="bn_mp_tc_xor.c" > </File> <File RelativePath="bn_mp_to_signed_bin.c" > </File> <File RelativePath="bn_mp_to_signed_bin_n.c" > </File> <File RelativePath="bn_mp_to_unsigned_bin.c" > </File> <File RelativePath="bn_mp_to_unsigned_bin_n.c" > </File> <File RelativePath="bn_mp_toom_mul.c" > </File> <File RelativePath="bn_mp_toom_sqr.c" > </File> <File RelativePath="bn_mp_toradix.c" > </File> <File RelativePath="bn_mp_toradix_n.c" > </File> <File RelativePath="bn_mp_unsigned_bin_size.c" > </File> <File RelativePath="bn_mp_xor.c" > </File> <File RelativePath="bn_mp_zero.c" > </File> <File RelativePath="bn_prime_tab.c" > </File> <File RelativePath="bn_reverse.c" > </File> <File RelativePath="bn_s_mp_add.c" > </File> <File RelativePath="bn_s_mp_exptmod.c" > </File> <File RelativePath="bn_s_mp_mul_digs.c" > </File> <File RelativePath="bn_s_mp_mul_high_digs.c" > </File> <File RelativePath="bn_s_mp_sqr.c" > </File> <File RelativePath="bn_s_mp_sub.c" > </File> <File RelativePath="bncore.c" > </File> <File RelativePath="tommath.h" > </File> <File RelativePath="tommath_class.h" > </File> <File RelativePath="tommath_private.h" > </File> <File RelativePath="tommath_superclass.h" > </File> </Files> <Globals> </Globals> </VisualStudioProject> |
Changes to libtommath/makefile.
1 2 3 4 | #Makefile for GCC # #Tom St Denis | < < | < | < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < | | > > > > > | | | | < < < > > > > > > > > | | < < < < < | < < < | | < < < | | > | | | > | | | | > > | > | < > | | | | | | | | | | | | | > > > > | | > > > > | | | | | < < < < < < < < < | < < < < | < | < < < | < < < < < < < < | < < > | > | < | > > | < < < | > | | | | | | > > > | > | | | > > | > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | #Makefile for GCC # #Tom St Denis ifeq ($V,1) silent= else silent=@ endif #default files to install ifndef LIBNAME LIBNAME=libtommath.a endif coverage: LIBNAME:=-Wl,--whole-archive $(LIBNAME) -Wl,--no-whole-archive include makefile_include.mk %.o: %.c ifneq ($V,1) @echo " * ${CC} $@" endif ${silent} ${CC} -c ${CFLAGS} $< -o $@ LCOV_ARGS=--directory . #START_INS OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \ bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \ bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \ bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \ bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \ bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \ bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \ bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \ bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \ bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \ bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \ bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \ bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \ bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \ bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \ bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o #END_INS $(OBJECTS): $(HEADERS) $(LIBNAME): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) $(RANLIB) $@ #make a profiled library (takes a while!!!) # # This will build the library with profile generation # then run the test demo and rebuild the library. # # So far I've seen improvements in the MP math profiled: make CFLAGS="$(CFLAGS) -fprofile-arcs -DTESTING" timing ./timing rm -f *.a *.o timing make CFLAGS="$(CFLAGS) -fbranch-probabilities" #make a single object profiled library profiled_single: perl gen.pl $(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o $(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -lgcov -o timing ./timing rm -f *.o timing $(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o $(AR) $(ARFLAGS) $(LIBNAME) mpi.o ranlib $(LIBNAME) install: $(LIBNAME) install -d $(DESTDIR)$(LIBPATH) install -d $(DESTDIR)$(INCPATH) install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH) install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) uninstall: rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) test: $(LIBNAME) demo/demo.o $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test test_standalone: $(LIBNAME) demo/demo.o $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test .PHONY: mtest mtest: cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest timing: $(LIBNAME) demo/timing.c $(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o timing # You have to create a file .coveralls.yml with the content "repo_token: <the token>" # in the base folder to be able to submit to coveralls coveralls: lcov coveralls-lcov docdvi poster docs mandvi manual: $(MAKE) -C doc/ $@ V=$(V) pretty: perl pretty.build .PHONY: pre_gen pre_gen: mkdir -p pre_gen perl gen.pl sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c rm mpi.c zipup: clean astyle new_file manual poster docs @# Update the index, so diff-index won't fail in case the pdf has been created. @# As the pdf creation modifies the tex files, git sometimes detects the @# modified files, but misses that it's put back to its original version. @git update-index --refresh @git diff-index --quiet HEAD -- || ( echo "FAILURE: uncommited changes or not a git" && exit 1 ) rm -rf libtommath-$(VERSION) ltm-$(VERSION).* @# files/dirs excluded from "git archive" are defined in .gitattributes git archive --format=tar --prefix=libtommath-$(VERSION)/ HEAD | tar x @echo 'fixme check' -@(find libtommath-$(VERSION)/ -type f | xargs grep 'FIXM[E]') && echo '############## BEWARE: the "fixme" marker was found !!! ##############' || true mkdir -p libtommath-$(VERSION)/doc cp doc/bn.pdf doc/tommath.pdf doc/poster.pdf libtommath-$(VERSION)/doc/ $(MAKE) -C libtommath-$(VERSION)/ pre_gen tar -c libtommath-$(VERSION)/ | xz -6e -c - > ltm-$(VERSION).tar.xz zip -9rq ltm-$(VERSION).zip libtommath-$(VERSION) cp doc/bn.pdf bn-$(VERSION).pdf cp doc/tommath.pdf tommath-$(VERSION).pdf rm -rf libtommath-$(VERSION) gpg -b -a ltm-$(VERSION).tar.xz gpg -b -a ltm-$(VERSION).zip new_file: bash updatemakes.sh perl dep.pl perlcritic: perlcritic *.pl doc/*.pl astyle: astyle --options=astylerc $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c |
Deleted libtommath/makefile.bcc.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/makefile.cygwin_dll.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/makefile.icc.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Added libtommath/makefile.mingw.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | # MAKEFILE for MS Windows (mingw + gcc + gmake) # # BEWARE: variable OBJECTS is updated via ./updatemakes.sh ### USAGE: # Open a command prompt with gcc + gmake in PATH and start: # # gmake -f makefile.mingw all # test.exe # gmake -f makefile.mingw PREFIX=c:\devel\libtom install #The following can be overridden from command line e.g. make -f makefile.mingw CC=gcc ARFLAGS=rcs PREFIX = c:\mingw CC = gcc AR = ar ARFLAGS = r RANLIB = ranlib STRIP = strip CFLAGS = -O2 LDFLAGS = #Compilation flags LTM_CFLAGS = -I. $(CFLAGS) LTM_LDFLAGS = $(LDFLAGS) #Libraries to be created LIBMAIN_S =libtommath.a LIBMAIN_I =libtommath.dll.a LIBMAIN_D =libtommath.dll #List of objects to compile (all goes to libtommath.a) OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \ bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \ bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \ bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \ bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \ bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \ bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \ bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \ bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \ bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \ bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \ bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \ bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \ bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \ bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \ bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h HEADERS=tommath_private.h $(HEADERS_PUB) #The default rule for make builds the libtommath.a library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) .c.o: $(CC) $(LTM_CFLAGS) -c $< -o $@ #Create libtommath.a $(LIBMAIN_S): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) $(RANLIB) $@ #Create DLL + import library libtommath.dll.a $(LIBMAIN_D) $(LIBMAIN_I): $(OBJECTS) $(CC) -s -shared -o $(LIBMAIN_D) $^ -Wl,--enable-auto-import,--export-all -Wl,--out-implib=$(LIBMAIN_I) $(LTM_LDFLAGS) $(STRIP) -S $(LIBMAIN_D) #Build test_standalone suite test.exe: $(LIBMAIN_S) demo/demo.c $(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) demo/demo.c $(LIBMAIN_S) -DLTM_DEMO_TEST_VS_MTEST=0 -o $@ @echo NOTICE: start the tests by launching test.exe test_standalone: test.exe all: $(LIBMAIN_S) test_standalone clean: @-cmd /c del /Q /S *.o *.a *.exe *.dll 2>nul #Install the library + headers install: $(LIBMAIN_S) $(LIBMAIN_I) $(LIBMAIN_D) cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin" cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib" cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include" copy /Y $(LIBMAIN_S) "$(PREFIX)\lib" copy /Y $(LIBMAIN_I) "$(PREFIX)\lib" copy /Y $(LIBMAIN_D) "$(PREFIX)\bin" copy /Y tommath*.h "$(PREFIX)\include" # ref: $Format:%D$ # git commit: $Format:%H$ # commit time: $Format:%ai$ |
Changes to libtommath/makefile.msvc.
|
| | | | > | > > > | > > > > > > | > > | < < > | | | | > | > > > | > | | > > > > | > > > > | < < < < | > > | > | > | > > | > > | > > | > > > | > > > > | > > | > > | > > > > > > | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | # MAKEFILE for MS Windows (nmake + Windows SDK) # # BEWARE: variable OBJECTS is updated via ./updatemakes.sh ### USAGE: # Open a command prompt with WinSDK variables set and start: # # nmake -f makefile.msvc all # test.exe # nmake -f makefile.msvc PREFIX=c:\devel\libtom install #The following can be overridden from command line e.g. make -f makefile.msvc CC=gcc ARFLAGS=rcs PREFIX = c:\devel CFLAGS = /Ox #Compilation flags LTM_CFLAGS = /nologo /I./ /D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE /W3 $(CFLAGS) LTM_LDFLAGS = advapi32.lib #Libraries to be created (this makefile builds only static libraries) LIBMAIN_S =tommath.lib #List of objects to compile (all goes to tommath.lib) OBJECTS=bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \ bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \ bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \ bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_complement.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div.obj \ bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj \ bn_mp_dr_setup.obj bn_mp_exch.obj bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj \ bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_bit.obj \ bn_mp_get_double.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj bn_mp_grow.obj bn_mp_import.obj \ bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_init_size.obj \ bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj \ bn_mp_karatsuba_sqr.obj bn_mp_kronecker.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \ bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj bn_mp_montgomery_setup.obj bn_mp_mul.obj \ bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_neg.obj \ bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_frobenius_underwood.obj bn_mp_prime_is_divisible.obj \ bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \ bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_prime_strong_lucas_selfridge.obj \ bn_mp_radix_size.obj bn_mp_radix_smap.obj bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj \ bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj \ bn_mp_reduce_2k_setup_l.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj \ bn_mp_set.obj bn_mp_set_double.obj bn_mp_set_int.obj bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj \ bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj \ bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_tc_and.obj bn_mp_tc_div_2d.obj bn_mp_tc_or.obj bn_mp_tc_xor.obj \ bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj \ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj \ bn_mp_zero.obj bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj \ bn_s_mp_mul_high_digs.obj bn_s_mp_sqr.obj bn_s_mp_sub.obj bncore.obj HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h HEADERS=tommath_private.h $(HEADERS_PUB) #The default rule for make builds the tommath.lib library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) .c.obj: $(CC) $(LTM_CFLAGS) /c $< /Fo$@ #Create tomcrypt.lib $(LIBMAIN_S): $(OBJECTS) lib /out:$(LIBMAIN_S) $(OBJECTS) #Build test_standalone suite test.exe: $(LIBMAIN_S) demo/demo.c cl $(LTM_CFLAGS) $(TOBJECTS) $(LIBMAIN_S) $(LTM_LDFLAGS) demo/demo.c /DLTM_DEMO_TEST_VS_MTEST=0 /Fe$@ @echo NOTICE: start the tests by launching test.exe test_standalone: test.exe all: $(LIBMAIN_S) test_standalone clean: @-cmd /c del /Q /S *.OBJ *.LIB *.EXE *.DLL 2>nul #Install the library + headers install: $(LIBMAIN_S) cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin" cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib" cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include" copy /Y $(LIBMAIN_S) "$(PREFIX)\lib" copy /Y tommath*.h "$(PREFIX)\include" # ref: $Format:%D$ # git commit: $Format:%H$ # commit time: $Format:%ai$ |
Changes to libtommath/makefile.shared.
1 2 3 | #Makefile for GCC # #Tom St Denis | < < | < < | | | < < < | < < < < | < < < < | < | | < < | < < < < < | < < | < < | < < < < < < < < > | | | | | < | | > > | | | > | | | | | | | | | | | > > | > > > > > > | | > | | > > > | > > > > | | | > > > > > | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | #Makefile for GCC # #Tom St Denis #default files to install ifndef LIBNAME LIBNAME=libtommath.la endif include makefile_include.mk ifndef LIBTOOL ifeq ($(PLATFORM), Darwin) LIBTOOL:=glibtool else LIBTOOL:=libtool endif endif LTCOMPILE = $(LIBTOOL) --mode=compile --tag=CC $(CC) LCOV_ARGS=--directory .libs --directory . #START_INS OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \ bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \ bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \ bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \ bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \ bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \ bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \ bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \ bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \ bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \ bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \ bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \ bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \ bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \ bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \ bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o #END_INS objs: $(OBJECTS) .c.o: $(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $< LOBJECTS = $(OBJECTS:.o=.lo) $(LIBNAME): $(OBJECTS) $(LIBTOOL) --mode=link --tag=CC $(CC) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO) $(LIBTOOLFLAGS) install: $(LIBNAME) install -d $(DESTDIR)$(LIBPATH) install -d $(DESTDIR)$(INCPATH) $(LIBTOOL) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME) install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc install -d $(DESTDIR)$(LIBPATH)/pkgconfig install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/ uninstall: $(LIBTOOL) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc test: $(LIBNAME) demo/demo.o $(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o $(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME) test_standalone: $(LIBNAME) demo/demo.o $(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o $(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME) .PHONY: mtest mtest: cd mtest ; $(CC) $(CFLAGS) $(LDFLAGS) mtest.c -o mtest timing: $(LIBNAME) demo/timing.c $(LIBTOOL) --mode=link $(CC) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o timing |
Added libtommath/makefile.unix.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | # MAKEFILE that is intended to be compatible with any kind of make (GNU make, BSD make, ...) # works on: Linux, *BSD, Cygwin, AIX, HP-UX and hopefully other UNIX systems # # Please do not use here neither any special make syntax nor any unusual tools/utilities! # using ICC compiler: # make -f makefile.unix CC=icc CFLAGS="-O3 -xP -ip" # using Borland C++Builder: # make -f makefile.unix CC=bcc32 #The following can be overridden from command line e.g. "make -f makefile.unix CC=gcc ARFLAGS=rcs" DESTDIR = PREFIX = /usr/local LIBPATH = $(PREFIX)/lib INCPATH = $(PREFIX)/include CC = cc AR = ar ARFLAGS = r RANLIB = ranlib CFLAGS = -O2 LDFLAGS = VERSION = 1.1.0 #Compilation flags LTM_CFLAGS = -I. $(CFLAGS) LTM_LDFLAGS = $(LDFLAGS) #Library to be created (this makefile builds only static library) LIBMAIN_S = libtommath.a OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \ bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \ bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \ bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \ bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \ bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \ bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \ bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \ bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \ bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \ bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \ bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \ bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \ bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \ bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \ bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h HEADERS=tommath_private.h $(HEADERS_PUB) #The default rule for make builds the libtommath.a library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) #This is necessary for compatibility with BSD make (namely on OpenBSD) .SUFFIXES: .o .c .c.o: $(CC) $(LTM_CFLAGS) -c $< -o $@ #Create libtommath.a $(LIBMAIN_S): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) $(RANLIB) $@ #Build test_standalone suite test: $(LIBMAIN_S) demo/demo.c $(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) demo/demo.c $(LIBMAIN_S) -DLTM_DEMO_TEST_VS_MTEST=0 -o $@ @echo "NOTICE: start the tests by: ./test" test_standalone: test all: $(LIBMAIN_S) test_standalone #NOTE: this makefile works also on cygwin, thus we need to delete *.exe clean: -@rm -f $(OBJECTS) $(LIBMAIN_S) -@rm -f demo/demo.o test test.exe #Install the library + headers install: $(LIBMAIN_S) @mkdir -p $(DESTDIR)$(INCPATH) $(DESTDIR)$(LIBPATH)/pkgconfig @cp $(LIBMAIN_S) $(DESTDIR)$(LIBPATH)/ @cp $(HEADERS_PUB) $(DESTDIR)$(INCPATH)/ @sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION),' libtommath.pc.in > $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc # ref: $Format:%D$ # git commit: $Format:%H$ # commit time: $Format:%ai$ |
Added libtommath/makefile_include.mk.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | # # Include makefile for libtommath # #version of library VERSION=1.1.0 VERSION_PC=1.1.0 VERSION_SO=2:0:1 PLATFORM := $(shell uname | sed -e 's/_.*//') # default make target default: ${LIBNAME} # Compiler and Linker Names ifndef CROSS_COMPILE CROSS_COMPILE= endif # We only need to go through this dance of determining the right compiler if we're using # cross compilation, otherwise $(CC) is fine as-is. ifneq (,$(CROSS_COMPILE)) ifeq ($(origin CC),default) CSTR := "\#ifdef __clang__\nCLANG\n\#endif\n" ifeq ($(PLATFORM),FreeBSD) # XXX: FreeBSD needs extra escaping for some reason CSTR := $$$(CSTR) endif ifneq (,$(shell echo $(CSTR) | $(CC) -E - | grep CLANG)) CC := $(CROSS_COMPILE)clang else CC := $(CROSS_COMPILE)gcc endif # Clang endif # cc is Make's default endif # CROSS_COMPILE non-empty LD=$(CROSS_COMPILE)ld AR=$(CROSS_COMPILE)ar RANLIB=$(CROSS_COMPILE)ranlib ifndef MAKE # BSDs refer to GNU Make as gmake ifneq (,$(findstring $(PLATFORM),FreeBSD OpenBSD DragonFly NetBSD)) MAKE=gmake else MAKE=make endif endif CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow ifndef NO_ADDTL_WARNINGS # additional warnings CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align CFLAGS += -Wstrict-prototypes -Wpointer-arith endif ifdef COMPILE_DEBUG #debug CFLAGS += -g3 else ifdef COMPILE_SIZE #for size CFLAGS += -Os else ifndef IGNORE_SPEED #for speed CFLAGS += -O3 -funroll-loops #x86 optimizations [should be valid for any GCC install though] CFLAGS += -fomit-frame-pointer endif endif # COMPILE_SIZE endif # COMPILE_DEBUG ifneq ($(findstring clang,$(CC)),) CFLAGS += -Wno-typedef-redefinition -Wno-tautological-compare -Wno-builtin-requires-header endif ifneq ($(findstring mingw,$(CC)),) CFLAGS += -Wno-shadow endif ifeq ($(PLATFORM), Darwin) CFLAGS += -Wno-nullability-completeness endif ifeq ($(PLATFORM), CYGWIN) LIBTOOLFLAGS += -no-undefined endif ifeq ($(PLATFORM),FreeBSD) _ARCH := $(shell sysctl -b hw.machine_arch) else _ARCH := $(shell arch) endif # adjust coverage set ifneq ($(filter $(_ARCH), i386 i686 x86_64 amd64 ia64),) COVERAGE = test_standalone timing COVERAGE_APP = ./test && ./timing else COVERAGE = test_standalone COVERAGE_APP = ./test endif HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h HEADERS=tommath_private.h $(HEADERS_PUB) test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0 #LIBPATH The directory for libtommath to be installed to. #INCPATH The directory to install the header files for libtommath. #DATAPATH The directory to install the pdf docs. DESTDIR ?= PREFIX ?= /usr/local LIBPATH ?= $(PREFIX)/lib INCPATH ?= $(PREFIX)/include DATAPATH ?= $(PREFIX)/share/doc/libtommath/pdf #make the code coverage of the library # coverage: CFLAGS += -fprofile-arcs -ftest-coverage -DTIMING_NO_LOGS coverage: LFLAGS += -lgcov coverage: LDFLAGS += -lgcov coverage: $(COVERAGE) $(COVERAGE_APP) lcov: coverage rm -f coverage.info lcov --capture --no-external --no-recursion $(LCOV_ARGS) --output-file coverage.info -q genhtml coverage.info --output-directory coverage -q # target that removes all coverage output cleancov-clean: rm -f `find . -type f -name "*.info" | xargs` rm -rf coverage/ # cleans everything - coverage output and standard 'clean' cleancov: cleancov-clean clean clean: rm -f *.gcda *.gcno *.gcov *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test timing mpitest mtest/mtest mtest/mtest.exe \ *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la rm -rf .libs/ ${MAKE} -C etc/ clean MAKE=${MAKE} ${MAKE} -C doc/ clean MAKE=${MAKE} |
Changes to libtommath/tommath.h.
1 2 3 4 5 6 7 8 9 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * | | < < < < < | < < < < < < < < | < < < | < | | < | > > > > > | > > | > > > > | | > > > > | | < < < < < < | < < | | < < < < < < < < < < < | | | | > > > > | > > > | | | | | | | | < < < < < < < < < < < < < < < < < < | > > > > | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifndef BN_H_ #define BN_H_ #include <stdio.h> #include <stdlib.h> #include <limits.h> #include "tommath_class.h" #ifdef __cplusplus extern "C" { #endif /* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */ #if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__) # define MP_32BIT #endif /* detect 64-bit mode if possible */ #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \ defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \ defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \ defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \ defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \ defined(__LP64__) || defined(_LP64) || defined(__64BIT__) # if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) # if defined(__GNUC__) /* we support 128bit integers only via: __attribute__((mode(TI))) */ # define MP_64BIT # else /* otherwise we fall back to MP_32BIT even on 64bit platforms */ # define MP_32BIT # endif # endif #endif /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT typedef unsigned char mp_digit; typedef unsigned short mp_word; # define MP_SIZEOF_MP_DIGIT 1 # ifdef DIGIT_BIT # error You must not define DIGIT_BIT when using MP_8BIT # endif #elif defined(MP_16BIT) typedef unsigned short mp_digit; typedef unsigned int mp_word; # define MP_SIZEOF_MP_DIGIT 2 # ifdef DIGIT_BIT # error You must not define DIGIT_BIT when using MP_16BIT # endif #elif defined(MP_64BIT) /* for GCC only on supported platforms */ typedef unsigned long long mp_digit; typedef unsigned long mp_word __attribute__((mode(TI))); # define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ /* this is to make porting into LibTomCrypt easier :-) */ typedef unsigned int mp_digit; typedef unsigned long long mp_word; # ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ # define DIGIT_BIT 31 # else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ # define DIGIT_BIT 28 # define MP_28BIT # endif #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT # define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ typedef unsigned long mp_min_u32; #else typedef mp_digit mp_min_u32; #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ #define MP_OKAY 0 /* ok result */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL #define MP_ITER -4 /* Max. iterations reached */ #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* you'll have to tune these... */ extern int KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC # ifndef MP_LOW_MEM # define MP_PREC 32 /* default digits of precision */ # else # define MP_PREC 8 /* default digits of precision */ # endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ typedef struct { int used, alloc, sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define USED(m) ((m)->used) #define DIGIT(m, k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) /* error code to char* string */ const char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ int mp_init(mp_int *a); /* free a bignum */ void mp_clear(mp_int *a); |
︙ | ︙ | |||
215 216 217 218 219 220 221 | int mp_grow(mp_int *a, int size); /* init to a given number of digits */ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | | | > > > > > > > > > > > > > | > > > > > > | | | > > > > > > | | | | | | > > > > > > > > > > > | | > | > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | > | | | | | | | | | | > | > > > | > | > > | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > | | > > > > > > > | | | < | | | | | | | | | > | > < < < < < < < < < < < < < < < < < < < < < < < > > > > > | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | int mp_grow(mp_int *a, int size); /* init to a given number of digits */ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) #define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ void mp_zero(mp_int *a); /* set to a digit */ void mp_set(mp_int *a, mp_digit b); /* set a double */ int mp_set_double(mp_int *a, double b); /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b); /* set a platform dependent unsigned long value */ int mp_set_long(mp_int *a, unsigned long b); /* set a platform dependent unsigned long long value */ int mp_set_long_long(mp_int *a, unsigned long long b); /* get a double */ double mp_get_double(const mp_int *a); /* get a 32-bit value */ unsigned long mp_get_int(const mp_int *a); /* get a platform dependent unsigned long value */ unsigned long mp_get_long(const mp_int *a); /* get a platform dependent unsigned long long value */ unsigned long long mp_get_long_long(const mp_int *a); /* initialize and set a digit */ int mp_init_set(mp_int *a, mp_digit b); /* initialize and set 32-bit value */ int mp_init_set_int(mp_int *a, unsigned long b); /* copy, b = a */ int mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ int mp_init_copy(mp_int *a, const mp_int *b); /* trim unused digits */ void mp_clamp(mp_int *a); /* import binary data */ int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); /* export binary data */ int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op); /* ---> digit manipulation <--- */ /* right shift by "b" digits */ void mp_rshd(mp_int *a, int b); /* left shift by "b" digits */ int mp_lshd(mp_int *a, int b); /* c = a / 2**b, implemented as c = a >> b */ int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); /* b = a/2 */ int mp_div_2(const mp_int *a, mp_int *b); /* c = a * 2**b, implemented as c = a << b */ int mp_mul_2d(const mp_int *a, int b, mp_int *c); /* b = a*2 */ int mp_mul_2(const mp_int *a, mp_int *b); /* c = a mod 2**b */ int mp_mod_2d(const mp_int *a, int b, mp_int *c); /* computes a = 2**b */ int mp_2expt(mp_int *a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(const mp_int *a); /* I Love Earth! */ /* makes a pseudo-random mp_int of a given size */ int mp_rand(mp_int *a, int digits); /* makes a pseudo-random small int of a given size */ int mp_rand_digit(mp_digit *r); #ifdef MP_PRNG_ENABLE_LTM_RNG /* A last resort to provide random data on systems without any of the other * implemented ways to gather entropy. * It is compatible with `rng_get_bytes()` from libtomcrypt so you could * provide that one and then set `ltm_rng = rng_get_bytes;` */ extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); extern void (*ltm_rng_callback)(void); #endif /* ---> binary operations <--- */ /* c = a XOR b */ int mp_xor(const mp_int *a, const mp_int *b, mp_int *c); /* c = a OR b */ int mp_or(const mp_int *a, const mp_int *b, mp_int *c); /* c = a AND b */ int mp_and(const mp_int *a, const mp_int *b, mp_int *c); /* Checks the bit at position b and returns MP_YES if the bit is 1, MP_NO if it is 0 and MP_VAL in case of error */ int mp_get_bit(const mp_int *a, int b); /* c = a XOR b (two complement) */ int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c); /* c = a OR b (two complement) */ int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c); /* c = a AND b (two complement) */ int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c); /* right shift (two complement) */ int mp_tc_div_2d(const mp_int *a, int b, mp_int *c); /* ---> Basic arithmetic <--- */ /* b = ~a */ int mp_complement(const mp_int *a, mp_int *b); /* b = -a */ int mp_neg(const mp_int *a, mp_int *b); /* b = |a| */ int mp_abs(const mp_int *a, mp_int *b); /* compare a to b */ int mp_cmp(const mp_int *a, const mp_int *b); /* compare |a| to |b| */ int mp_cmp_mag(const mp_int *a, const mp_int *b); /* c = a + b */ int mp_add(const mp_int *a, const mp_int *b, mp_int *c); /* c = a - b */ int mp_sub(const mp_int *a, const mp_int *b, mp_int *c); /* c = a * b */ int mp_mul(const mp_int *a, const mp_int *b, mp_int *c); /* b = a*a */ int mp_sqr(const mp_int *a, mp_int *b); /* a/b => cb + d == a */ int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); /* c = a mod b, 0 <= c < b */ int mp_mod(const mp_int *a, const mp_int *b, mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ int mp_cmp_d(const mp_int *a, mp_digit b); /* c = a + b */ int mp_add_d(const mp_int *a, mp_digit b, mp_int *c); /* c = a - b */ int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c); /* c = a * b */ int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c); /* a/b => cb + d == a */ int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d); /* a/3 => 3c + d == a */ int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c); int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); /* c = a mod b, 0 <= c < b */ int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a - b (mod c) */ int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a * b (mod c) */ int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* c = a * a (mod b) */ int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = 1/a (mod b) */ int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = (a, b) */ int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); /* produces value such that U1*a + U2*b = U3 */ int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ int mp_n_root(const mp_int *a, mp_digit b, mp_int *c); int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); /* special sqrt algo */ int mp_sqrt(const mp_int *arg, mp_int *ret); /* special sqrt (mod prime) */ int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret); /* is number a square? */ int mp_is_square(const mp_int *arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ int mp_jacobi(const mp_int *a, const mp_int *n, int *c); /* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */ int mp_kronecker(const mp_int *a, const mp_int *p, int *c); /* used to setup the Barrett reduction for a given modulus b */ int mp_reduce_setup(mp_int *a, const mp_int *b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code]. */ int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); /* setups the montgomery reduction */ int mp_montgomery_setup(const mp_int *n, mp_digit *rho); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b); /* computes x/R == x (mod N) via Montgomery Reduction */ int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); /* returns 1 if a is a valid DR modulus */ int mp_dr_is_modulus(const mp_int *a); /* sets the value of "d" required for mp_dr_reduce */ void mp_dr_setup(const mp_int *a, mp_digit *d); /* reduces a modulo n using the Diminished Radix method */ int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k); /* returns true if a can be reduced with mp_reduce_2k */ int mp_reduce_is_2k(const mp_int *a); /* determines k value for 2k reduction */ int mp_reduce_2k_setup(const mp_int *a, mp_digit *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d); /* returns true if a can be reduced with mp_reduce_2k_l */ int mp_reduce_is_2k_l(const mp_int *a); /* determines k value for 2k reduction */ int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d); /* Y = G**X (mod P) */ int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y); /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT # define PRIME_SIZE 31 #else # define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ extern const mp_digit ltm_prime_tab[PRIME_SIZE]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ int mp_prime_is_divisible(const mp_int *a, int *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); /* performs one strong Lucas-Selfridge test of "a". * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result); /* performs one Frobenius test of "a" as described by Paul Underwood. * Sets result to 0 if composite or 1 if probable prime */ int mp_prime_frobenius_underwood(const mp_int *N, int *result); /* performs t random rounds of Miller-Rabin on "a" additional to * bases 2 and 3. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * Both a strong Lucas-Selfridge to complete the BPSW test * and a separate Frobenius test are available at compile time. * With t<0 a deterministic test is run for primes up to * 318665857834031151167461. With t<13 (abs(t)-13) additional * tests with sequential small primes are run starting at 43. * Is Fips 186.4 compliant if called with t as computed by * mp_prime_rabin_miller_trials(); * * Sets result to 1 if probably prime, 0 otherwise */ int mp_prime_is_prime(const mp_int *a, int t, int *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ int mp_count_bits(const mp_int *a); int mp_unsigned_bin_size(const mp_int *a); int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); int mp_to_unsigned_bin(const mp_int *a, unsigned char *b); int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); int mp_signed_bin_size(const mp_int *a); int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); int mp_to_signed_bin(const mp_int *a, unsigned char *b); int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); int mp_read_radix(mp_int *a, const char *str, int radix); int mp_toradix(const mp_int *a, char *str, int radix); int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen); int mp_radix_size(const mp_int *a, int radix, int *size); #ifndef LTM_NO_FILE int mp_fread(mp_int *a, int radix, FILE *stream); int mp_fwrite(const mp_int *a, int radix, FILE *stream); #endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) #ifdef __cplusplus } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/tommath_class.h.
1 2 | #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #if defined(LTM2) | > > > > > > > > > > > > | | < | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | > | > | | | | | | > > | > > | > | | | | | | | | | | | | > | | | | | | | | | | | | | | > | | | > | | | | | | > | | | | | | | | | | | | | | | > > > > | < | | | | | > | | | > > > > | | | | | | | | | | | | | | | | | | | | < | | | | | > | | | | | < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | < | | < | | | | | | | | | | | | | | | | > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | < | | | | | | | | > > > > > > > > > > > > > > > > > > > > > | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | > > > | | | > | > | | | < | | | | > | > | | | | > | | | | | | | | | | | | > | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > | > > | | | > > > > > | > | > | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > | > > > > > | > > | > > > > > > > | | | > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > | | | > > > > > > | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #if defined(LTM2) # define LTM3 #endif #if defined(LTM1) # define LTM2 #endif #define LTM1 #if defined(LTM_ALL) # define BN_ERROR_C # define BN_FAST_MP_INVMOD_C # define BN_FAST_MP_MONTGOMERY_REDUCE_C # define BN_FAST_S_MP_MUL_DIGS_C # define BN_FAST_S_MP_MUL_HIGH_DIGS_C # define BN_FAST_S_MP_SQR_C # define BN_MP_2EXPT_C # define BN_MP_ABS_C # define BN_MP_ADD_C # define BN_MP_ADD_D_C # define BN_MP_ADDMOD_C # define BN_MP_AND_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CMP_MAG_C # define BN_MP_CNT_LSB_C # define BN_MP_COMPLEMENT_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_C # define BN_MP_DIV_2_C # define BN_MP_DIV_2D_C # define BN_MP_DIV_3_C # define BN_MP_DIV_D_C # define BN_MP_DR_IS_MODULUS_C # define BN_MP_DR_REDUCE_C # define BN_MP_DR_SETUP_C # define BN_MP_EXCH_C # define BN_MP_EXPORT_C # define BN_MP_EXPT_D_C # define BN_MP_EXPT_D_EX_C # define BN_MP_EXPTMOD_C # define BN_MP_EXPTMOD_FAST_C # define BN_MP_EXTEUCLID_C # define BN_MP_FREAD_C # define BN_MP_FWRITE_C # define BN_MP_GCD_C # define BN_MP_GET_BIT_C # define BN_MP_GET_DOUBLE_C # define BN_MP_GET_INT_C # define BN_MP_GET_LONG_C # define BN_MP_GET_LONG_LONG_C # define BN_MP_GROW_C # define BN_MP_IMPORT_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_INIT_MULTI_C # define BN_MP_INIT_SET_C # define BN_MP_INIT_SET_INT_C # define BN_MP_INIT_SIZE_C # define BN_MP_INVMOD_C # define BN_MP_INVMOD_SLOW_C # define BN_MP_IS_SQUARE_C # define BN_MP_JACOBI_C # define BN_MP_KARATSUBA_MUL_C # define BN_MP_KARATSUBA_SQR_C # define BN_MP_KRONECKER_C # define BN_MP_LCM_C # define BN_MP_LSHD_C # define BN_MP_MOD_C # define BN_MP_MOD_2D_C # define BN_MP_MOD_D_C # define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C # define BN_MP_MONTGOMERY_REDUCE_C # define BN_MP_MONTGOMERY_SETUP_C # define BN_MP_MUL_C # define BN_MP_MUL_2_C # define BN_MP_MUL_2D_C # define BN_MP_MUL_D_C # define BN_MP_MULMOD_C # define BN_MP_N_ROOT_C # define BN_MP_N_ROOT_EX_C # define BN_MP_NEG_C # define BN_MP_OR_C # define BN_MP_PRIME_FERMAT_C # define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C # define BN_MP_PRIME_IS_DIVISIBLE_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_PRIME_MILLER_RABIN_C # define BN_MP_PRIME_NEXT_PRIME_C # define BN_MP_PRIME_RABIN_MILLER_TRIALS_C # define BN_MP_PRIME_RANDOM_EX_C # define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C # define BN_MP_RADIX_SIZE_C # define BN_MP_RADIX_SMAP_C # define BN_MP_RAND_C # define BN_MP_READ_RADIX_C # define BN_MP_READ_SIGNED_BIN_C # define BN_MP_READ_UNSIGNED_BIN_C # define BN_MP_REDUCE_C # define BN_MP_REDUCE_2K_C # define BN_MP_REDUCE_2K_L_C # define BN_MP_REDUCE_2K_SETUP_C # define BN_MP_REDUCE_2K_SETUP_L_C # define BN_MP_REDUCE_IS_2K_C # define BN_MP_REDUCE_IS_2K_L_C # define BN_MP_REDUCE_SETUP_C # define BN_MP_RSHD_C # define BN_MP_SET_C # define BN_MP_SET_DOUBLE_C # define BN_MP_SET_INT_C # define BN_MP_SET_LONG_C # define BN_MP_SET_LONG_LONG_C # define BN_MP_SHRINK_C # define BN_MP_SIGNED_BIN_SIZE_C # define BN_MP_SQR_C # define BN_MP_SQRMOD_C # define BN_MP_SQRT_C # define BN_MP_SQRTMOD_PRIME_C # define BN_MP_SUB_C # define BN_MP_SUB_D_C # define BN_MP_SUBMOD_C # define BN_MP_TC_AND_C # define BN_MP_TC_DIV_2D_C # define BN_MP_TC_OR_C # define BN_MP_TC_XOR_C # define BN_MP_TO_SIGNED_BIN_C # define BN_MP_TO_SIGNED_BIN_N_C # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_TO_UNSIGNED_BIN_N_C # define BN_MP_TOOM_MUL_C # define BN_MP_TOOM_SQR_C # define BN_MP_TORADIX_C # define BN_MP_TORADIX_N_C # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_XOR_C # define BN_MP_ZERO_C # define BN_PRIME_TAB_C # define BN_REVERSE_C # define BN_S_MP_ADD_C # define BN_S_MP_EXPTMOD_C # define BN_S_MP_MUL_DIGS_C # define BN_S_MP_MUL_HIGH_DIGS_C # define BN_S_MP_SQR_C # define BN_S_MP_SUB_C # define BNCORE_C #endif #if defined(BN_ERROR_C) # define BN_MP_ERROR_TO_STRING_C #endif #if defined(BN_FAST_MP_INVMOD_C) # define BN_MP_ISEVEN_C # define BN_MP_INIT_MULTI_C # define BN_MP_COPY_C # define BN_MP_MOD_C # define BN_MP_ISZERO_C # define BN_MP_SET_C # define BN_MP_DIV_2_C # define BN_MP_ISODD_C # define BN_MP_SUB_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_ADD_C # define BN_MP_CMP_MAG_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C) # define BN_MP_GROW_C # define BN_MP_RSHD_C # define BN_MP_CLAMP_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_FAST_S_MP_MUL_DIGS_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_FAST_S_MP_SQR_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_2EXPT_C) # define BN_MP_ZERO_C # define BN_MP_GROW_C #endif #if defined(BN_MP_ABS_C) # define BN_MP_COPY_C #endif #if defined(BN_MP_ADD_C) # define BN_S_MP_ADD_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_ADD_D_C) # define BN_MP_GROW_C # define BN_MP_SUB_D_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_ADDMOD_C) # define BN_MP_INIT_C # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_MOD_C #endif #if defined(BN_MP_AND_C) # define BN_MP_INIT_COPY_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_CLAMP_C) #endif #if defined(BN_MP_CLEAR_C) #endif #if defined(BN_MP_CLEAR_MULTI_C) # define BN_MP_CLEAR_C #endif #if defined(BN_MP_CMP_C) # define BN_MP_CMP_MAG_C #endif #if defined(BN_MP_CMP_D_C) #endif #if defined(BN_MP_CMP_MAG_C) #endif #if defined(BN_MP_CNT_LSB_C) # define BN_MP_ISZERO_C #endif #if defined(BN_MP_COMPLEMENT_C) # define BN_MP_NEG_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_COPY_C) # define BN_MP_GROW_C #endif #if defined(BN_MP_COUNT_BITS_C) #endif #if defined(BN_MP_DIV_C) # define BN_MP_ISZERO_C # define BN_MP_CMP_MAG_C # define BN_MP_COPY_C # define BN_MP_ZERO_C # define BN_MP_INIT_MULTI_C # define BN_MP_SET_C # define BN_MP_COUNT_BITS_C # define BN_MP_ABS_C # define BN_MP_MUL_2D_C # define BN_MP_CMP_C # define BN_MP_SUB_C # define BN_MP_ADD_C # define BN_MP_DIV_2D_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_INIT_SIZE_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_LSHD_C # define BN_MP_RSHD_C # define BN_MP_MUL_D_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_2_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_DIV_2D_C) # define BN_MP_COPY_C # define BN_MP_ZERO_C # define BN_MP_MOD_2D_C # define BN_MP_RSHD_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_DIV_3_C) # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_DIV_D_C) # define BN_MP_ISZERO_C # define BN_MP_COPY_C # define BN_MP_DIV_2D_C # define BN_MP_DIV_3_C # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_DR_IS_MODULUS_C) #endif #if defined(BN_MP_DR_REDUCE_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_DR_SETUP_C) #endif #if defined(BN_MP_EXCH_C) #endif #if defined(BN_MP_EXPORT_C) # define BN_MP_INIT_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_EXPT_D_C) # define BN_MP_EXPT_D_EX_C #endif #if defined(BN_MP_EXPT_D_EX_C) # define BN_MP_INIT_COPY_C # define BN_MP_SET_C # define BN_MP_MUL_C # define BN_MP_CLEAR_C # define BN_MP_SQR_C #endif #if defined(BN_MP_EXPTMOD_C) # define BN_MP_INIT_C # define BN_MP_INVMOD_C # define BN_MP_CLEAR_C # define BN_MP_ABS_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_REDUCE_IS_2K_L_C # define BN_S_MP_EXPTMOD_C # define BN_MP_DR_IS_MODULUS_C # define BN_MP_REDUCE_IS_2K_C # define BN_MP_ISODD_C # define BN_MP_EXPTMOD_FAST_C #endif #if defined(BN_MP_EXPTMOD_FAST_C) # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_SIZE_C # define BN_MP_CLEAR_C # define BN_MP_MONTGOMERY_SETUP_C # define BN_FAST_MP_MONTGOMERY_REDUCE_C # define BN_MP_MONTGOMERY_REDUCE_C # define BN_MP_DR_SETUP_C # define BN_MP_DR_REDUCE_C # define BN_MP_REDUCE_2K_SETUP_C # define BN_MP_REDUCE_2K_C # define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C # define BN_MP_MULMOD_C # define BN_MP_SET_C # define BN_MP_MOD_C # define BN_MP_COPY_C # define BN_MP_SQR_C # define BN_MP_MUL_C # define BN_MP_EXCH_C #endif #if defined(BN_MP_EXTEUCLID_C) # define BN_MP_INIT_MULTI_C # define BN_MP_SET_C # define BN_MP_COPY_C # define BN_MP_ISZERO_C # define BN_MP_DIV_C # define BN_MP_MUL_C # define BN_MP_SUB_C # define BN_MP_NEG_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_FREAD_C) # define BN_MP_ZERO_C # define BN_MP_S_RMAP_REVERSE_SZ_C # define BN_MP_S_RMAP_REVERSE_C # define BN_MP_MUL_D_C # define BN_MP_ADD_D_C # define BN_MP_CMP_D_C #endif #if defined(BN_MP_FWRITE_C) # define BN_MP_RADIX_SIZE_C # define BN_MP_TORADIX_C #endif #if defined(BN_MP_GCD_C) # define BN_MP_ISZERO_C # define BN_MP_ABS_C # define BN_MP_INIT_COPY_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_CMP_MAG_C # define BN_MP_EXCH_C # define BN_S_MP_SUB_C # define BN_MP_MUL_2D_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_GET_BIT_C) # define BN_MP_ISZERO_C #endif #if defined(BN_MP_GET_DOUBLE_C) # define BN_MP_ISNEG_C #endif #if defined(BN_MP_GET_INT_C) #endif #if defined(BN_MP_GET_LONG_C) #endif #if defined(BN_MP_GET_LONG_LONG_C) #endif #if defined(BN_MP_GROW_C) #endif #if defined(BN_MP_IMPORT_C) # define BN_MP_ZERO_C # define BN_MP_MUL_2D_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_INIT_C) #endif #if defined(BN_MP_INIT_COPY_C) # define BN_MP_INIT_SIZE_C # define BN_MP_COPY_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_INIT_MULTI_C) # define BN_MP_ERR_C # define BN_MP_INIT_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_INIT_SET_C) # define BN_MP_INIT_C # define BN_MP_SET_C #endif #if defined(BN_MP_INIT_SET_INT_C) # define BN_MP_INIT_C # define BN_MP_SET_INT_C #endif #if defined(BN_MP_INIT_SIZE_C) # define BN_MP_INIT_C #endif #if defined(BN_MP_INVMOD_C) # define BN_MP_CMP_D_C # define BN_MP_ISODD_C # define BN_FAST_MP_INVMOD_C # define BN_MP_INVMOD_SLOW_C #endif #if defined(BN_MP_INVMOD_SLOW_C) # define BN_MP_ISZERO_C # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_C # define BN_MP_COPY_C # define BN_MP_ISEVEN_C # define BN_MP_SET_C # define BN_MP_DIV_2_C # define BN_MP_ISODD_C # define BN_MP_ADD_C # define BN_MP_SUB_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CMP_MAG_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_IS_SQUARE_C) # define BN_MP_MOD_D_C # define BN_MP_INIT_SET_INT_C # define BN_MP_MOD_C # define BN_MP_GET_INT_C # define BN_MP_SQRT_C # define BN_MP_SQR_C # define BN_MP_CMP_MAG_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_JACOBI_C) # define BN_MP_KRONECKER_C # define BN_MP_ISNEG_C # define BN_MP_CMP_D_C #endif #if defined(BN_MP_KARATSUBA_MUL_C) # define BN_MP_MUL_C # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_S_MP_ADD_C # define BN_MP_ADD_C # define BN_S_MP_SUB_C # define BN_MP_LSHD_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_KARATSUBA_SQR_C) # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_SQR_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C # define BN_MP_LSHD_C # define BN_MP_ADD_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_KRONECKER_C) # define BN_MP_ISZERO_C # define BN_MP_ISEVEN_C # define BN_MP_INIT_COPY_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_CMP_D_C # define BN_MP_COPY_C # define BN_MP_MOD_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_LCM_C) # define BN_MP_INIT_MULTI_C # define BN_MP_GCD_C # define BN_MP_CMP_MAG_C # define BN_MP_DIV_C # define BN_MP_MUL_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_LSHD_C) # define BN_MP_ISZERO_C # define BN_MP_GROW_C # define BN_MP_RSHD_C #endif #if defined(BN_MP_MOD_C) # define BN_MP_INIT_SIZE_C # define BN_MP_DIV_C # define BN_MP_CLEAR_C # define BN_MP_ISZERO_C # define BN_MP_EXCH_C # define BN_MP_ADD_C #endif #if defined(BN_MP_MOD_2D_C) # define BN_MP_ZERO_C # define BN_MP_COPY_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_MOD_D_C) # define BN_MP_DIV_D_C #endif #if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C) # define BN_MP_COUNT_BITS_C # define BN_MP_2EXPT_C # define BN_MP_SET_C # define BN_MP_MUL_2_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_REDUCE_C) # define BN_FAST_MP_MONTGOMERY_REDUCE_C # define BN_MP_GROW_C # define BN_MP_CLAMP_C # define BN_MP_RSHD_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_SETUP_C) #endif #if defined(BN_MP_MUL_C) # define BN_MP_TOOM_MUL_C # define BN_MP_KARATSUBA_MUL_C # define BN_FAST_S_MP_MUL_DIGS_C # define BN_S_MP_MUL_C # define BN_S_MP_MUL_DIGS_C #endif #if defined(BN_MP_MUL_2_C) # define BN_MP_GROW_C #endif #if defined(BN_MP_MUL_2D_C) # define BN_MP_COPY_C # define BN_MP_GROW_C # define BN_MP_LSHD_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_MUL_D_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_MULMOD_C) # define BN_MP_INIT_SIZE_C # define BN_MP_MUL_C # define BN_MP_CLEAR_C # define BN_MP_MOD_C #endif #if defined(BN_MP_N_ROOT_C) # define BN_MP_N_ROOT_EX_C #endif #if defined(BN_MP_N_ROOT_EX_C) # define BN_MP_INIT_C # define BN_MP_SET_C # define BN_MP_COPY_C # define BN_MP_EXPT_D_EX_C # define BN_MP_MUL_C # define BN_MP_SUB_C # define BN_MP_MUL_D_C # define BN_MP_DIV_C # define BN_MP_CMP_C # define BN_MP_SUB_D_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_NEG_C) # define BN_MP_COPY_C # define BN_MP_ISZERO_C #endif #if defined(BN_MP_OR_C) # define BN_MP_INIT_COPY_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_FERMAT_C) # define BN_MP_CMP_D_C # define BN_MP_INIT_C # define BN_MP_EXPTMOD_C # define BN_MP_CMP_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_FROBENIUS_UNDERWOOD_C) # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_INIT_MULTI_C # define BN_MP_SET_LONG_C # define BN_MP_SQR_C # define BN_MP_SUB_D_C # define BN_MP_KRONECKER_C # define BN_MP_GCD_C # define BN_MP_ADD_D_C # define BN_MP_SET_C # define BN_MP_COUNT_BITS_C # define BN_MP_MUL_2_C # define BN_MP_MUL_D_C # define BN_MP_ADD_C # define BN_MP_MUL_C # define BN_MP_SUB_C # define BN_MP_MOD_C # define BN_MP_GET_BIT_C # define BN_MP_EXCH_C # define BN_MP_ISZERO_C # define BN_MP_CMP_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_PRIME_IS_DIVISIBLE_C) # define BN_MP_MOD_D_C #endif #if defined(BN_MP_PRIME_IS_PRIME_C) # define BN_MP_ISEVEN_C # define BN_MP_IS_SQUARE_C # define BN_MP_CMP_D_C # define BN_MP_PRIME_IS_DIVISIBLE_C # define BN_MP_INIT_SET_C # define BN_MP_PRIME_MILLER_RABIN_C # define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C # define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C # define BN_MP_READ_RADIX_C # define BN_MP_CMP_C # define BN_MP_SET_C # define BN_MP_COUNT_BITS_C # define BN_MP_RAND_C # define BN_MP_DIV_2D_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_MILLER_RABIN_C) # define BN_MP_CMP_D_C # define BN_MP_INIT_COPY_C # define BN_MP_SUB_D_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_EXPTMOD_C # define BN_MP_CMP_C # define BN_MP_SQRMOD_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_NEXT_PRIME_C) # define BN_MP_CMP_D_C # define BN_MP_SET_C # define BN_MP_SUB_D_C # define BN_MP_ISEVEN_C # define BN_MP_MOD_D_C # define BN_MP_INIT_C # define BN_MP_ADD_D_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C) #endif #if defined(BN_MP_PRIME_RANDOM_EX_C) # define BN_MP_READ_UNSIGNED_BIN_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_SUB_D_C # define BN_MP_DIV_2_C # define BN_MP_MUL_2_C # define BN_MP_ADD_D_C #endif #if defined(BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C) # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_MUL_D_C # define BN_S_MP_MUL_SI_C # define BN_MP_INIT_C # define BN_MP_SET_LONG_C # define BN_MP_MUL_C # define BN_MP_CLEAR_C # define BN_MP_INIT_MULTI_C # define BN_MP_GCD_C # define BN_MP_CMP_D_C # define BN_MP_CMP_C # define BN_MP_KRONECKER_C # define BN_MP_ADD_D_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_SET_C # define BN_MP_MUL_2_C # define BN_MP_COUNT_BITS_C # define BN_MP_MOD_C # define BN_MP_SQR_C # define BN_MP_SUB_C # define BN_MP_GET_BIT_C # define BN_MP_ADD_C # define BN_MP_ISODD_C # define BN_MP_DIV_2_C # define BN_MP_SUB_D_C # define BN_MP_ISZERO_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_RADIX_SIZE_C) # define BN_MP_ISZERO_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_COPY_C # define BN_MP_DIV_D_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_RADIX_SMAP_C) # define BN_MP_S_RMAP_C # define BN_MP_S_RMAP_REVERSE_C # define BN_MP_S_RMAP_REVERSE_SZ_C #endif #if defined(BN_MP_RAND_C) # define BN_MP_RAND_DIGIT_C # define BN_MP_ZERO_C # define BN_MP_ADD_D_C # define BN_MP_LSHD_C #endif #if defined(BN_MP_READ_RADIX_C) # define BN_MP_ZERO_C # define BN_MP_S_RMAP_REVERSE_SZ_C # define BN_MP_S_RMAP_REVERSE_C # define BN_MP_MUL_D_C # define BN_MP_ADD_D_C # define BN_MP_ISZERO_C #endif #if defined(BN_MP_READ_SIGNED_BIN_C) # define BN_MP_READ_UNSIGNED_BIN_C #endif #if defined(BN_MP_READ_UNSIGNED_BIN_C) # define BN_MP_GROW_C # define BN_MP_ZERO_C # define BN_MP_MUL_2D_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_REDUCE_C) # define BN_MP_REDUCE_SETUP_C # define BN_MP_INIT_COPY_C # define BN_MP_RSHD_C # define BN_MP_MUL_C # define BN_S_MP_MUL_HIGH_DIGS_C # define BN_FAST_S_MP_MUL_HIGH_DIGS_C # define BN_MP_MOD_2D_C # define BN_S_MP_MUL_DIGS_C # define BN_MP_SUB_C # define BN_MP_CMP_D_C # define BN_MP_SET_C # define BN_MP_LSHD_C # define BN_MP_ADD_C # define BN_MP_CMP_C # define BN_S_MP_SUB_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_C) # define BN_MP_INIT_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_MUL_D_C # define BN_S_MP_ADD_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_L_C) # define BN_MP_INIT_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_MUL_C # define BN_S_MP_ADD_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_C) # define BN_MP_INIT_C # define BN_MP_COUNT_BITS_C # define BN_MP_2EXPT_C # define BN_MP_CLEAR_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_L_C) # define BN_MP_INIT_C # define BN_MP_2EXPT_C # define BN_MP_COUNT_BITS_C # define BN_S_MP_SUB_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_REDUCE_IS_2K_C) # define BN_MP_REDUCE_2K_C # define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_REDUCE_IS_2K_L_C) #endif #if defined(BN_MP_REDUCE_SETUP_C) # define BN_MP_2EXPT_C # define BN_MP_DIV_C #endif #if defined(BN_MP_RSHD_C) # define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_C) # define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_DOUBLE_C) # define BN_MP_SET_LONG_LONG_C # define BN_MP_DIV_2D_C # define BN_MP_MUL_2D_C # define BN_MP_ISZERO_C #endif #if defined(BN_MP_SET_INT_C) # define BN_MP_ZERO_C # define BN_MP_MUL_2D_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_SET_LONG_C) #endif #if defined(BN_MP_SET_LONG_LONG_C) #endif #if defined(BN_MP_SHRINK_C) #endif #if defined(BN_MP_SIGNED_BIN_SIZE_C) # define BN_MP_UNSIGNED_BIN_SIZE_C #endif #if defined(BN_MP_SQR_C) # define BN_MP_TOOM_SQR_C # define BN_MP_KARATSUBA_SQR_C # define BN_FAST_S_MP_SQR_C # define BN_S_MP_SQR_C #endif #if defined(BN_MP_SQRMOD_C) # define BN_MP_INIT_C # define BN_MP_SQR_C # define BN_MP_CLEAR_C # define BN_MP_MOD_C #endif #if defined(BN_MP_SQRT_C) # define BN_MP_N_ROOT_C # define BN_MP_ISZERO_C # define BN_MP_ZERO_C # define BN_MP_INIT_COPY_C # define BN_MP_RSHD_C # define BN_MP_DIV_C # define BN_MP_ADD_C # define BN_MP_DIV_2_C # define BN_MP_CMP_MAG_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_SQRTMOD_PRIME_C) # define BN_MP_CMP_D_C # define BN_MP_ZERO_C # define BN_MP_JACOBI_C # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_D_C # define BN_MP_ADD_D_C # define BN_MP_DIV_2_C # define BN_MP_EXPTMOD_C # define BN_MP_COPY_C # define BN_MP_SUB_D_C # define BN_MP_ISEVEN_C # define BN_MP_SET_INT_C # define BN_MP_SQRMOD_C # define BN_MP_MULMOD_C # define BN_MP_SET_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_SUB_C) # define BN_S_MP_ADD_C # define BN_MP_CMP_MAG_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_SUB_D_C) # define BN_MP_GROW_C # define BN_MP_ADD_D_C # define BN_MP_CLAMP_C #endif #if defined(BN_MP_SUBMOD_C) # define BN_MP_INIT_C # define BN_MP_SUB_C # define BN_MP_CLEAR_C # define BN_MP_MOD_C #endif #if defined(BN_MP_TC_AND_C) # define BN_MP_ISNEG_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_SET_INT_C # define BN_MP_MUL_2D_C # define BN_MP_INIT_C # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_AND_C # define BN_MP_SUB_C #endif #if defined(BN_MP_TC_DIV_2D_C) # define BN_MP_ISNEG_C # define BN_MP_DIV_2D_C # define BN_MP_ADD_D_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_TC_OR_C) # define BN_MP_ISNEG_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_SET_INT_C # define BN_MP_MUL_2D_C # define BN_MP_INIT_C # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_OR_C # define BN_MP_SUB_C #endif #if defined(BN_MP_TC_XOR_C) # define BN_MP_ISNEG_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_SET_INT_C # define BN_MP_MUL_2D_C # define BN_MP_INIT_C # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_XOR_C # define BN_MP_SUB_C #endif #if defined(BN_MP_TO_SIGNED_BIN_C) # define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TO_SIGNED_BIN_N_C) # define BN_MP_SIGNED_BIN_SIZE_C # define BN_MP_TO_SIGNED_BIN_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_C) # define BN_MP_INIT_COPY_C # define BN_MP_ISZERO_C # define BN_MP_DIV_2D_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_N_C) # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TOOM_MUL_C) # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_2D_C # define BN_MP_COPY_C # define BN_MP_RSHD_C # define BN_MP_MUL_C # define BN_MP_MUL_2_C # define BN_MP_ADD_C # define BN_MP_SUB_C # define BN_MP_DIV_2_C # define BN_MP_MUL_2D_C # define BN_MP_MUL_D_C # define BN_MP_DIV_3_C # define BN_MP_LSHD_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TOOM_SQR_C) # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_2D_C # define BN_MP_COPY_C # define BN_MP_RSHD_C # define BN_MP_SQR_C # define BN_MP_MUL_2_C # define BN_MP_ADD_C # define BN_MP_SUB_C # define BN_MP_DIV_2_C # define BN_MP_MUL_2D_C # define BN_MP_MUL_D_C # define BN_MP_DIV_3_C # define BN_MP_LSHD_C # define BN_MP_CLEAR_MULTI_C #endif #if defined(BN_MP_TORADIX_C) # define BN_MP_ISZERO_C # define BN_MP_INIT_COPY_C # define BN_MP_DIV_D_C # define BN_MP_CLEAR_C # define BN_MP_S_RMAP_C #endif #if defined(BN_MP_TORADIX_N_C) # define BN_MP_ISZERO_C # define BN_MP_INIT_COPY_C # define BN_MP_DIV_D_C # define BN_MP_CLEAR_C # define BN_MP_S_RMAP_C #endif #if defined(BN_MP_UNSIGNED_BIN_SIZE_C) # define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_XOR_C) # define BN_MP_INIT_COPY_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_MP_ZERO_C) #endif #if defined(BN_PRIME_TAB_C) #endif #if defined(BN_REVERSE_C) #endif #if defined(BN_S_MP_ADD_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BN_S_MP_EXPTMOD_C) # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_C # define BN_MP_CLEAR_C # define BN_MP_REDUCE_SETUP_C # define BN_MP_REDUCE_C # define BN_MP_REDUCE_2K_SETUP_L_C # define BN_MP_REDUCE_2K_L_C # define BN_MP_MOD_C # define BN_MP_COPY_C # define BN_MP_SQR_C # define BN_MP_MUL_C # define BN_MP_SET_C # define BN_MP_EXCH_C #endif #if defined(BN_S_MP_MUL_DIGS_C) # define BN_FAST_S_MP_MUL_DIGS_C # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_MUL_HIGH_DIGS_C) # define BN_FAST_S_MP_MUL_HIGH_DIGS_C # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SQR_C) # define BN_MP_INIT_SIZE_C # define BN_MP_CLAMP_C # define BN_MP_EXCH_C # define BN_MP_CLEAR_C #endif #if defined(BN_S_MP_SUB_C) # define BN_MP_GROW_C # define BN_MP_CLAMP_C #endif #if defined(BNCORE_C) #endif #ifdef LTM3 # define LTM_LAST #endif #include <tommath_superclass.h> #include <tommath_class.h> #else # define LTM_LAST #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added libtommath/tommath_private.h.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifndef TOMMATH_PRIV_H_ #define TOMMATH_PRIV_H_ #include <tommath.h> #include <ctype.h> #ifndef MIN #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #endif #ifndef MAX #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #endif #ifdef __cplusplus extern "C" { /* C++ compilers don't like assigning void * to mp_digit * */ #define OPT_CAST(x) (x *) #else /* C on the other hand doesn't care */ #define OPT_CAST(x) #endif /* define heap macros */ #ifndef XMALLOC /* default to libc stuff */ # define XMALLOC malloc # define XFREE free # define XREALLOC realloc # define XCALLOC calloc #elif 0 /* prototypes for our heap functions */ extern void *XMALLOC(size_t n); extern void *XREALLOC(void *p, size_t n); extern void *XCALLOC(size_t n, size_t s); extern void XFREE(void *p); #endif /* lowlevel functions, do not call! */ int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c); int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c); #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); int fast_s_mp_sqr(const mp_int *a, mp_int *b); int s_mp_sqr(const mp_int *a, mp_int *b); int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c); int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c); int mp_karatsuba_sqr(const mp_int *a, mp_int *b); int mp_toom_sqr(const mp_int *a, mp_int *b); int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c); int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode); int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode); void bn_reverse(unsigned char *s, int len); extern const char *const mp_s_rmap; extern const unsigned char mp_s_rmap_reverse[]; extern const size_t mp_s_rmap_reverse_sz; /* Fancy macro to set an MPI from another type. * There are several things assumed: * x is the counter and unsigned * a is the pointer to the MPI * b is the original value that should be set in the MPI. */ #define MP_SET_XLONG(func_name, type) \ int func_name (mp_int * a, type b) \ { \ unsigned int x; \ int res; \ \ mp_zero (a); \ \ /* set four bits at a time */ \ for (x = 0; x < (sizeof(type) * 2u); x++) { \ /* shift the number up four bits */ \ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { \ return res; \ } \ \ /* OR in the top four bits of the source */ \ a->dp[0] |= (mp_digit)(b >> ((sizeof(type) * 8u) - 4u)) & 15uL;\ \ /* shift the source up to the next four bits */ \ b <<= 4; \ \ /* ensure that digits are not clamped off */ \ a->used += 1; \ } \ mp_clamp (a); \ return MP_OKAY; \ } #ifdef __cplusplus } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Changes to libtommath/tommath_superclass.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | /* super class file for PK algos */ /* default ... include all MPI */ #define LTM_ALL /* RSA only (does not support DH/DSA/ECC) */ /* #define SC_RSA_1 */ /* For reference.... On an Athlon64 optimizing for speed... LTM's mpi.o with all functions [striped] is 142KiB in size. */ /* Works for RSA only, mpi.o is 68KiB */ #ifdef SC_RSA_1 | > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* super class file for PK algos */ /* default ... include all MPI */ #define LTM_ALL /* RSA only (does not support DH/DSA/ECC) */ /* #define SC_RSA_1 */ /* For reference.... On an Athlon64 optimizing for speed... LTM's mpi.o with all functions [striped] is 142KiB in size. */ /* Works for RSA only, mpi.o is 68KiB */ #ifdef SC_RSA_1 # define BN_MP_SHRINK_C # define BN_MP_LCM_C # define BN_MP_PRIME_RANDOM_EX_C # define BN_MP_INVMOD_C # define BN_MP_GCD_C # define BN_MP_MOD_C # define BN_MP_MULMOD_C # define BN_MP_ADDMOD_C # define BN_MP_EXPTMOD_C # define BN_MP_SET_INT_C # define BN_MP_INIT_MULTI_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_MOD_D_C # define BN_MP_PRIME_RABIN_MILLER_TRIALS_C # define BN_REVERSE_C # define BN_PRIME_TAB_C /* other modifiers */ # define BN_MP_DIV_SMALL /* Slower division, not critical */ /* here we are on the last pass so we turn things off. The functions classes are still there * but we remove them specifically from the build. This also invokes tweaks in functions * like removing support for even moduli, etc... */ # ifdef LTM_LAST # undef BN_MP_TOOM_MUL_C # undef BN_MP_TOOM_SQR_C # undef BN_MP_KARATSUBA_MUL_C # undef BN_MP_KARATSUBA_SQR_C # undef BN_MP_REDUCE_C # undef BN_MP_REDUCE_SETUP_C # undef BN_MP_DR_IS_MODULUS_C # undef BN_MP_DR_SETUP_C # undef BN_MP_DR_REDUCE_C # undef BN_MP_REDUCE_IS_2K_C # undef BN_MP_REDUCE_2K_SETUP_C # undef BN_MP_REDUCE_2K_C # undef BN_S_MP_EXPTMOD_C # undef BN_MP_DIV_3_C # undef BN_S_MP_MUL_HIGH_DIGS_C # undef BN_FAST_S_MP_MUL_HIGH_DIGS_C # undef BN_FAST_MP_INVMOD_C /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without * trouble. */ # undef BN_S_MP_MUL_DIGS_C # undef BN_S_MP_SQR_C # undef BN_MP_MONTGOMERY_REDUCE_C # endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */ |
Added tests-perf/timer-event.perf.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | #!/usr/bin/tclsh # ------------------------------------------------------------------------ # # timer-event.perf.tcl -- # # This file provides performance tests for comparison of tcl-speed # of timer events (event-driven tcl-handling). # # ------------------------------------------------------------------------ # # Copyright (c) 2014 Serg G. Brester (aka sebres) # # See the file "license.terms" for information on usage and redistribution # of this file. # if {![namespace exists ::tclTestPerf]} { source [file join [file dirname [info script]] test-performance.tcl] } namespace eval ::tclTestPerf-Timer-Event { namespace path {::tclTestPerf} proc test-queue {{reptime {1000 10000}}} { set howmuch [lindex $reptime 1] # because of extremely short measurement times by tests below, wait a little bit (warming-up), # to minimize influence of the time-gradation (just for better dispersion resp. result-comparison) timerate {after 0} 156 puts "*** up to $howmuch events ***" # single iteration by update, so using -no-result (measure only): _test_run -no-result $reptime [string map [list \{*\}\$reptime $reptime \$howmuch $howmuch \\# \#] { # generate up to $howmuch idle-events: {after idle {set foo bar}} # update / after idle: {update; if {![llength [after info]]} break} # generate up to $howmuch idle-events: {after idle {set foo bar}} # update idletasks / after idle: {update idletasks; if {![llength [after info]]} break} # generate up to $howmuch immediate events: {after 0 {set foo bar}} # update / after 0: {update; if {![llength [after info]]} break} # generate up to $howmuch 1-ms events: {after 1 {set foo bar}} setup {after 1} # update / after 1: {update; if {![llength [after info]]} break} # generate up to $howmuch immediate events (+ 1 event of the second generation): {after 0 {after 0 {}}} # update / after 0 (double generation): {update; if {![llength [after info]]} break} # cancel forwards "after idle" / $howmuch idle-events in queue: setup {set i 0; timerate {set ev([incr i]) [after idle {set foo bar}]} {*}$reptime} setup {set le $i; set i 0; list 1 .. $le; # cancel up to $howmuch events} {after cancel $ev([incr i]); if {$i >= $le} break} cleanup {update; unset -nocomplain ev} # cancel backwards "after idle" / $howmuch idle-events in queue: setup {set i 0; timerate {set ev([incr i]) [after idle {set foo bar}]} {*}$reptime} setup {set le $i; incr i; list $le .. 1; # cancel up to $howmuch events} {after cancel $ev([incr i -1]); if {$i <= 1} break} cleanup {update; unset -nocomplain ev} # cancel forwards "after 0" / $howmuch timer-events in queue: setup {set i 0; timerate {set ev([incr i]) [after 0 {set foo bar}]} {*}$reptime} setup {set le $i; set i 0; list 1 .. $le; # cancel up to $howmuch events} {after cancel $ev([incr i]); if {$i >= $howmuch} break} cleanup {update; unset -nocomplain ev} # cancel backwards "after 0" / $howmuch timer-events in queue: setup {set i 0; timerate {set ev([incr i]) [after 0 {set foo bar}]} {*}$reptime} setup {set le $i; incr i; list $le .. 1; # cancel up to $howmuch events} {after cancel $ev([incr i -1]); if {$i <= 1} break} cleanup {update; unset -nocomplain ev} # end $howmuch events. cleanup {if [llength [after info]] {error "unexpected: [llength [after info]] events are still there."}} }] } proc test-access {{reptime {1000 5000}}} { set howmuch [lindex $reptime 1] _test_run $reptime [string map [list \{*\}\$reptime $reptime \$howmuch $howmuch] { # event random access: after idle + after info (by $howmuch events) setup {set i -1; timerate {set ev([incr i]) [after idle {}]} {*}$reptime} {after info $ev([expr {int(rand()*$i)}])} cleanup {update; unset -nocomplain ev} # event random access: after 0 + after info (by $howmuch events) setup {set i -1; timerate {set ev([incr i]) [after 0 {}]} {*}$reptime} {after info $ev([expr {int(rand()*$i)}])} cleanup {update; unset -nocomplain ev} # end $howmuch events. cleanup {if [llength [after info]] {error "unexpected: [llength [after info]] events are still there."}} }] } proc test-exec {{reptime 1000}} { _test_run $reptime { # after idle + after cancel {after cancel [after idle {set foo bar}]} # after 0 + after cancel {after cancel [after 0 {set foo bar}]} # after idle + update idletasks {after idle {set foo bar}; update idletasks} # after idle + update {after idle {set foo bar}; update} # immediate: after 0 + update {after 0 {set foo bar}; update} # delayed: after 1 + update {after 1 {set foo bar}; update} # empty update: {update} # empty update idle tasks: {update idletasks} # simple shortest sleep: {after 0} } } proc test-nrt-capability {{reptime 1000}} { _test_run $reptime { # comparison values: {after 0 {set a 5}; update} {after 0 {set a 5}; vwait a} # conditional vwait with very brief wait-time: {after 1 {set a timeout}; vwait a; expr {$::a ne "timeout" ? 1 : "0[unset ::a]"}} {after 0 {set a timeout}; vwait a; expr {$::a ne "timeout" ? 1 : "0[unset ::a]"}} } } proc test-long {{reptime 1000}} { _test_run $reptime { # in-between important event by amount of idle events: {time {after idle {after 30}} 10; after 1 {set important 1}; vwait important;} cleanup {foreach i [after info] {after cancel $i}} # in-between important event (of new generation) by amount of idle events: {time {after idle {after 30}} 10; after 1 {after 0 {set important 1}}; vwait important;} cleanup {foreach i [after info] {after cancel $i}} } } proc test {{reptime 1000}} { test-exec $reptime foreach howmuch {5000 50000} { test-access [list $reptime $howmuch] } test-nrt-capability $reptime test-long $reptime puts "" foreach howmuch { 10000 20000 40000 60000 } { test-queue [list $reptime $howmuch] } puts \n**OK** } }; # end of ::tclTestPerf-Timer-Event # ------------------------------------------------------------------------ # if calling direct: if {[info exists ::argv0] && [file tail $::argv0] eq [file tail [info script]]} { array set in {-time 500} array set in $argv ::tclTestPerf-Timer-Event::test $in(-time) } |
Changes to tests/cmdMZ.test.
︙ | ︙ | |||
337 338 339 340 341 342 343 344 345 346 347 348 349 350 | test cmdMZ-5.7 {Tcl_TimeObjCmd: errors generate right trace} { list [catch {time {error foo}} msg] $msg $::errorInfo } {1 foo {foo while executing "error foo" invoked from within "time {error foo}"}} # The tests for Tcl_WhileObjCmd are in while.test # cleanup cleanupTests } namespace delete ::tcl::test::cmdMZ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | test cmdMZ-5.7 {Tcl_TimeObjCmd: errors generate right trace} { list [catch {time {error foo}} msg] $msg $::errorInfo } {1 foo {foo while executing "error foo" invoked from within "time {error foo}"}} test cmdMZ-6.1 {Tcl_TimeRateObjCmd: basic format of command} { list [catch {timerate} msg] $msg } {1 {wrong # args: should be "timerate ?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??"}} test cmdMZ-6.2.1 {Tcl_TimeRateObjCmd: basic format of command} { list [catch {timerate a b c d} msg] $msg } {1 {wrong # args: should be "timerate ?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??"}} test cmdMZ-6.2.2 {Tcl_TimeRateObjCmd: basic format of command} { list [catch {timerate a b c} msg] $msg } {1 {expected integer but got "b"}} test cmdMZ-6.2.3 {Tcl_TimeRateObjCmd: basic format of command} { list [catch {timerate a b} msg] $msg } {1 {expected integer but got "b"}} test cmdMZ-6.3 {Tcl_TimeRateObjCmd: basic format of command} { list [catch {timerate -overhead b {} a b} msg] $msg } {1 {expected floating-point number but got "b"}} test cmdMZ-6.4 {Tcl_TimeRateObjCmd: compile of script happens even with negative iteration counts} { list [catch {timerate "foreach a {c d e} \{" -12456} msg] $msg } {1 {missing close-brace}} test cmdMZ-6.5 {Tcl_TimeRateObjCmd: result format and one iteration} { regexp {^\d+.\d+ \ws/# 1 # \d+ #/sec \d+.\d+ nett-ms$} [timerate {} 0] } 1 test cmdMZ-6.6 {Tcl_TimeRateObjCmd: slower commands take longer, but it remains almost the same time of measument} { set m1 [timerate {after 0} 20] set m2 [timerate {after 1} 20] list \ [expr {[lindex $m1 0] < [lindex $m2 0]}] \ [expr {[lindex $m1 0] < 100}] \ [expr {[lindex $m2 0] >= 500}] \ [expr {[lindex $m1 2] > 1000}] \ [expr {[lindex $m2 2] <= 50}] \ [expr {[lindex $m1 4] > 10000}] \ [expr {[lindex $m2 4] < 10000}] \ [expr {[lindex $m1 6] > 10 && [lindex $m1 6] < 50}] \ [expr {[lindex $m2 6] > 10 && [lindex $m2 6] < 50}] } [lrepeat 9 1] test cmdMZ-6.7 {Tcl_TimeRateObjCmd: errors generate right trace} { list [catch {timerate {error foo} 1} msg] $msg $::errorInfo } {1 foo {foo while executing "error foo" invoked from within "timerate {error foo} 1"}} test cmdMZ-6.8 {Tcl_TimeRateObjCmd: allow (conditional) break from timerate} { set m1 [timerate {break}] list \ [expr {[lindex $m1 0] < 1000}] \ [expr {[lindex $m1 2] == 1}] \ [expr {[lindex $m1 4] > 1000}] \ [expr {[lindex $m1 6] < 10}] } {1 1 1 1} test cmdMZ-6.9 {Tcl_TimeRateObjCmd: max count of iterations} { set m1 [timerate {} 1000 5]; # max-count wins set m2 [timerate {after 20} 1 5]; # max-time wins list [lindex $m1 2] [lindex $m2 2] } {5 1} test cmdMZ-6.10 {Tcl_TimeRateObjCmd: huge overhead cause 0us result} { set m1 [timerate -overhead 1e6 {after 10} 100 1] list \ [expr {[lindex $m1 0] == 0.0}] \ [expr {[lindex $m1 2] == 1}] \ [expr {[lindex $m1 4] == 1000000}] \ [expr {[lindex $m1 6] <= 0.001}] } {1 1 1 1} # The tests for Tcl_WhileObjCmd are in while.test # cleanup cleanupTests } namespace delete ::tcl::test::cmdMZ |
︙ | ︙ |
Changes to tests/socket.test.
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 67 68 69 70 71 | # server will be performed; otherwise, it will attempt to start the remote # server (via exec) on platforms that support this, on the local host, # listening at port 2048. If all fails, a message is printed and the tests # using the remote server are not performed. package require tcltest 2 namespace import -force ::tcltest::* # Some tests require the Thread package or exec command testConstraint thread [expr {0 == [catch {package require Thread 2.7-}]}] testConstraint exec [llength [info commands exec]] # Produce a random port number in the Dynamic/Private range # from 49152 through 65535. | > > > > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | # server will be performed; otherwise, it will attempt to start the remote # server (via exec) on platforms that support this, on the local host, # listening at port 2048. If all fails, a message is printed and the tests # using the remote server are not performed. package require tcltest 2 namespace import -force ::tcltest::* if {[expr {[info exists ::env(TRAVIS_OSX_IMAGE)] && [string match xcode* $::env(TRAVIS_OSX_IMAGE)]}]} { return } # Some tests require the Thread package or exec command testConstraint thread [expr {0 == [catch {package require Thread 2.7-}]}] testConstraint exec [llength [info commands exec]] # Produce a random port number in the Dynamic/Private range # from 49152 through 65535. |
︙ | ︙ |
Changes to tests/var.test.
︙ | ︙ | |||
197 198 199 200 201 202 203 204 205 206 207 208 209 210 | namespace delete [namespace current] set result } } -result {0 2 1 {can't set "foo": upvar refers to element in deleted array}} test var-1.19 {TclLookupVar, right error message when parsing variable name} -body { [format set] thisvar(doesntexist) } -returnCodes error -result {can't read "thisvar(doesntexist)": no such variable} test var-2.1 {Tcl_LappendObjCmd, create var if new} { catch {unset x} lappend x 1 2 } {1 2} test var-3.1 {MakeUpvar, TCL_NAMESPACE_ONLY not specified for other var} -setup { | > > > > > > > > > > > > > > > > > > > > > > | 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | namespace delete [namespace current] set result } } -result {0 2 1 {can't set "foo": upvar refers to element in deleted array}} test var-1.19 {TclLookupVar, right error message when parsing variable name} -body { [format set] thisvar(doesntexist) } -returnCodes error -result {can't read "thisvar(doesntexist)": no such variable} test var-1.20 {TclLookupVar, regression on utf-8 variable names} -setup { proc p [list \u20ac \xe4] {info vars} } -body { # test variable with non-ascii name is available (euro and a-uml chars here): list \ [p 1 2] \ [apply [list [list \u20ac \xe4] {info vars}] 1 2] \ [apply [list [list [list \u20ac \u20ac] [list \xe4 \xe4]] {info vars}]] \ } -cleanup { rename p {} } -result [lrepeat 3 [list \u20ac \xe4]] test var-1.21 {TclLookupVar, regression on utf-8 variable names} -setup { proc p [list [list \u20ac v\u20ac] [list \xe4 v\xe4]] {list [set \u20ac] [set \xe4]} } -body { # test variable with non-ascii name (and default) is resolvable (euro and a-uml chars here): list \ [p] \ [apply [list [list \u20ac \xe4] {list [set \u20ac] [set \xe4]}] v\u20ac v\xe4] \ [apply [list [list [list \u20ac v\u20ac] [list \xe4 v\xe4]] {list [set \u20ac] [set \xe4]}]] \ } -cleanup { rename p {} } -result [lrepeat 3 [list v\u20ac v\xe4]] test var-2.1 {Tcl_LappendObjCmd, create var if new} { catch {unset x} lappend x 1 2 } {1 2} test var-3.1 {MakeUpvar, TCL_NAMESPACE_ONLY not specified for other var} -setup { |
︙ | ︙ |
Changes to tools/tcltk-man2html-utils.tcl.
︙ | ︙ | |||
145 146 147 148 149 150 151 152 153 154 155 156 157 158 | {\%} {} \ "\\\n" "\n" \ {\(+-} "±" \ {\(co} "©" \ {\(em} "—" \ {\(en} "–" \ {\(fm} "′" \ {\(mu} "×" \ {\(mi} "−" \ {\(->} "<font size=\"+1\">→</font>" \ {\fP} {\fR} \ {\.} . \ {\(bu} "•" \ {\*(qo} "ô" \ | > | 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | {\%} {} \ "\\\n" "\n" \ {\(+-} "±" \ {\(co} "©" \ {\(em} "—" \ {\(en} "–" \ {\(fm} "′" \ {\(mc} "µ" \ {\(mu} "×" \ {\(mi} "−" \ {\(->} "<font size=\"+1\">→</font>" \ {\fP} {\fR} \ {\.} . \ {\(bu} "•" \ {\*(qo} "ô" \ |
︙ | ︙ |
Changes to unix/Makefile.in.
︙ | ︙ | |||
317 318 319 320 321 322 323 | TOMMATH_OBJS = bncore.o bn_reverse.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_sqr.o bn_mp_add.o bn_mp_and.o \ bn_mp_add_d.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o \ bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_copy.o \ bn_mp_count_bits.o bn_mp_div.o bn_mp_div_d.o bn_mp_div_2.o \ | | | | 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | TOMMATH_OBJS = bncore.o bn_reverse.o bn_fast_s_mp_mul_digs.o \ bn_fast_s_mp_sqr.o bn_mp_add.o bn_mp_and.o \ bn_mp_add_d.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o \ bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_copy.o \ bn_mp_count_bits.o bn_mp_div.o bn_mp_div_d.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o bn_mp_exch.o \ bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_grow.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o \ bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mul.o bn_mp_mul_2.o \ bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_neg.o bn_mp_or.o \ bn_mp_radix_size.o bn_mp_radix_smap.o \ bn_mp_read_radix.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \ |
︙ | ︙ | |||
503 504 505 506 507 508 509 510 511 512 513 514 515 516 | $(TOMMATH_DIR)/bn_mp_div.c \ $(TOMMATH_DIR)/bn_mp_div_d.c \ $(TOMMATH_DIR)/bn_mp_div_2.c \ $(TOMMATH_DIR)/bn_mp_div_2d.c \ $(TOMMATH_DIR)/bn_mp_div_3.c \ $(TOMMATH_DIR)/bn_mp_exch.c \ $(TOMMATH_DIR)/bn_mp_expt_d.c \ $(TOMMATH_DIR)/bn_mp_grow.c \ $(TOMMATH_DIR)/bn_mp_init.c \ $(TOMMATH_DIR)/bn_mp_init_copy.c \ $(TOMMATH_DIR)/bn_mp_init_multi.c \ $(TOMMATH_DIR)/bn_mp_init_set.c \ $(TOMMATH_DIR)/bn_mp_init_set_int.c \ $(TOMMATH_DIR)/bn_mp_init_size.c \ | > | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | $(TOMMATH_DIR)/bn_mp_div.c \ $(TOMMATH_DIR)/bn_mp_div_d.c \ $(TOMMATH_DIR)/bn_mp_div_2.c \ $(TOMMATH_DIR)/bn_mp_div_2d.c \ $(TOMMATH_DIR)/bn_mp_div_3.c \ $(TOMMATH_DIR)/bn_mp_exch.c \ $(TOMMATH_DIR)/bn_mp_expt_d.c \ $(TOMMATH_DIR)/bn_mp_expt_d_ex.c \ $(TOMMATH_DIR)/bn_mp_grow.c \ $(TOMMATH_DIR)/bn_mp_init.c \ $(TOMMATH_DIR)/bn_mp_init_copy.c \ $(TOMMATH_DIR)/bn_mp_init_multi.c \ $(TOMMATH_DIR)/bn_mp_init_set.c \ $(TOMMATH_DIR)/bn_mp_init_set_int.c \ $(TOMMATH_DIR)/bn_mp_init_size.c \ |
︙ | ︙ | |||
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 | $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_div_3.c bn_mp_exch.o: $(TOMMATH_DIR)/bn_mp_exch.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_exch.c bn_mp_expt_d.o: $(TOMMATH_DIR)/bn_mp_expt_d.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_expt_d.c bn_mp_grow.o: $(TOMMATH_DIR)/bn_mp_grow.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_grow.c bn_mp_init.o: $(TOMMATH_DIR)/bn_mp_init.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_init.c | > > > | 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 | $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_div_3.c bn_mp_exch.o: $(TOMMATH_DIR)/bn_mp_exch.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_exch.c bn_mp_expt_d.o: $(TOMMATH_DIR)/bn_mp_expt_d.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_expt_d.c bn_mp_expt_d_ex.o: $(TOMMATH_DIR)/bn_mp_expt_d_ex.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_expt_d_ex.c bn_mp_grow.o: $(TOMMATH_DIR)/bn_mp_grow.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_grow.c bn_mp_init.o: $(TOMMATH_DIR)/bn_mp_init.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_init.c |
︙ | ︙ |
Changes to unix/tclUnixTime.c.
︙ | ︙ | |||
244 245 246 247 248 249 250 | } /* *---------------------------------------------------------------------- * * TclpWideClickInMicrosec -- * | | | 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | } /* *---------------------------------------------------------------------- * * TclpWideClickInMicrosec -- * * This procedure return scale to convert click values from the * TclpGetWideClicks native resolution to microsecond resolution * and back. * * Results: * 1 click in microseconds as double. * * Side effects: |
︙ | ︙ |
Changes to win/Makefile.in.
︙ | ︙ | |||
332 333 334 335 336 337 338 339 340 341 342 343 344 345 | bn_mp_div.${OBJEXT} \ bn_mp_div_d.${OBJEXT} \ bn_mp_div_2.${OBJEXT} \ bn_mp_div_2d.${OBJEXT} \ bn_mp_div_3.${OBJEXT} \ bn_mp_exch.${OBJEXT} \ bn_mp_expt_d.${OBJEXT} \ bn_mp_grow.${OBJEXT} \ bn_mp_init.${OBJEXT} \ bn_mp_init_copy.${OBJEXT} \ bn_mp_init_multi.${OBJEXT} \ bn_mp_init_set.${OBJEXT} \ bn_mp_init_set_int.${OBJEXT} \ bn_mp_init_size.${OBJEXT} \ | > | 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | bn_mp_div.${OBJEXT} \ bn_mp_div_d.${OBJEXT} \ bn_mp_div_2.${OBJEXT} \ bn_mp_div_2d.${OBJEXT} \ bn_mp_div_3.${OBJEXT} \ bn_mp_exch.${OBJEXT} \ bn_mp_expt_d.${OBJEXT} \ bn_mp_expt_d_ex.${OBJEXT} \ bn_mp_grow.${OBJEXT} \ bn_mp_init.${OBJEXT} \ bn_mp_init_copy.${OBJEXT} \ bn_mp_init_multi.${OBJEXT} \ bn_mp_init_set.${OBJEXT} \ bn_mp_init_set_int.${OBJEXT} \ bn_mp_init_size.${OBJEXT} \ |
︙ | ︙ |
Changes to win/makefile.vc.
︙ | ︙ | |||
272 273 274 275 276 277 278 279 280 281 282 283 284 285 | $(TMP_DIR)\bn_mp_div.obj \ $(TMP_DIR)\bn_mp_div_d.obj \ $(TMP_DIR)\bn_mp_div_2.obj \ $(TMP_DIR)\bn_mp_div_2d.obj \ $(TMP_DIR)\bn_mp_div_3.obj \ $(TMP_DIR)\bn_mp_exch.obj \ $(TMP_DIR)\bn_mp_expt_d.obj \ $(TMP_DIR)\bn_mp_grow.obj \ $(TMP_DIR)\bn_mp_init.obj \ $(TMP_DIR)\bn_mp_init_copy.obj \ $(TMP_DIR)\bn_mp_init_multi.obj \ $(TMP_DIR)\bn_mp_init_set.obj \ $(TMP_DIR)\bn_mp_init_set_int.obj \ $(TMP_DIR)\bn_mp_init_size.obj \ | > | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | $(TMP_DIR)\bn_mp_div.obj \ $(TMP_DIR)\bn_mp_div_d.obj \ $(TMP_DIR)\bn_mp_div_2.obj \ $(TMP_DIR)\bn_mp_div_2d.obj \ $(TMP_DIR)\bn_mp_div_3.obj \ $(TMP_DIR)\bn_mp_exch.obj \ $(TMP_DIR)\bn_mp_expt_d.obj \ $(TMP_DIR)\bn_mp_expt_d_ex.obj \ $(TMP_DIR)\bn_mp_grow.obj \ $(TMP_DIR)\bn_mp_init.obj \ $(TMP_DIR)\bn_mp_init_copy.obj \ $(TMP_DIR)\bn_mp_init_multi.obj \ $(TMP_DIR)\bn_mp_init_set.obj \ $(TMP_DIR)\bn_mp_init_set_int.obj \ $(TMP_DIR)\bn_mp_init_size.obj \ |
︙ | ︙ |
Changes to win/tclWin32Dll.c.
︙ | ︙ | |||
639 640 641 642 643 644 645 | Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4); result = Tcl_DStringValue(dsPtr) + oldLength; p = result; wEnd = (TCHAR *)string + len; for (w = (TCHAR *)string; w < wEnd; ) { if (!blen && ((*w & 0xFC00) != 0xDC00)) { | | > > > > | | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4); result = Tcl_DStringValue(dsPtr) + oldLength; p = result; wEnd = (TCHAR *)string + len; for (w = (TCHAR *)string; w < wEnd; ) { if (!blen && ((*w & 0xFC00) != 0xDC00)) { /* Special case for handling high surrogates. */ p += Tcl_UniCharToUtf(-1, p); } blen = Tcl_UniCharToUtf(*w, p); p += blen; if ((*w >= 0xD800) && (blen < 3)) { /* Indication that high surrogate is handled */ blen = 0; } w++; } if (!blen) { /* Special case for handling high surrogates. */ p += Tcl_UniCharToUtf(-1, p); } Tcl_DStringSetLength(dsPtr, oldLength + (p - result)); return result; #else return Tcl_UniCharToUtfDString((Tcl_UniChar *)string, len, dsPtr); |
︙ | ︙ |
Changes to win/tclWinPipe.c.
︙ | ︙ | |||
1567 1568 1569 1570 1571 1572 1573 | } quote &= ~(CL_ESCAPE|CL_QUOTE); /* reset escape flags */ bspos = NULL; if (arg[0] == '\0') { quote = CL_QUOTE; } else { | < < | < | | | 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 | } quote &= ~(CL_ESCAPE|CL_QUOTE); /* reset escape flags */ bspos = NULL; if (arg[0] == '\0') { quote = CL_QUOTE; } else { for (start = arg; *start != '\0' && (quote & (CL_ESCAPE|CL_QUOTE)) != (CL_ESCAPE|CL_QUOTE); start++ ) { if (*start & 0x80) continue; if (TclIsSpaceProc(*start)) { quote |= CL_QUOTE; /* quote only */ if (bspos) { /* if backslash found - escape & quote */ quote |= CL_ESCAPE; break; } continue; } |
︙ | ︙ |
Changes to win/tclWinTime.c.
︙ | ︙ | |||
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | typedef struct TimeInfo { CRITICAL_SECTION cs; /* Mutex guarding this structure. */ int initialized; /* Flag == 1 if this structure is * initialized. */ int perfCounterAvailable; /* Flag == 1 if the hardware has a performance * counter. */ HANDLE calibrationThread; /* Handle to the thread that keeps the virtual * clock calibrated. */ HANDLE readyEvent; /* System event used to trigger the requesting * thread when the clock calibration procedure * is initialized for the first time. */ HANDLE exitEvent; /* Event to signal out of an exit handler to * tell the calibration loop to terminate. */ LARGE_INTEGER nominalFreq; /* Nominal frequency of the system performance * counter, that is, the value returned from * QueryPerformanceFrequency. */ | > < > > > > | | | | > | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | typedef struct TimeInfo { CRITICAL_SECTION cs; /* Mutex guarding this structure. */ int initialized; /* Flag == 1 if this structure is * initialized. */ int perfCounterAvailable; /* Flag == 1 if the hardware has a performance * counter. */ DWORD calibrationInterv; /* Calibration interval in seconds (start 1 sec) */ HANDLE calibrationThread; /* Handle to the thread that keeps the virtual * clock calibrated. */ HANDLE readyEvent; /* System event used to trigger the requesting * thread when the clock calibration procedure * is initialized for the first time. */ HANDLE exitEvent; /* Event to signal out of an exit handler to * tell the calibration loop to terminate. */ LARGE_INTEGER nominalFreq; /* Nominal frequency of the system performance * counter, that is, the value returned from * QueryPerformanceFrequency. */ /* * The following values are used for calculating virtual time. Virtual * time is always equal to: * lastFileTime + (current perf counter - lastCounter) * * 10000000 / curCounterFreq * and lastFileTime and lastCounter are updated any time that virtual time * is returned to a caller. */ ULARGE_INTEGER fileTimeLastCall; LARGE_INTEGER perfCounterLastCall; LARGE_INTEGER curCounterFreq; LARGE_INTEGER posixEpoch; /* Posix epoch expressed as 100-ns ticks since * the windows epoch. */ /* * Data used in developing the estimate of performance counter frequency */ Tcl_WideUInt fileTimeSample[SAMPLES]; /* Last 64 samples of system time. */ Tcl_WideInt perfCounterSample[SAMPLES]; /* Last 64 samples of performance counter. */ int sampleNo; /* Current sample number. */ } TimeInfo; static TimeInfo timeInfo = { { NULL, 0, 0, NULL, NULL, 0 }, 0, 0, 1, (HANDLE) NULL, (HANDLE) NULL, (HANDLE) NULL, #ifdef HAVE_CAST_TO_UNION (LARGE_INTEGER) (Tcl_WideInt) 0, (ULARGE_INTEGER) (DWORDLONG) 0, (LARGE_INTEGER) (Tcl_WideInt) 0, (LARGE_INTEGER) (Tcl_WideInt) 0, (LARGE_INTEGER) (Tcl_WideInt) 0, #else {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, #endif { 0 }, { 0 }, 0 }; /* |
︙ | ︙ | |||
248 249 250 251 252 253 254 | LARGE_INTEGER curCounter; if (!wideClick.initialized) { LARGE_INTEGER perfCounterFreq; /* * The frequency of the performance counter is fixed at system boot and | | | | | 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | LARGE_INTEGER curCounter; if (!wideClick.initialized) { LARGE_INTEGER perfCounterFreq; /* * The frequency of the performance counter is fixed at system boot and * is consistent across all processors. Therefore, the frequency need * only be queried upon application initialization. */ if (QueryPerformanceFrequency(&perfCounterFreq)) { wideClick.perfCounter = 1; wideClick.microsecsScale = 1000000.0 / perfCounterFreq.QuadPart; } else { /* fallback using microseconds */ wideClick.perfCounter = 0; wideClick.microsecsScale = 1; } wideClick.initialized = 1; } if (wideClick.perfCounter) { if (QueryPerformanceCounter(&curCounter)) { return (Tcl_WideInt)curCounter.QuadPart; } /* fallback using microseconds */ wideClick.perfCounter = 0; wideClick.microsecsScale = 1; return TclpGetMicroseconds(); } else { return TclpGetMicroseconds(); } } /* *---------------------------------------------------------------------- * * TclpWideClickInMicrosec -- * * This procedure return scale to convert wide click values from the * TclpGetWideClicks native resolution to microsecond resolution * and back. * * Results: * 1 click in microseconds as double. * * Side effects: |
︙ | ︙ | |||
319 320 321 322 323 324 325 | * * Side effects: * None. * *---------------------------------------------------------------------- */ | | | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | * * Side effects: * None. * *---------------------------------------------------------------------- */ Tcl_WideInt TclpGetMicroseconds(void) { Tcl_WideInt usecSincePosixEpoch; /* Try to use high resolution timer */ if ( tclGetTimeProcPtr == NativeGetTime && (usecSincePosixEpoch = NativeGetMicroseconds()) |
︙ | ︙ | |||
430 431 432 433 434 435 436 437 438 439 440 | * clock (obtained through ftime) and the frequency of the performance * counter. Also spins a thread whose function is to wake up periodically * and monitor these values, adjusting them as necessary to correct for * drift in the performance counter's oscillator. * *---------------------------------------------------------------------- */ static Tcl_WideInt NativeGetMicroseconds(void) { | > > > > > > > > > > > < < < | | | 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | * clock (obtained through ftime) and the frequency of the performance * counter. Also spins a thread whose function is to wake up periodically * and monitor these values, adjusting them as necessary to correct for * drift in the performance counter's oscillator. * *---------------------------------------------------------------------- */ static inline Tcl_WideInt NativeCalc100NsTicks( ULONGLONG fileTimeLastCall, LONGLONG perfCounterLastCall, LONGLONG curCounterFreq, LONGLONG curCounter ) { return fileTimeLastCall + ((curCounter - perfCounterLastCall) * 10000000 / curCounterFreq); } static Tcl_WideInt NativeGetMicroseconds(void) { /* * Initialize static storage on the first trip through. * * Note: Outer check for 'initialized' is a performance win since it * avoids an extra mutex lock in the common case. */ if (!timeInfo.initialized) { TclpInitLock(); if (!timeInfo.initialized) { timeInfo.posixEpoch.LowPart = 0xD53E8000; timeInfo.posixEpoch.HighPart = 0x019DB1DE; timeInfo.perfCounterAvailable = QueryPerformanceFrequency(&timeInfo.nominalFreq); /* * Some hardware abstraction layers use the CPU clock in place of * the real-time clock as a performance counter reference. This |
︙ | ︙ | |||
555 556 557 558 559 560 561 | if (timeInfo.perfCounterAvailable && timeInfo.curCounterFreq.QuadPart!=0) { /* * Query the performance counter and use it to calculate the current * time. */ | | | < < < < | | | | | | < | | > | | < < < < | 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 | if (timeInfo.perfCounterAvailable && timeInfo.curCounterFreq.QuadPart!=0) { /* * Query the performance counter and use it to calculate the current * time. */ ULONGLONG fileTimeLastCall; LONGLONG perfCounterLastCall, curCounterFreq; /* Copy with current data of calibration cycle */ LARGE_INTEGER curCounter; /* Current performance counter. */ QueryPerformanceCounter(&curCounter); /* * Hold time section locked as short as possible */ EnterCriticalSection(&timeInfo.cs); fileTimeLastCall = timeInfo.fileTimeLastCall.QuadPart; perfCounterLastCall = timeInfo.perfCounterLastCall.QuadPart; curCounterFreq = timeInfo.curCounterFreq.QuadPart; LeaveCriticalSection(&timeInfo.cs); /* * If calibration cycle occurred after we get curCounter */ if (curCounter.QuadPart <= perfCounterLastCall) { /* Calibrated file-time is saved from posix in 100-ns ticks */ return fileTimeLastCall / 10; } /* * If it appears to be more than 1.1 seconds since the last trip * through the calibration loop, the performance counter may have * jumped forward. (See MSDN Knowledge Base article Q274323 for a * description of the hardware problem that makes this test * necessary.) If the counter jumps, we don't want to use it directly. * Instead, we must return system time. Eventually, the calibration * loop should recover. */ if (curCounter.QuadPart - perfCounterLastCall < 11 * curCounterFreq * timeInfo.calibrationInterv / 10 ) { /* Calibrated file-time is saved from posix in 100-ns ticks */ return NativeCalc100NsTicks(fileTimeLastCall, perfCounterLastCall, curCounterFreq, curCounter.QuadPart) / 10; } } /* * High resolution timer is not available. */ return 0; |
︙ | ︙ | |||
676 677 678 679 680 681 682 683 684 685 686 687 688 689 | * * Side effects: * Sets the 'exitEvent' event in the 'timeInfo' structure to ask the * thread in question to exit, and waits for it to do so. * *---------------------------------------------------------------------- */ static void StopCalibration( ClientData unused) /* Client data is unused */ { SetEvent(timeInfo.exitEvent); | > > | 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 | * * Side effects: * Sets the 'exitEvent' event in the 'timeInfo' structure to ask the * thread in question to exit, and waits for it to do so. * *---------------------------------------------------------------------- */ void TclWinResetTimerResolution(void); static void StopCalibration( ClientData unused) /* Client data is unused */ { SetEvent(timeInfo.exitEvent); |
︙ | ︙ | |||
965 966 967 968 969 970 971 972 973 974 975 976 977 978 | */ GetSystemTimeAsFileTime(&curFileTime); QueryPerformanceCounter(&timeInfo.perfCounterLastCall); QueryPerformanceFrequency(&timeInfo.curCounterFreq); timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime; timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime; ResetCounterSamples(timeInfo.fileTimeLastCall.QuadPart, timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart); /* * Wake up the calling thread. When it wakes up, it will release the | > > | 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 | */ GetSystemTimeAsFileTime(&curFileTime); QueryPerformanceCounter(&timeInfo.perfCounterLastCall); QueryPerformanceFrequency(&timeInfo.curCounterFreq); timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime; timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime; /* Calibrated file-time will be saved from posix in 100-ns ticks */ timeInfo.fileTimeLastCall.QuadPart -= timeInfo.posixEpoch.QuadPart; ResetCounterSamples(timeInfo.fileTimeLastCall.QuadPart, timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart); /* * Wake up the calling thread. When it wakes up, it will release the |
︙ | ︙ | |||
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | static void UpdateTimeEachSecond(void) { LARGE_INTEGER curPerfCounter; /* Current value returned from * QueryPerformanceCounter. */ FILETIME curSysTime; /* Current system time. */ LARGE_INTEGER curFileTime; /* File time at the time this callback was * scheduled. */ Tcl_WideInt estFreq; /* Estimated perf counter frequency. */ Tcl_WideInt vt0; /* Tcl time right now. */ Tcl_WideInt vt1; /* Tcl time one second from now. */ Tcl_WideInt tdiff; /* Difference between system clock and Tcl * time. */ Tcl_WideInt driftFreq; /* Frequency needed to drift virtual time into * step over 1 second. */ /* | > | < > > > > > > > > | > | > < | 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | static void UpdateTimeEachSecond(void) { LARGE_INTEGER curPerfCounter; /* Current value returned from * QueryPerformanceCounter. */ FILETIME curSysTime; /* Current system time. */ static LARGE_INTEGER lastFileTime; /* File time of the previous calibration */ LARGE_INTEGER curFileTime; /* File time at the time this callback was * scheduled. */ Tcl_WideInt estFreq; /* Estimated perf counter frequency. */ Tcl_WideInt vt0; /* Tcl time right now. */ Tcl_WideInt vt1; /* Tcl time one second from now. */ Tcl_WideInt tdiff; /* Difference between system clock and Tcl * time. */ Tcl_WideInt driftFreq; /* Frequency needed to drift virtual time into * step over 1 second. */ /* * Sample performance counter and system time (from posix epoch). */ GetSystemTimeAsFileTime(&curSysTime); curFileTime.LowPart = curSysTime.dwLowDateTime; curFileTime.HighPart = curSysTime.dwHighDateTime; curFileTime.QuadPart -= timeInfo.posixEpoch.QuadPart; /* If calibration still not needed (check for possible time switch) */ if ( curFileTime.QuadPart > lastFileTime.QuadPart && curFileTime.QuadPart < lastFileTime.QuadPart + (timeInfo.calibrationInterv * 10000000) ) { /* again in next one second */ return; } QueryPerformanceCounter(&curPerfCounter); lastFileTime.QuadPart = curFileTime.QuadPart; /* * We devide by timeInfo.curCounterFreq.QuadPart in several places. That * value should always be positive on a correctly functioning system. But * it is good to be defensive about such matters. So if something goes * wrong and the value does goes to zero, we clear the * timeInfo.perfCounterAvailable in order to cause the calibration thread * to shut itself down, then return without additional processing. */ if (timeInfo.curCounterFreq.QuadPart == 0){ timeInfo.perfCounterAvailable = 0; return; } /* * Several things may have gone wrong here that have to be checked for. * (1) The performance counter may have jumped. |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 | * * vt1 = 20000000 + curFileTime * * The frequency that we need to use to drift the counter back into place * is estFreq * 20000000 / (vt1 - vt0) */ | < | | < < | > | < > > | > > > > > > > > > > > > > | > > | > > > > | > > > > > > > | > > > > > > > > > > > > > > > | | > | > > | > > > > > > > > | 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 | * * vt1 = 20000000 + curFileTime * * The frequency that we need to use to drift the counter back into place * is estFreq * 20000000 / (vt1 - vt0) */ vt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart, timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart, curPerfCounter.QuadPart); /* * If we've gotten more than a second away from system time, then drifting * the clock is going to be pretty hopeless. Just let it jump. Otherwise, * compute the drift frequency and fill in everything. */ tdiff = vt0 - curFileTime.QuadPart; if (tdiff > 10000000 || tdiff < -10000000) { /* jump to current system time, use curent estimated frequency */ vt0 = curFileTime.QuadPart; } else { /* calculate new frequency and estimate drift to the next second */ vt1 = 20000000 + curFileTime.QuadPart; driftFreq = (estFreq * 20000000 / (vt1 - vt0)); /* * Avoid too large drifts (only half of the current difference), * that allows also be more accurate (aspire to the smallest tdiff), * so then we can prolong calibration interval by tdiff < 100000 */ driftFreq = timeInfo.curCounterFreq.QuadPart + (driftFreq - timeInfo.curCounterFreq.QuadPart) / 2; /* * Average between estimated, 2 current and 5 drifted frequencies, * (do the soft drifting as possible) */ estFreq = (estFreq + 2 * timeInfo.curCounterFreq.QuadPart + 5 * driftFreq) / 8; } /* Avoid too large discrepancy from nominal frequency */ if (estFreq > 1003*timeInfo.nominalFreq.QuadPart/1000) { estFreq = 1003*timeInfo.nominalFreq.QuadPart/1000; vt0 = curFileTime.QuadPart; } else if (estFreq < 997*timeInfo.nominalFreq.QuadPart/1000) { estFreq = 997*timeInfo.nominalFreq.QuadPart/1000; vt0 = curFileTime.QuadPart; } else if (vt0 != curFileTime.QuadPart) { /* * Be sure the clock ticks never backwards (avoid it by negative drifting) * just compare native time (in 100-ns) before and hereafter using * new calibrated values) and do a small adjustment (short time freeze) */ LARGE_INTEGER newPerfCounter; Tcl_WideInt nt0, nt1; QueryPerformanceCounter(&newPerfCounter); nt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart, timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart, newPerfCounter.QuadPart); nt1 = NativeCalc100NsTicks(vt0, curPerfCounter.QuadPart, estFreq, newPerfCounter.QuadPart); if (nt0 > nt1) { /* drifted backwards, try to compensate with new base */ /* first adjust with a micro jump (short frozen time is acceptable) */ vt0 += nt0 - nt1; /* if drift unavoidable (e. g. we had a time switch), then reset it */ vt1 = vt0 - curFileTime.QuadPart; if (vt1 > 10000000 || vt1 < -10000000) { /* larger jump resp. shift relative new file-time */ vt0 = curFileTime.QuadPart; } } } /* In lock commit new values to timeInfo (hold lock as short as possible) */ EnterCriticalSection(&timeInfo.cs); /* grow calibration interval up to 10 seconds (if still precise enough) */ if (tdiff < -100000 || tdiff > 100000) { /* too long drift - reset calibration interval to 1000 second */ timeInfo.calibrationInterv = 1; } else if (timeInfo.calibrationInterv < 10) { timeInfo.calibrationInterv++; } timeInfo.fileTimeLastCall.QuadPart = vt0; timeInfo.curCounterFreq.QuadPart = estFreq; timeInfo.perfCounterLastCall.QuadPart = curPerfCounter.QuadPart; LeaveCriticalSection(&timeInfo.cs); } /* *---------------------------------------------------------------------- |
︙ | ︙ |