Tcl Source Code

Check-in [3454e26373]
Login
Bounty program for improvements to Tcl and certain Tcl packages.
Tcl 2019 Conference, Houston/TX, US, Nov 4-8
Send your abstracts to [email protected]
or submit via the online form by Sep 9.

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:merge 8.6 - timerate is part of Tcl now (since TIP#527 got merged), conflicts resolved, tclDate.c rebuilt with bison, etc.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | sebres-8-6-clock-speedup-cr2
Files: files | file ages | folders
SHA3-256: 3454e263733041f550bca5146e353580f7d8a22894eef72f43425a1ba7743d79
User & Date: sebres 2019-03-05 22:58:30
Context
2019-03-13
00:33
integrate branch clock-astronomical-jdn: merge pull request #16 from sebres/astronomical-jdn (https:... check-in: 39a21f437a user: sebres tags: sebres-8-6-clock-speedup-cr2
00:21
implemented scan of astronomical julian day (JDN/ID) with token `%Ej`, corresponds julian date of sq... check-in: b9804722b9 user: sebres tags: clock-astronomical-jdn
2019-03-05
22:58
merge 8.6 - timerate is part of Tcl now (since TIP#527 got merged), conflicts resolved, tclDate.c re... check-in: 3454e26373 user: sebres tags: sebres-8-6-clock-speedup-cr2
16:59
integrate sebres-8-6-timerate, merge 8.5 (TIP#527, New measurement facilities in TCL: New command ti... check-in: 49f82cfd7f user: sebres tags: core-8-6-branch
2019-01-25
20:47
merge 8.6 check-in: 3db32b9237 user: sebres tags: sebres-8-6-clock-speedup-cr2
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to .travis.yml.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
...
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
sudo: false
language: c

matrix:
  include:
    - os: linux
      dist: trusty
      compiler: clang
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: clang
      env:
        - CFGOPT=--disable-shared
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc
      env:
        - CFGOPT=--disable-shared
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc-4.9
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-4.9
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc-5
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-5
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc-6
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-6
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: trusty
      compiler: gcc-7
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-7
................................................................................
        - NO_DIRECT_CONFIGURE=1
    - os: osx
      osx_image: xcode9
      env:
        - BUILD_DIR=macosx
        - NO_DIRECT_CONFIGURE=1
    - os: osx
      osx_image: xcode10
      env:
        - BUILD_DIR=macosx
        - NO_DIRECT_CONFIGURE=1
### C builds not currently supported on Windows instances
#    - os: windows
#      env:
#        - BUILD_DIR=win
### ... so proxy with a Mingw cross-compile
# Test with mingw-w64 (32 bit)
    - os: linux
      dist: trusty
      compiler: i686-w64-mingw32-gcc
      addons:
        apt:
          packages:
            - gcc-mingw-w64-base
            - binutils-mingw-w64-i686
            - gcc-mingw-w64-i686
................................................................................
            - wine
      env:
        - BUILD_DIR=win
        - CFGOPT=--host=i686-w64-mingw32
        - NO_DIRECT_TEST=1
# Test with mingw-w64 (64 bit)
    - os: linux
      dist: trusty
      compiler: x86_64-w64-mingw32-gcc
      addons:
        apt:
          packages:
            - gcc-mingw-w64-base
            - binutils-mingw-w64-x86-64
            - gcc-mingw-w64-x86-64





|




|





|




|





|










|










|










|







 







|










|







 







|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
...
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
sudo: false
language: c

matrix:
  include:
    - os: linux
      dist: xenial
      compiler: clang
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: clang
      env:
        - CFGOPT=--disable-shared
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc
      env:
        - CFGOPT=--disable-shared
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc-4.9
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-4.9
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc-5
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-5
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc-6
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-6
      env:
        - BUILD_DIR=unix
    - os: linux
      dist: xenial
      compiler: gcc-7
      addons:
        apt:
          sources:
            - ubuntu-toolchain-r-test
          packages:
            - g++-7
................................................................................
        - NO_DIRECT_CONFIGURE=1
    - os: osx
      osx_image: xcode9
      env:
        - BUILD_DIR=macosx
        - NO_DIRECT_CONFIGURE=1
    - os: osx
      osx_image: xcode10.2
      env:
        - BUILD_DIR=macosx
        - NO_DIRECT_CONFIGURE=1
### C builds not currently supported on Windows instances
#    - os: windows
#      env:
#        - BUILD_DIR=win
### ... so proxy with a Mingw cross-compile
# Test with mingw-w64 (32 bit)
    - os: linux
      dist: xenial
      compiler: i686-w64-mingw32-gcc
      addons:
        apt:
          packages:
            - gcc-mingw-w64-base
            - binutils-mingw-w64-i686
            - gcc-mingw-w64-i686
................................................................................
            - wine
      env:
        - BUILD_DIR=win
        - CFGOPT=--host=i686-w64-mingw32
        - NO_DIRECT_TEST=1
# Test with mingw-w64 (64 bit)
    - os: linux
      dist: xenial
      compiler: x86_64-w64-mingw32-gcc
      addons:
        apt:
          packages:
            - gcc-mingw-w64-base
            - binutils-mingw-w64-x86-64
            - gcc-mingw-w64-x86-64

Changes to compat/strtol.c.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    long result;

    /*
     * Skip any leading blanks.
     */

    p = string;
    while (isspace(UCHAR(*p))) {
	p += 1;
    }

    /*
     * Check for a sign.
     */







|







49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    long result;

    /*
     * Skip any leading blanks.
     */

    p = string;
    while (TclIsSpaceProc(*p)) {
	p += 1;
    }

    /*
     * Check for a sign.
     */

Changes to compat/strtoul.c.

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    int overflow=0;

    /*
     * Skip any leading blanks.
     */

    p = string;
    while (isspace(UCHAR(*p))) {
	p += 1;
    }
    if (*p == '-') {
        negative = 1;
        p += 1;
    } else {
        if (*p == '+') {






|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    int overflow=0;

    /*
     * Skip any leading blanks.
     */

    p = string;
    while (TclIsSpaceProc(*p)) {
	p += 1;
    }
    if (*p == '-') {
        negative = 1;
        p += 1;
    } else {
        if (*p == '+') {

Changes to doc/ParseArgs.3.

1
2
3
4
5
6
7
8
9
10
11
12
13
..
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'\"
'\" Copyright (c) 2008 Donal K. Fellows
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\" 
.TH Tcl_ParseArgsObjv 3 8.6 Tcl "Tcl Library Procedures"
.so man.macros
.BS
.SH NAME
Tcl_ParseArgsObjv \- parse arguments according to a tabular description
.SH SYNOPSIS
.nf
................................................................................
As noted above, the \fItype\fR field is used to describe the interpretation of
the argument's value. The following values are acceptable values for
\fItype\fR:
.TP
\fBTCL_ARGV_CONSTANT\fR
.
The argument does not take any following value argument. If this argument is
present, the int pointed to by the \fIsrcPtr\fR field is copied to the
\fIdstPtr\fR field. The \fIclientData\fR field is ignored.
.TP
\fBTCL_ARGV_END\fR
.
This value marks the end of all option descriptors in the table. All other
fields are ignored.
.TP
\fBTCL_ARGV_FLOAT\fR




|







 







|
|







1
2
3
4
5
6
7
8
9
10
11
12
13
..
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'\"
'\" Copyright (c) 2008 Donal K. Fellows
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
.TH Tcl_ParseArgsObjv 3 8.6 Tcl "Tcl Library Procedures"
.so man.macros
.BS
.SH NAME
Tcl_ParseArgsObjv \- parse arguments according to a tabular description
.SH SYNOPSIS
.nf
................................................................................
As noted above, the \fItype\fR field is used to describe the interpretation of
the argument's value. The following values are acceptable values for
\fItype\fR:
.TP
\fBTCL_ARGV_CONSTANT\fR
.
The argument does not take any following value argument. If this argument is
present, the \fIsrcPtr\fR field (casted to \fIint\fR) is copied to the variable
pointed to by the \fIdstPtr\fR field. The \fIclientData\fR field is ignored.
.TP
\fBTCL_ARGV_END\fR
.
This value marks the end of all option descriptors in the table. All other
fields are ignored.
.TP
\fBTCL_ARGV_FLOAT\fR

Changes to generic/regc_locale.c.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237

238
239
240
241
242
243
244
245
246
247
248
249
250
...
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
...
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
...
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335
...
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
...
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
...
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
...
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
...
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
...
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
...
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
...
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

724
725
726
727
728
729
730
731
732
733
734
735
736


737
738
739
740
741
742
743
744
745

746
747
748
749
750
751
752
753
754
755
756
757
758


759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb5f, 0xb61},
    {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa},
    {0xbae, 0xbb9}, {0xc05, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28},
    {0xc2a, 0xc39}, {0xc58, 0xc5a}, {0xc85, 0xc8c}, {0xc8e, 0xc90},
    {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9}, {0xd05, 0xd0c},
    {0xd0e, 0xd10}, {0xd12, 0xd3a}, {0xd54, 0xd56}, {0xd5f, 0xd61},
    {0xd7a, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb},
    {0xdc0, 0xdc6}, {0xe01, 0xe30}, {0xe40, 0xe46}, {0xe94, 0xe97},
    {0xe99, 0xe9f}, {0xea1, 0xea3}, {0xead, 0xeb0}, {0xec0, 0xec4},
    {0xedc, 0xedf}, {0xf40, 0xf47}, {0xf49, 0xf6c}, {0xf88, 0xf8c},
    {0x1000, 0x102a}, {0x1050, 0x1055}, {0x105a, 0x105d}, {0x106e, 0x1070},
    {0x1075, 0x1081}, {0x10a0, 0x10c5}, {0x10d0, 0x10fa}, {0x10fc, 0x1248},
    {0x124a, 0x124d}, {0x1250, 0x1256}, {0x125a, 0x125d}, {0x1260, 0x1288},
    {0x128a, 0x128d}, {0x1290, 0x12b0}, {0x12b2, 0x12b5}, {0x12b8, 0x12be},
    {0x12c2, 0x12c5}, {0x12c8, 0x12d6}, {0x12d8, 0x1310}, {0x1312, 0x1315},
    {0x1318, 0x135a}, {0x1380, 0x138f}, {0x13a0, 0x13f5}, {0x13f8, 0x13fd},
    {0x1401, 0x166c}, {0x166f, 0x167f}, {0x1681, 0x169a}, {0x16a0, 0x16ea},
    {0x16f1, 0x16f8}, {0x1700, 0x170c}, {0x170e, 0x1711}, {0x1720, 0x1731},
    {0x1740, 0x1751}, {0x1760, 0x176c}, {0x176e, 0x1770}, {0x1780, 0x17b3},
    {0x1820, 0x1878}, {0x1880, 0x1884}, {0x1887, 0x18a8}, {0x18b0, 0x18f5},
    {0x1900, 0x191e}, {0x1950, 0x196d}, {0x1970, 0x1974}, {0x1980, 0x19ab},
    {0x19b0, 0x19c9}, {0x1a00, 0x1a16}, {0x1a20, 0x1a54}, {0x1b05, 0x1b33},
    {0x1b45, 0x1b4b}, {0x1b83, 0x1ba0}, {0x1bba, 0x1be5}, {0x1c00, 0x1c23},
    {0x1c4d, 0x1c4f}, {0x1c5a, 0x1c7d}, {0x1c80, 0x1c88}, {0x1c90, 0x1cba},
    {0x1cbd, 0x1cbf}, {0x1ce9, 0x1cec}, {0x1cee, 0x1cf1}, {0x1d00, 0x1dbf},
    {0x1e00, 0x1f15}, {0x1f18, 0x1f1d}, {0x1f20, 0x1f45}, {0x1f48, 0x1f4d},
    {0x1f50, 0x1f57}, {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4}, {0x1fb6, 0x1fbc},
    {0x1fc2, 0x1fc4}, {0x1fc6, 0x1fcc}, {0x1fd0, 0x1fd3}, {0x1fd6, 0x1fdb},
    {0x1fe0, 0x1fec}, {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffc}, {0x2090, 0x209c},
    {0x210a, 0x2113}, {0x2119, 0x211d}, {0x212a, 0x212d}, {0x212f, 0x2139},
    {0x213c, 0x213f}, {0x2145, 0x2149}, {0x2c00, 0x2c2e}, {0x2c30, 0x2c5e},
    {0x2c60, 0x2ce4}, {0x2ceb, 0x2cee}, {0x2d00, 0x2d25}, {0x2d30, 0x2d67},
    {0x2d80, 0x2d96}, {0x2da0, 0x2da6}, {0x2da8, 0x2dae}, {0x2db0, 0x2db6},
    {0x2db8, 0x2dbe}, {0x2dc0, 0x2dc6}, {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6},
    {0x2dd8, 0x2dde}, {0x3031, 0x3035}, {0x3041, 0x3096}, {0x309d, 0x309f},
    {0x30a1, 0x30fa}, {0x30fc, 0x30ff}, {0x3105, 0x312f}, {0x3131, 0x318e},
    {0x31a0, 0x31ba}, {0x31f0, 0x31ff}, {0x3400, 0x4db5}, {0x4e00, 0x9fef},
    {0xa000, 0xa48c}, {0xa4d0, 0xa4fd}, {0xa500, 0xa60c}, {0xa610, 0xa61f},
    {0xa640, 0xa66e}, {0xa67f, 0xa69d}, {0xa6a0, 0xa6e5}, {0xa717, 0xa71f},
    {0xa722, 0xa788}, {0xa78b, 0xa7b9}, {0xa7f7, 0xa801}, {0xa803, 0xa805},
    {0xa807, 0xa80a}, {0xa80c, 0xa822}, {0xa840, 0xa873}, {0xa882, 0xa8b3},
    {0xa8f2, 0xa8f7}, {0xa90a, 0xa925}, {0xa930, 0xa946}, {0xa960, 0xa97c},
    {0xa984, 0xa9b2}, {0xa9e0, 0xa9e4}, {0xa9e6, 0xa9ef}, {0xa9fa, 0xa9fe},
    {0xaa00, 0xaa28}, {0xaa40, 0xaa42}, {0xaa44, 0xaa4b}, {0xaa60, 0xaa76},
    {0xaa7e, 0xaaaf}, {0xaab9, 0xaabd}, {0xaadb, 0xaadd}, {0xaae0, 0xaaea},
    {0xaaf2, 0xaaf4}, {0xab01, 0xab06}, {0xab09, 0xab0e}, {0xab11, 0xab16},
    {0xab20, 0xab26}, {0xab28, 0xab2e}, {0xab30, 0xab5a}, {0xab5c, 0xab65},
    {0xab70, 0xabe2}, {0xac00, 0xd7a3}, {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb},
    {0xf900, 0xfa6d}, {0xfa70, 0xfad9}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17},
    {0xfb1f, 0xfb28}, {0xfb2a, 0xfb36}, {0xfb38, 0xfb3c}, {0xfb46, 0xfbb1},
    {0xfbd3, 0xfd3d}, {0xfd50, 0xfd8f}, {0xfd92, 0xfdc7}, {0xfdf0, 0xfdfb},
    {0xfe70, 0xfe74}, {0xfe76, 0xfefc}, {0xff21, 0xff3a}, {0xff41, 0xff5a},
    {0xff66, 0xffbe}, {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7},
    {0xffda, 0xffdc}
................................................................................
    {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805},
    {0x1080a, 0x10835}, {0x1083f, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089e},
    {0x108e0, 0x108f2}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109b7},
    {0x10a10, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a60, 0x10a7c},
    {0x10a80, 0x10a9c}, {0x10ac0, 0x10ac7}, {0x10ac9, 0x10ae4}, {0x10b00, 0x10b35},
    {0x10b40, 0x10b55}, {0x10b60, 0x10b72}, {0x10b80, 0x10b91}, {0x10c00, 0x10c48},
    {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10d00, 0x10d23}, {0x10f00, 0x10f1c},
    {0x10f30, 0x10f45}, {0x11003, 0x11037}, {0x11083, 0x110af}, {0x110d0, 0x110e8},
    {0x11103, 0x11126}, {0x11150, 0x11172}, {0x11183, 0x111b2}, {0x111c1, 0x111c4},
    {0x11200, 0x11211}, {0x11213, 0x1122b}, {0x11280, 0x11286}, {0x1128a, 0x1128d},
    {0x1128f, 0x1129d}, {0x1129f, 0x112a8}, {0x112b0, 0x112de}, {0x11305, 0x1130c},
    {0x11313, 0x11328}, {0x1132a, 0x11330}, {0x11335, 0x11339}, {0x1135d, 0x11361},
    {0x11400, 0x11434}, {0x11447, 0x1144a}, {0x11480, 0x114af}, {0x11580, 0x115ae},
    {0x115d8, 0x115db}, {0x11600, 0x1162f}, {0x11680, 0x116aa}, {0x11700, 0x1171a},
    {0x11800, 0x1182b}, {0x118a0, 0x118df}, {0x11a0b, 0x11a32}, {0x11a5c, 0x11a83},
    {0x11a86, 0x11a89}, {0x11ac0, 0x11af8}, {0x11c00, 0x11c08}, {0x11c0a, 0x11c2e},
    {0x11c72, 0x11c8f}, {0x11d00, 0x11d06}, {0x11d0b, 0x11d30}, {0x11d60, 0x11d65},
    {0x11d6a, 0x11d89}, {0x11ee0, 0x11ef2}, {0x12000, 0x12399}, {0x12480, 0x12543},
    {0x13000, 0x1342e}, {0x14400, 0x14646}, {0x16800, 0x16a38}, {0x16a40, 0x16a5e},
    {0x16ad0, 0x16aed}, {0x16b00, 0x16b2f}, {0x16b40, 0x16b43}, {0x16b63, 0x16b77},
    {0x16b7d, 0x16b8f}, {0x16e40, 0x16e7f}, {0x16f00, 0x16f44}, {0x16f93, 0x16f9f},
    {0x17000, 0x187f1}, {0x18800, 0x18af2}, {0x1b000, 0x1b11e}, {0x1b170, 0x1b2fb},

    {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99},
    {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b9},
    {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a}, {0x1d50d, 0x1d514},
    {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544},
    {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d6c0}, {0x1d6c2, 0x1d6da},
    {0x1d6dc, 0x1d6fa}, {0x1d6fc, 0x1d714}, {0x1d716, 0x1d734}, {0x1d736, 0x1d74e},
    {0x1d750, 0x1d76e}, {0x1d770, 0x1d788}, {0x1d78a, 0x1d7a8}, {0x1d7aa, 0x1d7c2},

    {0x1d7c4, 0x1d7cb}, {0x1e800, 0x1e8c4}, {0x1e900, 0x1e943}, {0x1ee00, 0x1ee03},
    {0x1ee05, 0x1ee1f}, {0x1ee29, 0x1ee32}, {0x1ee34, 0x1ee37}, {0x1ee4d, 0x1ee4f},
    {0x1ee67, 0x1ee6a}, {0x1ee6c, 0x1ee72}, {0x1ee74, 0x1ee77}, {0x1ee79, 0x1ee7c},
    {0x1ee80, 0x1ee89}, {0x1ee8b, 0x1ee9b}, {0x1eea1, 0x1eea3}, {0x1eea5, 0x1eea9},
    {0x1eeab, 0x1eebb}, {0x20000, 0x2a6d6}, {0x2a700, 0x2b734}, {0x2b740, 0x2b81d},
    {0x2b820, 0x2cea1}, {0x2ceb0, 0x2ebe0}, {0x2f800, 0x2fa1d}
#endif
};

#define NUM_ALPHA_RANGE (sizeof(alphaRangeTable)/sizeof(crange))

static const chr alphaCharTable[] = {
    0xaa, 0xb5, 0xba, 0x2ec, 0x2ee, 0x376, 0x377, 0x37f, 0x386,
................................................................................
    0x93d, 0x950, 0x98f, 0x990, 0x9b2, 0x9bd, 0x9ce, 0x9dc, 0x9dd,
    0x9f0, 0x9f1, 0x9fc, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36,
    0xa38, 0xa39, 0xa5e, 0xab2, 0xab3, 0xabd, 0xad0, 0xae0, 0xae1,
    0xaf9, 0xb0f, 0xb10, 0xb32, 0xb33, 0xb3d, 0xb5c, 0xb5d, 0xb71,
    0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4, 0xbd0,
    0xc3d, 0xc60, 0xc61, 0xc80, 0xcbd, 0xcde, 0xce0, 0xce1, 0xcf1,
    0xcf2, 0xd3d, 0xd4e, 0xdbd, 0xe32, 0xe33, 0xe81, 0xe82, 0xe84,
    0xe87, 0xe88, 0xe8a, 0xe8d, 0xea5, 0xea7, 0xeaa, 0xeab, 0xeb2,
    0xeb3, 0xebd, 0xec6, 0xf00, 0x103f, 0x1061, 0x1065, 0x1066, 0x108e,
    0x10c7, 0x10cd, 0x1258, 0x12c0, 0x17d7, 0x17dc, 0x18aa, 0x1aa7, 0x1bae,
    0x1baf, 0x1cf5, 0x1cf6, 0x1f59, 0x1f5b, 0x1f5d, 0x1fbe, 0x2071, 0x207f,
    0x2102, 0x2107, 0x2115, 0x2124, 0x2126, 0x2128, 0x214e, 0x2183, 0x2184,
    0x2cf2, 0x2cf3, 0x2d27, 0x2d2d, 0x2d6f, 0x2e2f, 0x3005, 0x3006, 0x303b,
    0x303c, 0xa62a, 0xa62b, 0xa8fb, 0xa8fd, 0xa8fe, 0xa9cf, 0xaa7a, 0xaab1,
    0xaab5, 0xaab6, 0xaac0, 0xaac2, 0xfb1d, 0xfb3e, 0xfb40, 0xfb41, 0xfb43,
    0xfb44

#if CHRBITS > 16
    ,0x1003c, 0x1003d, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4, 0x108f5, 0x109be,
    0x109bf, 0x10a00, 0x10f27, 0x11144, 0x11176, 0x111da, 0x111dc, 0x11288, 0x1130f,
    0x11310, 0x11332, 0x11333, 0x1133d, 0x11350, 0x114c4, 0x114c5, 0x114c7, 0x11644,
    0x118ff, 0x11a00, 0x11a3a, 0x11a50, 0x11a9d, 0x11c40, 0x11d08, 0x11d09, 0x11d46,
    0x11d67, 0x11d68, 0x11d98, 0x16f50, 0x16fe0, 0x16fe1, 0x1d49e, 0x1d49f, 0x1d4a2,

    0x1d4a5, 0x1d4a6, 0x1d4bb, 0x1d546, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27, 0x1ee39,
    0x1ee3b, 0x1ee42, 0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54, 0x1ee57,
    0x1ee59, 0x1ee5b, 0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e
#endif
};

#define NUM_ALPHA_CHAR (sizeof(alphaCharTable)/sizeof(chr))

/*
 * Unicode: control characters.
................................................................................
 */

static const crange controlRangeTable[] = {
    {0x0, 0x1f}, {0x7f, 0x9f}, {0x600, 0x605}, {0x200b, 0x200f},
    {0x202a, 0x202e}, {0x2060, 0x2064}, {0x2066, 0x206f}, {0xe000, 0xf8ff},
    {0xfff9, 0xfffb}
#if CHRBITS > 16
    ,{0x1bca0, 0x1bca3}, {0x1d173, 0x1d17a}, {0xe0020, 0xe007f}, {0xf0000, 0xffffd},
    {0x100000, 0x10fffd}
#endif
};

#define NUM_CONTROL_RANGE (sizeof(controlRangeTable)/sizeof(crange))

static const chr controlCharTable[] = {
    0xad, 0x61c, 0x6dd, 0x70f, 0x8e2, 0x180e, 0xfeff
................................................................................
    {0xa9d0, 0xa9d9}, {0xa9f0, 0xa9f9}, {0xaa50, 0xaa59}, {0xabf0, 0xabf9},
    {0xff10, 0xff19}
#if CHRBITS > 16
    ,{0x104a0, 0x104a9}, {0x10d30, 0x10d39}, {0x11066, 0x1106f}, {0x110f0, 0x110f9},
    {0x11136, 0x1113f}, {0x111d0, 0x111d9}, {0x112f0, 0x112f9}, {0x11450, 0x11459},
    {0x114d0, 0x114d9}, {0x11650, 0x11659}, {0x116c0, 0x116c9}, {0x11730, 0x11739},
    {0x118e0, 0x118e9}, {0x11c50, 0x11c59}, {0x11d50, 0x11d59}, {0x11da0, 0x11da9},
    {0x16a60, 0x16a69}, {0x16b50, 0x16b59}, {0x1d7ce, 0x1d7ff}, {0x1e950, 0x1e959}

#endif
};

#define NUM_DIGIT_RANGE (sizeof(digitRangeTable)/sizeof(crange))

/*
 * no singletons of digit characters.
................................................................................
    {0x55a, 0x55f}, {0x66a, 0x66d}, {0x700, 0x70d}, {0x7f7, 0x7f9},
    {0x830, 0x83e}, {0xf04, 0xf12}, {0xf3a, 0xf3d}, {0xfd0, 0xfd4},
    {0x104a, 0x104f}, {0x1360, 0x1368}, {0x16eb, 0x16ed}, {0x17d4, 0x17d6},
    {0x17d8, 0x17da}, {0x1800, 0x180a}, {0x1aa0, 0x1aa6}, {0x1aa8, 0x1aad},
    {0x1b5a, 0x1b60}, {0x1bfc, 0x1bff}, {0x1c3b, 0x1c3f}, {0x1cc0, 0x1cc7},
    {0x2010, 0x2027}, {0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205e},
    {0x2308, 0x230b}, {0x2768, 0x2775}, {0x27e6, 0x27ef}, {0x2983, 0x2998},
    {0x29d8, 0x29db}, {0x2cf9, 0x2cfc}, {0x2e00, 0x2e2e}, {0x2e30, 0x2e4e},
    {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301f}, {0xa60d, 0xa60f},
    {0xa6f2, 0xa6f7}, {0xa874, 0xa877}, {0xa8f8, 0xa8fa}, {0xa9c1, 0xa9cd},
    {0xaa5c, 0xaa5f}, {0xfe10, 0xfe19}, {0xfe30, 0xfe52}, {0xfe54, 0xfe61},
    {0xff01, 0xff03}, {0xff05, 0xff0a}, {0xff0c, 0xff0f}, {0xff3b, 0xff3d},
    {0xff5f, 0xff65}
#if CHRBITS > 16
    ,{0x10100, 0x10102}, {0x10a50, 0x10a58}, {0x10af0, 0x10af6}, {0x10b39, 0x10b3f},
................................................................................
#define NUM_PUNCT_RANGE (sizeof(punctRangeTable)/sizeof(crange))

static const chr punctCharTable[] = {
    0x3a, 0x3b, 0x3f, 0x40, 0x5f, 0x7b, 0x7d, 0xa1, 0xa7,
    0xab, 0xb6, 0xb7, 0xbb, 0xbf, 0x37e, 0x387, 0x589, 0x58a,
    0x5be, 0x5c0, 0x5c3, 0x5c6, 0x5f3, 0x5f4, 0x609, 0x60a, 0x60c,
    0x60d, 0x61b, 0x61e, 0x61f, 0x6d4, 0x85e, 0x964, 0x965, 0x970,
    0x9fd, 0xa76, 0xaf0, 0xc84, 0xdf4, 0xe4f, 0xe5a, 0xe5b, 0xf14,
    0xf85, 0xfd9, 0xfda, 0x10fb, 0x1400, 0x166d, 0x166e, 0x169b, 0x169c,
    0x1735, 0x1736, 0x1944, 0x1945, 0x1a1e, 0x1a1f, 0x1c7e, 0x1c7f, 0x1cd3,
    0x207d, 0x207e, 0x208d, 0x208e, 0x2329, 0x232a, 0x27c5, 0x27c6, 0x29fc,
    0x29fd, 0x2cfe, 0x2cff, 0x2d70, 0x3030, 0x303d, 0x30a0, 0x30fb, 0xa4fe,
    0xa4ff, 0xa673, 0xa67e, 0xa8ce, 0xa8cf, 0xa8fc, 0xa92e, 0xa92f, 0xa95f,
    0xa9de, 0xa9df, 0xaade, 0xaadf, 0xaaf0, 0xaaf1, 0xabeb, 0xfd3e, 0xfd3f,
    0xfe63, 0xfe68, 0xfe6a, 0xfe6b, 0xff1a, 0xff1b, 0xff1f, 0xff20, 0xff3f,
    0xff5b, 0xff5d
#if CHRBITS > 16
    ,0x1039f, 0x103d0, 0x1056f, 0x10857, 0x1091f, 0x1093f, 0x10a7f, 0x110bb, 0x110bc,
    0x11174, 0x11175, 0x111cd, 0x111db, 0x112a9, 0x1145b, 0x1145d, 0x114c6, 0x1183b,
    0x11c70, 0x11c71, 0x11ef7, 0x11ef8, 0x16a6e, 0x16a6f, 0x16af5, 0x16b44, 0x1bc9f,
    0x1e95e, 0x1e95f
#endif
};

#define NUM_PUNCT_CHAR (sizeof(punctCharTable)/sizeof(chr))

/*
 * Unicode: white space characters.
................................................................................
    {0x10fd, 0x10ff}, {0x13f8, 0x13fd}, {0x1c80, 0x1c88}, {0x1d00, 0x1d2b},
    {0x1d6b, 0x1d77}, {0x1d79, 0x1d9a}, {0x1e95, 0x1e9d}, {0x1eff, 0x1f07},
    {0x1f10, 0x1f15}, {0x1f20, 0x1f27}, {0x1f30, 0x1f37}, {0x1f40, 0x1f45},
    {0x1f50, 0x1f57}, {0x1f60, 0x1f67}, {0x1f70, 0x1f7d}, {0x1f80, 0x1f87},
    {0x1f90, 0x1f97}, {0x1fa0, 0x1fa7}, {0x1fb0, 0x1fb4}, {0x1fc2, 0x1fc4},
    {0x1fd0, 0x1fd3}, {0x1fe0, 0x1fe7}, {0x1ff2, 0x1ff4}, {0x2146, 0x2149},
    {0x2c30, 0x2c5e}, {0x2c76, 0x2c7b}, {0x2d00, 0x2d25}, {0xa72f, 0xa731},
    {0xa771, 0xa778}, {0xa793, 0xa795}, {0xab30, 0xab5a}, {0xab60, 0xab65},
    {0xab70, 0xabbf}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xff41, 0xff5a}
#if CHRBITS > 16
    ,{0x10428, 0x1044f}, {0x104d8, 0x104fb}, {0x10cc0, 0x10cf2}, {0x118c0, 0x118df},
    {0x16e60, 0x16e7f}, {0x1d41a, 0x1d433}, {0x1d44e, 0x1d454}, {0x1d456, 0x1d467},
    {0x1d482, 0x1d49b}, {0x1d4b6, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d4cf},
    {0x1d4ea, 0x1d503}, {0x1d51e, 0x1d537}, {0x1d552, 0x1d56b}, {0x1d586, 0x1d59f},
    {0x1d5ba, 0x1d5d3}, {0x1d5ee, 0x1d607}, {0x1d622, 0x1d63b}, {0x1d656, 0x1d66f},
................................................................................
    0xa691, 0xa693, 0xa695, 0xa697, 0xa699, 0xa69b, 0xa723, 0xa725, 0xa727,
    0xa729, 0xa72b, 0xa72d, 0xa733, 0xa735, 0xa737, 0xa739, 0xa73b, 0xa73d,
    0xa73f, 0xa741, 0xa743, 0xa745, 0xa747, 0xa749, 0xa74b, 0xa74d, 0xa74f,
    0xa751, 0xa753, 0xa755, 0xa757, 0xa759, 0xa75b, 0xa75d, 0xa75f, 0xa761,
    0xa763, 0xa765, 0xa767, 0xa769, 0xa76b, 0xa76d, 0xa76f, 0xa77a, 0xa77c,
    0xa77f, 0xa781, 0xa783, 0xa785, 0xa787, 0xa78c, 0xa78e, 0xa791, 0xa797,
    0xa799, 0xa79b, 0xa79d, 0xa79f, 0xa7a1, 0xa7a3, 0xa7a5, 0xa7a7, 0xa7a9,
    0xa7af, 0xa7b5, 0xa7b7, 0xa7b9, 0xa7fa
#if CHRBITS > 16
    ,0x1d4bb, 0x1d7cb
#endif
};

#define NUM_LOWER_CHAR (sizeof(lowerCharTable)/sizeof(chr))

................................................................................
    {0x3d2, 0x3d4}, {0x3fd, 0x42f}, {0x531, 0x556}, {0x10a0, 0x10c5},
    {0x13a0, 0x13f5}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf}, {0x1f08, 0x1f0f},
    {0x1f18, 0x1f1d}, {0x1f28, 0x1f2f}, {0x1f38, 0x1f3f}, {0x1f48, 0x1f4d},
    {0x1f68, 0x1f6f}, {0x1fb8, 0x1fbb}, {0x1fc8, 0x1fcb}, {0x1fd8, 0x1fdb},
    {0x1fe8, 0x1fec}, {0x1ff8, 0x1ffb}, {0x210b, 0x210d}, {0x2110, 0x2112},
    {0x2119, 0x211d}, {0x212a, 0x212d}, {0x2130, 0x2133}, {0x2c00, 0x2c2e},
    {0x2c62, 0x2c64}, {0x2c6d, 0x2c70}, {0x2c7e, 0x2c80}, {0xa7aa, 0xa7ae},
    {0xa7b0, 0xa7b4}, {0xff21, 0xff3a}
#if CHRBITS > 16
    ,{0x10400, 0x10427}, {0x104b0, 0x104d3}, {0x10c80, 0x10cb2}, {0x118a0, 0x118bf},
    {0x16e40, 0x16e5f}, {0x1d400, 0x1d419}, {0x1d434, 0x1d44d}, {0x1d468, 0x1d481},
    {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b5}, {0x1d4d0, 0x1d4e9}, {0x1d507, 0x1d50a},
    {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544},
    {0x1d54a, 0x1d550}, {0x1d56c, 0x1d585}, {0x1d5a0, 0x1d5b9}, {0x1d5d4, 0x1d5ed},
    {0x1d608, 0x1d621}, {0x1d63c, 0x1d655}, {0x1d670, 0x1d689}, {0x1d6a8, 0x1d6c0},
................................................................................
    0xa698, 0xa69a, 0xa722, 0xa724, 0xa726, 0xa728, 0xa72a, 0xa72c, 0xa72e,
    0xa732, 0xa734, 0xa736, 0xa738, 0xa73a, 0xa73c, 0xa73e, 0xa740, 0xa742,
    0xa744, 0xa746, 0xa748, 0xa74a, 0xa74c, 0xa74e, 0xa750, 0xa752, 0xa754,
    0xa756, 0xa758, 0xa75a, 0xa75c, 0xa75e, 0xa760, 0xa762, 0xa764, 0xa766,
    0xa768, 0xa76a, 0xa76c, 0xa76e, 0xa779, 0xa77b, 0xa77d, 0xa77e, 0xa780,
    0xa782, 0xa784, 0xa786, 0xa78b, 0xa78d, 0xa790, 0xa792, 0xa796, 0xa798,
    0xa79a, 0xa79c, 0xa79e, 0xa7a0, 0xa7a2, 0xa7a4, 0xa7a6, 0xa7a8, 0xa7b6,
    0xa7b8
#if CHRBITS > 16
    ,0x1d49c, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d504, 0x1d505, 0x1d538,
    0x1d539, 0x1d546, 0x1d7ca
#endif
};

#define NUM_UPPER_CHAR (sizeof(upperCharTable)/sizeof(chr))
................................................................................
    {0xae0, 0xae3}, {0xae6, 0xaf1}, {0xaf9, 0xaff}, {0xb01, 0xb03},
    {0xb05, 0xb0c}, {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39},
    {0xb3c, 0xb44}, {0xb4b, 0xb4d}, {0xb5f, 0xb63}, {0xb66, 0xb77},
    {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa},
    {0xbae, 0xbb9}, {0xbbe, 0xbc2}, {0xbc6, 0xbc8}, {0xbca, 0xbcd},
    {0xbe6, 0xbfa}, {0xc00, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28},
    {0xc2a, 0xc39}, {0xc3d, 0xc44}, {0xc46, 0xc48}, {0xc4a, 0xc4d},
    {0xc58, 0xc5a}, {0xc60, 0xc63}, {0xc66, 0xc6f}, {0xc78, 0xc8c},
    {0xc8e, 0xc90}, {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9},
    {0xcbc, 0xcc4}, {0xcc6, 0xcc8}, {0xcca, 0xccd}, {0xce0, 0xce3},
    {0xce6, 0xcef}, {0xd00, 0xd03}, {0xd05, 0xd0c}, {0xd0e, 0xd10},
    {0xd12, 0xd44}, {0xd46, 0xd48}, {0xd4a, 0xd4f}, {0xd54, 0xd63},
    {0xd66, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb},
    {0xdc0, 0xdc6}, {0xdcf, 0xdd4}, {0xdd8, 0xddf}, {0xde6, 0xdef},
    {0xdf2, 0xdf4}, {0xe01, 0xe3a}, {0xe3f, 0xe5b}, {0xe94, 0xe97},
    {0xe99, 0xe9f}, {0xea1, 0xea3}, {0xead, 0xeb9}, {0xebb, 0xebd},
    {0xec0, 0xec4}, {0xec8, 0xecd}, {0xed0, 0xed9}, {0xedc, 0xedf},
    {0xf00, 0xf47}, {0xf49, 0xf6c}, {0xf71, 0xf97}, {0xf99, 0xfbc},
    {0xfbe, 0xfcc}, {0xfce, 0xfda}, {0x1000, 0x10c5}, {0x10d0, 0x1248},
    {0x124a, 0x124d}, {0x1250, 0x1256}, {0x125a, 0x125d}, {0x1260, 0x1288},
    {0x128a, 0x128d}, {0x1290, 0x12b0}, {0x12b2, 0x12b5}, {0x12b8, 0x12be},
    {0x12c2, 0x12c5}, {0x12c8, 0x12d6}, {0x12d8, 0x1310}, {0x1312, 0x1315},
    {0x1318, 0x135a}, {0x135d, 0x137c}, {0x1380, 0x1399}, {0x13a0, 0x13f5},
    {0x13f8, 0x13fd}, {0x1400, 0x167f}, {0x1681, 0x169c}, {0x16a0, 0x16f8},
    {0x1700, 0x170c}, {0x170e, 0x1714}, {0x1720, 0x1736}, {0x1740, 0x1753},
    {0x1760, 0x176c}, {0x176e, 0x1770}, {0x1780, 0x17dd}, {0x17e0, 0x17e9},
    {0x17f0, 0x17f9}, {0x1800, 0x180d}, {0x1810, 0x1819}, {0x1820, 0x1878},
    {0x1880, 0x18aa}, {0x18b0, 0x18f5}, {0x1900, 0x191e}, {0x1920, 0x192b},
    {0x1930, 0x193b}, {0x1944, 0x196d}, {0x1970, 0x1974}, {0x1980, 0x19ab},
    {0x19b0, 0x19c9}, {0x19d0, 0x19da}, {0x19de, 0x1a1b}, {0x1a1e, 0x1a5e},
    {0x1a60, 0x1a7c}, {0x1a7f, 0x1a89}, {0x1a90, 0x1a99}, {0x1aa0, 0x1aad},
    {0x1ab0, 0x1abe}, {0x1b00, 0x1b4b}, {0x1b50, 0x1b7c}, {0x1b80, 0x1bf3},
    {0x1bfc, 0x1c37}, {0x1c3b, 0x1c49}, {0x1c4d, 0x1c88}, {0x1c90, 0x1cba},
    {0x1cbd, 0x1cc7}, {0x1cd0, 0x1cf9}, {0x1d00, 0x1df9}, {0x1dfb, 0x1f15},
    {0x1f18, 0x1f1d}, {0x1f20, 0x1f45}, {0x1f48, 0x1f4d}, {0x1f50, 0x1f57},
    {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4}, {0x1fb6, 0x1fc4}, {0x1fc6, 0x1fd3},
    {0x1fd6, 0x1fdb}, {0x1fdd, 0x1fef}, {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffe},
    {0x2010, 0x2027}, {0x2030, 0x205e}, {0x2074, 0x208e}, {0x2090, 0x209c},
    {0x20a0, 0x20bf}, {0x20d0, 0x20f0}, {0x2100, 0x218b}, {0x2190, 0x2426},
    {0x2440, 0x244a}, {0x2460, 0x2b73}, {0x2b76, 0x2b95}, {0x2b98, 0x2bc8},
    {0x2bca, 0x2bfe}, {0x2c00, 0x2c2e}, {0x2c30, 0x2c5e}, {0x2c60, 0x2cf3},
    {0x2cf9, 0x2d25}, {0x2d30, 0x2d67}, {0x2d7f, 0x2d96}, {0x2da0, 0x2da6},
    {0x2da8, 0x2dae}, {0x2db0, 0x2db6}, {0x2db8, 0x2dbe}, {0x2dc0, 0x2dc6},
    {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6}, {0x2dd8, 0x2dde}, {0x2de0, 0x2e4e},
    {0x2e80, 0x2e99}, {0x2e9b, 0x2ef3}, {0x2f00, 0x2fd5}, {0x2ff0, 0x2ffb},
    {0x3001, 0x303f}, {0x3041, 0x3096}, {0x3099, 0x30ff}, {0x3105, 0x312f},
    {0x3131, 0x318e}, {0x3190, 0x31ba}, {0x31c0, 0x31e3}, {0x31f0, 0x321e},
    {0x3220, 0x32fe}, {0x3300, 0x4db5}, {0x4dc0, 0x9fef}, {0xa000, 0xa48c},
    {0xa490, 0xa4c6}, {0xa4d0, 0xa62b}, {0xa640, 0xa6f7}, {0xa700, 0xa7b9},
    {0xa7f7, 0xa82b}, {0xa830, 0xa839}, {0xa840, 0xa877}, {0xa880, 0xa8c5},
    {0xa8ce, 0xa8d9}, {0xa8e0, 0xa953}, {0xa95f, 0xa97c}, {0xa980, 0xa9cd},
    {0xa9cf, 0xa9d9}, {0xa9de, 0xa9fe}, {0xaa00, 0xaa36}, {0xaa40, 0xaa4d},
    {0xaa50, 0xaa59}, {0xaa5c, 0xaac2}, {0xaadb, 0xaaf6}, {0xab01, 0xab06},
    {0xab09, 0xab0e}, {0xab11, 0xab16}, {0xab20, 0xab26}, {0xab28, 0xab2e},
    {0xab30, 0xab65}, {0xab70, 0xabed}, {0xabf0, 0xabf9}, {0xac00, 0xd7a3},
    {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb}, {0xf900, 0xfa6d}, {0xfa70, 0xfad9},
    {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xfb1d, 0xfb36}, {0xfb38, 0xfb3c},
    {0xfb46, 0xfbc1}, {0xfbd3, 0xfd3f}, {0xfd50, 0xfd8f}, {0xfd92, 0xfdc7},
    {0xfdf0, 0xfdfd}, {0xfe00, 0xfe19}, {0xfe20, 0xfe52}, {0xfe54, 0xfe66},
    {0xfe68, 0xfe6b}, {0xfe70, 0xfe74}, {0xfe76, 0xfefc}, {0xff01, 0xffbe},
    {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7}, {0xffda, 0xffdc},
    {0xffe0, 0xffe6}, {0xffe8, 0xffee}
#if CHRBITS > 16
    ,{0x10000, 0x1000b}, {0x1000d, 0x10026}, {0x10028, 0x1003a}, {0x1003f, 0x1004d},
    {0x10050, 0x1005d}, {0x10080, 0x100fa}, {0x10100, 0x10102}, {0x10107, 0x10133},
    {0x10137, 0x1018e}, {0x10190, 0x1019b}, {0x101d0, 0x101fd}, {0x10280, 0x1029c},
    {0x102a0, 0x102d0}, {0x102e0, 0x102fb}, {0x10300, 0x10323}, {0x1032d, 0x1034a},
    {0x10350, 0x1037a}, {0x10380, 0x1039d}, {0x1039f, 0x103c3}, {0x103c8, 0x103d5},
    {0x10400, 0x1049d}, {0x104a0, 0x104a9}, {0x104b0, 0x104d3}, {0x104d8, 0x104fb},
................................................................................
    {0x10857, 0x1089e}, {0x108a7, 0x108af}, {0x108e0, 0x108f2}, {0x108fb, 0x1091b},
    {0x1091f, 0x10939}, {0x10980, 0x109b7}, {0x109bc, 0x109cf}, {0x109d2, 0x10a03},
    {0x10a0c, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a38, 0x10a3a},
    {0x10a3f, 0x10a48}, {0x10a50, 0x10a58}, {0x10a60, 0x10a9f}, {0x10ac0, 0x10ae6},
    {0x10aeb, 0x10af6}, {0x10b00, 0x10b35}, {0x10b39, 0x10b55}, {0x10b58, 0x10b72},
    {0x10b78, 0x10b91}, {0x10b99, 0x10b9c}, {0x10ba9, 0x10baf}, {0x10c00, 0x10c48},
    {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10cfa, 0x10d27}, {0x10d30, 0x10d39},
    {0x10e60, 0x10e7e}, {0x10f00, 0x10f27}, {0x10f30, 0x10f59}, {0x11000, 0x1104d},
    {0x11052, 0x1106f}, {0x1107f, 0x110bc}, {0x110be, 0x110c1}, {0x110d0, 0x110e8},
    {0x110f0, 0x110f9}, {0x11100, 0x11134}, {0x11136, 0x11146}, {0x11150, 0x11176},
    {0x11180, 0x111cd}, {0x111d0, 0x111df}, {0x111e1, 0x111f4}, {0x11200, 0x11211},
    {0x11213, 0x1123e}, {0x11280, 0x11286}, {0x1128a, 0x1128d}, {0x1128f, 0x1129d},
    {0x1129f, 0x112a9}, {0x112b0, 0x112ea}, {0x112f0, 0x112f9}, {0x11300, 0x11303},
    {0x11305, 0x1130c}, {0x11313, 0x11328}, {0x1132a, 0x11330}, {0x11335, 0x11339},
    {0x1133b, 0x11344}, {0x1134b, 0x1134d}, {0x1135d, 0x11363}, {0x11366, 0x1136c},
    {0x11370, 0x11374}, {0x11400, 0x11459}, {0x11480, 0x114c7}, {0x114d0, 0x114d9},
    {0x11580, 0x115b5}, {0x115b8, 0x115dd}, {0x11600, 0x11644}, {0x11650, 0x11659},

    {0x11660, 0x1166c}, {0x11680, 0x116b7}, {0x116c0, 0x116c9}, {0x11700, 0x1171a},
    {0x1171d, 0x1172b}, {0x11730, 0x1173f}, {0x11800, 0x1183b}, {0x118a0, 0x118f2},
    {0x11a00, 0x11a47}, {0x11a50, 0x11a83}, {0x11a86, 0x11aa2}, {0x11ac0, 0x11af8},
    {0x11c00, 0x11c08}, {0x11c0a, 0x11c36}, {0x11c38, 0x11c45}, {0x11c50, 0x11c6c},
    {0x11c70, 0x11c8f}, {0x11c92, 0x11ca7}, {0x11ca9, 0x11cb6}, {0x11d00, 0x11d06},
    {0x11d0b, 0x11d36}, {0x11d3f, 0x11d47}, {0x11d50, 0x11d59}, {0x11d60, 0x11d65},
    {0x11d6a, 0x11d8e}, {0x11d93, 0x11d98}, {0x11da0, 0x11da9}, {0x11ee0, 0x11ef8},
    {0x12000, 0x12399}, {0x12400, 0x1246e}, {0x12470, 0x12474}, {0x12480, 0x12543},
    {0x13000, 0x1342e}, {0x14400, 0x14646}, {0x16800, 0x16a38}, {0x16a40, 0x16a5e},
    {0x16a60, 0x16a69}, {0x16ad0, 0x16aed}, {0x16af0, 0x16af5}, {0x16b00, 0x16b45},
    {0x16b50, 0x16b59}, {0x16b5b, 0x16b61}, {0x16b63, 0x16b77}, {0x16b7d, 0x16b8f},
    {0x16e40, 0x16e9a}, {0x16f00, 0x16f44}, {0x16f50, 0x16f7e}, {0x16f8f, 0x16f9f},
    {0x17000, 0x187f1}, {0x18800, 0x18af2}, {0x1b000, 0x1b11e}, {0x1b170, 0x1b2fb},


    {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99},
    {0x1bc9c, 0x1bc9f}, {0x1d000, 0x1d0f5}, {0x1d100, 0x1d126}, {0x1d129, 0x1d172},
    {0x1d17b, 0x1d1e8}, {0x1d200, 0x1d245}, {0x1d2e0, 0x1d2f3}, {0x1d300, 0x1d356},
    {0x1d360, 0x1d378}, {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac},
    {0x1d4ae, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a},
    {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e},
    {0x1d540, 0x1d544}, {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d7cb},
    {0x1d7ce, 0x1da8b}, {0x1da9b, 0x1da9f}, {0x1daa1, 0x1daaf}, {0x1e000, 0x1e006},
    {0x1e008, 0x1e018}, {0x1e01b, 0x1e021}, {0x1e026, 0x1e02a}, {0x1e800, 0x1e8c4},

    {0x1e8c7, 0x1e8d6}, {0x1e900, 0x1e94a}, {0x1e950, 0x1e959}, {0x1ec71, 0x1ecb4},
    {0x1ee00, 0x1ee03}, {0x1ee05, 0x1ee1f}, {0x1ee29, 0x1ee32}, {0x1ee34, 0x1ee37},
    {0x1ee4d, 0x1ee4f}, {0x1ee67, 0x1ee6a}, {0x1ee6c, 0x1ee72}, {0x1ee74, 0x1ee77},
    {0x1ee79, 0x1ee7c}, {0x1ee80, 0x1ee89}, {0x1ee8b, 0x1ee9b}, {0x1eea1, 0x1eea3},
    {0x1eea5, 0x1eea9}, {0x1eeab, 0x1eebb}, {0x1f000, 0x1f02b}, {0x1f030, 0x1f093},
    {0x1f0a0, 0x1f0ae}, {0x1f0b1, 0x1f0bf}, {0x1f0c1, 0x1f0cf}, {0x1f0d1, 0x1f0f5},
    {0x1f100, 0x1f10c}, {0x1f110, 0x1f16b}, {0x1f170, 0x1f1ac}, {0x1f1e6, 0x1f202},
    {0x1f210, 0x1f23b}, {0x1f240, 0x1f248}, {0x1f260, 0x1f265}, {0x1f300, 0x1f6d4},
    {0x1f6e0, 0x1f6ec}, {0x1f6f0, 0x1f6f9}, {0x1f700, 0x1f773}, {0x1f780, 0x1f7d8},
    {0x1f800, 0x1f80b}, {0x1f810, 0x1f847}, {0x1f850, 0x1f859}, {0x1f860, 0x1f887},
    {0x1f890, 0x1f8ad}, {0x1f900, 0x1f90b}, {0x1f910, 0x1f93e}, {0x1f940, 0x1f970},
    {0x1f973, 0x1f976}, {0x1f97c, 0x1f9a2}, {0x1f9b0, 0x1f9b9}, {0x1f9c0, 0x1f9c2},
    {0x1f9d0, 0x1f9ff}, {0x1fa60, 0x1fa6d}, {0x20000, 0x2a6d6}, {0x2a700, 0x2b734},


    {0x2b740, 0x2b81d}, {0x2b820, 0x2cea1}, {0x2ceb0, 0x2ebe0}, {0x2f800, 0x2fa1d},
    {0xe0100, 0xe01ef}
#endif
};

#define NUM_GRAPH_RANGE (sizeof(graphRangeTable)/sizeof(crange))

static const chr graphCharTable[] = {
    0x38c, 0x85e, 0x98f, 0x990, 0x9b2, 0x9c7, 0x9c8, 0x9d7, 0x9dc,
    0x9dd, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36, 0xa38, 0xa39,
    0xa3c, 0xa47, 0xa48, 0xa51, 0xa5e, 0xab2, 0xab3, 0xad0, 0xb0f,
    0xb10, 0xb32, 0xb33, 0xb47, 0xb48, 0xb56, 0xb57, 0xb5c, 0xb5d,
    0xb82, 0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4,
    0xbd0, 0xbd7, 0xc55, 0xc56, 0xcd5, 0xcd6, 0xcde, 0xcf1, 0xcf2,
    0xd82, 0xd83, 0xdbd, 0xdca, 0xdd6, 0xe81, 0xe82, 0xe84, 0xe87,
    0xe88, 0xe8a, 0xe8d, 0xea5, 0xea7, 0xeaa, 0xeab, 0xec6, 0x10c7,
    0x10cd, 0x1258, 0x12c0, 0x1772, 0x1773, 0x1940, 0x1f59, 0x1f5b, 0x1f5d,
    0x2070, 0x2071, 0x2d27, 0x2d2d, 0x2d6f, 0x2d70, 0xfb3e, 0xfb40, 0xfb41,
    0xfb43, 0xfb44, 0xfffc, 0xfffd
#if CHRBITS > 16
    ,0x1003c, 0x1003d, 0x101a0, 0x1056f, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4,
    0x108f5, 0x1093f, 0x10a05, 0x10a06, 0x11288, 0x1130f, 0x11310, 0x11332, 0x11333,
    0x11347, 0x11348, 0x11350, 0x11357, 0x1145b, 0x1145d, 0x1145e, 0x118ff, 0x11d08,
    0x11d09, 0x11d3a, 0x11d3c, 0x11d3d, 0x11d67, 0x11d68, 0x11d90, 0x11d91, 0x16a6e,
    0x16a6f, 0x16fe0, 0x16fe1, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d4bb,
    0x1d546, 0x1e023, 0x1e024, 0x1e95e, 0x1e95f, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27,
    0x1ee39, 0x1ee3b, 0x1ee42, 0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54,
    0x1ee57, 0x1ee59, 0x1ee5b, 0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e,
    0x1eef0, 0x1eef1, 0x1f250, 0x1f251, 0x1f97a
#endif
};

#define NUM_GRAPH_CHAR (sizeof(graphCharTable)/sizeof(chr))

/*
 *	End of auto-generated Unicode character ranges declarations.






|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|






|







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







>
|
|
|
|
|
|







 







<
|
|
|
|
|
|
|
<
>



|
|
|
>
|
|
|







 







|
|







 







|
>







 







|







 







|
|










|
|







 







|







 







|







 







|







 







|







 







|






|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|




|
|
|
|
|
|
|
|
|
|
|
|
|
|







 







|
|
|
|
|
|
|
|
|
|
>
|
|
|




|
|
|
|
|
<
>
>








|
>
|
|
|
|
|
|
|
|
|
|
|
<
|
>
>
|
|












|
<
|
|
|



|
|
|
|
|
|
|







149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
...
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
...
255
256
257
258
259
260
261

262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
...
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
...
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
...
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
...
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
...
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
...
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
...
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
...
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
...
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
...
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39}, {0xb5f, 0xb61},
    {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa},
    {0xbae, 0xbb9}, {0xc05, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28},
    {0xc2a, 0xc39}, {0xc58, 0xc5a}, {0xc85, 0xc8c}, {0xc8e, 0xc90},
    {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9}, {0xd05, 0xd0c},
    {0xd0e, 0xd10}, {0xd12, 0xd3a}, {0xd54, 0xd56}, {0xd5f, 0xd61},
    {0xd7a, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb},
    {0xdc0, 0xdc6}, {0xe01, 0xe30}, {0xe40, 0xe46}, {0xe86, 0xe8a},
    {0xe8c, 0xea3}, {0xea7, 0xeb0}, {0xec0, 0xec4}, {0xedc, 0xedf},
    {0xf40, 0xf47}, {0xf49, 0xf6c}, {0xf88, 0xf8c}, {0x1000, 0x102a},
    {0x1050, 0x1055}, {0x105a, 0x105d}, {0x106e, 0x1070}, {0x1075, 0x1081},
    {0x10a0, 0x10c5}, {0x10d0, 0x10fa}, {0x10fc, 0x1248}, {0x124a, 0x124d},
    {0x1250, 0x1256}, {0x125a, 0x125d}, {0x1260, 0x1288}, {0x128a, 0x128d},
    {0x1290, 0x12b0}, {0x12b2, 0x12b5}, {0x12b8, 0x12be}, {0x12c2, 0x12c5},
    {0x12c8, 0x12d6}, {0x12d8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135a},
    {0x1380, 0x138f}, {0x13a0, 0x13f5}, {0x13f8, 0x13fd}, {0x1401, 0x166c},
    {0x166f, 0x167f}, {0x1681, 0x169a}, {0x16a0, 0x16ea}, {0x16f1, 0x16f8},
    {0x1700, 0x170c}, {0x170e, 0x1711}, {0x1720, 0x1731}, {0x1740, 0x1751},
    {0x1760, 0x176c}, {0x176e, 0x1770}, {0x1780, 0x17b3}, {0x1820, 0x1878},
    {0x1880, 0x1884}, {0x1887, 0x18a8}, {0x18b0, 0x18f5}, {0x1900, 0x191e},
    {0x1950, 0x196d}, {0x1970, 0x1974}, {0x1980, 0x19ab}, {0x19b0, 0x19c9},
    {0x1a00, 0x1a16}, {0x1a20, 0x1a54}, {0x1b05, 0x1b33}, {0x1b45, 0x1b4b},
    {0x1b83, 0x1ba0}, {0x1bba, 0x1be5}, {0x1c00, 0x1c23}, {0x1c4d, 0x1c4f},
    {0x1c5a, 0x1c7d}, {0x1c80, 0x1c88}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf},
    {0x1ce9, 0x1cec}, {0x1cee, 0x1cf3}, {0x1d00, 0x1dbf}, {0x1e00, 0x1f15},
    {0x1f18, 0x1f1d}, {0x1f20, 0x1f45}, {0x1f48, 0x1f4d}, {0x1f50, 0x1f57},
    {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4}, {0x1fb6, 0x1fbc}, {0x1fc2, 0x1fc4},
    {0x1fc6, 0x1fcc}, {0x1fd0, 0x1fd3}, {0x1fd6, 0x1fdb}, {0x1fe0, 0x1fec},
    {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffc}, {0x2090, 0x209c}, {0x210a, 0x2113},
    {0x2119, 0x211d}, {0x212a, 0x212d}, {0x212f, 0x2139}, {0x213c, 0x213f},
    {0x2145, 0x2149}, {0x2c00, 0x2c2e}, {0x2c30, 0x2c5e}, {0x2c60, 0x2ce4},
    {0x2ceb, 0x2cee}, {0x2d00, 0x2d25}, {0x2d30, 0x2d67}, {0x2d80, 0x2d96},
    {0x2da0, 0x2da6}, {0x2da8, 0x2dae}, {0x2db0, 0x2db6}, {0x2db8, 0x2dbe},
    {0x2dc0, 0x2dc6}, {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6}, {0x2dd8, 0x2dde},
    {0x3031, 0x3035}, {0x3041, 0x3096}, {0x309d, 0x309f}, {0x30a1, 0x30fa},
    {0x30fc, 0x30ff}, {0x3105, 0x312f}, {0x3131, 0x318e}, {0x31a0, 0x31ba},
    {0x31f0, 0x31ff}, {0x3400, 0x4db5}, {0x4e00, 0x9fef}, {0xa000, 0xa48c},
    {0xa4d0, 0xa4fd}, {0xa500, 0xa60c}, {0xa610, 0xa61f}, {0xa640, 0xa66e},
    {0xa67f, 0xa69d}, {0xa6a0, 0xa6e5}, {0xa717, 0xa71f}, {0xa722, 0xa788},
    {0xa78b, 0xa7bf}, {0xa7c2, 0xa7c6}, {0xa7f7, 0xa801}, {0xa803, 0xa805},
    {0xa807, 0xa80a}, {0xa80c, 0xa822}, {0xa840, 0xa873}, {0xa882, 0xa8b3},
    {0xa8f2, 0xa8f7}, {0xa90a, 0xa925}, {0xa930, 0xa946}, {0xa960, 0xa97c},
    {0xa984, 0xa9b2}, {0xa9e0, 0xa9e4}, {0xa9e6, 0xa9ef}, {0xa9fa, 0xa9fe},
    {0xaa00, 0xaa28}, {0xaa40, 0xaa42}, {0xaa44, 0xaa4b}, {0xaa60, 0xaa76},
    {0xaa7e, 0xaaaf}, {0xaab9, 0xaabd}, {0xaadb, 0xaadd}, {0xaae0, 0xaaea},
    {0xaaf2, 0xaaf4}, {0xab01, 0xab06}, {0xab09, 0xab0e}, {0xab11, 0xab16},
    {0xab20, 0xab26}, {0xab28, 0xab2e}, {0xab30, 0xab5a}, {0xab5c, 0xab67},
    {0xab70, 0xabe2}, {0xac00, 0xd7a3}, {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb},
    {0xf900, 0xfa6d}, {0xfa70, 0xfad9}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17},
    {0xfb1f, 0xfb28}, {0xfb2a, 0xfb36}, {0xfb38, 0xfb3c}, {0xfb46, 0xfbb1},
    {0xfbd3, 0xfd3d}, {0xfd50, 0xfd8f}, {0xfd92, 0xfdc7}, {0xfdf0, 0xfdfb},
    {0xfe70, 0xfe74}, {0xfe76, 0xfefc}, {0xff21, 0xff3a}, {0xff41, 0xff5a},
    {0xff66, 0xffbe}, {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7},
    {0xffda, 0xffdc}
................................................................................
    {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805},
    {0x1080a, 0x10835}, {0x1083f, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089e},
    {0x108e0, 0x108f2}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109b7},
    {0x10a10, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a60, 0x10a7c},
    {0x10a80, 0x10a9c}, {0x10ac0, 0x10ac7}, {0x10ac9, 0x10ae4}, {0x10b00, 0x10b35},
    {0x10b40, 0x10b55}, {0x10b60, 0x10b72}, {0x10b80, 0x10b91}, {0x10c00, 0x10c48},
    {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10d00, 0x10d23}, {0x10f00, 0x10f1c},
    {0x10f30, 0x10f45}, {0x10fe0, 0x10ff6}, {0x11003, 0x11037}, {0x11083, 0x110af},
    {0x110d0, 0x110e8}, {0x11103, 0x11126}, {0x11150, 0x11172}, {0x11183, 0x111b2},
    {0x111c1, 0x111c4}, {0x11200, 0x11211}, {0x11213, 0x1122b}, {0x11280, 0x11286},
    {0x1128a, 0x1128d}, {0x1128f, 0x1129d}, {0x1129f, 0x112a8}, {0x112b0, 0x112de},
    {0x11305, 0x1130c}, {0x11313, 0x11328}, {0x1132a, 0x11330}, {0x11335, 0x11339},
    {0x1135d, 0x11361}, {0x11400, 0x11434}, {0x11447, 0x1144a}, {0x11480, 0x114af},
    {0x11580, 0x115ae}, {0x115d8, 0x115db}, {0x11600, 0x1162f}, {0x11680, 0x116aa},
    {0x11700, 0x1171a}, {0x11800, 0x1182b}, {0x118a0, 0x118df}, {0x119a0, 0x119a7},
    {0x119aa, 0x119d0}, {0x11a0b, 0x11a32}, {0x11a5c, 0x11a89}, {0x11ac0, 0x11af8},
    {0x11c00, 0x11c08}, {0x11c0a, 0x11c2e}, {0x11c72, 0x11c8f}, {0x11d00, 0x11d06},
    {0x11d0b, 0x11d30}, {0x11d60, 0x11d65}, {0x11d6a, 0x11d89}, {0x11ee0, 0x11ef2},
    {0x12000, 0x12399}, {0x12480, 0x12543}, {0x13000, 0x1342e}, {0x14400, 0x14646},
    {0x16800, 0x16a38}, {0x16a40, 0x16a5e}, {0x16ad0, 0x16aed}, {0x16b00, 0x16b2f},
    {0x16b40, 0x16b43}, {0x16b63, 0x16b77}, {0x16b7d, 0x16b8f}, {0x16e40, 0x16e7f},
    {0x16f00, 0x16f4a}, {0x16f93, 0x16f9f}, {0x17000, 0x187f7}, {0x18800, 0x18af2},
    {0x1b000, 0x1b11e}, {0x1b150, 0x1b152}, {0x1b164, 0x1b167}, {0x1b170, 0x1b2fb},
    {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99},
    {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b9},
    {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a}, {0x1d50d, 0x1d514},
    {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544},
    {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d6c0}, {0x1d6c2, 0x1d6da},
    {0x1d6dc, 0x1d6fa}, {0x1d6fc, 0x1d714}, {0x1d716, 0x1d734}, {0x1d736, 0x1d74e},
    {0x1d750, 0x1d76e}, {0x1d770, 0x1d788}, {0x1d78a, 0x1d7a8}, {0x1d7aa, 0x1d7c2},
    {0x1d7c4, 0x1d7cb}, {0x1e100, 0x1e12c}, {0x1e137, 0x1e13d}, {0x1e2c0, 0x1e2eb},
    {0x1e800, 0x1e8c4}, {0x1e900, 0x1e943}, {0x1ee00, 0x1ee03}, {0x1ee05, 0x1ee1f},
    {0x1ee29, 0x1ee32}, {0x1ee34, 0x1ee37}, {0x1ee4d, 0x1ee4f}, {0x1ee67, 0x1ee6a},
    {0x1ee6c, 0x1ee72}, {0x1ee74, 0x1ee77}, {0x1ee79, 0x1ee7c}, {0x1ee80, 0x1ee89},
    {0x1ee8b, 0x1ee9b}, {0x1eea1, 0x1eea3}, {0x1eea5, 0x1eea9}, {0x1eeab, 0x1eebb},
    {0x20000, 0x2a6d6}, {0x2a700, 0x2b734}, {0x2b740, 0x2b81d}, {0x2b820, 0x2cea1},
    {0x2ceb0, 0x2ebe0}, {0x2f800, 0x2fa1d}
#endif
};

#define NUM_ALPHA_RANGE (sizeof(alphaRangeTable)/sizeof(crange))

static const chr alphaCharTable[] = {
    0xaa, 0xb5, 0xba, 0x2ec, 0x2ee, 0x376, 0x377, 0x37f, 0x386,
................................................................................
    0x93d, 0x950, 0x98f, 0x990, 0x9b2, 0x9bd, 0x9ce, 0x9dc, 0x9dd,
    0x9f0, 0x9f1, 0x9fc, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36,
    0xa38, 0xa39, 0xa5e, 0xab2, 0xab3, 0xabd, 0xad0, 0xae0, 0xae1,
    0xaf9, 0xb0f, 0xb10, 0xb32, 0xb33, 0xb3d, 0xb5c, 0xb5d, 0xb71,
    0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4, 0xbd0,
    0xc3d, 0xc60, 0xc61, 0xc80, 0xcbd, 0xcde, 0xce0, 0xce1, 0xcf1,
    0xcf2, 0xd3d, 0xd4e, 0xdbd, 0xe32, 0xe33, 0xe81, 0xe82, 0xe84,

    0xea5, 0xeb2, 0xeb3, 0xebd, 0xec6, 0xf00, 0x103f, 0x1061, 0x1065,
    0x1066, 0x108e, 0x10c7, 0x10cd, 0x1258, 0x12c0, 0x17d7, 0x17dc, 0x18aa,
    0x1aa7, 0x1bae, 0x1baf, 0x1cf5, 0x1cf6, 0x1cfa, 0x1f59, 0x1f5b, 0x1f5d,
    0x1fbe, 0x2071, 0x207f, 0x2102, 0x2107, 0x2115, 0x2124, 0x2126, 0x2128,
    0x214e, 0x2183, 0x2184, 0x2cf2, 0x2cf3, 0x2d27, 0x2d2d, 0x2d6f, 0x2e2f,
    0x3005, 0x3006, 0x303b, 0x303c, 0xa62a, 0xa62b, 0xa8fb, 0xa8fd, 0xa8fe,
    0xa9cf, 0xaa7a, 0xaab1, 0xaab5, 0xaab6, 0xaac0, 0xaac2, 0xfb1d, 0xfb3e,

    0xfb40, 0xfb41, 0xfb43, 0xfb44
#if CHRBITS > 16
    ,0x1003c, 0x1003d, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4, 0x108f5, 0x109be,
    0x109bf, 0x10a00, 0x10f27, 0x11144, 0x11176, 0x111da, 0x111dc, 0x11288, 0x1130f,
    0x11310, 0x11332, 0x11333, 0x1133d, 0x11350, 0x1145f, 0x114c4, 0x114c5, 0x114c7,
    0x11644, 0x116b8, 0x118ff, 0x119e1, 0x119e3, 0x11a00, 0x11a3a, 0x11a50, 0x11a9d,
    0x11c40, 0x11d08, 0x11d09, 0x11d46, 0x11d67, 0x11d68, 0x11d98, 0x16f50, 0x16fe0,
    0x16fe1, 0x16fe3, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d4bb, 0x1d546,
    0x1e14e, 0x1e94b, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27, 0x1ee39, 0x1ee3b, 0x1ee42,
    0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54, 0x1ee57, 0x1ee59, 0x1ee5b,
    0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e
#endif
};

#define NUM_ALPHA_CHAR (sizeof(alphaCharTable)/sizeof(chr))

/*
 * Unicode: control characters.
................................................................................
 */

static const crange controlRangeTable[] = {
    {0x0, 0x1f}, {0x7f, 0x9f}, {0x600, 0x605}, {0x200b, 0x200f},
    {0x202a, 0x202e}, {0x2060, 0x2064}, {0x2066, 0x206f}, {0xe000, 0xf8ff},
    {0xfff9, 0xfffb}
#if CHRBITS > 16
    ,{0x13430, 0x13438}, {0x1bca0, 0x1bca3}, {0x1d173, 0x1d17a}, {0xe0020, 0xe007f},
    {0xf0000, 0xffffd}, {0x100000, 0x10fffd}
#endif
};

#define NUM_CONTROL_RANGE (sizeof(controlRangeTable)/sizeof(crange))

static const chr controlCharTable[] = {
    0xad, 0x61c, 0x6dd, 0x70f, 0x8e2, 0x180e, 0xfeff
................................................................................
    {0xa9d0, 0xa9d9}, {0xa9f0, 0xa9f9}, {0xaa50, 0xaa59}, {0xabf0, 0xabf9},
    {0xff10, 0xff19}
#if CHRBITS > 16
    ,{0x104a0, 0x104a9}, {0x10d30, 0x10d39}, {0x11066, 0x1106f}, {0x110f0, 0x110f9},
    {0x11136, 0x1113f}, {0x111d0, 0x111d9}, {0x112f0, 0x112f9}, {0x11450, 0x11459},
    {0x114d0, 0x114d9}, {0x11650, 0x11659}, {0x116c0, 0x116c9}, {0x11730, 0x11739},
    {0x118e0, 0x118e9}, {0x11c50, 0x11c59}, {0x11d50, 0x11d59}, {0x11da0, 0x11da9},
    {0x16a60, 0x16a69}, {0x16b50, 0x16b59}, {0x1d7ce, 0x1d7ff}, {0x1e140, 0x1e149},
    {0x1e2f0, 0x1e2f9}, {0x1e950, 0x1e959}
#endif
};

#define NUM_DIGIT_RANGE (sizeof(digitRangeTable)/sizeof(crange))

/*
 * no singletons of digit characters.
................................................................................
    {0x55a, 0x55f}, {0x66a, 0x66d}, {0x700, 0x70d}, {0x7f7, 0x7f9},
    {0x830, 0x83e}, {0xf04, 0xf12}, {0xf3a, 0xf3d}, {0xfd0, 0xfd4},
    {0x104a, 0x104f}, {0x1360, 0x1368}, {0x16eb, 0x16ed}, {0x17d4, 0x17d6},
    {0x17d8, 0x17da}, {0x1800, 0x180a}, {0x1aa0, 0x1aa6}, {0x1aa8, 0x1aad},
    {0x1b5a, 0x1b60}, {0x1bfc, 0x1bff}, {0x1c3b, 0x1c3f}, {0x1cc0, 0x1cc7},
    {0x2010, 0x2027}, {0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205e},
    {0x2308, 0x230b}, {0x2768, 0x2775}, {0x27e6, 0x27ef}, {0x2983, 0x2998},
    {0x29d8, 0x29db}, {0x2cf9, 0x2cfc}, {0x2e00, 0x2e2e}, {0x2e30, 0x2e4f},
    {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301f}, {0xa60d, 0xa60f},
    {0xa6f2, 0xa6f7}, {0xa874, 0xa877}, {0xa8f8, 0xa8fa}, {0xa9c1, 0xa9cd},
    {0xaa5c, 0xaa5f}, {0xfe10, 0xfe19}, {0xfe30, 0xfe52}, {0xfe54, 0xfe61},
    {0xff01, 0xff03}, {0xff05, 0xff0a}, {0xff0c, 0xff0f}, {0xff3b, 0xff3d},
    {0xff5f, 0xff65}
#if CHRBITS > 16
    ,{0x10100, 0x10102}, {0x10a50, 0x10a58}, {0x10af0, 0x10af6}, {0x10b39, 0x10b3f},
................................................................................
#define NUM_PUNCT_RANGE (sizeof(punctRangeTable)/sizeof(crange))

static const chr punctCharTable[] = {
    0x3a, 0x3b, 0x3f, 0x40, 0x5f, 0x7b, 0x7d, 0xa1, 0xa7,
    0xab, 0xb6, 0xb7, 0xbb, 0xbf, 0x37e, 0x387, 0x589, 0x58a,
    0x5be, 0x5c0, 0x5c3, 0x5c6, 0x5f3, 0x5f4, 0x609, 0x60a, 0x60c,
    0x60d, 0x61b, 0x61e, 0x61f, 0x6d4, 0x85e, 0x964, 0x965, 0x970,
    0x9fd, 0xa76, 0xaf0, 0xc77, 0xc84, 0xdf4, 0xe4f, 0xe5a, 0xe5b,
    0xf14, 0xf85, 0xfd9, 0xfda, 0x10fb, 0x1400, 0x166e, 0x169b, 0x169c,
    0x1735, 0x1736, 0x1944, 0x1945, 0x1a1e, 0x1a1f, 0x1c7e, 0x1c7f, 0x1cd3,
    0x207d, 0x207e, 0x208d, 0x208e, 0x2329, 0x232a, 0x27c5, 0x27c6, 0x29fc,
    0x29fd, 0x2cfe, 0x2cff, 0x2d70, 0x3030, 0x303d, 0x30a0, 0x30fb, 0xa4fe,
    0xa4ff, 0xa673, 0xa67e, 0xa8ce, 0xa8cf, 0xa8fc, 0xa92e, 0xa92f, 0xa95f,
    0xa9de, 0xa9df, 0xaade, 0xaadf, 0xaaf0, 0xaaf1, 0xabeb, 0xfd3e, 0xfd3f,
    0xfe63, 0xfe68, 0xfe6a, 0xfe6b, 0xff1a, 0xff1b, 0xff1f, 0xff20, 0xff3f,
    0xff5b, 0xff5d
#if CHRBITS > 16
    ,0x1039f, 0x103d0, 0x1056f, 0x10857, 0x1091f, 0x1093f, 0x10a7f, 0x110bb, 0x110bc,
    0x11174, 0x11175, 0x111cd, 0x111db, 0x112a9, 0x1145b, 0x1145d, 0x114c6, 0x1183b,
    0x119e2, 0x11c70, 0x11c71, 0x11ef7, 0x11ef8, 0x11fff, 0x16a6e, 0x16a6f, 0x16af5,
    0x16b44, 0x16fe2, 0x1bc9f, 0x1e95e, 0x1e95f
#endif
};

#define NUM_PUNCT_CHAR (sizeof(punctCharTable)/sizeof(chr))

/*
 * Unicode: white space characters.
................................................................................
    {0x10fd, 0x10ff}, {0x13f8, 0x13fd}, {0x1c80, 0x1c88}, {0x1d00, 0x1d2b},
    {0x1d6b, 0x1d77}, {0x1d79, 0x1d9a}, {0x1e95, 0x1e9d}, {0x1eff, 0x1f07},
    {0x1f10, 0x1f15}, {0x1f20, 0x1f27}, {0x1f30, 0x1f37}, {0x1f40, 0x1f45},
    {0x1f50, 0x1f57}, {0x1f60, 0x1f67}, {0x1f70, 0x1f7d}, {0x1f80, 0x1f87},
    {0x1f90, 0x1f97}, {0x1fa0, 0x1fa7}, {0x1fb0, 0x1fb4}, {0x1fc2, 0x1fc4},
    {0x1fd0, 0x1fd3}, {0x1fe0, 0x1fe7}, {0x1ff2, 0x1ff4}, {0x2146, 0x2149},
    {0x2c30, 0x2c5e}, {0x2c76, 0x2c7b}, {0x2d00, 0x2d25}, {0xa72f, 0xa731},
    {0xa771, 0xa778}, {0xa793, 0xa795}, {0xab30, 0xab5a}, {0xab60, 0xab67},
    {0xab70, 0xabbf}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xff41, 0xff5a}
#if CHRBITS > 16
    ,{0x10428, 0x1044f}, {0x104d8, 0x104fb}, {0x10cc0, 0x10cf2}, {0x118c0, 0x118df},
    {0x16e60, 0x16e7f}, {0x1d41a, 0x1d433}, {0x1d44e, 0x1d454}, {0x1d456, 0x1d467},
    {0x1d482, 0x1d49b}, {0x1d4b6, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d4cf},
    {0x1d4ea, 0x1d503}, {0x1d51e, 0x1d537}, {0x1d552, 0x1d56b}, {0x1d586, 0x1d59f},
    {0x1d5ba, 0x1d5d3}, {0x1d5ee, 0x1d607}, {0x1d622, 0x1d63b}, {0x1d656, 0x1d66f},
................................................................................
    0xa691, 0xa693, 0xa695, 0xa697, 0xa699, 0xa69b, 0xa723, 0xa725, 0xa727,
    0xa729, 0xa72b, 0xa72d, 0xa733, 0xa735, 0xa737, 0xa739, 0xa73b, 0xa73d,
    0xa73f, 0xa741, 0xa743, 0xa745, 0xa747, 0xa749, 0xa74b, 0xa74d, 0xa74f,
    0xa751, 0xa753, 0xa755, 0xa757, 0xa759, 0xa75b, 0xa75d, 0xa75f, 0xa761,
    0xa763, 0xa765, 0xa767, 0xa769, 0xa76b, 0xa76d, 0xa76f, 0xa77a, 0xa77c,
    0xa77f, 0xa781, 0xa783, 0xa785, 0xa787, 0xa78c, 0xa78e, 0xa791, 0xa797,
    0xa799, 0xa79b, 0xa79d, 0xa79f, 0xa7a1, 0xa7a3, 0xa7a5, 0xa7a7, 0xa7a9,
    0xa7af, 0xa7b5, 0xa7b7, 0xa7b9, 0xa7bb, 0xa7bd, 0xa7bf, 0xa7c3, 0xa7fa
#if CHRBITS > 16
    ,0x1d4bb, 0x1d7cb
#endif
};

#define NUM_LOWER_CHAR (sizeof(lowerCharTable)/sizeof(chr))

................................................................................
    {0x3d2, 0x3d4}, {0x3fd, 0x42f}, {0x531, 0x556}, {0x10a0, 0x10c5},
    {0x13a0, 0x13f5}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cbf}, {0x1f08, 0x1f0f},
    {0x1f18, 0x1f1d}, {0x1f28, 0x1f2f}, {0x1f38, 0x1f3f}, {0x1f48, 0x1f4d},
    {0x1f68, 0x1f6f}, {0x1fb8, 0x1fbb}, {0x1fc8, 0x1fcb}, {0x1fd8, 0x1fdb},
    {0x1fe8, 0x1fec}, {0x1ff8, 0x1ffb}, {0x210b, 0x210d}, {0x2110, 0x2112},
    {0x2119, 0x211d}, {0x212a, 0x212d}, {0x2130, 0x2133}, {0x2c00, 0x2c2e},
    {0x2c62, 0x2c64}, {0x2c6d, 0x2c70}, {0x2c7e, 0x2c80}, {0xa7aa, 0xa7ae},
    {0xa7b0, 0xa7b4}, {0xa7c4, 0xa7c6}, {0xff21, 0xff3a}
#if CHRBITS > 16
    ,{0x10400, 0x10427}, {0x104b0, 0x104d3}, {0x10c80, 0x10cb2}, {0x118a0, 0x118bf},
    {0x16e40, 0x16e5f}, {0x1d400, 0x1d419}, {0x1d434, 0x1d44d}, {0x1d468, 0x1d481},
    {0x1d4a9, 0x1d4ac}, {0x1d4ae, 0x1d4b5}, {0x1d4d0, 0x1d4e9}, {0x1d507, 0x1d50a},
    {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d53b, 0x1d53e}, {0x1d540, 0x1d544},
    {0x1d54a, 0x1d550}, {0x1d56c, 0x1d585}, {0x1d5a0, 0x1d5b9}, {0x1d5d4, 0x1d5ed},
    {0x1d608, 0x1d621}, {0x1d63c, 0x1d655}, {0x1d670, 0x1d689}, {0x1d6a8, 0x1d6c0},
................................................................................
    0xa698, 0xa69a, 0xa722, 0xa724, 0xa726, 0xa728, 0xa72a, 0xa72c, 0xa72e,
    0xa732, 0xa734, 0xa736, 0xa738, 0xa73a, 0xa73c, 0xa73e, 0xa740, 0xa742,
    0xa744, 0xa746, 0xa748, 0xa74a, 0xa74c, 0xa74e, 0xa750, 0xa752, 0xa754,
    0xa756, 0xa758, 0xa75a, 0xa75c, 0xa75e, 0xa760, 0xa762, 0xa764, 0xa766,
    0xa768, 0xa76a, 0xa76c, 0xa76e, 0xa779, 0xa77b, 0xa77d, 0xa77e, 0xa780,
    0xa782, 0xa784, 0xa786, 0xa78b, 0xa78d, 0xa790, 0xa792, 0xa796, 0xa798,
    0xa79a, 0xa79c, 0xa79e, 0xa7a0, 0xa7a2, 0xa7a4, 0xa7a6, 0xa7a8, 0xa7b6,
    0xa7b8, 0xa7ba, 0xa7bc, 0xa7be, 0xa7c2
#if CHRBITS > 16
    ,0x1d49c, 0x1d49e, 0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d504, 0x1d505, 0x1d538,
    0x1d539, 0x1d546, 0x1d7ca
#endif
};

#define NUM_UPPER_CHAR (sizeof(upperCharTable)/sizeof(chr))
................................................................................
    {0xae0, 0xae3}, {0xae6, 0xaf1}, {0xaf9, 0xaff}, {0xb01, 0xb03},
    {0xb05, 0xb0c}, {0xb13, 0xb28}, {0xb2a, 0xb30}, {0xb35, 0xb39},
    {0xb3c, 0xb44}, {0xb4b, 0xb4d}, {0xb5f, 0xb63}, {0xb66, 0xb77},
    {0xb85, 0xb8a}, {0xb8e, 0xb90}, {0xb92, 0xb95}, {0xba8, 0xbaa},
    {0xbae, 0xbb9}, {0xbbe, 0xbc2}, {0xbc6, 0xbc8}, {0xbca, 0xbcd},
    {0xbe6, 0xbfa}, {0xc00, 0xc0c}, {0xc0e, 0xc10}, {0xc12, 0xc28},
    {0xc2a, 0xc39}, {0xc3d, 0xc44}, {0xc46, 0xc48}, {0xc4a, 0xc4d},
    {0xc58, 0xc5a}, {0xc60, 0xc63}, {0xc66, 0xc6f}, {0xc77, 0xc8c},
    {0xc8e, 0xc90}, {0xc92, 0xca8}, {0xcaa, 0xcb3}, {0xcb5, 0xcb9},
    {0xcbc, 0xcc4}, {0xcc6, 0xcc8}, {0xcca, 0xccd}, {0xce0, 0xce3},
    {0xce6, 0xcef}, {0xd00, 0xd03}, {0xd05, 0xd0c}, {0xd0e, 0xd10},
    {0xd12, 0xd44}, {0xd46, 0xd48}, {0xd4a, 0xd4f}, {0xd54, 0xd63},
    {0xd66, 0xd7f}, {0xd85, 0xd96}, {0xd9a, 0xdb1}, {0xdb3, 0xdbb},
    {0xdc0, 0xdc6}, {0xdcf, 0xdd4}, {0xdd8, 0xddf}, {0xde6, 0xdef},
    {0xdf2, 0xdf4}, {0xe01, 0xe3a}, {0xe3f, 0xe5b}, {0xe86, 0xe8a},

    {0xe8c, 0xea3}, {0xea7, 0xebd}, {0xec0, 0xec4}, {0xec8, 0xecd},
    {0xed0, 0xed9}, {0xedc, 0xedf}, {0xf00, 0xf47}, {0xf49, 0xf6c},
    {0xf71, 0xf97}, {0xf99, 0xfbc}, {0xfbe, 0xfcc}, {0xfce, 0xfda},
    {0x1000, 0x10c5}, {0x10d0, 0x1248}, {0x124a, 0x124d}, {0x1250, 0x1256},
    {0x125a, 0x125d}, {0x1260, 0x1288}, {0x128a, 0x128d}, {0x1290, 0x12b0},
    {0x12b2, 0x12b5}, {0x12b8, 0x12be}, {0x12c2, 0x12c5}, {0x12c8, 0x12d6},
    {0x12d8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135a}, {0x135d, 0x137c},
    {0x1380, 0x1399}, {0x13a0, 0x13f5}, {0x13f8, 0x13fd}, {0x1400, 0x167f},
    {0x1681, 0x169c}, {0x16a0, 0x16f8}, {0x1700, 0x170c}, {0x170e, 0x1714},
    {0x1720, 0x1736}, {0x1740, 0x1753}, {0x1760, 0x176c}, {0x176e, 0x1770},
    {0x1780, 0x17dd}, {0x17e0, 0x17e9}, {0x17f0, 0x17f9}, {0x1800, 0x180d},
    {0x1810, 0x1819}, {0x1820, 0x1878}, {0x1880, 0x18aa}, {0x18b0, 0x18f5},
    {0x1900, 0x191e}, {0x1920, 0x192b}, {0x1930, 0x193b}, {0x1944, 0x196d},
    {0x1970, 0x1974}, {0x1980, 0x19ab}, {0x19b0, 0x19c9}, {0x19d0, 0x19da},
    {0x19de, 0x1a1b}, {0x1a1e, 0x1a5e}, {0x1a60, 0x1a7c}, {0x1a7f, 0x1a89},
    {0x1a90, 0x1a99}, {0x1aa0, 0x1aad}, {0x1ab0, 0x1abe}, {0x1b00, 0x1b4b},
    {0x1b50, 0x1b7c}, {0x1b80, 0x1bf3}, {0x1bfc, 0x1c37}, {0x1c3b, 0x1c49},
    {0x1c4d, 0x1c88}, {0x1c90, 0x1cba}, {0x1cbd, 0x1cc7}, {0x1cd0, 0x1cfa},
    {0x1d00, 0x1df9}, {0x1dfb, 0x1f15}, {0x1f18, 0x1f1d}, {0x1f20, 0x1f45},
    {0x1f48, 0x1f4d}, {0x1f50, 0x1f57}, {0x1f5f, 0x1f7d}, {0x1f80, 0x1fb4},
    {0x1fb6, 0x1fc4}, {0x1fc6, 0x1fd3}, {0x1fd6, 0x1fdb}, {0x1fdd, 0x1fef},
    {0x1ff2, 0x1ff4}, {0x1ff6, 0x1ffe}, {0x2010, 0x2027}, {0x2030, 0x205e},
    {0x2074, 0x208e}, {0x2090, 0x209c}, {0x20a0, 0x20bf}, {0x20d0, 0x20f0},
    {0x2100, 0x218b}, {0x2190, 0x2426}, {0x2440, 0x244a}, {0x2460, 0x2b73},
    {0x2b76, 0x2b95}, {0x2b98, 0x2c2e}, {0x2c30, 0x2c5e}, {0x2c60, 0x2cf3},
    {0x2cf9, 0x2d25}, {0x2d30, 0x2d67}, {0x2d7f, 0x2d96}, {0x2da0, 0x2da6},
    {0x2da8, 0x2dae}, {0x2db0, 0x2db6}, {0x2db8, 0x2dbe}, {0x2dc0, 0x2dc6},
    {0x2dc8, 0x2dce}, {0x2dd0, 0x2dd6}, {0x2dd8, 0x2dde}, {0x2de0, 0x2e4f},
    {0x2e80, 0x2e99}, {0x2e9b, 0x2ef3}, {0x2f00, 0x2fd5}, {0x2ff0, 0x2ffb},
    {0x3001, 0x303f}, {0x3041, 0x3096}, {0x3099, 0x30ff}, {0x3105, 0x312f},
    {0x3131, 0x318e}, {0x3190, 0x31ba}, {0x31c0, 0x31e3}, {0x31f0, 0x321e},
    {0x3220, 0x32fe}, {0x3300, 0x4db5}, {0x4dc0, 0x9fef}, {0xa000, 0xa48c},
    {0xa490, 0xa4c6}, {0xa4d0, 0xa62b}, {0xa640, 0xa6f7}, {0xa700, 0xa7bf},
    {0xa7c2, 0xa7c6}, {0xa7f7, 0xa82b}, {0xa830, 0xa839}, {0xa840, 0xa877},
    {0xa880, 0xa8c5}, {0xa8ce, 0xa8d9}, {0xa8e0, 0xa953}, {0xa95f, 0xa97c},
    {0xa980, 0xa9cd}, {0xa9cf, 0xa9d9}, {0xa9de, 0xa9fe}, {0xaa00, 0xaa36},
    {0xaa40, 0xaa4d}, {0xaa50, 0xaa59}, {0xaa5c, 0xaac2}, {0xaadb, 0xaaf6},
    {0xab01, 0xab06}, {0xab09, 0xab0e}, {0xab11, 0xab16}, {0xab20, 0xab26},
    {0xab28, 0xab2e}, {0xab30, 0xab67}, {0xab70, 0xabed}, {0xabf0, 0xabf9},
    {0xac00, 0xd7a3}, {0xd7b0, 0xd7c6}, {0xd7cb, 0xd7fb}, {0xf900, 0xfa6d},
    {0xfa70, 0xfad9}, {0xfb00, 0xfb06}, {0xfb13, 0xfb17}, {0xfb1d, 0xfb36},
    {0xfb38, 0xfb3c}, {0xfb46, 0xfbc1}, {0xfbd3, 0xfd3f}, {0xfd50, 0xfd8f},
    {0xfd92, 0xfdc7}, {0xfdf0, 0xfdfd}, {0xfe00, 0xfe19}, {0xfe20, 0xfe52},
    {0xfe54, 0xfe66}, {0xfe68, 0xfe6b}, {0xfe70, 0xfe74}, {0xfe76, 0xfefc},
    {0xff01, 0xffbe}, {0xffc2, 0xffc7}, {0xffca, 0xffcf}, {0xffd2, 0xffd7},
    {0xffda, 0xffdc}, {0xffe0, 0xffe6}, {0xffe8, 0xffee}
#if CHRBITS > 16
    ,{0x10000, 0x1000b}, {0x1000d, 0x10026}, {0x10028, 0x1003a}, {0x1003f, 0x1004d},
    {0x10050, 0x1005d}, {0x10080, 0x100fa}, {0x10100, 0x10102}, {0x10107, 0x10133},
    {0x10137, 0x1018e}, {0x10190, 0x1019b}, {0x101d0, 0x101fd}, {0x10280, 0x1029c},
    {0x102a0, 0x102d0}, {0x102e0, 0x102fb}, {0x10300, 0x10323}, {0x1032d, 0x1034a},
    {0x10350, 0x1037a}, {0x10380, 0x1039d}, {0x1039f, 0x103c3}, {0x103c8, 0x103d5},
    {0x10400, 0x1049d}, {0x104a0, 0x104a9}, {0x104b0, 0x104d3}, {0x104d8, 0x104fb},
................................................................................
    {0x10857, 0x1089e}, {0x108a7, 0x108af}, {0x108e0, 0x108f2}, {0x108fb, 0x1091b},
    {0x1091f, 0x10939}, {0x10980, 0x109b7}, {0x109bc, 0x109cf}, {0x109d2, 0x10a03},
    {0x10a0c, 0x10a13}, {0x10a15, 0x10a17}, {0x10a19, 0x10a35}, {0x10a38, 0x10a3a},
    {0x10a3f, 0x10a48}, {0x10a50, 0x10a58}, {0x10a60, 0x10a9f}, {0x10ac0, 0x10ae6},
    {0x10aeb, 0x10af6}, {0x10b00, 0x10b35}, {0x10b39, 0x10b55}, {0x10b58, 0x10b72},
    {0x10b78, 0x10b91}, {0x10b99, 0x10b9c}, {0x10ba9, 0x10baf}, {0x10c00, 0x10c48},
    {0x10c80, 0x10cb2}, {0x10cc0, 0x10cf2}, {0x10cfa, 0x10d27}, {0x10d30, 0x10d39},
    {0x10e60, 0x10e7e}, {0x10f00, 0x10f27}, {0x10f30, 0x10f59}, {0x10fe0, 0x10ff6},
    {0x11000, 0x1104d}, {0x11052, 0x1106f}, {0x1107f, 0x110bc}, {0x110be, 0x110c1},
    {0x110d0, 0x110e8}, {0x110f0, 0x110f9}, {0x11100, 0x11134}, {0x11136, 0x11146},
    {0x11150, 0x11176}, {0x11180, 0x111cd}, {0x111d0, 0x111df}, {0x111e1, 0x111f4},
    {0x11200, 0x11211}, {0x11213, 0x1123e}, {0x11280, 0x11286}, {0x1128a, 0x1128d},
    {0x1128f, 0x1129d}, {0x1129f, 0x112a9}, {0x112b0, 0x112ea}, {0x112f0, 0x112f9},
    {0x11300, 0x11303}, {0x11305, 0x1130c}, {0x11313, 0x11328}, {0x1132a, 0x11330},
    {0x11335, 0x11339}, {0x1133b, 0x11344}, {0x1134b, 0x1134d}, {0x1135d, 0x11363},
    {0x11366, 0x1136c}, {0x11370, 0x11374}, {0x11400, 0x11459}, {0x1145d, 0x1145f},
    {0x11480, 0x114c7}, {0x114d0, 0x114d9}, {0x11580, 0x115b5}, {0x115b8, 0x115dd},
    {0x11600, 0x11644}, {0x11650, 0x11659}, {0x11660, 0x1166c}, {0x11680, 0x116b8},
    {0x116c0, 0x116c9}, {0x11700, 0x1171a}, {0x1171d, 0x1172b}, {0x11730, 0x1173f},
    {0x11800, 0x1183b}, {0x118a0, 0x118f2}, {0x119a0, 0x119a7}, {0x119aa, 0x119d7},
    {0x119da, 0x119e4}, {0x11a00, 0x11a47}, {0x11a50, 0x11aa2}, {0x11ac0, 0x11af8},
    {0x11c00, 0x11c08}, {0x11c0a, 0x11c36}, {0x11c38, 0x11c45}, {0x11c50, 0x11c6c},
    {0x11c70, 0x11c8f}, {0x11c92, 0x11ca7}, {0x11ca9, 0x11cb6}, {0x11d00, 0x11d06},
    {0x11d0b, 0x11d36}, {0x11d3f, 0x11d47}, {0x11d50, 0x11d59}, {0x11d60, 0x11d65},
    {0x11d6a, 0x11d8e}, {0x11d93, 0x11d98}, {0x11da0, 0x11da9}, {0x11ee0, 0x11ef8},
    {0x11fc0, 0x11ff1}, {0x11fff, 0x12399}, {0x12400, 0x1246e}, {0x12470, 0x12474},
    {0x12480, 0x12543}, {0x13000, 0x1342e}, {0x14400, 0x14646}, {0x16800, 0x16a38},
    {0x16a40, 0x16a5e}, {0x16a60, 0x16a69}, {0x16ad0, 0x16aed}, {0x16af0, 0x16af5},
    {0x16b00, 0x16b45}, {0x16b50, 0x16b59}, {0x16b5b, 0x16b61}, {0x16b63, 0x16b77},
    {0x16b7d, 0x16b8f}, {0x16e40, 0x16e9a}, {0x16f00, 0x16f4a}, {0x16f4f, 0x16f87},

    {0x16f8f, 0x16f9f}, {0x16fe0, 0x16fe3}, {0x17000, 0x187f7}, {0x18800, 0x18af2},
    {0x1b000, 0x1b11e}, {0x1b150, 0x1b152}, {0x1b164, 0x1b167}, {0x1b170, 0x1b2fb},
    {0x1bc00, 0x1bc6a}, {0x1bc70, 0x1bc7c}, {0x1bc80, 0x1bc88}, {0x1bc90, 0x1bc99},
    {0x1bc9c, 0x1bc9f}, {0x1d000, 0x1d0f5}, {0x1d100, 0x1d126}, {0x1d129, 0x1d172},
    {0x1d17b, 0x1d1e8}, {0x1d200, 0x1d245}, {0x1d2e0, 0x1d2f3}, {0x1d300, 0x1d356},
    {0x1d360, 0x1d378}, {0x1d400, 0x1d454}, {0x1d456, 0x1d49c}, {0x1d4a9, 0x1d4ac},
    {0x1d4ae, 0x1d4b9}, {0x1d4bd, 0x1d4c3}, {0x1d4c5, 0x1d505}, {0x1d507, 0x1d50a},
    {0x1d50d, 0x1d514}, {0x1d516, 0x1d51c}, {0x1d51e, 0x1d539}, {0x1d53b, 0x1d53e},
    {0x1d540, 0x1d544}, {0x1d54a, 0x1d550}, {0x1d552, 0x1d6a5}, {0x1d6a8, 0x1d7cb},
    {0x1d7ce, 0x1da8b}, {0x1da9b, 0x1da9f}, {0x1daa1, 0x1daaf}, {0x1e000, 0x1e006},
    {0x1e008, 0x1e018}, {0x1e01b, 0x1e021}, {0x1e026, 0x1e02a}, {0x1e100, 0x1e12c},
    {0x1e130, 0x1e13d}, {0x1e140, 0x1e149}, {0x1e2c0, 0x1e2f9}, {0x1e800, 0x1e8c4},
    {0x1e8c7, 0x1e8d6}, {0x1e900, 0x1e94b}, {0x1e950, 0x1e959}, {0x1ec71, 0x1ecb4},
    {0x1ed01, 0x1ed3d}, {0x1ee00, 0x1ee03}, {0x1ee05, 0x1ee1f}, {0x1ee29, 0x1ee32},
    {0x1ee34, 0x1ee37}, {0x1ee4d, 0x1ee4f}, {0x1ee67, 0x1ee6a}, {0x1ee6c, 0x1ee72},
    {0x1ee74, 0x1ee77}, {0x1ee79, 0x1ee7c}, {0x1ee80, 0x1ee89}, {0x1ee8b, 0x1ee9b},
    {0x1eea1, 0x1eea3}, {0x1eea5, 0x1eea9}, {0x1eeab, 0x1eebb}, {0x1f000, 0x1f02b},
    {0x1f030, 0x1f093}, {0x1f0a0, 0x1f0ae}, {0x1f0b1, 0x1f0bf}, {0x1f0c1, 0x1f0cf},
    {0x1f0d1, 0x1f0f5}, {0x1f100, 0x1f10c}, {0x1f110, 0x1f16c}, {0x1f170, 0x1f1ac},
    {0x1f1e6, 0x1f202}, {0x1f210, 0x1f23b}, {0x1f240, 0x1f248}, {0x1f260, 0x1f265},
    {0x1f300, 0x1f6d5}, {0x1f6e0, 0x1f6ec}, {0x1f6f0, 0x1f6fa}, {0x1f700, 0x1f773},
    {0x1f780, 0x1f7d8}, {0x1f7e0, 0x1f7eb}, {0x1f800, 0x1f80b}, {0x1f810, 0x1f847},
    {0x1f850, 0x1f859}, {0x1f860, 0x1f887}, {0x1f890, 0x1f8ad}, {0x1f900, 0x1f90b},

    {0x1f90d, 0x1f971}, {0x1f973, 0x1f976}, {0x1f97a, 0x1f9a2}, {0x1f9a5, 0x1f9aa},
    {0x1f9ae, 0x1f9ca}, {0x1f9cd, 0x1fa53}, {0x1fa60, 0x1fa6d}, {0x1fa70, 0x1fa73},
    {0x1fa78, 0x1fa7a}, {0x1fa80, 0x1fa82}, {0x1fa90, 0x1fa95}, {0x20000, 0x2a6d6},
    {0x2a700, 0x2b734}, {0x2b740, 0x2b81d}, {0x2b820, 0x2cea1}, {0x2ceb0, 0x2ebe0},
    {0x2f800, 0x2fa1d}, {0xe0100, 0xe01ef}
#endif
};

#define NUM_GRAPH_RANGE (sizeof(graphRangeTable)/sizeof(crange))

static const chr graphCharTable[] = {
    0x38c, 0x85e, 0x98f, 0x990, 0x9b2, 0x9c7, 0x9c8, 0x9d7, 0x9dc,
    0x9dd, 0xa0f, 0xa10, 0xa32, 0xa33, 0xa35, 0xa36, 0xa38, 0xa39,
    0xa3c, 0xa47, 0xa48, 0xa51, 0xa5e, 0xab2, 0xab3, 0xad0, 0xb0f,
    0xb10, 0xb32, 0xb33, 0xb47, 0xb48, 0xb56, 0xb57, 0xb5c, 0xb5d,
    0xb82, 0xb83, 0xb99, 0xb9a, 0xb9c, 0xb9e, 0xb9f, 0xba3, 0xba4,
    0xbd0, 0xbd7, 0xc55, 0xc56, 0xcd5, 0xcd6, 0xcde, 0xcf1, 0xcf2,
    0xd82, 0xd83, 0xdbd, 0xdca, 0xdd6, 0xe81, 0xe82, 0xe84, 0xea5,

    0xec6, 0x10c7, 0x10cd, 0x1258, 0x12c0, 0x1772, 0x1773, 0x1940, 0x1f59,
    0x1f5b, 0x1f5d, 0x2070, 0x2071, 0x2d27, 0x2d2d, 0x2d6f, 0x2d70, 0xfb3e,
    0xfb40, 0xfb41, 0xfb43, 0xfb44, 0xfffc, 0xfffd
#if CHRBITS > 16
    ,0x1003c, 0x1003d, 0x101a0, 0x1056f, 0x10808, 0x10837, 0x10838, 0x1083c, 0x108f4,
    0x108f5, 0x1093f, 0x10a05, 0x10a06, 0x11288, 0x1130f, 0x11310, 0x11332, 0x11333,
    0x11347, 0x11348, 0x11350, 0x11357, 0x1145b, 0x118ff, 0x11d08, 0x11d09, 0x11d3a,
    0x11d3c, 0x11d3d, 0x11d67, 0x11d68, 0x11d90, 0x11d91, 0x16a6e, 0x16a6f, 0x1d49e,
    0x1d49f, 0x1d4a2, 0x1d4a5, 0x1d4a6, 0x1d4bb, 0x1d546, 0x1e023, 0x1e024, 0x1e14e,
    0x1e14f, 0x1e2ff, 0x1e95e, 0x1e95f, 0x1ee21, 0x1ee22, 0x1ee24, 0x1ee27, 0x1ee39,
    0x1ee3b, 0x1ee42, 0x1ee47, 0x1ee49, 0x1ee4b, 0x1ee51, 0x1ee52, 0x1ee54, 0x1ee57,
    0x1ee59, 0x1ee5b, 0x1ee5d, 0x1ee5f, 0x1ee61, 0x1ee62, 0x1ee64, 0x1ee7e, 0x1eef0,
    0x1eef1, 0x1f250, 0x1f251
#endif
};

#define NUM_GRAPH_CHAR (sizeof(graphCharTable)/sizeof(chr))

/*
 *	End of auto-generated Unicode character ranges declarations.

Changes to generic/tclBasic.c.

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
...
844
845
846
847
848
849
850
851
852
853






854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
{
    Interp *iPtr;
    Tcl_Interp *interp;
    Command *cmdPtr;
    const BuiltinFuncDef *builtinFuncPtr;
    const OpCmdInfo *opcmdInfoPtr;
    const CmdInfo *cmdInfoPtr;
    Tcl_Namespace *mathfuncNSPtr, *mathopNSPtr;
    Tcl_HashEntry *hPtr;
    int isNew;
    CancelInfo *cancelInfo;
    union {
	char c[sizeof(short)];
	short s;
    } order;
................................................................................
            "::tcl::unsupported::assemble", Tcl_AssembleObjCmd,
            TclNRAssembleObjCmd, NULL, NULL);
    cmdPtr->compileProc = &TclCompileAssembleCmd;

    Tcl_NRCreateCommand(interp, "::tcl::unsupported::inject", NULL,
	    NRCoroInjectObjCmd, NULL, NULL);

    /* Adding the timerate (unsupported) command */
    Tcl_CreateObjCommand(interp, "::tcl::unsupported::timerate",
        Tcl_TimeRateObjCmd, NULL, NULL);







#ifdef USE_DTRACE
    /*
     * Register the tcl::dtrace command.
     */

    Tcl_CreateObjCommand(interp, "::tcl::dtrace", DTraceObjCmd, NULL, NULL);
#endif /* USE_DTRACE */

    /*
     * Register the builtin math functions.
     */

    mathfuncNSPtr = Tcl_CreateNamespace(interp, "::tcl::mathfunc", NULL,NULL);
    if (mathfuncNSPtr == NULL) {
	Tcl_Panic("Can't create math function namespace");
    }
#define MATH_FUNC_PREFIX_LEN 17 /* == strlen("::tcl::mathfunc::") */
    memcpy(mathFuncName, "::tcl::mathfunc::", MATH_FUNC_PREFIX_LEN);
    for (builtinFuncPtr = BuiltinFuncTable; builtinFuncPtr->name != NULL;
	    builtinFuncPtr++) {
	strcpy(mathFuncName+MATH_FUNC_PREFIX_LEN, builtinFuncPtr->name);
	Tcl_CreateObjCommand(interp, mathFuncName,
		builtinFuncPtr->objCmdProc, builtinFuncPtr->clientData, NULL);
	Tcl_Export(interp, mathfuncNSPtr, builtinFuncPtr->name, 0);
    }

    /*
     * Register the mathematical "operator" commands. [TIP #174]
     */

    mathopNSPtr = Tcl_CreateNamespace(interp, "::tcl::mathop", NULL, NULL);
    if (mathopNSPtr == NULL) {
	Tcl_Panic("can't create math operator namespace");
    }
    Tcl_Export(interp, mathopNSPtr, "*", 1);
#define MATH_OP_PREFIX_LEN 15 /* == strlen("::tcl::mathop::") */
    memcpy(mathFuncName, "::tcl::mathop::", MATH_OP_PREFIX_LEN);
    for (opcmdInfoPtr=mathOpCmds ; opcmdInfoPtr->name!=NULL ; opcmdInfoPtr++){
	TclOpCmdClientData *occdPtr = ckalloc(sizeof(TclOpCmdClientData));

	occdPtr->op = opcmdInfoPtr->name;
	occdPtr->i.numArgs = opcmdInfoPtr->i.numArgs;






|







 







|

|
>
>
>
>
>
>













|
|









|






|
|


|







453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
...
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
{
    Interp *iPtr;
    Tcl_Interp *interp;
    Command *cmdPtr;
    const BuiltinFuncDef *builtinFuncPtr;
    const OpCmdInfo *opcmdInfoPtr;
    const CmdInfo *cmdInfoPtr;
    Tcl_Namespace *nsPtr;
    Tcl_HashEntry *hPtr;
    int isNew;
    CancelInfo *cancelInfo;
    union {
	char c[sizeof(short)];
	short s;
    } order;
................................................................................
            "::tcl::unsupported::assemble", Tcl_AssembleObjCmd,
            TclNRAssembleObjCmd, NULL, NULL);
    cmdPtr->compileProc = &TclCompileAssembleCmd;

    Tcl_NRCreateCommand(interp, "::tcl::unsupported::inject", NULL,
	    NRCoroInjectObjCmd, NULL, NULL);

    /* Create an unsupported command for timerate */
    Tcl_CreateObjCommand(interp, "::tcl::unsupported::timerate",
	    Tcl_TimeRateObjCmd, NULL, NULL);

    /* Export unsupported commands */
    nsPtr = Tcl_FindNamespace(interp, "::tcl::unsupported", NULL, 0);
    if (nsPtr) {
	Tcl_Export(interp, nsPtr, "*", 1);
    }

#ifdef USE_DTRACE
    /*
     * Register the tcl::dtrace command.
     */

    Tcl_CreateObjCommand(interp, "::tcl::dtrace", DTraceObjCmd, NULL, NULL);
#endif /* USE_DTRACE */

    /*
     * Register the builtin math functions.
     */

    nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathfunc", NULL,NULL);
    if (nsPtr == NULL) {
	Tcl_Panic("Can't create math function namespace");
    }
#define MATH_FUNC_PREFIX_LEN 17 /* == strlen("::tcl::mathfunc::") */
    memcpy(mathFuncName, "::tcl::mathfunc::", MATH_FUNC_PREFIX_LEN);
    for (builtinFuncPtr = BuiltinFuncTable; builtinFuncPtr->name != NULL;
	    builtinFuncPtr++) {
	strcpy(mathFuncName+MATH_FUNC_PREFIX_LEN, builtinFuncPtr->name);
	Tcl_CreateObjCommand(interp, mathFuncName,
		builtinFuncPtr->objCmdProc, builtinFuncPtr->clientData, NULL);
	Tcl_Export(interp, nsPtr, builtinFuncPtr->name, 0);
    }

    /*
     * Register the mathematical "operator" commands. [TIP #174]
     */

    nsPtr = Tcl_CreateNamespace(interp, "::tcl::mathop", NULL, NULL);
    if (nsPtr == NULL) {
	Tcl_Panic("can't create math operator namespace");
    }
    Tcl_Export(interp, nsPtr, "*", 1);
#define MATH_OP_PREFIX_LEN 15 /* == strlen("::tcl::mathop::") */
    memcpy(mathFuncName, "::tcl::mathop::", MATH_OP_PREFIX_LEN);
    for (opcmdInfoPtr=mathOpCmds ; opcmdInfoPtr->name!=NULL ; opcmdInfoPtr++){
	TclOpCmdClientData *occdPtr = ckalloc(sizeof(TclOpCmdClientData));

	occdPtr->op = opcmdInfoPtr->name;
	occdPtr->i.numArgs = opcmdInfoPtr->i.numArgs;

Changes to generic/tclBinary.c.

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
....
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
....
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
....
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
....
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
....
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
....
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
....
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
....
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
 badIndex:
    errorString = "not enough arguments for all format specifiers";
    goto error;

 badField:
    {
	Tcl_UniChar ch = 0;
	char buf[TCL_UTF_MAX + 1];

	TclUtfToUniChar(errorString, &ch);
	buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
	Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		"bad field specifier \"%s\"", buf));
	return TCL_ERROR;
    }
................................................................................
 badIndex:
    errorString = "not enough arguments for all format specifiers";
    goto error;

 badField:
    {
	Tcl_UniChar ch = 0;
	char buf[TCL_UTF_MAX + 1];

	TclUtfToUniChar(errorString, &ch);
	buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
	Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		"bad field specifier \"%s\"", buf));
	return TCL_ERROR;
    }
................................................................................
	    if (data >= dataend) {
		value <<= 4;
		break;
	    }

	    c = *data++;
	    if (!isxdigit((int) c)) {
		if (strict || !isspace(c)) {
		    goto badChar;
		}
		i--;
		continue;
	    }

	    value <<= 4;
................................................................................

    while (data < dataend) {
	char d[4] = {0, 0, 0, 0};

	if (lineLen < 0) {
	    c = *data++;
	    if (c < 32 || c > 96) {
		if (strict || !isspace(c)) {
		    goto badUu;
		}
		i--;
		continue;
	    }
	    lineLen = (c - 32) & 0x3f;
	}
................................................................................
	 */

	for (i=0 ; i<4 ; i++) {
	    if (data < dataend) {
		d[i] = c = *data++;
		if (c < 32 || c > 96) {
		    if (strict) {
			if (!isspace(c)) {
			    goto badUu;
			} else if (c == '\n') {
			    goto shortUu;
			}
		    }
		    i--;
		    continue;
................................................................................
	    do {
		c = *data++;
		if (c == '\n') {
		    break;
		} else if (c >= 32 && c <= 96) {
		    data--;
		    break;
		} else if (strict || !isspace(c)) {
		    goto badUu;
		}
	    } while (data < dataend);
	}
    }

    /*
................................................................................
	     * input whitespace characters.
	     */

	    if (cut) {
		if (c == '=' && i > 1) {
		     value <<= 6;
		     cut++;
		} else if (!strict && isspace(c)) {
		     i--;
		} else {
		    goto bad64;
		}
	    } else if (c >= 'A' && c <= 'Z') {
		value = (value << 6) | ((c - 'A') & 0x3f);
	    } else if (c >= 'a' && c <= 'z') {
................................................................................
	    } else if (c == '/') {
		value = (value << 6) | 0x3f;
	    } else if (c == '=' && (
		!strict || i > 1) /* "=" and "a=" is rather bad64 error case in strict mode */
	    ) {
		value <<= 6;
		if (i) cut++;
	    } else if (strict || !isspace(c)) {
		goto bad64;
	    } else {
		i--;
	    }
	}
	*cursor++ = UCHAR((value >> 16) & 0xff);
	*cursor++ = UCHAR((value >> 8) & 0xff);
................................................................................
	 */

	if (cut && data < dataend) {
	    if (strict) {
		goto bad64;
	    }
	    for (; data < dataend; data++) {
		if (!isspace(*data)) {
		    goto bad64;
		}
	    }
	}
    }
    Tcl_SetByteArrayLength(resultObj, cursor - begin - cut);
    Tcl_SetObjResult(interp, resultObj);






|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
....
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
....
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
....
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
....
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
....
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
....
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
....
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
....
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
 badIndex:
    errorString = "not enough arguments for all format specifiers";
    goto error;

 badField:
    {
	Tcl_UniChar ch = 0;
	char buf[TCL_UTF_MAX + 1] = "";

	TclUtfToUniChar(errorString, &ch);
	buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
	Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		"bad field specifier \"%s\"", buf));
	return TCL_ERROR;
    }
................................................................................
 badIndex:
    errorString = "not enough arguments for all format specifiers";
    goto error;

 badField:
    {
	Tcl_UniChar ch = 0;
	char buf[TCL_UTF_MAX + 1] = "";

	TclUtfToUniChar(errorString, &ch);
	buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
	Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		"bad field specifier \"%s\"", buf));
	return TCL_ERROR;
    }
................................................................................
	    if (data >= dataend) {
		value <<= 4;
		break;
	    }

	    c = *data++;
	    if (!isxdigit((int) c)) {
		if (strict || !TclIsSpaceProc(c)) {
		    goto badChar;
		}
		i--;
		continue;
	    }

	    value <<= 4;
................................................................................

    while (data < dataend) {
	char d[4] = {0, 0, 0, 0};

	if (lineLen < 0) {
	    c = *data++;
	    if (c < 32 || c > 96) {
		if (strict || !TclIsSpaceProc(c)) {
		    goto badUu;
		}
		i--;
		continue;
	    }
	    lineLen = (c - 32) & 0x3f;
	}
................................................................................
	 */

	for (i=0 ; i<4 ; i++) {
	    if (data < dataend) {
		d[i] = c = *data++;
		if (c < 32 || c > 96) {
		    if (strict) {
			if (!TclIsSpaceProc(c)) {
			    goto badUu;
			} else if (c == '\n') {
			    goto shortUu;
			}
		    }
		    i--;
		    continue;
................................................................................
	    do {
		c = *data++;
		if (c == '\n') {
		    break;
		} else if (c >= 32 && c <= 96) {
		    data--;
		    break;
		} else if (strict || !TclIsSpaceProc(c)) {
		    goto badUu;
		}
	    } while (data < dataend);
	}
    }

    /*
................................................................................
	     * input whitespace characters.
	     */

	    if (cut) {
		if (c == '=' && i > 1) {
		     value <<= 6;
		     cut++;
		} else if (!strict && TclIsSpaceProc(c)) {
		     i--;
		} else {
		    goto bad64;
		}
	    } else if (c >= 'A' && c <= 'Z') {
		value = (value << 6) | ((c - 'A') & 0x3f);
	    } else if (c >= 'a' && c <= 'z') {
................................................................................
	    } else if (c == '/') {
		value = (value << 6) | 0x3f;
	    } else if (c == '=' && (
		!strict || i > 1) /* "=" and "a=" is rather bad64 error case in strict mode */
	    ) {
		value <<= 6;
		if (i) cut++;
	    } else if (strict || !TclIsSpaceProc(c)) {
		goto bad64;
	    } else {
		i--;
	    }
	}
	*cursor++ = UCHAR((value >> 16) & 0xff);
	*cursor++ = UCHAR((value >> 8) & 0xff);
................................................................................
	 */

	if (cut && data < dataend) {
	    if (strict) {
		goto bad64;
	    }
	    for (; data < dataend; data++) {
		if (!TclIsSpaceProc(*data)) {
		    goto bad64;
		}
	    }
	}
    }
    Tcl_SetByteArrayLength(resultObj, cursor - begin - cut);
    Tcl_SetObjResult(interp, resultObj);

Changes to generic/tclCmdMZ.c.

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
....
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431





1432
1433
1434
1435
1436
1437
1438
....
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
....
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
....
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
....
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
....
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
....
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
....
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
....
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
....
4288
4289
4290
4291
4292
4293
4294

4295
4296
4297
4298
4299
4300
4301
4302


4303
4304
4305
4306


4307
4308
4309
4310
4311
4312
4313
....
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356






4357
4358
4359


4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
....
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
....
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
....
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
....
4464
4465
4466
4467
4468
4469
4470

4471
4472
4473
4474
4475
4476
4477
....
4478
4479
4480
4481
4482
4483
4484


4485
4486




4487

4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511





4512








4513


4514
4515
4516
4517




4518
4519
4520
4521
4522
4523
4524
....
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
....
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
....
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
	for ( ; stringPtr < end; stringPtr += len) {
	    int fullchar;
	    len = TclUtfToUniChar(stringPtr, &ch);
	    fullchar = ch;

#if TCL_UTF_MAX == 4
	    if (!len) {
		len += TclUtfToUniChar(stringPtr, &ch);
		fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000;
	    }
#endif

	    /*
	     * Assume Tcl_UniChar is an integral type...
	     */
................................................................................
	 */

	if (TclIsPureByteArray(objv[1])) {
	    unsigned char uch = (unsigned char) ch;

	    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(&uch, 1));
	} else {
	    char buf[TCL_UTF_MAX];

	    length = Tcl_UniCharToUtf(ch, buf);





	    Tcl_SetObjResult(interp, Tcl_NewStringObj(buf, length));
	}
    }
    return TCL_OK;
}
 
/*
................................................................................
	}
	end = string1 + length1;
	for (; string1 < end; string1 += length2, failat++) {
	    int fullchar;
	    length2 = TclUtfToUniChar(string1, &ch);
	    fullchar = ch;
#if TCL_UTF_MAX == 4
	    if (!length2) {
	    	length2 = TclUtfToUniChar(string1, &ch);
	    	fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000;
	    }
#endif
	    if (!chcomp(fullchar)) {
		result = 0;
		break;
	    }
................................................................................
	return TCL_ERROR;
    }

    if (objc == 4) {
	const char *string = TclGetStringFromObj(objv[1], &length2);

	if ((length2 > 1) &&
		strncmp(string, "-nocase", (size_t) length2) == 0) {
	    nocase = 1;
	} else {
	    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    "bad option \"%s\": must be -nocase", string));
	    Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option",
		    string, NULL);
	    return TCL_ERROR;
................................................................................
    }

    if (objc == 4) {
	int length;
	const char *string = TclGetStringFromObj(objv[1], &length);

	if ((length > 1) &&
	    strncmp(string, "-nocase", (size_t) length) == 0) {
	    nocase = TCL_MATCH_NOCASE;
	} else {
	    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    "bad option \"%s\": must be -nocase", string));
	    Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option",
		    string, NULL);
	    return TCL_ERROR;
................................................................................
	Tcl_WrongNumArgs(interp, 1, objv,
		"?-nocase? ?-length int? string1 string2");
	return TCL_ERROR;
    }

    for (i = 1; i < objc-2; i++) {
	string2 = TclGetStringFromObj(objv[i], &length2);
	if ((length2 > 1) && !strncmp(string2, "-nocase", (size_t)length2)) {
	    nocase = 1;
	} else if ((length2 > 1)
		&& !strncmp(string2, "-length", (size_t)length2)) {
	    if (i+1 >= objc-2) {
		goto str_cmp_args;
	    }
	    i++;
	    if (TclGetIntFromObj(interp, objv[i], &reqlength) != TCL_OK) {
		return TCL_ERROR;
	    }
................................................................................
	Tcl_WrongNumArgs(interp, 1, objv,
		"?-nocase? ?-length int? string1 string2");
	return TCL_ERROR;
    }

    for (i = 1; i < objc-2; i++) {
	string = TclGetStringFromObj(objv[i], &length);
	if ((length > 1) && !strncmp(string, "-nocase", (size_t)length)) {
	    *nocase = 1;
	} else if ((length > 1)
		&& !strncmp(string, "-length", (size_t)length)) {
	    if (i+1 >= objc-2) {
		goto str_cmp_args;
	    }
	    i++;
	    if (TclGetIntFromObj(interp, objv[i], reqlength) != TCL_OK) {
		return TCL_ERROR;
	    }
................................................................................
    i = count;
#ifndef TCL_WIDE_CLICKS
    Tcl_GetTime(&start);
#else
    start = TclpGetWideClicks();
#endif
    while (i-- > 0) {
	result = Tcl_EvalObjEx(interp, objPtr, 0);
	if (result != TCL_OK) {
	    return result;
	}
    }
#ifndef TCL_WIDE_CLICKS
    Tcl_GetTime(&stop);
    totalMicroSec = ((double) (stop.sec - start.sec)) * 1.0e6
................................................................................
#endif

    if (count <= 1) {
	/*
	 * Use int obj since we know time is not fractional. [Bug 1202178]
	 */

	objs[0] = Tcl_NewIntObj((count <= 0) ? 0 : (int) totalMicroSec);
    } else {
	objs[0] = Tcl_NewDoubleObj(totalMicroSec/count);
    }

    /*
     * Construct the result as a list because many programs have always parsed
     * as such (extracting the first element, typically).
................................................................................
 
/*
 *----------------------------------------------------------------------
 *
 * Tcl_TimeRateObjCmd --
 *
 *	This object-based procedure is invoked to process the "timerate" Tcl
 *	command.
 *	This is similar to command "time", except the execution limited by
 *	given time (in milliseconds) instead of repetition count.
 *
 * Example:
 *	timerate {after 5} 1000 ; # equivalent for `time {after 5} [expr 1000/5]`
 *
 * Results:
 *	A standard Tcl object result.
................................................................................
int
Tcl_TimeRateObjCmd(
    ClientData dummy,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* Argument objects. */
{

    static double measureOverhead = 0; /* global measure-overhead */
    double overhead = -1;	/* given measure-overhead */
    register Tcl_Obj *objPtr;
    register int result, i;
    Tcl_Obj *calibrate = NULL, *direct = NULL;
    Tcl_WideInt count = 0;	/* Holds repetition count */
    Tcl_WideInt maxms = -0x7FFFFFFFFFFFFFFFL;
				/* Maximal running time (in milliseconds) */


    Tcl_WideInt threshold = 1;	/* Current threshold for check time (faster
				 * repeat count without time check) */
    Tcl_WideInt maxIterTm = 1;	/* Max time of some iteration as max threshold
				 * additionally avoid divide to zero (never < 1) */


    register Tcl_WideInt start, middle, stop;
#ifndef TCL_WIDE_CLICKS
    Tcl_Time now;
#endif

    static const char *const options[] = {
	"-direct",	"-overhead",	"-calibrate",	"--",	NULL
................................................................................
	    break;
	case TMRT_CALIBRATE:
	    calibrate = objv[i];
	    break;
	}
    }

    if (i >= objc || i < objc-2) {
usage:
	Tcl_WrongNumArgs(interp, 1, objv, "?-direct? ?-calibrate? ?-overhead double? command ?time?");
	return TCL_ERROR;
    }
    objPtr = objv[i++];
    if (i < objc) {






	result = TclGetWideIntFromObj(interp, objv[i], &maxms);
	if (result != TCL_OK) {
	    return result;


	}
    }

    /* if calibrate */
    if (calibrate) {

	/* if no time specified for the calibration */
	if (maxms == -0x7FFFFFFFFFFFFFFFL) {
	    Tcl_Obj *clobjv[6];
	    Tcl_WideInt maxCalTime = 5000;
	    double lastMeasureOverhead = measureOverhead;

	    clobjv[0] = objv[0];
	    i = 1;
	    if (direct) {
	    	clobjv[i++] = direct;
	    }
	    clobjv[i++] = objPtr;

	    /* reset last measurement overhead */
	    measureOverhead = (double)0;

	    /* self-call with 100 milliseconds to warm-up,
	     * before entering the calibration cycle */
	    TclNewLongObj(clobjv[i], 100);
................................................................................
	    Tcl_DecrRefCount(clobjv[i]);
	    if (result != TCL_OK) {
		return result;
	    }

	    i--;
	    clobjv[i++] = calibrate;
	    clobjv[i++] = objPtr;

	    /* set last measurement overhead to max */
	    measureOverhead = (double)0x7FFFFFFFFFFFFFFFL;

	    /* calibration cycle until it'll be preciser */
	    maxms = -1000;
	    do {
		lastMeasureOverhead = measureOverhead;
		TclNewLongObj(clobjv[i], (int)maxms);
		Tcl_IncrRefCount(clobjv[i]);
................................................................................
	    Tcl_SetObjResult(interp, Tcl_NewLongObj(0));
	    return TCL_OK;
	}

	/* if time is negative - make current overhead more precise */
	if (maxms > 0) {
	    /* set last measurement overhead to max */
	    measureOverhead = (double)0x7FFFFFFFFFFFFFFFL;
	} else {
	    maxms = -maxms;
	}

    }

    if (maxms == -0x7FFFFFFFFFFFFFFFL) {
    	maxms = 1000;
    }
    if (overhead == -1) {
	overhead = measureOverhead;
    }

    /* be sure that resetting of result will not smudge the further measurement */
................................................................................

    /* compile object */
    if (!direct) {
	if (TclInterpReady(interp) != TCL_OK) {
	    return TCL_ERROR;
	}
	codePtr = TclCompileObj(interp, objPtr, NULL, 0);
	codePtr->refCount++;
    }

    /* get start and stop time */
#ifdef TCL_WIDE_CLICKS
    start = middle = TclpGetWideClicks();
    /* time to stop execution (in wide clicks) */
    stop = start + (maxms * 1000 / TclpWideClickInMicrosec());
................................................................................
    start = now.sec; start *= 1000000; start += now.usec;
    middle = start;
    /* time to stop execution (in microsecs) */
    stop = start + maxms * 1000;
#endif

    /* start measurement */

    while (1) {
    	/* eval single iteration */
    	count++;

	if (!direct) {
	    /* precompiled */
	    rootPtr = TOP_CB(interp);
................................................................................
	    result = TclNRExecuteByteCode(interp, codePtr);
	    result = TclNRRunCallbacks(interp, result, rootPtr);
	} else {
	    /* eval */
	    result = TclEvalObjEx(interp, objPtr, 0, NULL, 0);
	}
	if (result != TCL_OK) {


	    goto done;
	}






	/* don't check time up to threshold */
	if (--threshold > 0) continue;

	/* check stop time reached, estimate new threshold */
    #ifdef TCL_WIDE_CLICKS
	middle = TclpGetWideClicks();
    #else
	Tcl_GetTime(&now);
	middle = now.sec; middle *= 1000000; middle += now.usec;
    #endif
	if (middle >= stop) {
	    break;
	}

	/* don't calculate threshold by few iterations, because sometimes
	 * first iteration(s) can be too fast (cached, delayed clean up, etc) */
	if (count < 10) {
	   threshold = 1; continue;
	}

	/* average iteration time in microsecs */
	threshold = (middle - start) / count;
	if (threshold > maxIterTm) {
	    maxIterTm = threshold;





	}








	/* as relation between remaining time and time since last check */


	threshold = ((stop - middle) / maxIterTm) / 4;
	if (threshold > 100000) {	    /* fix for too large threshold */
	    threshold = 100000;
	}




    }

    {
	Tcl_Obj *objarr[8], **objs = objarr;
	Tcl_WideInt val;
	const char *fmt;

................................................................................
    #endif

	/* if not calibrate */
	if (!calibrate) {
	    /* minimize influence of measurement overhead */
	    if (overhead > 0) {
		/* estimate the time of overhead (microsecs) */
		Tcl_WideInt curOverhead = overhead * count;
		if (middle > curOverhead) {
		    middle -= curOverhead;
		} else {
		    middle = 1;
		}
	    }
	} else {
	    /* calibration - obtaining new measurement overhead */
	    if (measureOverhead > (double)middle / count) {
		measureOverhead = (double)middle / count;
	    }
................................................................................
	    if (val < 1000)  { fmt = "%.3f"; } else
	    if (val < 10000) { fmt = "%.2f"; } else
			     { fmt = "%.1f"; };
	    objs[0] = Tcl_ObjPrintf(fmt, ((double)middle)/count);
	}

	objs[2] = Tcl_NewWideIntObj(count); /* iterations */

	/* calculate speed as rate (count) per sec */
	if (!middle) middle++; /* +1 ms, just to avoid divide by zero */
	if (count < (0x7FFFFFFFFFFFFFFFL / 1000000)) {
	    val = (count * 1000000) / middle;
	    if (val < 100000) {
		if (val < 100)	{ fmt = "%.3f"; } else
		if (val < 1000) { fmt = "%.2f"; } else
				{ fmt = "%.1f"; };
		objs[4] = Tcl_ObjPrintf(fmt, ((double)(count * 1000000)) / middle);
	    } else {
................................................................................
	TclNewLiteralStringObj(objs[3], "#");
	TclNewLiteralStringObj(objs[5], "#/sec");
	Tcl_SetObjResult(interp, Tcl_NewListObj(8, objarr));
    }

done:

    if ((codePtr != NULL) && (codePtr->refCount-- <= 1)) {
	/* Just dropped to refcount==0.  Clean up. */
	TclCleanupByteCode(codePtr);
    }

    return result;
}
 
/*
 *----------------------------------------------------------------------






|
|







 







|


>
>
>
>
>







 







|
|







 







|







 







|







 







|


|







 







|


|







 







|







 







|







 







|
|







 







>
|




|
|

>
>
|

|

>
>







 







|

|



|
>
>
>
>
>
>
|
|
|
>
>







|



|
|




|







 







|


|







 







|






|







 







|







 







>







 







>
>
|
|
>
>
>
>
|
>










|



|
|








>
>
>
>
>
|
>
>
>
>
>
>
>
>
|
>
>
|



>
>
>
>







 







|



|







 







|


|







 







|
<
|







1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
....
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
....
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
....
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
....
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
....
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
....
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
....
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
....
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
....
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
....
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
....
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
....
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
....
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
....
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
....
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
....
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
....
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
....
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
....
4641
4642
4643
4644
4645
4646
4647
4648

4649
4650
4651
4652
4653
4654
4655
4656
	for ( ; stringPtr < end; stringPtr += len) {
	    int fullchar;
	    len = TclUtfToUniChar(stringPtr, &ch);
	    fullchar = ch;

#if TCL_UTF_MAX == 4
	    if ((ch >= 0xD800) && (len < 3)) {
		len += TclUtfToUniChar(stringPtr + len, &ch);
		fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000;
	    }
#endif

	    /*
	     * Assume Tcl_UniChar is an integral type...
	     */
................................................................................
	 */

	if (TclIsPureByteArray(objv[1])) {
	    unsigned char uch = (unsigned char) ch;

	    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(&uch, 1));
	} else {
	    char buf[TCL_UTF_MAX] = "";

	    length = Tcl_UniCharToUtf(ch, buf);
#if TCL_UTF_MAX > 3
	    if ((ch >= 0xD800) && (length < 3)) {
		length += Tcl_UniCharToUtf(-1, buf + length);
	    }
#endif
	    Tcl_SetObjResult(interp, Tcl_NewStringObj(buf, length));
	}
    }
    return TCL_OK;
}
 
/*
................................................................................
	}
	end = string1 + length1;
	for (; string1 < end; string1 += length2, failat++) {
	    int fullchar;
	    length2 = TclUtfToUniChar(string1, &ch);
	    fullchar = ch;
#if TCL_UTF_MAX == 4
	    if ((ch >= 0xD800) && (length2 < 3)) {
	    	length2 += TclUtfToUniChar(string1 + length2, &ch);
	    	fullchar = (((fullchar & 0x3ff) << 10) | (ch & 0x3ff)) + 0x10000;
	    }
#endif
	    if (!chcomp(fullchar)) {
		result = 0;
		break;
	    }
................................................................................
	return TCL_ERROR;
    }

    if (objc == 4) {
	const char *string = TclGetStringFromObj(objv[1], &length2);

	if ((length2 > 1) &&
		strncmp(string, "-nocase", length2) == 0) {
	    nocase = 1;
	} else {
	    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    "bad option \"%s\": must be -nocase", string));
	    Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option",
		    string, NULL);
	    return TCL_ERROR;
................................................................................
    }

    if (objc == 4) {
	int length;
	const char *string = TclGetStringFromObj(objv[1], &length);

	if ((length > 1) &&
	    strncmp(string, "-nocase", length) == 0) {
	    nocase = TCL_MATCH_NOCASE;
	} else {
	    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
		    "bad option \"%s\": must be -nocase", string));
	    Tcl_SetErrorCode(interp, "TCL", "LOOKUP", "INDEX", "option",
		    string, NULL);
	    return TCL_ERROR;
................................................................................
	Tcl_WrongNumArgs(interp, 1, objv,
		"?-nocase? ?-length int? string1 string2");
	return TCL_ERROR;
    }

    for (i = 1; i < objc-2; i++) {
	string2 = TclGetStringFromObj(objv[i], &length2);
	if ((length2 > 1) && !strncmp(string2, "-nocase", length2)) {
	    nocase = 1;
	} else if ((length2 > 1)
		&& !strncmp(string2, "-length", length2)) {
	    if (i+1 >= objc-2) {
		goto str_cmp_args;
	    }
	    i++;
	    if (TclGetIntFromObj(interp, objv[i], &reqlength) != TCL_OK) {
		return TCL_ERROR;
	    }
................................................................................
	Tcl_WrongNumArgs(interp, 1, objv,
		"?-nocase? ?-length int? string1 string2");
	return TCL_ERROR;
    }

    for (i = 1; i < objc-2; i++) {
	string = TclGetStringFromObj(objv[i], &length);
	if ((length > 1) && !strncmp(string, "-nocase", length)) {
	    *nocase = 1;
	} else if ((length > 1)
		&& !strncmp(string, "-length", length)) {
	    if (i+1 >= objc-2) {
		goto str_cmp_args;
	    }
	    i++;
	    if (TclGetIntFromObj(interp, objv[i], reqlength) != TCL_OK) {
		return TCL_ERROR;
	    }
................................................................................
    i = count;
#ifndef TCL_WIDE_CLICKS
    Tcl_GetTime(&start);
#else
    start = TclpGetWideClicks();
#endif
    while (i-- > 0) {
	result = TclEvalObjEx(interp, objPtr, 0, NULL, 0);
	if (result != TCL_OK) {
	    return result;
	}
    }
#ifndef TCL_WIDE_CLICKS
    Tcl_GetTime(&stop);
    totalMicroSec = ((double) (stop.sec - start.sec)) * 1.0e6
................................................................................
#endif

    if (count <= 1) {
	/*
	 * Use int obj since we know time is not fractional. [Bug 1202178]
	 */

	objs[0] = Tcl_NewWideIntObj((count <= 0) ? 0 : (Tcl_WideInt)totalMicroSec);
    } else {
	objs[0] = Tcl_NewDoubleObj(totalMicroSec/count);
    }

    /*
     * Construct the result as a list because many programs have always parsed
     * as such (extracting the first element, typically).
................................................................................
 
/*
 *----------------------------------------------------------------------
 *
 * Tcl_TimeRateObjCmd --
 *
 *	This object-based procedure is invoked to process the "timerate" Tcl
 *	command. 
 *	This is similar to command "time", except the execution limited by 
 *	given time (in milliseconds) instead of repetition count.
 *
 * Example:
 *	timerate {after 5} 1000 ; # equivalent for `time {after 5} [expr 1000/5]`
 *
 * Results:
 *	A standard Tcl object result.
................................................................................
int
Tcl_TimeRateObjCmd(
    ClientData dummy,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* Argument objects. */
{
    static 
    double measureOverhead = 0; /* global measure-overhead */
    double overhead = -1;	/* given measure-overhead */
    register Tcl_Obj *objPtr;
    register int result, i;
    Tcl_Obj *calibrate = NULL, *direct = NULL;
    Tcl_WideUInt count = 0;	/* Holds repetition count */
    Tcl_WideInt  maxms  = WIDE_MIN;
				/* Maximal running time (in milliseconds) */
    Tcl_WideUInt maxcnt = WIDE_MAX;
				/* Maximal count of iterations. */
    Tcl_WideUInt threshold = 1;	/* Current threshold for check time (faster
				 * repeat count without time check) */
    Tcl_WideUInt maxIterTm = 1;	/* Max time of some iteration as max threshold
				 * additionally avoid divide to zero (never < 1) */
    unsigned short factor = 50;	/* Factor (4..50) limiting threshold to avoid
				 * growth of execution time. */
    register Tcl_WideInt start, middle, stop;
#ifndef TCL_WIDE_CLICKS
    Tcl_Time now;
#endif

    static const char *const options[] = {
	"-direct",	"-overhead",	"-calibrate",	"--",	NULL
................................................................................
	    break;
	case TMRT_CALIBRATE:
	    calibrate = objv[i];
	    break;
	}
    }

    if (i >= objc || i < objc-3) {
usage:
	Tcl_WrongNumArgs(interp, 1, objv, "?-direct? ?-calibrate? ?-overhead double? command ?time ?max-count??");
	return TCL_ERROR;
    }
    objPtr = objv[i++];
    if (i < objc) {	/* max-time */
	result = Tcl_GetWideIntFromObj(interp, objv[i++], &maxms);
	if (result != TCL_OK) {
	    return result;
	}
	if (i < objc) {	/* max-count*/
	    Tcl_WideInt v;
	    result = Tcl_GetWideIntFromObj(interp, objv[i], &v);
	    if (result != TCL_OK) {
		return result;
	    }
	    maxcnt = (v > 0) ? v : 0;
	}
    }

    /* if calibrate */
    if (calibrate) {

	/* if no time specified for the calibration */
	if (maxms == WIDE_MIN) {
	    Tcl_Obj *clobjv[6];
	    Tcl_WideInt maxCalTime = 5000;
	    double lastMeasureOverhead = measureOverhead;
	    
	    clobjv[0] = objv[0]; 
	    i = 1;
	    if (direct) {
	    	clobjv[i++] = direct;
	    }
	    clobjv[i++] = objPtr; 

	    /* reset last measurement overhead */
	    measureOverhead = (double)0;

	    /* self-call with 100 milliseconds to warm-up,
	     * before entering the calibration cycle */
	    TclNewLongObj(clobjv[i], 100);
................................................................................
	    Tcl_DecrRefCount(clobjv[i]);
	    if (result != TCL_OK) {
		return result;
	    }

	    i--;
	    clobjv[i++] = calibrate;
	    clobjv[i++] = objPtr; 

	    /* set last measurement overhead to max */
	    measureOverhead = (double)UWIDE_MAX;

	    /* calibration cycle until it'll be preciser */
	    maxms = -1000;
	    do {
		lastMeasureOverhead = measureOverhead;
		TclNewLongObj(clobjv[i], (int)maxms);
		Tcl_IncrRefCount(clobjv[i]);
................................................................................
	    Tcl_SetObjResult(interp, Tcl_NewLongObj(0));
	    return TCL_OK;
	}

	/* if time is negative - make current overhead more precise */
	if (maxms > 0) {
	    /* set last measurement overhead to max */
	    measureOverhead = (double)UWIDE_MAX;
	} else {
	    maxms = -maxms;
	}

    }

    if (maxms == WIDE_MIN) {
    	maxms = 1000;
    }
    if (overhead == -1) {
	overhead = measureOverhead;
    }

    /* be sure that resetting of result will not smudge the further measurement */
................................................................................

    /* compile object */
    if (!direct) {
	if (TclInterpReady(interp) != TCL_OK) {
	    return TCL_ERROR;
	}
	codePtr = TclCompileObj(interp, objPtr, NULL, 0);
	TclPreserveByteCode(codePtr);
    }

    /* get start and stop time */
#ifdef TCL_WIDE_CLICKS
    start = middle = TclpGetWideClicks();
    /* time to stop execution (in wide clicks) */
    stop = start + (maxms * 1000 / TclpWideClickInMicrosec());
................................................................................
    start = now.sec; start *= 1000000; start += now.usec;
    middle = start;
    /* time to stop execution (in microsecs) */
    stop = start + maxms * 1000;
#endif

    /* start measurement */
    if (maxcnt > 0)
    while (1) {
    	/* eval single iteration */
    	count++;

	if (!direct) {
	    /* precompiled */
	    rootPtr = TOP_CB(interp);
................................................................................
	    result = TclNRExecuteByteCode(interp, codePtr);
	    result = TclNRRunCallbacks(interp, result, rootPtr);
	} else {
	    /* eval */
	    result = TclEvalObjEx(interp, objPtr, 0, NULL, 0);
	}
	if (result != TCL_OK) {
	    /* allow break from measurement cycle (used for conditional stop) */
	    if (result != TCL_BREAK) {
		goto done;
	    }
	    /* force stop immediately */
	    threshold = 1;
	    maxcnt = 0;
	    result = TCL_OK;
	}
	
	/* don't check time up to threshold */
	if (--threshold > 0) continue;

	/* check stop time reached, estimate new threshold */
    #ifdef TCL_WIDE_CLICKS
	middle = TclpGetWideClicks();
    #else
	Tcl_GetTime(&now);
	middle = now.sec; middle *= 1000000; middle += now.usec;
    #endif
	if (middle >= stop || count >= maxcnt) {
	    break;
	}

	/* don't calculate threshold by few iterations, because sometimes first
	 * iteration(s) can be too fast or slow (cached, delayed clean up, etc) */
	if (count < 10) {
	   threshold = 1; continue;
	}

	/* average iteration time in microsecs */
	threshold = (middle - start) / count;
	if (threshold > maxIterTm) {
	    maxIterTm = threshold;
	    /* interations seems to be longer */
	    if (threshold > (maxIterTm * 2)) {
		if ((factor *= 2) > 50) factor = 50;
	    } else {
		if (factor < 50) factor++;
	    }
	} else if (factor > 4) {
	    /* interations seems to be shorter */
	    if (threshold < (maxIterTm / 2)) {
		if ((factor /= 2) < 4) factor = 4;
	    } else {
		factor--;
	    }
	}
	/* as relation between remaining time and time since last check,
	 * maximal some % of time (by factor), so avoid growing of the execution time
	 * if iterations are not consistent, e. g. wax continuously on time) */
	threshold = ((stop - middle) / maxIterTm) / factor + 1;
	if (threshold > 100000) {	    /* fix for too large threshold */
	    threshold = 100000;
	}
	/* consider max-count */
	if (threshold > maxcnt - count) {
	    threshold = maxcnt - count;
	}
    }

    {
	Tcl_Obj *objarr[8], **objs = objarr;
	Tcl_WideInt val;
	const char *fmt;

................................................................................
    #endif

	/* if not calibrate */
	if (!calibrate) {
	    /* minimize influence of measurement overhead */
	    if (overhead > 0) {
		/* estimate the time of overhead (microsecs) */
		Tcl_WideUInt curOverhead = overhead * count;
		if (middle > curOverhead) {
		    middle -= curOverhead;
		} else {
		    middle = 0;
		}
	    }
	} else {
	    /* calibration - obtaining new measurement overhead */
	    if (measureOverhead > (double)middle / count) {
		measureOverhead = (double)middle / count;
	    }
................................................................................
	    if (val < 1000)  { fmt = "%.3f"; } else
	    if (val < 10000) { fmt = "%.2f"; } else
			     { fmt = "%.1f"; };
	    objs[0] = Tcl_ObjPrintf(fmt, ((double)middle)/count);
	}

	objs[2] = Tcl_NewWideIntObj(count); /* iterations */
	
	/* calculate speed as rate (count) per sec */
	if (!middle) middle++; /* +1 ms, just to avoid divide by zero */
	if (count < (WIDE_MAX / 1000000)) {
	    val = (count * 1000000) / middle;
	    if (val < 100000) {
		if (val < 100)	{ fmt = "%.3f"; } else
		if (val < 1000) { fmt = "%.2f"; } else
				{ fmt = "%.1f"; };
		objs[4] = Tcl_ObjPrintf(fmt, ((double)(count * 1000000)) / middle);
	    } else {
................................................................................
	TclNewLiteralStringObj(objs[3], "#");
	TclNewLiteralStringObj(objs[5], "#/sec");
	Tcl_SetObjResult(interp, Tcl_NewListObj(8, objarr));
    }

done:

    if (codePtr != NULL) {

	TclReleaseByteCode(codePtr);
    }

    return result;
}
 
/*
 *----------------------------------------------------------------------

Changes to generic/tclCompCmds.c.

3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443

3444
3445


3446
3447
3448
3449


3450

3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
....
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
....
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
    Tcl_Token *varTokenPtr,	/* Points to a variable token. */
    CompileEnv *envPtr,		/* Holds resulting instructions. */
    int flags,			/* TCL_NO_LARGE_INDEX | TCL_NO_ELEMENT. */
    int *localIndexPtr,		/* Must not be NULL. */
    int *isScalarPtr)		/* Must not be NULL. */
{
    register const char *p;
    const char *name, *elName;
    register int i, n;
    Tcl_Token *elemTokenPtr = NULL;
    int nameChars, elNameChars, simpleVarName, localIndex;
    int elemTokenCount = 0, allocedTokens = 0, removedParen = 0;

    /*
     * Decide if we can use a frame slot for the var/array name or if we need
     * to emit code to compute and push the name at runtime. We use a frame
     * slot (entry in the array of local vars) if we are compiling a procedure
     * body and if the name is simple text that does not include namespace
     * qualifiers.
     */

    simpleVarName = 0;
    name = elName = NULL;
    nameChars = elNameChars = 0;
    localIndex = -1;

    if (varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
	/*
	 * A simple variable name. Divide it up into "name" and "elName"
	 * strings. If it is not a local variable, look it up at runtime.
	 */

	simpleVarName = 1;

	name = varTokenPtr[1].start;
	nameChars = varTokenPtr[1].size;
	if (name[nameChars-1] == ')') {
	    /*
	     * last char is ')' => potential array reference.
	     */


	    for (i=0,p=name ; i<nameChars ; i++,p++) {


		if (*p == '(') {
		    elName = p + 1;
		    elNameChars = nameChars - i - 2;
		    nameChars = i;


		    break;

		}
	    }

	    if (!(flags & TCL_NO_ELEMENT) && (elName != NULL) && elNameChars) {
		/*
		 * An array element, the element name is a simple string:
		 * assemble the corresponding token.
		 */

		elemTokenPtr = TclStackAlloc(interp, sizeof(Tcl_Token));
		allocedTokens = 1;
		elemTokenPtr->type = TCL_TOKEN_TEXT;
		elemTokenPtr->start = elName;
		elemTokenPtr->size = elNameChars;
		elemTokenPtr->numComponents = 0;
		elemTokenCount = 1;
	    }
	}
    } else if (interp && ((n = varTokenPtr->numComponents) > 1)
	    && (varTokenPtr[1].type == TCL_TOKEN_TEXT)
	    && (varTokenPtr[n].type == TCL_TOKEN_TEXT)
	    && (varTokenPtr[n].start[varTokenPtr[n].size - 1] == ')')) {

	/*
	 * Check for parentheses inside first token.
	 */

	simpleVarName = 0;
	for (i = 0, p = varTokenPtr[1].start;
		i < varTokenPtr[1].size; i++, p++) {
	    if (*p == '(') {
		simpleVarName = 1;
		break;
	    }
	}
	if (simpleVarName) {
	    int remainingChars;

	    /*
	     * Check the last token: if it is just ')', do not count it.
	     * Otherwise, remove the ')' and flag so that it is restored at
	     * the end.
	     */

................................................................................
		n--;
	    } else {
		varTokenPtr[n].size--;
		removedParen = n;
	    }

	    name = varTokenPtr[1].start;
	    nameChars = p - varTokenPtr[1].start;
	    elName = p + 1;
	    remainingChars = (varTokenPtr[2].start - p) - 1;
	    elNameChars = (varTokenPtr[n].start-p) + varTokenPtr[n].size - 1;

	    if (!(flags & TCL_NO_ELEMENT)) {
	      if (remainingChars) {
		/*
		 * Make a first token with the extra characters in the first
		 * token.
		 */

		elemTokenPtr = TclStackAlloc(interp, n * sizeof(Tcl_Token));
		allocedTokens = 1;
		elemTokenPtr->type = TCL_TOKEN_TEXT;
		elemTokenPtr->start = elName;
		elemTokenPtr->size = remainingChars;
		elemTokenPtr->numComponents = 0;
		elemTokenCount = n;

		/*
		 * Copy the remaining tokens.
		 */

................................................................................
    if (simpleVarName) {
	/*
	 * See whether name has any namespace separators (::'s).
	 */

	int hasNsQualifiers = 0;

	for (i = 0, p = name;  i < nameChars;  i++, p++) {
	    if ((*p == ':') && ((i+1) < nameChars) && (*(p+1) == ':')) {
		hasNsQualifiers = 1;
		break;
	    }
	}

	/*
	 * Look up the var name's index in the array of local vars in the proc
	 * frame. If retrieving the var's value and it doesn't already exist,
	 * push its name and look it up at runtime.
	 */

	if (!hasNsQualifiers) {
	    localIndex = TclFindCompiledLocal(name, nameChars, 1, envPtr);
	    if ((flags & TCL_NO_LARGE_INDEX) && (localIndex > 255)) {
		/*
		 * We'll push the name.
		 */

		localIndex = -1;
	    }
	}
	if (interp && localIndex < 0) {
	    PushLiteral(envPtr, name, nameChars);
	}

	/*
	 * Compile the element script, if any, and only if not inhibited. [Bug
	 * 3600328]
	 */

	if (elName != NULL && !(flags & TCL_NO_ELEMENT)) {
	    if (elNameChars) {
		TclCompileTokens(interp, elemTokenPtr, elemTokenCount,
			envPtr);
	    } else {
		PushStringLiteral(envPtr, "");
	    }
	}
    } else if (interp) {






|
|

|












|











|
|



>

<
>
>
|
|
<
<
>
>
|
>



|









|







|
>





|
|






|







 







|

|
|


|









|







 







|
|












|









|








|







3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445

3446
3447
3448
3449


3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
....
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
....
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
    Tcl_Token *varTokenPtr,	/* Points to a variable token. */
    CompileEnv *envPtr,		/* Holds resulting instructions. */
    int flags,			/* TCL_NO_LARGE_INDEX | TCL_NO_ELEMENT. */
    int *localIndexPtr,		/* Must not be NULL. */
    int *isScalarPtr)		/* Must not be NULL. */
{
    register const char *p;
    const char *last, *name, *elName;
    register int n;
    Tcl_Token *elemTokenPtr = NULL;
    int nameLen, elNameLen, simpleVarName, localIndex;
    int elemTokenCount = 0, allocedTokens = 0, removedParen = 0;

    /*
     * Decide if we can use a frame slot for the var/array name or if we need
     * to emit code to compute and push the name at runtime. We use a frame
     * slot (entry in the array of local vars) if we are compiling a procedure
     * body and if the name is simple text that does not include namespace
     * qualifiers.
     */

    simpleVarName = 0;
    name = elName = NULL;
    nameLen = elNameLen = 0;
    localIndex = -1;

    if (varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
	/*
	 * A simple variable name. Divide it up into "name" and "elName"
	 * strings. If it is not a local variable, look it up at runtime.
	 */

	simpleVarName = 1;

	name = varTokenPtr[1].start;
	nameLen = varTokenPtr[1].size;
	if (name[nameLen-1] == ')') {
	    /*
	     * last char is ')' => potential array reference.
	     */
	    last = Tcl_UtfPrev(name + nameLen, name);


	    if (*last == ')') {
		for (p = name;  p < last;  p = Tcl_UtfNext(p)) {
		    if (*p == '(') {
			elName = p + 1;


			elNameLen = last - elName;
			nameLen = p - name;
			break;
		    }
		}
	    }

	    if (!(flags & TCL_NO_ELEMENT) && elNameLen) {
		/*
		 * An array element, the element name is a simple string:
		 * assemble the corresponding token.
		 */

		elemTokenPtr = TclStackAlloc(interp, sizeof(Tcl_Token));
		allocedTokens = 1;
		elemTokenPtr->type = TCL_TOKEN_TEXT;
		elemTokenPtr->start = elName;
		elemTokenPtr->size = elNameLen;
		elemTokenPtr->numComponents = 0;
		elemTokenCount = 1;
	    }
	}
    } else if (interp && ((n = varTokenPtr->numComponents) > 1)
	    && (varTokenPtr[1].type == TCL_TOKEN_TEXT)
	    && (varTokenPtr[n].type == TCL_TOKEN_TEXT)
	    && (*((p = varTokenPtr[n].start + varTokenPtr[n].size)-1) == ')')
	    && (*Tcl_UtfPrev(p, varTokenPtr[n].start) == ')')) {
	/*
	 * Check for parentheses inside first token.
	 */

	simpleVarName = 0;
	for (p = varTokenPtr[1].start,
	     last = p + varTokenPtr[1].size;  p < last;  p = Tcl_UtfNext(p)) {
	    if (*p == '(') {
		simpleVarName = 1;
		break;
	    }
	}
	if (simpleVarName) {
	    int remainingLen;

	    /*
	     * Check the last token: if it is just ')', do not count it.
	     * Otherwise, remove the ')' and flag so that it is restored at
	     * the end.
	     */

................................................................................
		n--;
	    } else {
		varTokenPtr[n].size--;
		removedParen = n;
	    }

	    name = varTokenPtr[1].start;
	    nameLen = p - varTokenPtr[1].start;
	    elName = p + 1;
	    remainingLen = (varTokenPtr[2].start - p) - 1;
	    elNameLen = (varTokenPtr[n].start-p) + varTokenPtr[n].size - 1;

	    if (!(flags & TCL_NO_ELEMENT)) {
	      if (remainingLen) {
		/*
		 * Make a first token with the extra characters in the first
		 * token.
		 */

		elemTokenPtr = TclStackAlloc(interp, n * sizeof(Tcl_Token));
		allocedTokens = 1;
		elemTokenPtr->type = TCL_TOKEN_TEXT;
		elemTokenPtr->start = elName;
		elemTokenPtr->size = remainingLen;
		elemTokenPtr->numComponents = 0;
		elemTokenCount = n;

		/*
		 * Copy the remaining tokens.
		 */

................................................................................
    if (simpleVarName) {
	/*
	 * See whether name has any namespace separators (::'s).
	 */

	int hasNsQualifiers = 0;

	for (p = name, last = p + nameLen-1;  p < last;  p = Tcl_UtfNext(p)) {
	    if ((*p == ':') && (*(p+1) == ':')) {
		hasNsQualifiers = 1;
		break;
	    }
	}

	/*
	 * Look up the var name's index in the array of local vars in the proc
	 * frame. If retrieving the var's value and it doesn't already exist,
	 * push its name and look it up at runtime.
	 */

	if (!hasNsQualifiers) {
	    localIndex = TclFindCompiledLocal(name, nameLen, 1, envPtr);
	    if ((flags & TCL_NO_LARGE_INDEX) && (localIndex > 255)) {
		/*
		 * We'll push the name.
		 */

		localIndex = -1;
	    }
	}
	if (interp && localIndex < 0) {
	    PushLiteral(envPtr, name, nameLen);
	}

	/*
	 * Compile the element script, if any, and only if not inhibited. [Bug
	 * 3600328]
	 */

	if (elName != NULL && !(flags & TCL_NO_ELEMENT)) {
	    if (elNameLen) {
		TclCompileTokens(interp, elemTokenPtr, elemTokenCount,
			envPtr);
	    } else {
		PushStringLiteral(envPtr, "");
	    }
	}
    } else if (interp) {

Changes to generic/tclCompCmdsSZ.c.

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
	PUSH("");
	count++;
    }

    for (endTokenPtr = tokenPtr + parse.numTokens;
	    tokenPtr < endTokenPtr; tokenPtr = TokenAfter(tokenPtr)) {
	int length, literal, catchRange, breakJump;
	char buf[TCL_UTF_MAX];
	JumpFixup startFixup, okFixup, returnFixup, breakFixup;
	JumpFixup continueFixup, otherFixup, endFixup;

	switch (tokenPtr->type) {
	case TCL_TOKEN_TEXT:
	    literal = TclRegisterNewLiteral(envPtr,
		    tokenPtr->start, tokenPtr->size);






|







1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
	PUSH("");
	count++;
    }

    for (endTokenPtr = tokenPtr + parse.numTokens;
	    tokenPtr < endTokenPtr; tokenPtr = TokenAfter(tokenPtr)) {
	int length, literal, catchRange, breakJump;
	char buf[TCL_UTF_MAX] = "";
	JumpFixup startFixup, okFixup, returnFixup, breakFixup;
	JumpFixup continueFixup, otherFixup, endFixup;

	switch (tokenPtr->type) {
	case TCL_TOKEN_TEXT:
	    literal = TclRegisterNewLiteral(envPtr,
		    tokenPtr->start, tokenPtr->size);

Changes to generic/tclCompile.c.

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
....
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
	    if (tempPtr != NULL) {
		Tcl_AppendToObj(tempPtr, tokenPtr->start, tokenPtr->size);
	    }
	    break;

	case TCL_TOKEN_BS:
	    if (tempPtr != NULL) {
		char utfBuf[TCL_UTF_MAX];
		int length = TclParseBackslash(tokenPtr->start,
			tokenPtr->size, NULL, utfBuf);

		Tcl_AppendToObj(tempPtr, utfBuf, length);
	    }
	    break;

................................................................................
				 * compile. */
    int count,			/* Number of tokens to consider at tokenPtr.
				 * Must be at least 1. */
    CompileEnv *envPtr)		/* Holds the resulting instructions. */
{
    Tcl_DString textBuffer;	/* Holds concatenated chars from adjacent
				 * TCL_TOKEN_TEXT, TCL_TOKEN_BS tokens. */
    char buffer[TCL_UTF_MAX];
    int i, numObjsToConcat, length, adjust;
    unsigned char *entryCodeNext = envPtr->codeNext;
#define NUM_STATIC_POS 20
    int isLiteral, maxNumCL, numCL;
    int *clPosition = NULL;
    int depth = TclGetStackDepth(envPtr);







|







 







|







1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
....
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
	    if (tempPtr != NULL) {
		Tcl_AppendToObj(tempPtr, tokenPtr->start, tokenPtr->size);
	    }
	    break;

	case TCL_TOKEN_BS:
	    if (tempPtr != NULL) {
		char utfBuf[TCL_UTF_MAX] = "";
		int length = TclParseBackslash(tokenPtr->start,
			tokenPtr->size, NULL, utfBuf);

		Tcl_AppendToObj(tempPtr, utfBuf, length);
	    }
	    break;

................................................................................
				 * compile. */
    int count,			/* Number of tokens to consider at tokenPtr.
				 * Must be at least 1. */
    CompileEnv *envPtr)		/* Holds the resulting instructions. */
{
    Tcl_DString textBuffer;	/* Holds concatenated chars from adjacent
				 * TCL_TOKEN_TEXT, TCL_TOKEN_BS tokens. */
    char buffer[TCL_UTF_MAX] = "";
    int i, numObjsToConcat, length, adjust;
    unsigned char *entryCodeNext = envPtr->codeNext;
#define NUM_STATIC_POS 20
    int isLiteral, maxNumCL, numCL;
    int *clPosition = NULL;
    int depth = TclGetStackDepth(envPtr);

Changes to generic/tclCompile.h.

1157
1158
1159
1160
1161
1162
1163



















1164
1165
1166
1167
1168
1169
1170
			    Tcl_Obj *objPtr, int maxChars);
MODULE_SCOPE void	TclPrintSource(FILE *outFile,
			    const char *string, int maxChars);
MODULE_SCOPE void	TclPushVarName(Tcl_Interp *interp,
			    Tcl_Token *varTokenPtr, CompileEnv *envPtr,
			    int flags, int *localIndexPtr,
			    int *isScalarPtr);



















MODULE_SCOPE void	TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr);
MODULE_SCOPE void	TclInvalidateCmdLiteral(Tcl_Interp *interp,
			    const char *name, Namespace *nsPtr);
MODULE_SCOPE int	TclSingleOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclSortingOpCmd(ClientData clientData,






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
			    Tcl_Obj *objPtr, int maxChars);
MODULE_SCOPE void	TclPrintSource(FILE *outFile,
			    const char *string, int maxChars);
MODULE_SCOPE void	TclPushVarName(Tcl_Interp *interp,
			    Tcl_Token *varTokenPtr, CompileEnv *envPtr,
			    int flags, int *localIndexPtr,
			    int *isScalarPtr);

static inline void
TclPreserveByteCode(
    register ByteCode *codePtr)
{
    codePtr->refCount++;
}

static inline void
TclReleaseByteCode(
    register ByteCode *codePtr)
{
    if (codePtr->refCount-- > 1) {
	return;
    }
    /* Just dropped to refcount==0.  Clean up. */
    TclCleanupByteCode(codePtr);
}

MODULE_SCOPE void	TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr);
MODULE_SCOPE void	TclInvalidateCmdLiteral(Tcl_Interp *interp,
			    const char *name, Namespace *nsPtr);
MODULE_SCOPE int	TclSingleOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclSortingOpCmd(ClientData clientData,

Changes to generic/tclDate.c.

2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
    { NULL, 0, 0 }
};

static inline const char *
bypassSpaces(
    register const char *s)
{
    if (isspace(UCHAR(*s))) {
	do {
	    s++;
	} while (isspace(UCHAR(*s)));
    }
    return s;
}

/*
 * Dump error messages in the bit bucket.
 */






|
<
|
<







2505
2506
2507
2508
2509
2510
2511
2512

2513

2514
2515
2516
2517
2518
2519
2520
    { NULL, 0, 0 }
};

static inline const char *
bypassSpaces(
    register const char *s)
{
    while (TclIsSpaceProc(*s)) {

	s++;

    }
    return s;
}

/*
 * Dump error messages in the bit bucket.
 */

Changes to generic/tclEncoding.c.

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
....
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
....
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
	    src += 1;
	    dst += Tcl_UniCharToUtf(*chPtr, dst);
	} else {
	    int len = TclUtfToUniChar(src, chPtr);
	    src += len;
	    dst += Tcl_UniCharToUtf(*chPtr, dst);
#if TCL_UTF_MAX == 4
	    if (!len) {
		src += TclUtfToUniChar(src, chPtr);
		dst += Tcl_UniCharToUtf(*chPtr, dst);
	    }
#endif
	}
    }

    *srcReadPtr = src - srcStart;
................................................................................

	/*
	 * Check for illegal characters.
	 */

	if (ch > 0xff
#if TCL_UTF_MAX == 4
		|| !len
#endif
		) {
	    if (flags & TCL_ENCODING_STOPONERROR) {
		result = TCL_CONVERT_UNKNOWN;
		break;
	    }
#if TCL_UTF_MAX == 4
	    if (!len) len = 4;
#endif

	    /*
	     * Plunge on, using '?' as a fallback character.
	     */

	    ch = (Tcl_UniChar) '?';
................................................................................
		     */

		    state = oldState;
		    result = TCL_CONVERT_NOSPACE;
		    break;
		}
		memcpy(dst, subTablePtr->sequence,
			(size_t) subTablePtr->sequenceLen);
		dst += subTablePtr->sequenceLen;
	    }
	}

	if (tablePrefixBytes[(word >> 8)] != 0) {
	    if (dst + 1 > dstEnd) {
		result = TCL_CONVERT_NOSPACE;






|
|







 







|







|







 







|







2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
....
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
....
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
	    src += 1;
	    dst += Tcl_UniCharToUtf(*chPtr, dst);
	} else {
	    int len = TclUtfToUniChar(src, chPtr);
	    src += len;
	    dst += Tcl_UniCharToUtf(*chPtr, dst);
#if TCL_UTF_MAX == 4
	    if ((*chPtr >= 0xD800) && (len < 3)) {
		src += TclUtfToUniChar(src + len, chPtr);
		dst += Tcl_UniCharToUtf(*chPtr, dst);
	    }
#endif
	}
    }

    *srcReadPtr = src - srcStart;
................................................................................

	/*
	 * Check for illegal characters.
	 */

	if (ch > 0xff
#if TCL_UTF_MAX == 4
		|| ((ch >= 0xD800) && (len < 3))
#endif
		) {
	    if (flags & TCL_ENCODING_STOPONERROR) {
		result = TCL_CONVERT_UNKNOWN;
		break;
	    }
#if TCL_UTF_MAX == 4
	    if ((ch >= 0xD800) && (len < 3)) len = 4;
#endif

	    /*
	     * Plunge on, using '?' as a fallback character.
	     */

	    ch = (Tcl_UniChar) '?';
................................................................................
		     */

		    state = oldState;
		    result = TCL_CONVERT_NOSPACE;
		    break;
		}
		memcpy(dst, subTablePtr->sequence,
			subTablePtr->sequenceLen);
		dst += subTablePtr->sequenceLen;
	    }
	}

	if (tablePrefixBytes[(word >> 8)] != 0) {
	    if (dst + 1 > dstEnd) {
		result = TCL_CONVERT_NOSPACE;

Changes to generic/tclExecute.c.

5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
	} else if (TclIsPureByteArray(valuePtr)) {
	    objResultPtr = Tcl_NewByteArrayObj(
		    Tcl_GetByteArrayFromObj(valuePtr, NULL)+index, 1);
	} else if (valuePtr->bytes && length == valuePtr->length) {
	    objResultPtr = Tcl_NewStringObj((const char *)
		    valuePtr->bytes+index, 1);
	} else {
	    char buf[TCL_UTF_MAX];
	    Tcl_UniChar ch = Tcl_GetUniChar(valuePtr, index);

	    /*
	     * This could be: Tcl_NewUnicodeObj((const Tcl_UniChar *)&ch, 1)
	     * but creating the object as a string seems to be faster in
	     * practical use.
	     */






|







5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
	} else if (TclIsPureByteArray(valuePtr)) {
	    objResultPtr = Tcl_NewByteArrayObj(
		    Tcl_GetByteArrayFromObj(valuePtr, NULL)+index, 1);
	} else if (valuePtr->bytes && length == valuePtr->length) {
	    objResultPtr = Tcl_NewStringObj((const char *)
		    valuePtr->bytes+index, 1);
	} else {
	    char buf[TCL_UTF_MAX] = "";
	    Tcl_UniChar ch = Tcl_GetUniChar(valuePtr, index);

	    /*
	     * This could be: Tcl_NewUnicodeObj((const Tcl_UniChar *)&ch, 1)
	     * but creating the object as a string seems to be faster in
	     * practical use.
	     */

Changes to generic/tclGetDate.y.

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    { NULL, 0, 0 }
};

static inline const char *
bypassSpaces(
    register const char *s)
{
    if (isspace(UCHAR(*s))) {
	do {
	    s++;
	} while (isspace(UCHAR(*s)));
    }
    return s;
}

/*
 * Dump error messages in the bit bucket.
 */






|
<
|
<







679
680
681
682
683
684
685
686

687

688
689
690
691
692
693
694
    { NULL, 0, 0 }
};

static inline const char *
bypassSpaces(
    register const char *s)
{
    while (TclIsSpaceProc(*s)) {

	s++;

    }
    return s;
}

/*
 * Dump error messages in the bit bucket.
 */

Changes to generic/tclInt.h.

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
....
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
 */

typedef struct CompiledLocal {
    struct CompiledLocal *nextPtr;
				/* Next compiler-recognized local variable for
				 * this procedure, or NULL if this is the last
				 * local. */
    int nameLength;		/* The number of characters in local
				 * variable's name. Used to speed up variable
				 * lookups. */
    int frameIndex;		/* Index in the array of compiler-assigned
				 * variables in the procedure call frame. */
    int flags;			/* Flag bits for the local variable. Same as
				 * the flags for the Var structure above,
				 * although only VAR_ARGUMENT, VAR_TEMPORARY,
				 * and VAR_RESOLVED make sense. */
    Tcl_Obj *defValuePtr;	/* Pointer to the default value of an
................................................................................
MODULE_SCOPE void	TclInitIOSubsystem(void);
MODULE_SCOPE void	TclInitLimitSupport(Tcl_Interp *interp);
MODULE_SCOPE void	TclInitNamespaceSubsystem(void);
MODULE_SCOPE void	TclInitNotifier(void);
MODULE_SCOPE void	TclInitObjSubsystem(void);
MODULE_SCOPE void	TclInitSubsystems(void);
MODULE_SCOPE int	TclInterpReady(Tcl_Interp *interp);
MODULE_SCOPE int	TclIsSpaceProc(char byte);
MODULE_SCOPE int	TclIsBareword(char byte);
MODULE_SCOPE Tcl_Obj *	TclJoinPath(int elements, Tcl_Obj * const objv[],
			    int forceRelative);
MODULE_SCOPE int	TclJoinThread(Tcl_ThreadId id, int *result);
MODULE_SCOPE void	TclLimitRemoveAllHandlers(Tcl_Interp *interp);
MODULE_SCOPE Tcl_Obj *	TclLindexList(Tcl_Interp *interp,
			    Tcl_Obj *listPtr, Tcl_Obj *argPtr);
MODULE_SCOPE Tcl_Obj *	TclLindexFlat(Tcl_Interp *interp, Tcl_Obj *listPtr,






|
|
<







 







|
|







898
899
900
901
902
903
904
905
906

907
908
909
910
911
912
913
....
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
 */

typedef struct CompiledLocal {
    struct CompiledLocal *nextPtr;
				/* Next compiler-recognized local variable for
				 * this procedure, or NULL if this is the last
				 * local. */
    int nameLength;		/* The number of bytes in local variable's name.
				 * Among others used to speed up var lookups. */

    int frameIndex;		/* Index in the array of compiler-assigned
				 * variables in the procedure call frame. */
    int flags;			/* Flag bits for the local variable. Same as
				 * the flags for the Var structure above,
				 * although only VAR_ARGUMENT, VAR_TEMPORARY,
				 * and VAR_RESOLVED make sense. */
    Tcl_Obj *defValuePtr;	/* Pointer to the default value of an
................................................................................
MODULE_SCOPE void	TclInitIOSubsystem(void);
MODULE_SCOPE void	TclInitLimitSupport(Tcl_Interp *interp);
MODULE_SCOPE void	TclInitNamespaceSubsystem(void);
MODULE_SCOPE void	TclInitNotifier(void);
MODULE_SCOPE void	TclInitObjSubsystem(void);
MODULE_SCOPE void	TclInitSubsystems(void);
MODULE_SCOPE int	TclInterpReady(Tcl_Interp *interp);
MODULE_SCOPE int	TclIsSpaceProc(int byte);
MODULE_SCOPE int	TclIsBareword(int byte);
MODULE_SCOPE Tcl_Obj *	TclJoinPath(int elements, Tcl_Obj * const objv[],
			    int forceRelative);
MODULE_SCOPE int	TclJoinThread(Tcl_ThreadId id, int *result);
MODULE_SCOPE void	TclLimitRemoveAllHandlers(Tcl_Interp *interp);
MODULE_SCOPE Tcl_Obj *	TclLindexList(Tcl_Interp *interp,
			    Tcl_Obj *listPtr, Tcl_Obj *argPtr);
MODULE_SCOPE Tcl_Obj *	TclLindexFlat(Tcl_Interp *interp, Tcl_Obj *listPtr,

Changes to generic/tclIntDecls.h.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
 * See the file "license.terms" for information on usage and redistribution
 * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#ifndef _TCLINTDECLS
#define _TCLINTDECLS

#include "tclPort.h"

#undef TCL_STORAGE_CLASS
#ifdef BUILD_tcl
#   define TCL_STORAGE_CLASS DLLEXPORT
#else
#   ifdef USE_TCL_STUBS
#      define TCL_STORAGE_CLASS






<







11
12
13
14
15
16
17

18
19
20
21
22
23
24
 * See the file "license.terms" for information on usage and redistribution
 * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#ifndef _TCLINTDECLS
#define _TCLINTDECLS



#undef TCL_STORAGE_CLASS
#ifdef BUILD_tcl
#   define TCL_STORAGE_CLASS DLLEXPORT
#else
#   ifdef USE_TCL_STUBS
#      define TCL_STORAGE_CLASS

Changes to generic/tclParse.c.

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
...
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
...
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
...
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
....
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclIsSpaceProc(
    char byte)
{
    return CHAR_TYPE(byte) & (TYPE_SPACE) || byte == '\n';
}
 
/*
 *----------------------------------------------------------------------
 *
................................................................................
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclIsBareword(
    char byte)
{
    if (byte < '0' || byte > 'z') {
	return 0;
    }
    if (byte <= '9' || byte >= 'a') {
	return 1;
    }
................................................................................
				 * written. At most TCL_UTF_MAX bytes will be
				 * written there. */
{
    register const char *p = src+1;
    Tcl_UniChar unichar = 0;
    int result;
    int count;
    char buf[TCL_UTF_MAX];

    if (numBytes == 0) {
	if (readPtr != NULL) {
	    *readPtr = 0;
	}
	return 0;
    }
................................................................................

  done:
    if (readPtr != NULL) {
	*readPtr = count;
    }
    count = Tcl_UniCharToUtf(result, dst);
#if TCL_UTF_MAX > 3
    if (!count) {
	count = Tcl_UniCharToUtf(-1, dst);
    }
#endif
    return count;
}
 
/*
 *----------------------------------------------------------------------
................................................................................

    adjust = 0;
    result = NULL;
    for (; count>0 && code==TCL_OK ; count--, tokenPtr++) {
	Tcl_Obj *appendObj = NULL;
	const char *append = NULL;
	int appendByteLength = 0;
	char utfCharBytes[TCL_UTF_MAX];

	switch (tokenPtr->type) {
	case TCL_TOKEN_TEXT:
	    append = tokenPtr->start;
	    appendByteLength = tokenPtr->size;
	    break;







|







 







|







 







|







 







|
|







 







|







609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
...
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
...
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
...
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
....
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclIsSpaceProc(
    int byte)
{
    return CHAR_TYPE(byte) & (TYPE_SPACE) || byte == '\n';
}
 
/*
 *----------------------------------------------------------------------
 *
................................................................................
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclIsBareword(
    int byte)
{
    if (byte < '0' || byte > 'z') {
	return 0;
    }
    if (byte <= '9' || byte >= 'a') {
	return 1;
    }
................................................................................
				 * written. At most TCL_UTF_MAX bytes will be
				 * written there. */
{
    register const char *p = src+1;
    Tcl_UniChar unichar = 0;
    int result;
    int count;
    char buf[TCL_UTF_MAX] = "";

    if (numBytes == 0) {
	if (readPtr != NULL) {
	    *readPtr = 0;
	}
	return 0;
    }
................................................................................

  done:
    if (readPtr != NULL) {
	*readPtr = count;
    }
    count = Tcl_UniCharToUtf(result, dst);
#if TCL_UTF_MAX > 3
     if ((result >= 0xD800) && (count < 3)) {
	count += Tcl_UniCharToUtf(-1, dst + count);
    }
#endif
    return count;
}
 
/*
 *----------------------------------------------------------------------
................................................................................

    adjust = 0;
    result = NULL;
    for (; count>0 && code==TCL_OK ; count--, tokenPtr++) {
	Tcl_Obj *appendObj = NULL;
	const char *append = NULL;
	int appendByteLength = 0;
	char utfCharBytes[TCL_UTF_MAX] = "";

	switch (tokenPtr->type) {
	case TCL_TOKEN_TEXT:
	    append = tokenPtr->start;
	    appendByteLength = tokenPtr->size;
	    break;

Changes to generic/tclParse.h.

8
9
10
11
12
13
14
15
16
17
#define TYPE_COMMAND_END	0x2
#define TYPE_SUBS		0x4
#define TYPE_QUOTE		0x8
#define TYPE_CLOSE_PAREN	0x10
#define TYPE_CLOSE_BRACK	0x20
#define TYPE_BRACE		0x40

#define CHAR_TYPE(c) (tclCharTypeTable+128)[(int)(c)]

MODULE_SCOPE const char tclCharTypeTable[];






|


8
9
10
11
12
13
14
15
16
17
#define TYPE_COMMAND_END	0x2
#define TYPE_SUBS		0x4
#define TYPE_QUOTE		0x8
#define TYPE_CLOSE_PAREN	0x10
#define TYPE_CLOSE_BRACK	0x20
#define TYPE_BRACE		0x40

#define CHAR_TYPE(c) (tclCharTypeTable+128)[(unsigned char)(c)]

MODULE_SCOPE const char tclCharTypeTable[];

Changes to generic/tclPort.h.

35
36
37
38
39
40
41



42
43
#         define LLONG_MIN ((Tcl_WideInt)(Tcl_LongAsWide(1)<<63))
#      endif
#   endif
/* Assume that if LLONG_MIN is undefined, then so is LLONG_MAX */
#   define LLONG_MAX (~LLONG_MIN)
#endif





#endif /* _TCLPORT */






>
>
>


35
36
37
38
39
40
41
42
43
44
45
46
#         define LLONG_MIN ((Tcl_WideInt)(Tcl_LongAsWide(1)<<63))
#      endif
#   endif
/* Assume that if LLONG_MIN is undefined, then so is LLONG_MAX */
#   define LLONG_MAX (~LLONG_MIN)
#endif

#define UWIDE_MAX ((Tcl_WideUInt)-1)
#define WIDE_MAX ((Tcl_WideInt)(UWIDE_MAX >> 1))
#define WIDE_MIN ((Tcl_WideInt)((Tcl_WideUInt)WIDE_MAX+1))

#endif /* _TCLPORT */

Changes to generic/tclProc.c.

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
...
408
409
410
411
412
413
414

415
416
417
418
419
420
421
...
470
471
472
473
474
475
476

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
...
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

533
534
535
536
537
538
539
540
...
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
...
568
569
570
571
572
573
574
575
576
577


578
579
580

581
582
583
584
585
586
587
588
589
...
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
...
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    Tcl_Obj *argsPtr,		/* Description of arguments. */
    Tcl_Obj *bodyPtr,		/* Command body. */
    Proc **procPtrPtr)		/* Returns: pointer to proc data. */
{
    Interp *iPtr = (Interp *) interp;

    register Proc *procPtr;
    int i, result, numArgs, plen;
    const char *bytes, *argname, *argnamei;
    char argnamelast;
    register CompiledLocal *localPtr = NULL;
    Tcl_Obj *defPtr, *errorObj, **argArray;
    int precompiled = 0;

    if (bodyPtr->typePtr == &tclProcBodyType) {
	/*
	 * Because the body is a TclProProcBody, the actual body is already
	 * compiled, and it is not shared with anyone else, so it's OK not to
	 * unshare it (as a matter of fact, it is bad to unshare it, because
................................................................................
	 * means that the same code can not be shared by two procedures that
	 * have a different number of arguments, even if their bodies are
	 * identical. Note that we don't use Tcl_DuplicateObj since we would
	 * not want any bytecode internal representation.
	 */

	if (Tcl_IsShared(bodyPtr)) {

	    int length;
	    Tcl_Obj *sharedBodyPtr = bodyPtr;

	    bytes = TclGetStringFromObj(bodyPtr, &length);
	    bodyPtr = Tcl_NewStringObj(bytes, length);

	    /*
................................................................................
	localPtr = procPtr->firstLocalPtr;
    } else {
	procPtr->numArgs = numArgs;
	procPtr->numCompiledLocals = numArgs;
    }

    for (i = 0; i < numArgs; i++) {

	int fieldCount, nameLength, valueLength;
	Tcl_Obj **fieldValues;

	/*
	 * Now divide the specifier up into name and default.
	 */

	result = Tcl_ListObjGetElements(interp, argArray[i], &fieldCount,
		&fieldValues);
	if (result != TCL_OK) {
	    goto procError;
	}
	if (fieldCount > 2) {
	    errorObj = Tcl_NewStringObj(
		"too many fields in argument specifier \"", -1);
	    Tcl_AppendObjToObj(errorObj, argArray[i]);
	    Tcl_AppendToObj(errorObj, "\"", -1);
	    Tcl_SetObjResult(interp, errorObj);
	    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
		    "FORMALARGUMENTFORMAT", NULL);
	    goto procError;
................................................................................
	    Tcl_SetObjResult(interp, Tcl_NewStringObj(
		    "argument with no name", -1));
	    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
		    "FORMALARGUMENTFORMAT", NULL);
	    goto procError;
	}

	argname = Tcl_GetStringFromObj(fieldValues[0], &plen);
	nameLength = Tcl_NumUtfChars(argname, plen);
	if (fieldCount == 2) {
	    const char * value = TclGetString(fieldValues[1]);
	    valueLength = Tcl_NumUtfChars(value, fieldValues[1]->length);
	} else {
	    valueLength = 0;
	}

	/*
	 * Check that the formal parameter name is a scalar.
	 */

	argnamei = argname;
	argnamelast = argname[plen-1];
	while (plen--) {
	    if (argnamei[0] == '(') {
		if (argnamelast == ')') {	/* We have an array element. */
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
			    "formal parameter \"%s\" is an array element",
			    Tcl_GetString(fieldValues[0])));
		    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			    "FORMALARGUMENTFORMAT", NULL);
		    goto procError;
		}
	    } else if ((argnamei[0] == ':') && (argnamei[1] == ':')) {

		errorObj = Tcl_NewStringObj("formal parameter \"", -1);
		Tcl_AppendObjToObj(errorObj, fieldValues[0]);
		Tcl_AppendToObj(errorObj, "\" is not a simple name", -1);
		Tcl_SetObjResult(interp, errorObj);
		Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			"FORMALARGUMENTFORMAT", NULL);
		goto procError;
	    }
................................................................................
	     *
	     * The only other flag vlaue that is important to retrieve from
	     * precompiled procs is VAR_TEMPORARY (also unchanged). It is
	     * needed later when retrieving the variable names.
	     */

	    if ((localPtr->nameLength != nameLength)
		    || (Tcl_UtfNcmp(localPtr->name, argname, nameLength))
		    || (localPtr->frameIndex != i)
		    || !(localPtr->flags & VAR_ARGUMENT)
		    || (localPtr->defValuePtr == NULL && fieldCount == 2)
		    || (localPtr->defValuePtr != NULL && fieldCount != 2)) {
		Tcl_SetObjResult(interp, Tcl_ObjPrintf(
			"procedure \"%s\": formal parameter %d is "
			"inconsistent with precompiled body", procName, i));
................................................................................
	    }

	    /*
	     * Compare the default value if any.
	     */

	    if (localPtr->defValuePtr != NULL) {
		int tmpLength;
		const char *tmpPtr = TclGetStringFromObj(localPtr->defValuePtr,
			&tmpLength);



		if ((valueLength != tmpLength) ||
			Tcl_UtfNcmp(Tcl_GetString(fieldValues[1]), tmpPtr, tmpLength)) {

		    errorObj = Tcl_ObjPrintf(
			    "procedure \"%s\": formal parameter \"" ,procName);
		    Tcl_AppendObjToObj(errorObj, fieldValues[0]);
		    Tcl_AppendToObj(errorObj, "\" has "
			"default value inconsistent with precompiled body", -1);
		    Tcl_SetObjResult(interp, errorObj);
		    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			    "BYTECODELIES", NULL);
		    goto procError;
................................................................................
	    } else {
		localPtr->defValuePtr = NULL;
	    }
	    memcpy(localPtr->name, argname, fieldValues[0]->length + 1);
	    if ((i == numArgs - 1)
		    && (localPtr->nameLength == 4)
		    && (localPtr->name[0] == 'a')
		    && (strcmp(localPtr->name, "args") == 0)) {
		localPtr->flags |= VAR_IS_ARGS;
	    }
	}
    }

    *procPtrPtr = procPtr;
    return TCL_OK;
................................................................................
	procPtr->refCount--;
    } else {
	Tcl_DecrRefCount(bodyPtr);
	while (procPtr->firstLocalPtr != NULL) {
	    localPtr = procPtr->firstLocalPtr;
	    procPtr->firstLocalPtr = localPtr->nextPtr;

	    defPtr = localPtr->defValuePtr;
	    if (defPtr != NULL) {
		Tcl_DecrRefCount(defPtr);
	    }

	    ckfree(localPtr);
	}
	ckfree(procPtr);
    }
    return TCL_ERROR;






|
<
<

|







 







>







 







>
|












|







 







|
<
<
<
<
<
<
<






|
|
|
|







|
>
|







 







|







 







|


>
>

|
|
>
|
|







 







|







 







|
<
|







367
368
369
370
371
372
373
374


375
376
377
378
379
380
381
382
383
...
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
...
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
...
500
501
502
503
504
505
506
507







508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
...
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
...
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
...
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
...
637
638
639
640
641
642
643
644

645
646
647
648
649
650
651
652
    Tcl_Obj *argsPtr,		/* Description of arguments. */
    Tcl_Obj *bodyPtr,		/* Command body. */
    Proc **procPtrPtr)		/* Returns: pointer to proc data. */
{
    Interp *iPtr = (Interp *) interp;

    register Proc *procPtr;
    int i, result, numArgs;


    register CompiledLocal *localPtr = NULL;
    Tcl_Obj **argArray;
    int precompiled = 0;

    if (bodyPtr->typePtr == &tclProcBodyType) {
	/*
	 * Because the body is a TclProProcBody, the actual body is already
	 * compiled, and it is not shared with anyone else, so it's OK not to
	 * unshare it (as a matter of fact, it is bad to unshare it, because
................................................................................
	 * means that the same code can not be shared by two procedures that
	 * have a different number of arguments, even if their bodies are
	 * identical. Note that we don't use Tcl_DuplicateObj since we would
	 * not want any bytecode internal representation.
	 */

	if (Tcl_IsShared(bodyPtr)) {
	    const char *bytes;
	    int length;
	    Tcl_Obj *sharedBodyPtr = bodyPtr;

	    bytes = TclGetStringFromObj(bodyPtr, &length);
	    bodyPtr = Tcl_NewStringObj(bytes, length);

	    /*
................................................................................
	localPtr = procPtr->firstLocalPtr;
    } else {
	procPtr->numArgs = numArgs;
	procPtr->numCompiledLocals = numArgs;
    }

    for (i = 0; i < numArgs; i++) {
	const char *argname, *argnamei, *argnamelast;
	int fieldCount, nameLength;
	Tcl_Obj **fieldValues;

	/*
	 * Now divide the specifier up into name and default.
	 */

	result = Tcl_ListObjGetElements(interp, argArray[i], &fieldCount,
		&fieldValues);
	if (result != TCL_OK) {
	    goto procError;
	}
	if (fieldCount > 2) {
	    Tcl_Obj *errorObj = Tcl_NewStringObj(
		"too many fields in argument specifier \"", -1);
	    Tcl_AppendObjToObj(errorObj, argArray[i]);
	    Tcl_AppendToObj(errorObj, "\"", -1);
	    Tcl_SetObjResult(interp, errorObj);
	    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
		    "FORMALARGUMENTFORMAT", NULL);
	    goto procError;
................................................................................
	    Tcl_SetObjResult(interp, Tcl_NewStringObj(
		    "argument with no name", -1));
	    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
		    "FORMALARGUMENTFORMAT", NULL);
	    goto procError;
	}

	argname = Tcl_GetStringFromObj(fieldValues[0], &nameLength);








	/*
	 * Check that the formal parameter name is a scalar.
	 */

	argnamei = argname;
	argnamelast = Tcl_UtfPrev(argname + nameLength, argname);
	while (argnamei < argnamelast) {
	    if (*argnamei == '(') {
		if (*argnamelast == ')') { /* We have an array element. */
		    Tcl_SetObjResult(interp, Tcl_ObjPrintf(
			    "formal parameter \"%s\" is an array element",
			    Tcl_GetString(fieldValues[0])));
		    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			    "FORMALARGUMENTFORMAT", NULL);
		    goto procError;
		}
	    } else if (*argnamei == ':' && *(argnamei+1) == ':') {
		Tcl_Obj *errorObj = Tcl_NewStringObj(
		    "formal parameter \"", -1);
		Tcl_AppendObjToObj(errorObj, fieldValues[0]);
		Tcl_AppendToObj(errorObj, "\" is not a simple name", -1);
		Tcl_SetObjResult(interp, errorObj);
		Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			"FORMALARGUMENTFORMAT", NULL);
		goto procError;
	    }
................................................................................
	     *
	     * The only other flag vlaue that is important to retrieve from
	     * precompiled procs is VAR_TEMPORARY (also unchanged). It is
	     * needed later when retrieving the variable names.
	     */

	    if ((localPtr->nameLength != nameLength)
		    || (memcmp(localPtr->name, argname, nameLength) != 0)
		    || (localPtr->frameIndex != i)
		    || !(localPtr->flags & VAR_ARGUMENT)
		    || (localPtr->defValuePtr == NULL && fieldCount == 2)
		    || (localPtr->defValuePtr != NULL && fieldCount != 2)) {
		Tcl_SetObjResult(interp, Tcl_ObjPrintf(
			"procedure \"%s\": formal parameter %d is "
			"inconsistent with precompiled body", procName, i));
................................................................................
	    }

	    /*
	     * Compare the default value if any.
	     */

	    if (localPtr->defValuePtr != NULL) {
		int tmpLength, valueLength;
		const char *tmpPtr = TclGetStringFromObj(localPtr->defValuePtr,
			&tmpLength);
		const char *value = TclGetStringFromObj(fieldValues[1],
			&valueLength);

		if ((valueLength != tmpLength)
		     || memcmp(value, tmpPtr, tmpLength) != 0
		) {
		    Tcl_Obj *errorObj = Tcl_ObjPrintf(
			    "procedure \"%s\": formal parameter \"", procName);
		    Tcl_AppendObjToObj(errorObj, fieldValues[0]);
		    Tcl_AppendToObj(errorObj, "\" has "
			"default value inconsistent with precompiled body", -1);
		    Tcl_SetObjResult(interp, errorObj);
		    Tcl_SetErrorCode(interp, "TCL", "OPERATION", "PROC",
			    "BYTECODELIES", NULL);
		    goto procError;
................................................................................
	    } else {
		localPtr->defValuePtr = NULL;
	    }
	    memcpy(localPtr->name, argname, fieldValues[0]->length + 1);
	    if ((i == numArgs - 1)
		    && (localPtr->nameLength == 4)
		    && (localPtr->name[0] == 'a')
		    && (memcmp(localPtr->name, "args", 4) == 0)) {
		localPtr->flags |= VAR_IS_ARGS;
	    }
	}
    }

    *procPtrPtr = procPtr;
    return TCL_OK;
................................................................................
	procPtr->refCount--;
    } else {
	Tcl_DecrRefCount(bodyPtr);
	while (procPtr->firstLocalPtr != NULL) {
	    localPtr = procPtr->firstLocalPtr;
	    procPtr->firstLocalPtr = localPtr->nextPtr;

	    if (localPtr->defValuePtr != NULL) {

		Tcl_DecrRefCount(localPtr->defValuePtr);
	    }

	    ckfree(localPtr);
	}
	ckfree(procPtr);
    }
    return TCL_ERROR;

Changes to generic/tclScan.c.

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
...
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
				 * required. */
{
    int gotXpg, gotSequential, value, i, flags;
    char *end;
    Tcl_UniChar ch = 0;
    int objIndex, xpgSize, nspace = numVars;
    int *nassign = TclStackAlloc(interp, nspace * sizeof(int));
    char buf[TCL_UTF_MAX+1];
    Tcl_Obj *errorMsg;		/* Place to build an error messages. Note that
				 * these are messy operations because we do
				 * not want to use the formatting engine;
				 * we're inside there! */

    /*
     * Initialize an array that records the number of times a variable is
................................................................................
	    /*
	     * Scan a single Unicode character.
	     */

	    offset = TclUtfToUniChar(string, &sch);
	    i = (int)sch;
#if TCL_UTF_MAX == 4
	    if (!offset) {
		offset = Tcl_UtfToUniChar(string, &sch);
		i = (((i<<10) & 0x0FFC00) + 0x10000) + (sch & 0x3FF);
	    }
#endif
	    string += offset;
	    if (!(flags & SCAN_SUPPRESS)) {
		objPtr = Tcl_NewIntObj(i);
		Tcl_IncrRefCount(objPtr);






|







 







|
|







256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
...
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
				 * required. */
{
    int gotXpg, gotSequential, value, i, flags;
    char *end;
    Tcl_UniChar ch = 0;
    int objIndex, xpgSize, nspace = numVars;
    int *nassign = TclStackAlloc(interp, nspace * sizeof(int));
    char buf[TCL_UTF_MAX+1] = "";
    Tcl_Obj *errorMsg;		/* Place to build an error messages. Note that
				 * these are messy operations because we do
				 * not want to use the formatting engine;
				 * we're inside there! */

    /*
     * Initialize an array that records the number of times a variable is
................................................................................
	    /*
	     * Scan a single Unicode character.
	     */

	    offset = TclUtfToUniChar(string, &sch);
	    i = (int)sch;
#if TCL_UTF_MAX == 4
	    if ((sch >= 0xD800) && (offset < 3)) {
		offset += TclUtfToUniChar(string+offset, &sch);
		i = (((i<<10) & 0x0FFC00) + 0x10000) + (sch & 0x3FF);
	    }
#endif
	    string += offset;
	    if (!(flags & SCAN_SUPPRESS)) {
		objPtr = Tcl_NewIntObj(i);
		Tcl_IncrRefCount(objPtr);

Changes to generic/tclStringObj.c.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
....
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
	    int code, length;

	    if (TclGetIntFromObj(interp, segment, &code) != TCL_OK) {
		goto error;
	    }
	    length = Tcl_UniCharToUtf(code, buf);
#if TCL_UTF_MAX > 3
	    if (!length) {
		/* Special case for handling upper surrogates. */
		length = Tcl_UniCharToUtf(-1, buf);
	    }
#endif
	    segment = Tcl_NewStringObj(buf, length);
	    Tcl_IncrRefCount(segment);
	    allocSegment = 1;
	    break;
	}
................................................................................
    if (size > stringPtr->allocated) {
	GrowStringBuffer(objPtr, size, 1);
    }

  copyBytes:
    dst = objPtr->bytes + origLength;
    for (i = 0; i < numChars; i++) {
	dst += Tcl_UniCharToUtf((int) unicode[i], dst);
    }
    *dst = '\0';
    objPtr->length = dst - objPtr->bytes;
    return numChars;
}
 
/*






|
|
|







 







|







1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
....
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
	    int code, length;

	    if (TclGetIntFromObj(interp, segment, &code) != TCL_OK) {
		goto error;
	    }
	    length = Tcl_UniCharToUtf(code, buf);
#if TCL_UTF_MAX > 3
	    if ((code >= 0xD800) && (length < 3)) {
		/* Special case for handling high surrogates. */
		length += Tcl_UniCharToUtf(-1, buf + length);
	    }
#endif
	    segment = Tcl_NewStringObj(buf, length);
	    Tcl_IncrRefCount(segment);
	    allocSegment = 1;
	    break;
	}
................................................................................
    if (size > stringPtr->allocated) {
	GrowStringBuffer(objPtr, size, 1);
    }

  copyBytes:
    dst = objPtr->bytes + origLength;
    for (i = 0; i < numChars; i++) {
	dst += Tcl_UniCharToUtf(unicode[i], dst);
    }
    *dst = '\0';
    objPtr->length = dst - objPtr->bytes;
    return numChars;
}
 
/*

Changes to generic/tclStubInit.c.

278
279
280
281
282
283
284
285
286
287
288
289




290
291
292
293
294
295
296
297
298
299
300
...
845
846
847
848
849
850
851

852
853
854
855
856
857
858
    Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4);
    result = Tcl_DStringValue(dsPtr) + oldLength;

    p = result;
    wEnd = (wchar_t *)string + len;
    for (w = (wchar_t *)string; w < wEnd; ) {
	if (!blen && ((*w & 0xFC00) != 0xDC00)) {
	    /* Special case for handling upper surrogates. */
	    p += Tcl_UniCharToUtf(-1, p);
	}
	blen = Tcl_UniCharToUtf(*w, p);
	p += blen;




	w++;
    }
    if (!blen) {
	/* Special case for handling upper surrogates. */
	p += Tcl_UniCharToUtf(-1, p);
    }
    Tcl_DStringSetLength(dsPtr, oldLength + (p - result));

    return result;
#else
    return Tcl_UniCharToUtfDString((Tcl_UniChar *)string, len, dsPtr);
................................................................................
    TclBN_s_mp_sub, /* 60 */
    TclBN_mp_init_set_int, /* 61 */
    TclBN_mp_set_int, /* 62 */
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */

};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};






|




>
>
>
>



|







 







>







278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
...
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    Tcl_DStringSetLength(dsPtr, oldLength + (len + 1) * 4);
    result = Tcl_DStringValue(dsPtr) + oldLength;

    p = result;
    wEnd = (wchar_t *)string + len;
    for (w = (wchar_t *)string; w < wEnd; ) {
	if (!blen && ((*w & 0xFC00) != 0xDC00)) {
	    /* Special case for handling high surrogates. */
	    p += Tcl_UniCharToUtf(-1, p);
	}
	blen = Tcl_UniCharToUtf(*w, p);
	p += blen;
	if ((*w >= 0xD800) && (blen < 3)) {
	    /* Indication that high surrogate is handled */
	    blen = 0;
	}
	w++;
    }
    if (!blen) {
	/* Special case for handling high surrogates. */
	p += Tcl_UniCharToUtf(-1, p);
    }
    Tcl_DStringSetLength(dsPtr, oldLength + (p - result));

    return result;
#else
    return Tcl_UniCharToUtfDString((Tcl_UniChar *)string, len, dsPtr);
................................................................................
    TclBN_s_mp_sub, /* 60 */
    TclBN_mp_init_set_int, /* 61 */
    TclBN_mp_set_int, /* 62 */
    TclBN_mp_cnt_lsb, /* 63 */
    TclBNInitBignumFromLong, /* 64 */
    TclBNInitBignumFromWideInt, /* 65 */
    TclBNInitBignumFromWideUInt, /* 66 */
    TclBN_mp_expt_d_ex, /* 67 */
};

static const TclStubHooks tclStubHooks = {
    &tclPlatStubs,
    &tclIntStubs,
    &tclIntPlatStubs
};

Changes to generic/tclTomMath.decls.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
...
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
...
228
229
230
231
232
233
234





235
236
237
238
    int TclBN_epoch(void)
}
declare 1 {
    int TclBN_revision(void)
}

declare 2 {
    int TclBN_mp_add(mp_int *a, mp_int *b, mp_int *c)
}
declare 3 {
    int TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 4 {
    int TclBN_mp_and(mp_int *a, mp_int *b, mp_int *c)
}
declare 5 {
    void TclBN_mp_clamp(mp_int *a)
}
declare 6 {
    void TclBN_mp_clear(mp_int *a)
}
................................................................................
declare 11 {
    int TclBN_mp_copy(const mp_int *a, mp_int *b)
}
declare 12 {
    int TclBN_mp_count_bits(const mp_int *a)
}
declare 13 {
    int TclBN_mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
}
declare 14 {
    int TclBN_mp_div_d(mp_int *a, mp_digit b, mp_int *q, mp_digit *r)
}
declare 15 {
    int TclBN_mp_div_2(mp_int *a, mp_int *q)
}
declare 16 {
    int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r)
}
declare 17 {
    int TclBN_mp_div_3(mp_int *a, mp_int *q, mp_digit *r)
}
declare 18 {
    void TclBN_mp_exch(mp_int *a, mp_int *b)
}
declare 19 {
    int TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
declare 22 {
    int TclBN_mp_init_copy(mp_int *a, mp_int *b)
}
declare 23 {
    int TclBN_mp_init_multi(mp_int *a, ...)
}
declare 24 {
    int TclBN_mp_init_set(mp_int *a, mp_digit b)
}
................................................................................
declare 25 {
    int TclBN_mp_init_size(mp_int *a, int size)
}
declare 26 {
    int TclBN_mp_lshd(mp_int *a, int shift)
}
declare 27 {
    int TclBN_mp_mod(mp_int *a, mp_int *b, mp_int *r)
}
declare 28 {
    int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r)
}
declare 29 {
    int TclBN_mp_mul(mp_int *a, mp_int *b, mp_int *p)
}
declare 30 {
    int TclBN_mp_mul_d(mp_int *a, mp_digit b, mp_int *p)
}
declare 31 {
    int TclBN_mp_mul_2(mp_int *a, mp_int *p)
}
declare 32 {
    int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p)
}
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
declare 37 {
    void TclBN_mp_rshd(mp_int *a, int shift)
}
................................................................................
declare 38 {
    int TclBN_mp_shrink(mp_int *a)
}
declare 39 {
    void TclBN_mp_set(mp_int *a, mp_digit b)
}
declare 40 {
    int TclBN_mp_sqr(mp_int *a, mp_int *b)
}
declare 41 {
    int TclBN_mp_sqrt(mp_int *a, mp_int *b)
}
declare 42 {
    int TclBN_mp_sub(mp_int *a, mp_int *b, mp_int *c)
}
declare 43 {
    int TclBN_mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
}
declare 44 {
    int TclBN_mp_to_unsigned_bin(mp_int *a, unsigned char *b)
}
declare 45 {
    int TclBN_mp_to_unsigned_bin_n(mp_int *a, unsigned char *b,
	    unsigned long *outlen)
}
declare 46 {
    int TclBN_mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
}
declare 47 {
    int TclBN_mp_unsigned_bin_size(mp_int *a)
}
declare 48 {
    int TclBN_mp_xor(mp_int *a, mp_int *b, mp_int *c)
}
declare 49 {
    void TclBN_mp_zero(mp_int *a)
}

# internal routines to libtommath - should not be called but must be
# exported to accommodate the "tommath" extension

declare 50 {
    void TclBN_reverse(unsigned char *s, int len)
}
declare 51 {
    int TclBN_fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
declare 52 {
    int TclBN_fast_s_mp_sqr(mp_int *a, mp_int *b)
}
declare 53 {
    int TclBN_mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
}
declare 54 {
    int TclBN_mp_karatsuba_sqr(mp_int *a, mp_int *b)
}
declare 55 {
    int TclBN_mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
}
declare 56 {
    int TclBN_mp_toom_sqr(mp_int *a, mp_int *b)
}
declare 57 {
    int TclBN_s_mp_add(mp_int *a, mp_int *b, mp_int *c)
}
declare 58 {
    int TclBN_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
declare 59 {
    int TclBN_s_mp_sqr(mp_int *a, mp_int *b)
}
declare 60 {
    int TclBN_s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
}
declare 61 {
    int TclBN_mp_init_set_int(mp_int *a, unsigned long i)
}
declare 62 {
    int TclBN_mp_set_int(mp_int *a, unsigned long i)
}
................................................................................
}
declare 65 {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}






# Local Variables:
# mode: tcl
# End:






|


|


|







 







|


|


|





|





|








|







 







|





|


|


|








|


|







 







|


|


|


|


|


|



|


|


|












|


|


|


|


|


|


|


|


|


|







 







>
>
>
>
>




26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
...
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
...
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
...
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    int TclBN_epoch(void)
}
declare 1 {
    int TclBN_revision(void)
}

declare 2 {
    int TclBN_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 3 {
    int TclBN_mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 4 {
    int TclBN_mp_and(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 5 {
    void TclBN_mp_clamp(mp_int *a)
}
declare 6 {
    void TclBN_mp_clear(mp_int *a)
}
................................................................................
declare 11 {
    int TclBN_mp_copy(const mp_int *a, mp_int *b)
}
declare 12 {
    int TclBN_mp_count_bits(const mp_int *a)
}
declare 13 {
    int TclBN_mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
}
declare 14 {
    int TclBN_mp_div_d(const mp_int *a, mp_digit b, mp_int *q, mp_digit *r)
}
declare 15 {
    int TclBN_mp_div_2(const mp_int *a, mp_int *q)
}
declare 16 {
    int TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q, mp_int *r)
}
declare 17 {
    int TclBN_mp_div_3(const mp_int *a, mp_int *q, mp_digit *r)
}
declare 18 {
    void TclBN_mp_exch(mp_int *a, mp_int *b)
}
declare 19 {
    int TclBN_mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 20 {
    int TclBN_mp_grow(mp_int *a, int size)
}
declare 21 {
    int TclBN_mp_init(mp_int *a)
}
declare 22 {
    int TclBN_mp_init_copy(mp_int *a, const mp_int *b)
}
declare 23 {
    int TclBN_mp_init_multi(mp_int *a, ...)
}
declare 24 {
    int TclBN_mp_init_set(mp_int *a, mp_digit b)
}
................................................................................
declare 25 {
    int TclBN_mp_init_size(mp_int *a, int size)
}
declare 26 {
    int TclBN_mp_lshd(mp_int *a, int shift)
}
declare 27 {
    int TclBN_mp_mod(const mp_int *a, const mp_int *b, mp_int *r)
}
declare 28 {
    int TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r)
}
declare 29 {
    int TclBN_mp_mul(const mp_int *a, const mp_int *b, mp_int *p)
}
declare 30 {
    int TclBN_mp_mul_d(const mp_int *a, mp_digit b, mp_int *p)
}
declare 31 {
    int TclBN_mp_mul_2(const mp_int *a, mp_int *p)
}
declare 32 {
    int TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p)
}
declare 33 {
    int TclBN_mp_neg(const mp_int *a, mp_int *b)
}
declare 34 {
    int TclBN_mp_or(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 35 {
    int TclBN_mp_radix_size(const mp_int *a, int radix, int *size)
}
declare 36 {
    int TclBN_mp_read_radix(mp_int *a, const char *str, int radix)
}
declare 37 {
    void TclBN_mp_rshd(mp_int *a, int shift)
}
................................................................................
declare 38 {
    int TclBN_mp_shrink(mp_int *a)
}
declare 39 {
    void TclBN_mp_set(mp_int *a, mp_digit b)
}
declare 40 {
    int TclBN_mp_sqr(const mp_int *a, mp_int *b)
}
declare 41 {
    int TclBN_mp_sqrt(const mp_int *a, mp_int *b)
}
declare 42 {
    int TclBN_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 43 {
    int TclBN_mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
}
declare 44 {
    int TclBN_mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
}
declare 45 {
    int TclBN_mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b,
	    unsigned long *outlen)
}
declare 46 {
    int TclBN_mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
}
declare 47 {
    int TclBN_mp_unsigned_bin_size(const mp_int *a)
}
declare 48 {
    int TclBN_mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 49 {
    void TclBN_mp_zero(mp_int *a)
}

# internal routines to libtommath - should not be called but must be
# exported to accommodate the "tommath" extension

declare 50 {
    void TclBN_reverse(unsigned char *s, int len)
}
declare 51 {
    int TclBN_fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
}
declare 52 {
    int TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b)
}
declare 53 {
    int TclBN_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 54 {
    int TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b)
}
declare 55 {
    int TclBN_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 56 {
    int TclBN_mp_toom_sqr(const mp_int *a, mp_int *b)
}
declare 57 {
    int TclBN_s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 58 {
    int TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
}
declare 59 {
    int TclBN_s_mp_sqr(const mp_int *a, mp_int *b)
}
declare 60 {
    int TclBN_s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
}
declare 61 {
    int TclBN_mp_init_set_int(mp_int *a, unsigned long i)
}
declare 62 {
    int TclBN_mp_set_int(mp_int *a, unsigned long i)
}
................................................................................
}
declare 65 {
    void TclBNInitBignumFromWideInt(mp_int *bignum, Tcl_WideInt initVal)
}
declare 66 {
    void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal)
}

# Added in libtommath 1.0
declare 67 {
    int TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
}

# Local Variables:
# mode: tcl
# End:

Changes to generic/tclTomMath.h.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67






68
69
70
71
72

73






74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140




141
142
143
144
145
146
147
...
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
...
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
...
269
270
271
272
273
274
275
276










277

278











279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303










304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
...
351
352
353
354
355
356
357








358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374




















375





376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
...
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461



462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516



517
518
519
520
521





522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
...
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
...
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
...
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

748
749
750
751
752
753

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830



831
832
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */
#ifndef BN_H_
#define BN_H_

#include "tclTomMathDecls.h"
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif



#ifndef MIN
#   define MIN(x,y) ((x)<(y)?(x):(y))
#endif

#ifndef MAX
#   define MAX(x,y) ((x)>(y)?(x):(y))
#endif

#ifdef __cplusplus
extern "C" {

/* C++ compilers don't like assigning void * to mp_digit * */
#define  OPT_CAST(x)  (x *)

#else

/* C on the other hand doesn't care */
#define  OPT_CAST(x)

#endif


/* detect 64-bit mode if possible */
#if defined(NEVER)  /* 128-bit ints fail in too many places */
#   if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
#	define MP_64BIT
#   endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
   typedef unsigned char      mp_digit;
#define MP_DIGIT_DECLARED
#endif

   typedef unsigned short     mp_word;






#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
   typedef unsigned short     mp_digit;
#define MP_DIGIT_DECLARED
#endif

   typedef unsigned long      mp_word;






#elif defined(MP_64BIT)
   /* for GCC only on supported platforms */
#ifndef CRYPT
   typedef unsigned long long ulong64;
   typedef signed long long   long64;
#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned long      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef unsigned long      mp_word __attribute__ ((mode(TI)));

#  define DIGIT_BIT          60
#else
   /* this is the default case, 28-bit digits */

   /* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
#  if defined(_MSC_VER) || defined(__BORLANDC__)
      typedef unsigned __int64   ulong64;
      typedef signed __int64     long64;
#  else
      typedef unsigned long long ulong64;
      typedef signed long long   long64;
#  endif

#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned int      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef ulong64            mp_word;

#ifdef MP_31BIT
   /* this is an extension that uses 31-bit digits */
#  define DIGIT_BIT          31
#else
   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#  define DIGIT_BIT          28
#  define MP_28BIT
#endif
#endif

/* define heap macros */
#if 0 /* these are macros in tclTomMathDecls.h */
#ifndef CRYPT
   /* default to libc stuff */
#  ifndef XMALLOC
#     define XMALLOC  malloc
#     define XFREE    free
#     define XREALLOC realloc
#     define XCALLOC  calloc
#  else
      /* prototypes for our heap functions */
      extern void *XMALLOC(size_t n);
      extern void *XREALLOC(void *p, size_t n);
      extern void *XCALLOC(size_t n, size_t s);
      extern void XFREE(void *p);
#  endif
#endif
#endif


/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
#   define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */




#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
           KARATSUBA_SQR_CUTOFF,
           TOOM_MUL_CUTOFF,
           TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#  ifndef MP_LOW_MEM
#     define MP_PREC                 32     /* default digits of precision */
#  else
#     define MP_PREC                 8      /* default digits of precision */
#  endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
    int used, alloc, sign;
    mp_digit *dp;
};

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */
/*
char *mp_error_to_string(int code);
*/

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/

................................................................................
/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)


/* set to zero */
/*
void mp_zero(mp_int *a);
*/

/* set to a digit */
................................................................................
void mp_set(mp_int *a, mp_digit b);
*/

/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/











/* get a 32-bit value */

unsigned long mp_get_int(mp_int * a);












/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/

/* initialize and set 32-bit value */
/*
int mp_init_set_int (mp_int * a, unsigned long b);
*/

/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, mp_int *b);
*/

/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/











/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/

/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/

/* c = a / 2**b */
/*
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
*/

/* b = a/2 */
/*
int mp_div_2(mp_int *a, mp_int *b);
*/

/* c = a * 2**b */
/*
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
*/

/* b = a*2 */
/*
int mp_mul_2(mp_int *a, mp_int *b);
*/

/* c = a mod 2**d */
/*
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
*/

/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
................................................................................

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
*/









/* ---> binary operations <--- */
/* c = a XOR b  */
/*
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a OR b */
/*
int mp_or(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a AND b */
/*
int mp_and(mp_int *a, mp_int *b, mp_int *c);
*/





















/* ---> Basic arithmetic <--- */






/* b = -a */
/*
int mp_neg(const mp_int *a, mp_int *b);
*/

/* b = |a| */
/*
int mp_abs(mp_int *a, mp_int *b);
*/

/* compare a to b */
/*
int mp_cmp(const mp_int *a, const mp_int *b);
*/

................................................................................
/* compare |a| to |b| */
/*
int mp_cmp_mag(const mp_int *a, const mp_int *b);
*/

/* c = a + b */
/*
int mp_add(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
*/

/* b = a*a  */
/*
int mp_sqr(mp_int *a, mp_int *b);
*/

/* a/b => cb + d == a */
/*
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
*/

/* ---> single digit functions <--- */

/* compare against a single digit */
/*
int mp_cmp_d(const mp_int *a, mp_digit b);
*/

/* c = a + b */
/*
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* a/b => cb + d == a */
/*
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/

/* a/3 => 3c + d == a */
/*
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);



*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */

/* d = a + b (mod c) */
/*
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a - b (mod c) */
/*
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a * b (mod c) */
/*
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a * a (mod b) */
/*
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = 1/a (mod b) */
/*
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = (a, b) */
/*
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
*/

/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/

/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
*/

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);



*/

/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);





*/

/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
/*
int mp_jacobi(mp_int *a, mp_int *n, int *c);
*/

/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, mp_int *b);
*/

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 */
/*
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
*/

/* setups the montgomery reduction */
/*
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
*/

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
/*
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
*/

/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/

/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(mp_int *a);
*/

/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
*/

/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
*/

/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
*/

/* d = a**b (mod c) */
/*
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIME_SIZE      31
#else
#  define PRIME_SIZE      256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
*/

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
/*
int mp_prime_rabin_miller_trials(int size);
................................................................................
 * t prime bases.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
/*
int mp_prime_is_prime(mp_int *a, int t, int *result);
*/

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
................................................................................

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................

/* ---> radix conversion <--- */
/*
int mp_count_bits(const mp_int *a);
*/

/*
int mp_unsigned_bin_size(mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_signed_bin_size(mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(mp_int *a,  unsigned char *b);
*/
/*
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(mp_int *a, int radix, int *size);
*/


/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/


#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

/* lowlevel functions, do not call! */
/*

int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
/*
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_toom_sqr(mp_int *a, mp_int *b);
*/
/*
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
*/
/*
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/
/*
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
*/
/*
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
*/
/*
void bn_reverse(unsigned char *s, int len);
*/

#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const char *mp_s_rmap;
#endif

#ifdef __cplusplus
}
#endif




#endif






<
<











|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<
<













|


>
|
>
>
>
>
>
>


|


>
|
>
>
>
>
>
>

|
<
<
<
<
<

|


|
<
|

|

|
|
<
|
<
<
<
<
<
>

<
|
|
|

<

|
|
|
|
|
|
|
|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


<
>
>
>
>







 







|
|
|







|
|
|
|
|



|







|
|






|
|
|


<
|
<







 







|
|
>







 








>
>
>
>
>
>
>
>
>
>

>
|
>
>
>
>
>
>
>
>
>
>
>



|




|









|






>
>
>
>
>
>
>
>
>
>













|






|


|






|


|







 







>
>
>
>
>
>
>
>




|




|




|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>








|







 







|




|




|




|




|




|











|




|




|




|




|




|
>
>
>




|






|




|




|




|




|




|




|




|







|
>
>
>




|
>
>
>
>
>




|




|




|




|
|


|




|






|




|




|




|


|

|




|




|




|




|




|




|


|

|






|

|




|




|






|






|







 







|







 







<







 







|





|


|



|





|


|






|


|


|


>




|

>













|
<
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<


<
|
<
>
>
>

<
5
6
7
8
9
10
11


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80





81
82
83
84
85

86
87
88
89
90
91

92





93
94

95
96
97
98

99
100
101
102
103
104
105
106
107
108
109




















110
111

112
113
114
115
116
117
118
119
120
121
122
...
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
...
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
...
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
...
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
...
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
...
735
736
737
738
739
740
741

742
743
744
745
746
747
748
...
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

819
820





















































821


822
823

824

825
826
827
828

 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.


 */
#ifndef BN_H_
#define BN_H_

#include "tclTomMathDecls.h"
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif



#ifdef __cplusplus
extern "C" {
#endif

/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
#   define MP_32BIT
#endif

/* detect 64-bit mode if possible */
#if defined(NEVER)
#   if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
#      if defined(__GNUC__)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
#         define MP_64BIT
#      else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
#         define MP_32BIT
#      endif







#   endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
typedef unsigned char        mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
typedef unsigned short       mp_word;
#define MP_WORD_DECLARED
#endif
#   define MP_SIZEOF_MP_DIGIT 1
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_8BIT
#   endif
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
typedef unsigned short       mp_digit;
#define MP_DIGIT_DECLARED
#endif
#ifndef MP_WORD_DECLARED
typedef unsigned int         mp_word;
#define MP_WORD_DECLARED
#endif
#   define MP_SIZEOF_MP_DIGIT 2
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_16BIT
#   endif
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */





#ifndef MP_DIGIT_DECLARED
typedef unsigned long long   mp_digit;
#define MP_DIGIT_DECLARED
#endif
typedef unsigned long        mp_word __attribute__((mode(TI)));

#   define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */

/* this is to make porting into LibTomCrypt easier :-) */
#ifndef MP_DIGIT_DECLARED

typedef unsigned int         mp_digit;





#define MP_DIGIT_DECLARED
#endif

#ifndef MP_WORD_DECLARED
typedef unsigned long long   mp_word;
#define MP_WORD_DECLARED
#endif


#   ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
#      define DIGIT_BIT 31
#   else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#      define DIGIT_BIT 28
#      define MP_28BIT
#   endif
#endif





















/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT

#   define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
typedef unsigned long mp_min_u32;
#else
typedef mp_digit mp_min_u32;
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
................................................................................
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
       KARATSUBA_SQR_CUTOFF,
       TOOM_MUL_CUTOFF,
       TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#   ifndef MP_LOW_MEM
#      define MP_PREC 32        /* default digits of precision */
#   else
#      define MP_PREC 8         /* default digits of precision */
#   endif
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
   int used, alloc, sign;
   mp_digit *dp;
};

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)     ((m)->used)
#define DIGIT(m, k) ((m)->dp[(k)])
#define SIGN(m)     ((m)->sign)

/* error code to char* string */

const char *mp_error_to_string(int code);


/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/

................................................................................
/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
#define mp_isodd(a)  ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
#define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)

/* set to zero */
/*
void mp_zero(mp_int *a);
*/

/* set to a digit */
................................................................................
void mp_set(mp_int *a, mp_digit b);
*/

/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long value */
/*
int mp_set_long(mp_int *a, unsigned long b);
*/

/* set a platform dependent unsigned long long value */
/*
int mp_set_long_long(mp_int *a, unsigned long long b);
*/

/* get a 32-bit value */
/*
unsigned long mp_get_int(const mp_int *a);
*/

/* get a platform dependent unsigned long value */
/*
unsigned long mp_get_long(const mp_int *a);
*/

/* get a platform dependent unsigned long long value */
/*
unsigned long long mp_get_long_long(const mp_int *a);
*/

/* initialize and set a digit */
/*
int mp_init_set(mp_int *a, mp_digit b);
*/

/* initialize and set 32-bit value */
/*
int mp_init_set_int(mp_int *a, unsigned long b);
*/

/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/

/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, const mp_int *b);
*/

/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/

/* import binary data */
/*
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
*/

/* export binary data */
/*
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
*/

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/

/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/

/* c = a / 2**b, implemented as c = a >> b */
/*
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
*/

/* b = a/2 */
/*
int mp_div_2(const mp_int *a, mp_int *b);
*/

/* c = a * 2**b, implemented as c = a << b */
/*
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
*/

/* b = a*2 */
/*
int mp_mul_2(const mp_int *a, mp_int *b);
*/

/* c = a mod 2**b */
/*
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
*/

/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
................................................................................

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
*/

#ifdef MP_PRNG_ENABLE_LTM_RNG
/* as last resort we will fall back to libtomcrypt's rng_get_bytes()
 * in case you don't use libtomcrypt or use it w/o rng_get_bytes()
 * you have to implement it somewhere else, as it's required */
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
extern void (*ltm_rng_callback)(void);
#endif

/* ---> binary operations <--- */
/* c = a XOR b  */
/*
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a OR b */
/*
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a AND b */
/*
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a XOR b (two complement) */
/*
int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a OR b (two complement) */
/*
int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a AND b (two complement) */
/*
int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* right shift (two complement) */
/*
int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
*/

/* ---> Basic arithmetic <--- */

/* b = ~a */
/*
int mp_complement(const mp_int *a, mp_int *b);
*/

/* b = -a */
/*
int mp_neg(const mp_int *a, mp_int *b);
*/

/* b = |a| */
/*
int mp_abs(const mp_int *a, mp_int *b);
*/

/* compare a to b */
/*
int mp_cmp(const mp_int *a, const mp_int *b);
*/

................................................................................
/* compare |a| to |b| */
/*
int mp_cmp_mag(const mp_int *a, const mp_int *b);
*/

/* c = a + b */
/*
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* b = a*a  */
/*
int mp_sqr(const mp_int *a, mp_int *b);
*/

/* a/b => cb + d == a */
/*
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* ---> single digit functions <--- */

/* compare against a single digit */
/*
int mp_cmp_d(const mp_int *a, mp_digit b);
*/

/* c = a + b */
/*
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
*/

/* a/b => cb + d == a */
/*
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/

/* a/3 => 3c + d == a */
/*
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */

/* d = a + b (mod c) */
/*
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* d = a - b (mod c) */
/*
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* d = a * b (mod c) */
/*
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
*/

/* c = a * a (mod b) */
/*
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = 1/a (mod b) */
/*
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* c = (a, b) */
/*
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/

/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
*/

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
*/
/*
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
*/

/* special sqrt algo */
/*
int mp_sqrt(const mp_int *arg, mp_int *ret);
*/

/* special sqrt (mod prime) */
/*
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
*/

/* is number a square? */
/*
int mp_is_square(const mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
/*
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
*/

/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, const mp_int *b);
*/

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
 */
/*
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
*/

/* setups the montgomery reduction */
/*
int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
*/

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
/*
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
*/

/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
*/

/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(const mp_int *a);
*/

/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(const mp_int *a, mp_digit *d);
*/

/* reduces a modulo n using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
*/

/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(const mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
*/

/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(const mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
*/

/* Y = G**X (mod P) */
/*
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
*/

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIME_SIZE 31
#else
#  define PRIME_SIZE 256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(const mp_int *a, int *result);
*/

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
*/

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
/*
int mp_prime_rabin_miller_trials(int size);
................................................................................
 * t prime bases.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
/*
int mp_prime_is_prime(const mp_int *a, int t, int *result);
*/

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
................................................................................

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)

 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
................................................................................

/* ---> radix conversion <--- */
/*
int mp_count_bits(const mp_int *a);
*/

/*
int mp_unsigned_bin_size(const mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_signed_bin_size(const mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(const mp_int *a,  unsigned char *b);
*/
/*
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(const mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(const mp_int *a, int radix, int *size);
*/

#ifndef LTM_NO_FILE
/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
*/
#endif

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

#ifdef __cplusplus

}
#endif
























































#endif




/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


Changes to generic/tclTomMathDecls.h.

69
70
71
72
73
74
75

76
77
78
79
80
81
82
..
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
...
143
144
145
146
147
148
149
150

151
152

153
154

155
156
157
158
159
160
161
...
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207

208
209

210
211
212
213
214
215
216
217

218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236

237
238

239
240
241
242
243
244
245
246
247
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268

269
270
271
272
273
274
275

276
277
278
279
280
281
282
...
283
284
285
286
287
288
289



290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
...
503
504
505
506
507
508
509


510
511
512
513
514
515
516
517
518
#define mp_div TclBN_mp_div
#define mp_div_2 TclBN_mp_div_2
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d

#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
#define mp_init_size TclBN_mp_init_size
................................................................................
#define mp_mul_2d TclBN_mp_mul_2d
#define mp_mul_d TclBN_mp_mul_d
#define mp_neg TclBN_mp_neg
#define mp_or TclBN_mp_or
#define mp_radix_size TclBN_mp_radix_size
#define mp_read_radix TclBN_mp_read_radix
#define mp_rshd TclBN_mp_rshd
#define mp_s_rmap TclBNMpSRmap
#define mp_set TclBN_mp_set
#define mp_set_int TclBN_mp_set_int
#define mp_shrink TclBN_mp_shrink
#define mp_sqr TclBN_mp_sqr
#define mp_sqrt TclBN_mp_sqrt
#define mp_sub TclBN_mp_sub
#define mp_sub_d TclBN_mp_sub_d
................................................................................
 */

/* 0 */
EXTERN int		TclBN_epoch(void);
/* 1 */
EXTERN int		TclBN_revision(void);
/* 2 */
EXTERN int		TclBN_mp_add(mp_int *a, mp_int *b, mp_int *c);

/* 3 */
EXTERN int		TclBN_mp_add_d(mp_int *a, mp_digit b, mp_int *c);

/* 4 */
EXTERN int		TclBN_mp_and(mp_int *a, mp_int *b, mp_int *c);

/* 5 */
EXTERN void		TclBN_mp_clamp(mp_int *a);
/* 6 */
EXTERN void		TclBN_mp_clear(mp_int *a);
/* 7 */
EXTERN void		TclBN_mp_clear_multi(mp_int *a, ...);
/* 8 */
................................................................................
/* 10 */
EXTERN int		TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b);
/* 11 */
EXTERN int		TclBN_mp_copy(const mp_int *a, mp_int *b);
/* 12 */
EXTERN int		TclBN_mp_count_bits(const mp_int *a);
/* 13 */
EXTERN int		TclBN_mp_div(mp_int *a, mp_int *b, mp_int *q,
				mp_int *r);
/* 14 */
EXTERN int		TclBN_mp_div_d(mp_int *a, mp_digit b, mp_int *q,
				mp_digit *r);
/* 15 */
EXTERN int		TclBN_mp_div_2(mp_int *a, mp_int *q);
/* 16 */
EXTERN int		TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q,
				mp_int *r);
/* 17 */
EXTERN int		TclBN_mp_div_3(mp_int *a, mp_int *q, mp_digit *r);

/* 18 */
EXTERN void		TclBN_mp_exch(mp_int *a, mp_int *b);
/* 19 */
EXTERN int		TclBN_mp_expt_d(mp_int *a, mp_digit b, mp_int *c);

/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, mp_int *b);
/* 23 */
EXTERN int		TclBN_mp_init_multi(mp_int *a, ...);
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
EXTERN int		TclBN_mp_lshd(mp_int *a, int shift);
/* 27 */
EXTERN int		TclBN_mp_mod(mp_int *a, mp_int *b, mp_int *r);

/* 28 */
EXTERN int		TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r);
/* 29 */
EXTERN int		TclBN_mp_mul(mp_int *a, mp_int *b, mp_int *p);

/* 30 */
EXTERN int		TclBN_mp_mul_d(mp_int *a, mp_digit b, mp_int *p);

/* 31 */
EXTERN int		TclBN_mp_mul_2(mp_int *a, mp_int *p);
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c);

/* 35 */
EXTERN int		TclBN_mp_radix_size(mp_int *a, int radix, int *size);

/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
/* 39 */
EXTERN void		TclBN_mp_set(mp_int *a, mp_digit b);
/* 40 */
EXTERN int		TclBN_mp_sqr(mp_int *a, mp_int *b);
/* 41 */
EXTERN int		TclBN_mp_sqrt(mp_int *a, mp_int *b);
/* 42 */
EXTERN int		TclBN_mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* 43 */
EXTERN int		TclBN_mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

/* 44 */
EXTERN int		TclBN_mp_to_unsigned_bin(mp_int *a, unsigned char *b);

/* 45 */
EXTERN int		TclBN_mp_to_unsigned_bin_n(mp_int *a,
				unsigned char *b, unsigned long *outlen);
/* 46 */
EXTERN int		TclBN_mp_toradix_n(mp_int *a, char *str, int radix,
				int maxlen);
/* 47 */
EXTERN int		TclBN_mp_unsigned_bin_size(mp_int *a);
/* 48 */
EXTERN int		TclBN_mp_xor(mp_int *a, mp_int *b, mp_int *c);

/* 49 */
EXTERN void		TclBN_mp_zero(mp_int *a);
/* 50 */
EXTERN void		TclBN_reverse(unsigned char *s, int len);
/* 51 */
EXTERN int		TclBN_fast_s_mp_mul_digs(mp_int *a, mp_int *b,
				mp_int *c, int digs);
/* 52 */
EXTERN int		TclBN_fast_s_mp_sqr(mp_int *a, mp_int *b);
/* 53 */
EXTERN int		TclBN_mp_karatsuba_mul(mp_int *a, mp_int *b,
				mp_int *c);
/* 54 */
EXTERN int		TclBN_mp_karatsuba_sqr(mp_int *a, mp_int *b);
/* 55 */
EXTERN int		TclBN_mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);

/* 56 */
EXTERN int		TclBN_mp_toom_sqr(mp_int *a, mp_int *b);
/* 57 */
EXTERN int		TclBN_s_mp_add(mp_int *a, mp_int *b, mp_int *c);

/* 58 */
EXTERN int		TclBN_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c,
				int digs);
/* 59 */
EXTERN int		TclBN_s_mp_sqr(mp_int *a, mp_int *b);
/* 60 */
EXTERN int		TclBN_s_mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* 61 */
EXTERN int		TclBN_mp_init_set_int(mp_int *a, unsigned long i);
/* 62 */
EXTERN int		TclBN_mp_set_int(mp_int *a, unsigned long i);
/* 63 */
EXTERN int		TclBN_mp_cnt_lsb(const mp_int *a);
/* 64 */
................................................................................
EXTERN void		TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */
EXTERN void		TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */
EXTERN void		TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);




typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
    int (*tclBN_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 2 */
    int (*tclBN_mp_add_d) (mp_int *a, mp_digit b, mp_int *c); /* 3 */
    int (*tclBN_mp_and) (mp_int *a, mp_int *b, mp_int *c); /* 4 */
    void (*tclBN_mp_clamp) (mp_int *a); /* 5 */
    void (*tclBN_mp_clear) (mp_int *a); /* 6 */
    void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */
    int (*tclBN_mp_cmp) (const mp_int *a, const mp_int *b); /* 8 */
    int (*tclBN_mp_cmp_d) (const mp_int *a, mp_digit b); /* 9 */
    int (*tclBN_mp_cmp_mag) (const mp_int *a, const mp_int *b); /* 10 */
    int (*tclBN_mp_copy) (const mp_int *a, mp_int *b); /* 11 */
    int (*tclBN_mp_count_bits) (const mp_int *a); /* 12 */
    int (*tclBN_mp_div) (mp_int *a, mp_int *b, mp_int *q, mp_int *r); /* 13 */
    int (*tclBN_mp_div_d) (mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */
    int (*tclBN_mp_div_2) (mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (mp_int *a, mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (mp_int *a, mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (mp_int *a, mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 42 */
    int (*tclBN_mp_sub_d) (mp_int *a, mp_digit b, mp_int *c); /* 43 */
    int (*tclBN_mp_to_unsigned_bin) (mp_int *a, unsigned char *b); /* 44 */
    int (*tclBN_mp_to_unsigned_bin_n) (mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */
    int (*tclBN_mp_toradix_n) (mp_int *a, char *str, int radix, int maxlen); /* 46 */
    int (*tclBN_mp_unsigned_bin_size) (mp_int *a); /* 47 */
    int (*tclBN_mp_xor) (mp_int *a, mp_int *b, mp_int *c); /* 48 */
    void (*tclBN_mp_zero) (mp_int *a); /* 49 */
    void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */
    int (*tclBN_fast_s_mp_mul_digs) (mp_int *a, mp_int *b, mp_int *c, int digs); /* 51 */
    int (*tclBN_fast_s_mp_sqr) (mp_int *a, mp_int *b); /* 52 */
    int (*tclBN_mp_karatsuba_mul) (mp_int *a, mp_int *b, mp_int *c); /* 53 */
    int (*tclBN_mp_karatsuba_sqr) (mp_int *a, mp_int *b); /* 54 */
    int (*tclBN_mp_toom_mul) (mp_int *a, mp_int *b, mp_int *c); /* 55 */
    int (*tclBN_mp_toom_sqr) (mp_int *a, mp_int *b); /* 56 */
    int (*tclBN_s_mp_add) (mp_int *a, mp_int *b, mp_int *c); /* 57 */
    int (*tclBN_s_mp_mul_digs) (mp_int *a, mp_int *b, mp_int *c, int digs); /* 58 */
    int (*tclBN_s_mp_sqr) (mp_int *a, mp_int *b); /* 59 */
    int (*tclBN_s_mp_sub) (mp_int *a, mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */

} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */
#define TclBNInitBignumFromLong \
	(tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */
#define TclBNInitBignumFromWideInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */
#define TclBNInitBignumFromWideUInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */



#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */






>







 







<







 







|
>

|
>

|
>







 







|
|

|
|

|




|
>



|
>





|









|
>



|
>

|
>

|





|
>

|
>










|

|

|
>

|
>

|
>

|


|
|

|

|
>





|
|

|

|
|

|

|
>

|

|
>

|
|

|

|
>







 







>
>
>







|
|
|








|
|
|

|

|


|




|

|
|
|


|
|




|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|






>







 







>
>









69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
..
91
92
93
94
95
96
97

98
99
100
101
102
103
104
...
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
...
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
...
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
...
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#define mp_div TclBN_mp_div
#define mp_div_2 TclBN_mp_div_2
#define mp_div_2d TclBN_mp_div_2d
#define mp_div_3 TclBN_mp_div_3
#define mp_div_d TclBN_mp_div_d
#define mp_exch TclBN_mp_exch
#define mp_expt_d TclBN_mp_expt_d
#define mp_expt_d_ex TclBN_mp_expt_d_ex
#define mp_grow TclBN_mp_grow
#define mp_init TclBN_mp_init
#define mp_init_copy TclBN_mp_init_copy
#define mp_init_multi TclBN_mp_init_multi
#define mp_init_set TclBN_mp_init_set
#define mp_init_set_int TclBN_mp_init_set_int
#define mp_init_size TclBN_mp_init_size
................................................................................
#define mp_mul_2d TclBN_mp_mul_2d
#define mp_mul_d TclBN_mp_mul_d
#define mp_neg TclBN_mp_neg
#define mp_or TclBN_mp_or
#define mp_radix_size TclBN_mp_radix_size
#define mp_read_radix TclBN_mp_read_radix
#define mp_rshd TclBN_mp_rshd

#define mp_set TclBN_mp_set
#define mp_set_int TclBN_mp_set_int
#define mp_shrink TclBN_mp_shrink
#define mp_sqr TclBN_mp_sqr
#define mp_sqrt TclBN_mp_sqrt
#define mp_sub TclBN_mp_sub
#define mp_sub_d TclBN_mp_sub_d
................................................................................
 */

/* 0 */
EXTERN int		TclBN_epoch(void);
/* 1 */
EXTERN int		TclBN_revision(void);
/* 2 */
EXTERN int		TclBN_mp_add(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 3 */
EXTERN int		TclBN_mp_add_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 4 */
EXTERN int		TclBN_mp_and(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 5 */
EXTERN void		TclBN_mp_clamp(mp_int *a);
/* 6 */
EXTERN void		TclBN_mp_clear(mp_int *a);
/* 7 */
EXTERN void		TclBN_mp_clear_multi(mp_int *a, ...);
/* 8 */
................................................................................
/* 10 */
EXTERN int		TclBN_mp_cmp_mag(const mp_int *a, const mp_int *b);
/* 11 */
EXTERN int		TclBN_mp_copy(const mp_int *a, mp_int *b);
/* 12 */
EXTERN int		TclBN_mp_count_bits(const mp_int *a);
/* 13 */
EXTERN int		TclBN_mp_div(const mp_int *a, const mp_int *b,
				mp_int *q, mp_int *r);
/* 14 */
EXTERN int		TclBN_mp_div_d(const mp_int *a, mp_digit b,
				mp_int *q, mp_digit *r);
/* 15 */
EXTERN int		TclBN_mp_div_2(const mp_int *a, mp_int *q);
/* 16 */
EXTERN int		TclBN_mp_div_2d(const mp_int *a, int b, mp_int *q,
				mp_int *r);
/* 17 */
EXTERN int		TclBN_mp_div_3(const mp_int *a, mp_int *q,
				mp_digit *r);
/* 18 */
EXTERN void		TclBN_mp_exch(mp_int *a, mp_int *b);
/* 19 */
EXTERN int		TclBN_mp_expt_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 20 */
EXTERN int		TclBN_mp_grow(mp_int *a, int size);
/* 21 */
EXTERN int		TclBN_mp_init(mp_int *a);
/* 22 */
EXTERN int		TclBN_mp_init_copy(mp_int *a, const mp_int *b);
/* 23 */
EXTERN int		TclBN_mp_init_multi(mp_int *a, ...);
/* 24 */
EXTERN int		TclBN_mp_init_set(mp_int *a, mp_digit b);
/* 25 */
EXTERN int		TclBN_mp_init_size(mp_int *a, int size);
/* 26 */
EXTERN int		TclBN_mp_lshd(mp_int *a, int shift);
/* 27 */
EXTERN int		TclBN_mp_mod(const mp_int *a, const mp_int *b,
				mp_int *r);
/* 28 */
EXTERN int		TclBN_mp_mod_2d(const mp_int *a, int b, mp_int *r);
/* 29 */
EXTERN int		TclBN_mp_mul(const mp_int *a, const mp_int *b,
				mp_int *p);
/* 30 */
EXTERN int		TclBN_mp_mul_d(const mp_int *a, mp_digit b,
				mp_int *p);
/* 31 */
EXTERN int		TclBN_mp_mul_2(const mp_int *a, mp_int *p);
/* 32 */
EXTERN int		TclBN_mp_mul_2d(const mp_int *a, int d, mp_int *p);
/* 33 */
EXTERN int		TclBN_mp_neg(const mp_int *a, mp_int *b);
/* 34 */
EXTERN int		TclBN_mp_or(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 35 */
EXTERN int		TclBN_mp_radix_size(const mp_int *a, int radix,
				int *size);
/* 36 */
EXTERN int		TclBN_mp_read_radix(mp_int *a, const char *str,
				int radix);
/* 37 */
EXTERN void		TclBN_mp_rshd(mp_int *a, int shift);
/* 38 */
EXTERN int		TclBN_mp_shrink(mp_int *a);
/* 39 */
EXTERN void		TclBN_mp_set(mp_int *a, mp_digit b);
/* 40 */
EXTERN int		TclBN_mp_sqr(const mp_int *a, mp_int *b);
/* 41 */
EXTERN int		TclBN_mp_sqrt(const mp_int *a, mp_int *b);
/* 42 */
EXTERN int		TclBN_mp_sub(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 43 */
EXTERN int		TclBN_mp_sub_d(const mp_int *a, mp_digit b,
				mp_int *c);
/* 44 */
EXTERN int		TclBN_mp_to_unsigned_bin(const mp_int *a,
				unsigned char *b);
/* 45 */
EXTERN int		TclBN_mp_to_unsigned_bin_n(const mp_int *a,
				unsigned char *b, unsigned long *outlen);
/* 46 */
EXTERN int		TclBN_mp_toradix_n(const mp_int *a, char *str,
				int radix, int maxlen);
/* 47 */
EXTERN int		TclBN_mp_unsigned_bin_size(const mp_int *a);
/* 48 */
EXTERN int		TclBN_mp_xor(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 49 */
EXTERN void		TclBN_mp_zero(mp_int *a);
/* 50 */
EXTERN void		TclBN_reverse(unsigned char *s, int len);
/* 51 */
EXTERN int		TclBN_fast_s_mp_mul_digs(const mp_int *a,
				const mp_int *b, mp_int *c, int digs);
/* 52 */
EXTERN int		TclBN_fast_s_mp_sqr(const mp_int *a, mp_int *b);
/* 53 */
EXTERN int		TclBN_mp_karatsuba_mul(const mp_int *a,
				const mp_int *b, mp_int *c);
/* 54 */
EXTERN int		TclBN_mp_karatsuba_sqr(const mp_int *a, mp_int *b);
/* 55 */
EXTERN int		TclBN_mp_toom_mul(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 56 */
EXTERN int		TclBN_mp_toom_sqr(const mp_int *a, mp_int *b);
/* 57 */
EXTERN int		TclBN_s_mp_add(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 58 */
EXTERN int		TclBN_s_mp_mul_digs(const mp_int *a, const mp_int *b,
				mp_int *c, int digs);
/* 59 */
EXTERN int		TclBN_s_mp_sqr(const mp_int *a, mp_int *b);
/* 60 */
EXTERN int		TclBN_s_mp_sub(const mp_int *a, const mp_int *b,
				mp_int *c);
/* 61 */
EXTERN int		TclBN_mp_init_set_int(mp_int *a, unsigned long i);
/* 62 */
EXTERN int		TclBN_mp_set_int(mp_int *a, unsigned long i);
/* 63 */
EXTERN int		TclBN_mp_cnt_lsb(const mp_int *a);
/* 64 */
................................................................................
EXTERN void		TclBNInitBignumFromLong(mp_int *bignum, long initVal);
/* 65 */
EXTERN void		TclBNInitBignumFromWideInt(mp_int *bignum,
				Tcl_WideInt initVal);
/* 66 */
EXTERN void		TclBNInitBignumFromWideUInt(mp_int *bignum,
				Tcl_WideUInt initVal);
/* 67 */
EXTERN int		TclBN_mp_expt_d_ex(const mp_int *a, mp_digit b,
				mp_int *c, int fast);

typedef struct TclTomMathStubs {
    int magic;
    void *hooks;

    int (*tclBN_epoch) (void); /* 0 */
    int (*tclBN_revision) (void); /* 1 */
    int (*tclBN_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 2 */
    int (*tclBN_mp_add_d) (const mp_int *a, mp_digit b, mp_int *c); /* 3 */
    int (*tclBN_mp_and) (const mp_int *a, const mp_int *b, mp_int *c); /* 4 */
    void (*tclBN_mp_clamp) (mp_int *a); /* 5 */
    void (*tclBN_mp_clear) (mp_int *a); /* 6 */
    void (*tclBN_mp_clear_multi) (mp_int *a, ...); /* 7 */
    int (*tclBN_mp_cmp) (const mp_int *a, const mp_int *b); /* 8 */
    int (*tclBN_mp_cmp_d) (const mp_int *a, mp_digit b); /* 9 */
    int (*tclBN_mp_cmp_mag) (const mp_int *a, const mp_int *b); /* 10 */
    int (*tclBN_mp_copy) (const mp_int *a, mp_int *b); /* 11 */
    int (*tclBN_mp_count_bits) (const mp_int *a); /* 12 */
    int (*tclBN_mp_div) (const mp_int *a, const mp_int *b, mp_int *q, mp_int *r); /* 13 */
    int (*tclBN_mp_div_d) (const mp_int *a, mp_digit b, mp_int *q, mp_digit *r); /* 14 */
    int (*tclBN_mp_div_2) (const mp_int *a, mp_int *q); /* 15 */
    int (*tclBN_mp_div_2d) (const mp_int *a, int b, mp_int *q, mp_int *r); /* 16 */
    int (*tclBN_mp_div_3) (const mp_int *a, mp_int *q, mp_digit *r); /* 17 */
    void (*tclBN_mp_exch) (mp_int *a, mp_int *b); /* 18 */
    int (*tclBN_mp_expt_d) (const mp_int *a, mp_digit b, mp_int *c); /* 19 */
    int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */
    int (*tclBN_mp_init) (mp_int *a); /* 21 */
    int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */
    int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */
    int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */
    int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */
    int (*tclBN_mp_lshd) (mp_int *a, int shift); /* 26 */
    int (*tclBN_mp_mod) (const mp_int *a, const mp_int *b, mp_int *r); /* 27 */
    int (*tclBN_mp_mod_2d) (const mp_int *a, int b, mp_int *r); /* 28 */
    int (*tclBN_mp_mul) (const mp_int *a, const mp_int *b, mp_int *p); /* 29 */
    int (*tclBN_mp_mul_d) (const mp_int *a, mp_digit b, mp_int *p); /* 30 */
    int (*tclBN_mp_mul_2) (const mp_int *a, mp_int *p); /* 31 */
    int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */
    int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */
    int (*tclBN_mp_or) (const mp_int *a, const mp_int *b, mp_int *c); /* 34 */
    int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */
    int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */
    void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */
    int (*tclBN_mp_shrink) (mp_int *a); /* 38 */
    void (*tclBN_mp_set) (mp_int *a, mp_digit b); /* 39 */
    int (*tclBN_mp_sqr) (const mp_int *a, mp_int *b); /* 40 */
    int (*tclBN_mp_sqrt) (const mp_int *a, mp_int *b); /* 41 */
    int (*tclBN_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 42 */
    int (*tclBN_mp_sub_d) (const mp_int *a, mp_digit b, mp_int *c); /* 43 */
    int (*tclBN_mp_to_unsigned_bin) (const mp_int *a, unsigned char *b); /* 44 */
    int (*tclBN_mp_to_unsigned_bin_n) (const mp_int *a, unsigned char *b, unsigned long *outlen); /* 45 */
    int (*tclBN_mp_toradix_n) (const mp_int *a, char *str, int radix, int maxlen); /* 46 */
    int (*tclBN_mp_unsigned_bin_size) (const mp_int *a); /* 47 */
    int (*tclBN_mp_xor) (const mp_int *a, const mp_int *b, mp_int *c); /* 48 */
    void (*tclBN_mp_zero) (mp_int *a); /* 49 */
    void (*tclBN_reverse) (unsigned char *s, int len); /* 50 */
    int (*tclBN_fast_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 51 */
    int (*tclBN_fast_s_mp_sqr) (const mp_int *a, mp_int *b); /* 52 */
    int (*tclBN_mp_karatsuba_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 53 */
    int (*tclBN_mp_karatsuba_sqr) (const mp_int *a, mp_int *b); /* 54 */
    int (*tclBN_mp_toom_mul) (const mp_int *a, const mp_int *b, mp_int *c); /* 55 */
    int (*tclBN_mp_toom_sqr) (const mp_int *a, mp_int *b); /* 56 */
    int (*tclBN_s_mp_add) (const mp_int *a, const mp_int *b, mp_int *c); /* 57 */
    int (*tclBN_s_mp_mul_digs) (const mp_int *a, const mp_int *b, mp_int *c, int digs); /* 58 */
    int (*tclBN_s_mp_sqr) (const mp_int *a, mp_int *b); /* 59 */
    int (*tclBN_s_mp_sub) (const mp_int *a, const mp_int *b, mp_int *c); /* 60 */
    int (*tclBN_mp_init_set_int) (mp_int *a, unsigned long i); /* 61 */
    int (*tclBN_mp_set_int) (mp_int *a, unsigned long i); /* 62 */
    int (*tclBN_mp_cnt_lsb) (const mp_int *a); /* 63 */
    void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */
    void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */
    void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */
    int (*tclBN_mp_expt_d_ex) (const mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */
} TclTomMathStubs;

extern const TclTomMathStubs *tclTomMathStubsPtr;

#ifdef __cplusplus
}
#endif
................................................................................
	(tclTomMathStubsPtr->tclBN_mp_cnt_lsb) /* 63 */
#define TclBNInitBignumFromLong \
	(tclTomMathStubsPtr->tclBNInitBignumFromLong) /* 64 */
#define TclBNInitBignumFromWideInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */
#define TclBNInitBignumFromWideUInt \
	(tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */
#define TclBN_mp_expt_d_ex \
	(tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */

#endif /* defined(USE_TCL_STUBS) */

/* !END!: Do not edit above this line. */

#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLIMPORT

#endif /* _TCLINTDECLS */

Changes to generic/tclUniData.c.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
...
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
...
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
...
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
...
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

364
365
366
367
368
369
370
371
372
373
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
































































































417
418
419
420
421
422
423
...
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
...
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621



622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
....
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332




1333
1334
1335

1336
1337
1338

1339
1340
1341
1342
1343

1344
1345
1346
1347
1348
1349



1350
1351
1352
1353
1354

1355
1356
1357
1358
1359

1360
1361





1362
1363
1364
1365
1366
1367
1368
1369
1370

1371
1372

1373
1374
1375
1376
1377
1378
1379
1380
1381






1382
1383
1384
1385



1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

1396
1397

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410


1411
1412
1413

1414
1415
1416
1417


1418
1419
1420


1421
1422
1423


1424
1425
1426

1427
1428
1429
1430


1431
1432
1433


1434
1435
1436

1437
1438
1439
1440


1441
1442
1443
1444
1445



1446
1447
1448
1449


1450
1451
1452
1453


1454
1455
1456

1457
1458
1459
1460


1461
1462
1463
1464
1465
1466
1467



1468
1469


1470
1471


1472
1473
1474
1475
1476


1477
1478
1479
1480
1481
1482









1483
1484
1485
1486



1487
1488
1489
1490

1491
1492
1493
1494

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506


1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528







1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
....
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

1581
1582
1583
1584
1585
1586
1587
    6144, 6176, 6208, 6240, 6272, 6304, 6336, 6368, 6400, 6432, 6464, 6496,
    6528, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6592, 6624, 4928,
    6656, 6688, 6720, 6752, 6784, 4928, 6816, 6848, 6880, 6912, 6944, 6976,
    7008, 4928, 4928, 4928, 4928, 4928, 7040, 7072, 7104, 4928, 4928, 4928,
    7136, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 7168, 7200, 4928, 7232,
    7264, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 6560, 6560, 6560,
    6560, 7296, 6560, 7328, 7360, 6560, 6560, 6560, 6560, 6560, 6560, 6560,
    6560, 4928, 7392, 7424, 7456, 7488, 4928, 7520, 7552, 7584, 7616, 7648,
    7680, 224, 224, 224, 7712, 7744, 7776, 1344, 7808, 7840, 7872, 7872,
    704, 7904, 7936, 7968, 1824, 8000, 4928, 4928, 8032, 4928, 4928, 4928,
    4928, 4928, 4928, 8064, 8096, 8128, 8160, 3232, 1344, 8192, 4192, 1344,
    8224, 8256, 8288, 1344, 1344, 8320, 8352, 4928, 8384, 7552, 8416, 8448,
    4928, 8416, 8480, 4928, 7552, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    8512, 8544, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 8576, 4928, 8608, 5408, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 8640, 8672, 224, 8704, 8736, 1344, 1344, 8768, 8800, 8832, 224,
    8864, 8896, 8928, 1824, 8960, 8992, 9024, 1344, 9056, 9088, 9120, 9152,
    9184, 1632, 9216, 9248, 9280, 1952, 9312, 9344, 9376, 1344, 9408, 9440,
    9472, 1344, 9504, 9536, 9568, 9600, 9632, 9664, 9696, 9728, 9728, 1344,
    9760, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    9920, 9920, 9920, 9920, 9920, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 9952, 1344, 1344, 9984, 1824, 10016, 10048,
    10080, 1344, 1344, 10112, 10144, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 10176, 10208, 1344, 10240, 1344, 10272, 10304,
    10336, 10368, 10400, 10432, 1344, 1344, 1344, 10464, 10496, 64, 10528,
    10560, 10592, 4736, 10624, 10656
#if TCL_UTF_MAX > 3
    ,10688, 10720, 10752, 1824, 1344, 1344, 1344, 8352, 10784, 10816, 10848,
    10880, 10912, 10944, 10976, 11008, 1824, 1824, 1824, 1824, 9280, 1344,
    11040, 11072, 1344, 11104, 11136, 11168, 11200, 1344, 11232, 1824,
    11264, 11296, 11328, 1344, 11360, 11392, 11424, 11456, 1344, 11488,
    1344, 11520, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 7840, 4704, 10272, 1824, 1824, 1824, 1824,
    11552, 11584, 11616, 11648, 4736, 11680, 1824, 11712, 11744, 11776,
    1824, 1824, 1344, 11808, 11840, 6880, 11872, 11904, 11936, 11968, 12000,
    1824, 12032, 12064, 1344, 12096, 12128, 12160, 12192, 12224, 1824,
    1824, 1344, 1344, 12256, 1824, 12288, 12320, 12352, 12384, 1344, 12416,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 12448, 1824,
    1824, 1824, 1824, 12000, 12480, 12512, 1824, 1824, 1824, 1824, 1824,
    12544, 12576, 12608, 12640, 5248, 12672, 12704, 12736, 12768, 12800,
    12832, 12864, 5248, 12896, 12928, 12960, 12992, 13024, 1824, 1824,
    13056, 13088, 13120, 13152, 13184, 13216, 13248, 13280, 1824, 1824,
    1824, 1824, 1344, 13312, 13344, 1824, 1344, 13376, 13408, 1824, 1824,
    1824, 1824, 1824, 1344, 13440, 13472, 1824, 1344, 13504, 13536, 13568,
    1344, 13600, 13632, 1824, 4032, 13664, 1824, 1824, 1824, 1824, 1824,
    1824, 1344, 13696, 1824, 1824, 1824, 13728, 13760, 13792, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 13824, 13856, 13888, 1344, 13920,
    13952, 1344, 4608, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    13984, 14016, 14048, 14080, 14112, 14144, 1824, 1824, 14176, 14208,
    14240, 14272, 14304, 13632, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 14336, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 9984, 1824, 1824, 1824, 10848, 10848, 10848,
    14368, 1344, 1344, 1344, 1344, 1344, 1344, 14400, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 14432, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14464, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
................................................................................
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 4608, 4736, 14496,
    1824, 1824, 10208, 14528, 1344, 14560, 14592, 14624, 8512, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 13728, 13760, 14656, 1824,
    1824, 1824, 1344, 1344, 14688, 14720, 14752, 1824, 1824, 14784, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14816,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14848,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
................................................................................
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 4736, 1824, 1824, 10208, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9856, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344,
    14880, 14912, 14944, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 8064, 4928, 14976,
    4928, 15008, 15040, 15072, 4928, 15104, 4928, 4928, 15136, 1824, 1824,
    1824, 1824, 15168, 4928, 4928, 15200, 15232, 1824, 1824, 1824, 1824,
    15264, 15296, 15328, 15360, 15392, 15424, 15456, 15488, 15520, 15552,
    15584, 15616, 15648, 15264, 15296, 15680, 15360, 15712, 15744, 15776,
    15488, 15808, 15840, 15872, 15904, 15936, 15968, 16000, 16032, 16064,
    16096, 16128, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 704, 16160, 704, 16192, 16224,
    16256, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 16288, 16320, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1344, 1344, 1344, 1344, 1344, 1344, 16352, 1824, 16384, 16416,
    16448, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 16480, 6880, 16512, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 16544, 16576, 16608, 16640, 16672, 16704, 1824,
    16736, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 4928, 16768,

    4928, 4928, 8032, 16800, 16832, 8064, 16864, 4928, 4928, 16768, 4928,
    16896, 1824, 16928, 16960, 16992, 17024, 17056, 1824, 1824, 1824, 1824,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 17088, 4928, 4928, 4928,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 17120, 17152, 4928, 4928,
    4928, 8032, 4928, 4928, 17184, 1824, 16768, 4928, 17216, 4928, 17248,
    17280, 1824, 1824, 16768, 7552, 4928, 17312, 4928, 17344, 16960, 4928,
    1824, 1824, 1824, 17280, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,

    1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
































































































    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 7840, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 17376, 1344, 1344, 1344, 1344, 1344, 1344, 11360, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 17408,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 17440, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 11360

#endif /* TCL_UTF_MAX > 3 */
};

/*
 * The groupMap is indexed by combining the alternate page number with
 * the page offset and returns a group number that identifies a unique
 * set of character attributes.
................................................................................
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    21, 48, 49, 50, 23, 24, 52, 53, 23, 24, 23, 24, 23, 24, 23, 24, 54,
    21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 21, 21, 21, 21, 21, 21, 55, 23, 24, 56, 57, 58, 58, 23, 24,
    59, 60, 61, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 62, 63, 64, 65,
    66, 21, 67, 67, 21, 68, 21, 69, 70, 21, 21, 21, 67, 71, 21, 72, 21,
    73, 74, 21, 75, 76, 74, 77, 78, 21, 21, 76, 21, 79, 80, 21, 21, 81,
    21, 21, 21, 21, 21, 21, 21, 82, 21, 21, 83, 21, 21, 83, 21, 21, 21,
    84, 83, 85, 86, 86, 87, 21, 21, 21, 21, 21, 88, 21, 15, 21, 21, 21,
    21, 21, 21, 21, 21, 89, 90, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 11, 11, 11, 11, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 91, 91, 91, 91, 91, 11, 11, 11, 11, 11, 11, 11, 91,
    11, 91, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 23, 24, 23,
    24, 91, 11, 23, 24, 0, 0, 91, 42, 42, 42, 3, 94, 0, 0, 0, 0, 11, 11,
    95, 3, 96, 96, 96, 0, 97, 0, 98, 98, 21, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 99, 100, 100, 100, 21, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 101, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 102, 103, 103, 104, 105, 106, 107, 107, 107, 108, 109, 110,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 111, 112, 113, 114, 115, 116, 7, 23, 24,
    117, 23, 24, 21, 54, 54, 54, 118, 118, 118, 118, 118, 118, 118, 118,
    118, 118, 118, 118, 118, 118, 118, 118, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 112, 112, 112, 112, 112, 112, 112, 112, 112,
    112, 112, 112, 112, 112, 112, 112, 23, 24, 14, 92, 92, 92, 92, 92,
    119, 119, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 120, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 121, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 23, 24, 0, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
    122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
    122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
    0, 0, 91, 3, 3, 3, 3, 3, 3, 21, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,



    123, 123, 123, 21, 21, 3, 8, 0, 0, 14, 14, 4, 0, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 8, 92, 3, 92, 92, 3, 92, 92, 3, 92, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0,
    15, 15, 15, 15, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17,
    17, 17, 17, 7, 7, 7, 3, 3, 4, 3, 3, 14, 14, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 3, 17, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 91, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 15,
    92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 3, 15, 92, 92, 92, 92, 92, 92, 92, 17, 14, 92, 92, 92, 92,
    92, 92, 91, 91, 92, 92, 14, 92, 92, 92, 92, 15, 15, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 15, 15, 15, 14, 14, 15, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 0, 17, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 0, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 15,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 14, 3, 3, 3, 91, 0, 0,
    92, 4, 4, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 91, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 91, 92, 92, 92, 91, 92, 92, 92, 92, 92, 0, 0, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 92, 92, 92, 0, 0, 3, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 17,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 124, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 92, 124, 92, 15, 124, 124, 124, 92, 92, 92, 92, 92, 92, 92,
    92, 124, 124, 124, 124, 92, 124, 124, 15, 92, 92, 92, 92, 92, 92, 92,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 3, 3, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 3, 91, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 92, 124, 124, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0,
    15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    0, 0, 0, 15, 15, 15, 15, 0, 0, 92, 15, 124, 124, 124, 92, 92, 92, 92,
    0, 0, 124, 124, 0, 0, 124, 124, 92, 15, 0, 0, 0, 0, 0, 0, 0, 0, 124,
    0, 0, 0, 0, 15, 15, 0, 15, 15, 15, 92, 92, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 15, 15, 4, 4, 18, 18, 18, 18, 18, 18, 14, 4, 15, 3, 92,
    0, 0, 92, 92, 124, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0,
    15, 15, 0, 15, 15, 0, 0, 92, 0, 124, 124, 124, 92, 92, 0, 0, 0, 0,
    92, 92, 0, 0, 92, 92, 92, 0, 0, 0, 92, 0, 0, 0, 0, 0, 0, 0, 15, 15,
    15, 15, 0, 15, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 92,
    92, 15, 15, 15, 92, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 124, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15,
    0, 0, 92, 15, 124, 124, 124, 92, 92, 92, 92, 92, 0, 92, 92, 124, 0,
    124, 124, 92, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 92, 92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 0, 0, 0,
    0, 0, 0, 0, 15, 92, 92, 92, 92, 92, 92, 0, 92, 124, 124, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0,
    92, 15, 124, 92, 124, 92, 92, 92, 92, 0, 0, 124, 124, 0, 0, 124, 124,
    92, 0, 0, 0, 0, 0, 0, 0, 0, 92, 124, 0, 0, 0, 0, 15, 15, 0, 15, 15,
    15, 92, 92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 14, 15, 18, 18, 18,
    18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 15, 0, 15, 15, 15, 15,
    15, 15, 0, 0, 0, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 0, 15, 15, 0,
    15, 0, 15, 15, 0, 0, 0, 15, 15, 0, 0, 0, 15, 15, 15, 0, 0, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 124, 124, 92, 124,
    124, 0, 0, 0, 124, 124, 124, 0, 124, 124, 124, 92, 0, 0, 15, 0, 0,
    0, 0, 0, 0, 124, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 14, 14, 14, 14, 14, 14, 4, 14, 0,
    0, 0, 0, 0, 92, 124, 124, 124, 92, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 92, 92, 92, 124,
    124, 124, 124, 0, 92, 92, 92, 0, 92, 92, 92, 92, 0, 0, 0, 0, 0, 0,
    0, 92, 92, 0, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 92, 92, 0, 0, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18,
    18, 18, 14, 15, 92, 124, 124, 3, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0, 92, 15, 124, 92, 124,
    124, 124, 124, 124, 0, 92, 124, 124, 0, 124, 124, 92, 92, 0, 0, 0,
    0, 0, 0, 0, 124, 124, 0, 0, 0, 0, 0, 0, 0, 15, 0, 15, 15, 92, 92, 0,
    0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 92, 92, 124, 124, 0, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 15, 124, 124, 124,
    92, 92, 92, 92, 0, 124, 124, 124, 0, 124, 124, 124, 92, 15, 14, 0,
    0, 0, 0, 15, 15, 15, 124, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 92,
    92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 14, 15, 15, 15, 15, 15, 15, 0, 0, 124, 124, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 92, 0, 0, 0, 0, 124,
    124, 124, 92, 92, 92, 0, 92, 0, 124, 124, 124, 124, 124, 124, 124,
    124, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 124, 124,
    3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 92, 92, 92, 92, 92, 92, 92,
    0, 0, 0, 0, 4, 15, 15, 15, 15, 15, 15, 91, 92, 92, 92, 92, 92, 92,
    92, 92, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 0, 0, 0, 0, 0, 15, 15,
    0, 15, 0, 0, 15, 15, 0, 15, 0, 0, 15, 0, 0, 0, 0, 0, 0, 15, 15, 15,
    15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 0, 15, 0,
    0, 15, 15, 0, 15, 15, 15, 15, 92, 15, 15, 92, 92, 92, 92, 92, 92, 0,
    92, 92, 15, 0, 0, 15, 15, 15, 15, 15, 0, 91, 0, 92, 92, 92, 92, 92,
    92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 15, 15, 15, 15, 15, 14,
    14, 14, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 14, 3, 14, 14,
    14, 92, 92, 14, 14, 14, 14, 14, 14, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 92, 14, 92, 14, 92, 5, 6, 5,
    6, 124, 124, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 124, 92, 92,
    92, 92, 92, 3, 92, 92, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    92, 14, 14, 14, 14, 14, 14, 0, 14, 14, 3, 3, 3, 3, 3, 14, 14, 14, 14,
    3, 3, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124,
    124, 92, 92, 92, 92, 124, 92, 92, 92, 92, 92, 92, 124, 92, 92, 124,
    124, 92, 92, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 15,
    15, 15, 15, 15, 15, 124, 124, 92, 92, 15, 15, 15, 15, 92, 92, 92, 15,
    124, 124, 124, 15, 15, 124, 124, 124, 124, 124, 124, 124, 15, 15, 15,
    92, 92, 92, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 124, 124, 92, 92, 124, 124, 124, 124, 124, 124, 92, 15, 124, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 124, 124, 124, 92, 14, 14, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 0, 125, 0, 0, 0, 0, 0, 125, 0, 0,
    126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
    126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
    126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
    126, 3, 91, 126, 126, 126, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15,
    15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 0, 15,
    15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 92, 92, 92, 3, 3, 3, 3, 3, 3, 3, 3, 3, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 104, 104, 104, 104, 104, 104, 0, 0, 110, 110, 110, 110,
    110, 110, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 2,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 5, 6, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 128, 128, 128, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 92, 92, 92, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 92, 92, 92, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 92, 92, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 124, 92, 92, 92, 92, 92, 92,
    92, 124, 124, 124, 124, 124, 124, 124, 124, 92, 124, 124, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 3, 3, 3, 91, 3, 3, 3, 4, 15, 92, 0,
    0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 8, 3, 3,
    3, 3, 92, 92, 92, 17, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0,
    0, 0, 15, 15, 15, 91, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    92, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 92, 15, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    92, 92, 92, 124, 124, 124, 124, 92, 92, 124, 124, 124, 0, 0, 0, 0,
    124, 124, 92, 124, 124, 124, 124, 124, 124, 92, 92, 92, 0, 0, 0, 0,
    14, 0, 0, 0, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0,
    0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 92, 124, 124, 92, 0, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 92, 124, 92, 92,
    92, 92, 92, 92, 92, 0, 92, 124, 92, 124, 124, 92, 92, 92, 92, 92, 92,
    92, 92, 124, 124, 124, 124, 124, 124, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 0, 0, 92, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 91,
    3, 3, 3, 3, 3, 3, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 119, 0, 92, 92, 92, 92, 124, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 92, 124, 92, 92, 92, 92, 92, 124, 92, 124,
    124, 124, 124, 124, 92, 124, 124, 15, 15, 15, 15, 15, 15, 15, 0, 0,
    0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 92, 92, 92, 92, 92, 92, 92, 92, 92, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 92, 92, 124, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 92, 92, 92, 92, 124, 124,
    92, 92, 124, 92, 92, 92, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 124, 92, 92, 124, 124,
    124, 92, 124, 92, 92, 92, 124, 124, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3,
    3, 15, 15, 15, 15, 124, 124, 124, 124, 124, 124, 124, 124, 92, 92,
    92, 92, 92, 92, 92, 92, 124, 124, 92, 92, 0, 0, 0, 3, 3, 3, 3, 3, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 91, 91,
    91, 91, 91, 91, 3, 3, 129, 130, 131, 132, 132, 133, 134, 135, 136,
    0, 0, 0, 0, 0, 0, 0, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137,
    137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137,
    137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137,
    137, 137, 137, 137, 137, 0, 0, 137, 137, 137, 3, 3, 3, 3, 3, 3, 3,
    3, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 92, 3, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 124, 92, 92, 92, 92, 92, 92, 92, 15, 15, 15,
    15, 92, 15, 15, 15, 15, 124, 124, 92, 15, 15, 124, 92, 92, 0, 0, 0,
    0, 0, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 91, 138, 21, 21, 21, 139, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 0, 92, 92, 92, 92, 92, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 21, 21, 21,
    140, 21, 21, 141, 21, 142, 142, 142, 142, 142, 142, 142, 142, 143,
    143, 143, 143, 143, 143, 143, 143, 142, 142, 142, 142, 142, 142, 0,
    0, 143, 143, 143, 143, 143, 143, 0, 0, 142, 142, 142, 142, 142, 142,
    142, 142, 143, 143, 143, 143, 143, 143, 143, 143, 142, 142, 142, 142,
    142, 142, 142, 142, 143, 143, 143, 143, 143, 143, 143, 143, 142, 142,
    142, 142, 142, 142, 0, 0, 143, 143, 143, 143, 143, 143, 0, 0, 21, 142,
    21, 142, 21, 142, 21, 142, 0, 143, 0, 143, 0, 143, 0, 143, 142, 142,
    142, 142, 142, 142, 142, 142, 143, 143, 143, 143, 143, 143, 143, 143,
    144, 144, 145, 145, 145, 145, 146, 146, 147, 147, 148, 148, 149, 149,
    0, 0, 142, 142, 142, 142, 142, 142, 142, 142, 150, 150, 150, 150, 150,
    150, 150, 150, 142, 142, 142, 142, 142, 142, 142, 142, 150, 150, 150,
    150, 150, 150, 150, 150, 142, 142, 142, 142, 142, 142, 142, 142, 150,
    150, 150, 150, 150, 150, 150, 150, 142, 142, 21, 151, 21, 0, 21, 21,
    143, 143, 152, 152, 153, 11, 154, 11, 11, 11, 21, 151, 21, 0, 21, 21,
    155, 155, 155, 155, 153, 11, 11, 11, 142, 142, 21, 21, 0, 0, 21, 21,
    143, 143, 156, 156, 0, 11, 11, 11, 142, 142, 21, 21, 21, 113, 21, 21,
    143, 143, 157, 157, 117, 11, 11, 11, 0, 0, 21, 151, 21, 0, 21, 21,
    158, 158, 159, 159, 153, 11, 11, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    17, 17, 17, 17, 17, 8, 8, 8, 8, 8, 8, 3, 3, 16, 20, 5, 16, 16, 20,
    5, 16, 3, 3, 3, 3, 3, 3, 3, 3, 160, 161, 17, 17, 17, 17, 17, 2, 3,
    3, 3, 3, 3, 3, 3, 3, 3, 16, 20, 3, 3, 3, 3, 12, 12, 3, 3, 3, 7, 5,
    6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7, 3, 12, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 2, 17, 17, 17, 17, 17, 0, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 17, 18, 91, 0, 0, 18, 18, 18, 18, 18, 18, 7, 7, 7, 5, 6, 91, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 7, 7, 7, 5, 6, 0, 91, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 119, 119, 119, 119, 92, 119, 119,
    119, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 107, 14, 14, 14, 14, 107, 14,
    14, 21, 107, 107, 107, 21, 21, 107, 107, 107, 21, 14, 107, 14, 14,
    7, 107, 107, 107, 107, 107, 14, 14, 14, 14, 14, 14, 107, 14, 162, 14,
    107, 14, 163, 164, 107, 107, 14, 21, 107, 107, 165, 107, 21, 15, 15,
    15, 15, 21, 14, 14, 21, 21, 107, 107, 7, 7, 7, 7, 7, 107, 21, 21, 21,
    21, 14, 7, 14, 14, 166, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 167, 167, 167, 167, 167, 167, 167, 167, 167,
    167, 167, 167, 167, 167, 167, 167, 168, 168, 168, 168, 168, 168, 168,
    168, 168, 168, 168, 168, 168, 168, 168, 168, 128, 128, 128, 23, 24,
    128, 128, 128, 128, 18, 14, 14, 0, 0, 0, 0, 7, 7, 7, 7, 7, 14, 14,
    14, 14, 14, 7, 7, 14, 14, 14, 14, 7, 14, 14, 7, 14, 14, 7, 14, 14,
    14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 7, 7, 14, 14, 7, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 5, 6, 5, 6, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 7, 7, 14, 14, 14, 14, 14, 14, 14, 5, 6, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7,
    7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169,
    169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 170, 170,
    170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170,
    170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 5, 6, 5, 6,
    5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7,
    7, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 5,
    6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 7, 7, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 7, 7, 7, 7,
    7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 122, 122, 122, 122, 122, 122,
    122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
    122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
    122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 0,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 0, 23, 24, 171, 172, 173, 174, 175, 23, 24,
    23, 24, 23, 24, 176, 177, 178, 179, 21, 23, 24, 21, 23, 24, 21, 21,
    21, 21, 21, 91, 91, 180, 180, 23, 24, 23, 24, 21, 14, 14, 14, 14, 14,
    14, 23, 24, 23, 24, 92, 92, 92, 23, 24, 0, 0, 0, 0, 0, 3, 3, 3, 3,
    18, 3, 3, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181,
    181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181,
    181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 0, 181,
    0, 0, 0, 0, 0, 181, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0,
    0, 0, 91, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 15, 15, 15, 15, 0, 3, 3, 16, 20, 16, 20, 3, 3, 3, 16, 20,
    3, 16, 20, 3, 3, 3, 3, 3, 3, 3, 3, 3, 8, 3, 3, 8, 3, 16, 20, 3, 3,
    16, 20, 5, 6, 5, 6, 5, 6, 5, 6, 3, 3, 3, 3, 3, 91, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 8, 8, 3, 3, 3, 3, 8, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 2, 3, 3, 3, 14, 91,
    15, 128, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 14, 14, 5, 6, 5, 6, 5, 6, 5,
    6, 8, 5, 6, 6, 14, 128, 128, 128, 128, 128, 128, 128, 128, 128, 92,
    92, 92, 92, 124, 124, 8, 91, 91, 91, 91, 91, 14, 14, 128, 128, 128,
    91, 15, 3, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 92, 92, 11, 11, 91,
    91, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 91, 91, 91, 15,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 14, 14, 18, 18, 18, 18,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 0, 0, 0, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 14,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 91, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 91, 3, 3, 3, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 15,
    92, 119, 119, 119, 3, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 3, 91,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 91, 91, 92, 92, 15, 15,
    15, 15, 15, 15, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 92,
    92, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 11, 11, 23, 24, 23, 24, 23, 24,
    23, 24, 23, 24, 23, 24, 23, 24, 21, 21, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 23, 24, 23, 24, 91, 21, 21, 21, 21, 21, 21, 21, 21, 23, 24,
    23, 24, 182, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 91, 11, 11, 23,
    24, 183, 21, 15, 23, 24, 23, 24, 21, 21, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 184, 185, 186,
    187, 184, 21, 188, 189, 190, 191, 23, 24, 23, 24, 23, 24, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 91, 91, 21, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15,
    92, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 124, 92, 92, 124,
    14, 14, 14, 14, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 14, 14, 4, 14,
    0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 124,
    124, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 15, 15, 15, 15, 15, 15, 3, 3, 3, 15,
    3, 15, 15, 92, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 92,
    92, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 124, 124, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 124, 124, 92, 92,
    92, 92, 124, 124, 92, 124, 124, 124, 124, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 0, 91, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3,
    15, 15, 15, 15, 15, 92, 91, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 124, 124, 92, 92, 124, 124,
    92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 92, 15, 15, 15, 15,
    15, 15, 15, 15, 92, 124, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0,
    3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 91, 15, 15, 15, 15, 15, 15, 14, 14, 14, 15, 124, 92, 124, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 15, 92, 92, 92, 15, 15, 92, 92, 15, 15, 15, 15, 15, 92, 92, 15,
    92, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 15, 15, 91, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 124, 92, 92, 124, 124, 3, 3, 15, 91, 91, 124, 92, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 192, 21, 21, 21,
    21, 21, 21, 21, 11, 91, 91, 91, 91, 21, 21, 21, 21, 21, 21, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
    193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
    193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
    193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 15, 15, 15, 124,
    124, 92, 124, 124, 92, 124, 124, 3, 124, 92, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 194, 194, 194,
    194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194,
    194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194,
    194, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195,
    195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195, 195,
    195, 195, 195, 195, 195, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 21,
    21, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21,
    21, 21, 21, 0, 0, 0, 0, 0, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 7, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    15, 15, 15, 15, 0, 15, 0, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 4,
    14, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 3, 3, 3, 3, 3, 3, 3, 5, 6, 3, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 3, 8, 8, 12, 12, 5,
    6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 3, 3, 5, 6, 3, 3, 3, 3,
    12, 12, 12, 3, 3, 3, 0, 3, 3, 3, 3, 8, 5, 6, 5, 6, 5, 6, 3, 3, 3, 7,
    8, 7, 7, 7, 0, 3, 4, 3, 3, 0, 0, 0, 0, 15, 15, 15, 15, 15, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 17, 0, 3, 3, 3, 4, 3, 3, 3, 5, 6, 3, 7, 3, 8, 3,
    3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 7, 7, 7, 3, 11, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 5, 7, 6, 7, 5, 6, 3, 5, 6, 3, 3, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 91, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 91, 91, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15,
    15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 0, 0, 0, 4,
    4, 7, 11, 14, 4, 4, 0, 14, 7, 7, 7, 7, 14, 14, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 17, 17, 17, 14, 14, 0, 0
#if TCL_UTF_MAX > 3
    ,15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 18,
    18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 18, 18, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 92, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 18, 18, 18, 18,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 128, 15, 15, 15, 15, 15, 15,
    15, 15, 128, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    3, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 3, 128,
    128, 128, 128, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 196, 196, 196,
    196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196,
    196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196,
    196, 196, 196, 196, 196, 196, 196, 196, 197, 197, 197, 197, 197, 197,
    197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
    197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
    197, 197, 197, 197, 197, 197, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 196,
    196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196,
    196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196, 196,
    196, 196, 196, 196, 196, 196, 196, 0, 0, 0, 0, 197, 197, 197, 197,
    197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
    197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197,
    197, 197, 197, 197, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 0, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15,
    0, 0, 0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
................................................................................
    0, 0, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18,
    0, 0, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 3, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 18, 18, 15, 15, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 15, 92, 92, 92, 0, 92, 92,
    0, 0, 0, 0, 0, 92, 92, 92, 92, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 92, 92, 92, 0, 0,
    0, 0, 92, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 18, 18, 3, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 14,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 0, 0, 0, 0, 18,
    18, 18, 18, 18, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 18, 18,
    18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
    97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
    97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
    97, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102, 102, 102, 102,
    102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,
    102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,
    102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,
    102, 102, 102, 102, 102, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18,
    15, 15, 15, 15, 92, 92, 92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 0, 18, 18, 18, 18, 18, 18, 18, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 18, 18, 18, 18, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 124, 92,
    124, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 124, 124,
    92, 92, 92, 92, 124, 124, 92, 92, 3, 3, 17, 3, 3, 3, 3, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 92,
    92, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 92, 92, 92, 92, 92, 124, 92, 92, 92, 92, 92, 92, 92,
    92, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 124, 124, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 92, 3, 3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 124, 124, 124, 92, 92, 92, 92, 92, 92, 92, 92, 92, 124, 124, 15,
    15, 15, 15, 3, 3, 3, 3, 92, 92, 92, 92, 3, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 15, 3, 15, 3, 3, 3, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 124, 124,
    92, 92, 92, 124, 124, 92, 124, 92, 92, 3, 3, 3, 3, 3, 3, 92, 0, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 3, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 92, 124, 124, 124, 92, 92, 92, 92, 92, 92,
    92, 92, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0,
    0, 92, 92, 124, 124, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0,
    15, 15, 15, 15, 15, 0, 92, 92, 15, 124, 124, 92, 124, 124, 124, 124,
    0, 0, 124, 124, 0, 0, 124, 124, 124, 0, 0, 15, 0, 0, 0, 0, 0, 0, 124,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 124, 124, 0, 0, 92, 92, 92, 92,
    92, 92, 92, 0, 0, 0, 92, 92, 92, 92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 124, 124, 124, 92, 92, 92, 92, 92, 92, 92, 92,
    124, 124, 92, 92, 92, 124, 92, 15, 15, 15, 15, 3, 3, 3, 3, 3, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 0, 3, 0, 3, 92, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 124, 124, 92, 92, 92,
    92, 92, 92, 124, 92, 124, 124, 124, 124, 92, 92, 124, 92, 92, 15, 15,
    3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 124, 124, 124, 92, 92, 92, 92, 0, 0, 124, 124, 124, 124, 92, 92,
    124, 92, 92, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 15, 15, 15, 15, 92, 92, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 124, 124, 92, 92, 92,
    92, 92, 92, 92, 92, 124, 124, 92, 124, 92, 92, 3, 3, 3, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0,
    0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 92, 124, 92, 124, 124, 92, 92, 92, 92, 92, 92, 124, 92, 0, 0, 0,
    0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 124, 124, 92, 92, 92, 92,
    124, 92, 92, 92, 92, 92, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    18, 18, 3, 3, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    124, 124, 124, 92, 92, 92, 92, 92, 92, 92, 92, 92, 124, 92, 92, 3,
    0, 0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92,

    92, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,




    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 124, 15, 92,
    92, 92, 92, 3, 3, 3, 3, 3, 3, 3, 3, 92, 0, 0, 0, 0, 0, 0, 0, 0, 15,

    92, 92, 92, 92, 92, 92, 124, 124, 92, 92, 92, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 124, 92, 92, 3, 3, 3, 15, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 124, 92, 92, 92,
    92, 92, 92, 92, 0, 92, 92, 92, 92, 92, 92, 124, 92, 15, 3, 3, 3, 3,

    3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 0, 0, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 0, 124, 92, 92, 92, 92, 92, 92, 92, 124,



    92, 92, 124, 92, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 0, 0, 0,
    92, 0, 92, 92, 0, 92, 92, 92, 92, 92, 92, 92, 15, 92, 0, 0, 0, 0, 0,

    0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15,
    15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 124, 124, 124, 124, 124, 0, 92, 92, 0, 124, 124, 92,
    124, 92, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 124, 124, 3, 3, 0,
    0, 0, 0, 0, 0, 0, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,





    128, 128, 128, 128, 128, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 92, 92, 92, 92, 92, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15,

    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92,
    92, 92, 92, 3, 3, 3, 3, 3, 14, 14, 14, 14, 91, 91, 91, 91, 3, 14, 0,

    0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 18, 18,
    18, 18, 18, 18, 18, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 15,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 3, 3, 3, 3, 0, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 0, 0, 0,






    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92, 91, 91, 91,
    91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,



    15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 14, 92, 92, 3, 17, 17, 17,
    17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 124, 124, 92, 92, 92, 14, 14, 14, 124,

    124, 124, 124, 124, 124, 17, 17, 17, 17, 17, 17, 17, 17, 92, 92, 92,
    92, 92, 92, 92, 92, 14, 14, 92, 92, 92, 92, 92, 92, 92, 14, 14, 14,

    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 92, 92, 92, 92, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 92, 92, 92, 14, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0,
    0, 0, 0, 0, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,


    107, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,

    107, 107, 107, 107, 107, 107, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 21, 21, 21,


    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 107, 0, 107, 107, 0, 0, 107, 0, 0, 107, 107,
    0, 0, 107, 107, 107, 107, 0, 107, 107, 107, 107, 107, 107, 107, 107,


    21, 21, 21, 21, 0, 21, 0, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,


    107, 107, 107, 107, 107, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107,
    0, 107, 107, 107, 107, 0, 0, 107, 107, 107, 107, 107, 107, 107, 107,

    0, 107, 107, 107, 107, 107, 107, 107, 0, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 107, 107, 0, 107, 107, 107, 107, 0, 107, 107, 107, 107, 107,
    0, 107, 0, 0, 0, 107, 107, 107, 107, 107, 107, 107, 0, 21, 21, 21,


    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,


    107, 107, 107, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 21, 21, 21,

    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,


    107, 107, 107, 107, 107, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    21, 21, 21, 21, 21, 21, 0, 0, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,



    107, 107, 107, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21,
    21, 21, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 7,


    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 7, 21, 21, 21, 21, 21,


    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,

    107, 107, 107, 107, 107, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21,
    21, 21, 21, 21, 21, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,
    107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107,


    107, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21,
    107, 21, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 14, 14, 14, 14,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,



    92, 14, 14, 14, 14, 14, 14, 14, 14, 92, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 92, 14, 14, 3, 3, 3, 3, 3, 0, 0, 0, 0,


    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92, 92, 0, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 0, 0, 0, 0, 0, 0, 0,


    0, 0, 0, 0, 0, 0, 0, 0, 0, 92, 92, 92, 92, 92, 92, 92, 0, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 0, 0, 92, 92,
    92, 92, 92, 92, 92, 0, 92, 92, 0, 92, 92, 92, 92, 92, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 92, 92, 92, 92, 92, 92, 92,


    0, 0, 0, 0, 0, 0, 0, 0, 0, 198, 198, 198, 198, 198, 198, 198, 198,
    198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198,
    198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 198, 199, 199,
    199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199,
    199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199,
    199, 199, 199, 199, 92, 92, 92, 92, 92, 92, 92, 0, 0, 0, 0, 0, 9, 9,









    9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14,
    18, 18, 18, 4, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,



    15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15,
    0, 15, 0, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    15, 15, 15, 0, 15, 0, 15, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 15, 0,

    15, 0, 15, 0, 15, 15, 15, 0, 15, 15, 0, 15, 0, 0, 15, 0, 15, 0, 15,
    0, 15, 0, 15, 0, 15, 15, 0, 15, 0, 0, 15, 15, 15, 15, 0, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 15,
    0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,


    14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0,
    14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14,
    14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 11, 11, 11,
    11, 11, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0,
    0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0,
    14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,







    14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 0, 0, 0, 14, 0, 14,
    14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* TCL_UTF_MAX > 3 */
};

/*
 * Each group represents a unique set of character attributes.  The attributes
 * are encoded into a 32-bit value as follows:
 *
................................................................................
    5, 23, 16, 11, -190078, 24, 2, -30846, 321, 386, -50879, 59522,
    -30911, 76930, -49790, 53825, 52801, 52545, 20289, 51777, 52033,
    53057, -24702, 54081, 53569, -41598, 54593, -33150, 54849, 55873,
    55617, 56129, -14206, 609, 451, 674, 20354, -24767, -14271, -33215,
    2763585, -41663, 2762817, -2768510, -49855, 17729, 18241, -2760318,
    -2759550, -2760062, 53890, 52866, 52610, 51842, 52098, -10833534,
    -10832510, 53122, -10823550, -10830718, 53634, 54146, -2750078,
    -10829950, -2751614, 54658, 54914, -2745982, 55938, -10824062,
    17794, 55682, 18306, 56194, -10818686, -10817918, 4, 6, -21370,
    29761, 9793, 9537, 16449, 16193, 9858, 9602, 8066, 16514, 16258,
    2113, 16002, 14722, 1, 12162, 13954, 2178, 22146, 20610, -1662,
    29826, -15295, 24706, -1727, 20545, 7, 3905, 3970, 12353, 12418,
    8, 1859649, -769822, 9949249, 10, 1601154, 1600898, 1598594, 1598082,
    1598338, 1596546, 1582466, -9027966, -769983, -9044862, -976254,
    15234, -1949375, -1918, -1983, -18814, -21886, -25470, -32638,
    -28542, -32126, -1981, -2174, -18879, -2237, 1844610, -21951,
    -25535, -28607, -32703, -32191, 13, 14, -1924287, -2145983, -2115007,
    7233, 7298, 4170, 4234, 6749, 6813, -2750143, -976319, -2746047,
    2763650, 2762882, -2759615, -2751679, -2760383, -2760127, -2768575,
    1859714, -9044927, -10823615, -10830783, -10833599, -10832575,
    -10830015, -10817983, -10824127, -10818751, 237633, 237698, 9949314,

    18, 17, 10305, 10370, 8769, 8834
};

#if TCL_UTF_MAX > 3
#   define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1fffff) >= 0x2fa20)
#else
#   define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1f0000) != 0)






|
|
|
|
|
|







 







|


|
|
|







 







|




|





|







|
|
|
|
|



|









|











|







 







|
|

|
|















|

|







 







|







|












|
|
|
|
|
|
|
|
|


|
|
|



|
|

<
|
|
>
|
|
|

|
|
|
|



>
|









































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







|
|
>







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|



|
|
|
|
|

<
<
<
|


>
>
>
|
|
|
|



|
|

|
|
|
|

|
|

|

|
|

|



|
|
|
|


|





|
|
|



|
|
|
|
|


|
|
|
|
|


|
|
|
|



|
|
|
|



|
|
|
|


|
|
|

|


|
|
|
|
|


|
|
|

|


|
|
|
|
|



|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|










|
|
|
|







|
|



|
|

|


|
|
|
|
|
|
|
|


|
|
|
|
|
|
|







 







|
|

|
|






|











|
|
|
|
|
|
|
|
|




|
|
|


|
|

|
|
|


|
|

|
|


|

|
|




|
|





|
|
|


|
|
|
|

|
|
|
|
|


|
|
|
|
|



|
|
|
|
|
|
|

|
|
|
|
>
|
>
>
>
>

|
|
>
|
<
<
>
|
|

|
<
>
|
|
|

<
<
>
>
>
|
|

<
<
>
|
|

<
|
>
|
<
>
>
>
>
>
|


|
|
|
|
|
<
>
|
<
>
|
|
|
|
|
<
<
<
<
>
>
>
>
>
>
|
<
|
|
>
>
>
|
|
|
|
|
|
|
|

<
>
|
<
>

|

|
|
|
|
|
|
|
|
<
<
>
>
|
|
<
>
|
|
<
<
>
>

<
<
>
>
|
<
<
>
>
|
|
<
>
|
|
<
<
>
>

<
<
>
>
|
|
<
>
|

<
<
>
>
|
|
<
<
<
>
>
>
|
|
<
<
>
>

|
<
<
>
>

|
<
>
|
|
<
<
>
>
|
|
|

<
<
<
>
>
>
|
<
>
>
|
<
>
>
|
<
<
|
<
>
>
|
<
<
<
<
<
>
>
>
>
>
>
>
>
>
|
|
|
|
>
>
>
|
|
|
<
>
|
|
<
|
>
|
|
|
|
|
|
|
|
|
|
|

>
>
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
>
>
>
>
>
>
>
|
|
|

|
|
|
|







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
...
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
...
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
...
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
...
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
...
525
526
527
528
529
530
531













































































532




















533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
...
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616



617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
....
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343


1344
1345
1346
1347
1348

1349
1350
1351
1352
1353


1354
1355
1356
1357
1358
1359


1360
1361
1362
1363

1364
1365
1366

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

1380
1381

1382
1383
1384
1385
1386
1387




1388
1389
1390
1391
1392
1393
1394

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1409
1410

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422


1423
1424
1425
1426

1427
1428
1429


1430
1431
1432


1433
1434
1435


1436
1437
1438
1439

1440
1441
1442


1443
1444
1445


1446
1447
1448
1449

1450
1451
1452


1453
1454
1455
1456



1457
1458
1459
1460
1461


1462
1463
1464
1465


1466
1467
1468
1469

1470
1471
1472


1473
1474
1475
1476
1477
1478



1479
1480
1481
1482

1483
1484
1485

1486
1487
1488


1489

1490
1491
1492





1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
1513
1514

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
....
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
    6144, 6176, 6208, 6240, 6272, 6304, 6336, 6368, 6400, 6432, 6464, 6496,
    6528, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6560, 6592, 6624, 4928,
    6656, 6688, 6720, 6752, 6784, 4928, 6816, 6848, 6880, 6912, 6944, 6976,
    7008, 4928, 4928, 4928, 4928, 4928, 7040, 7072, 7104, 4928, 4928, 4928,
    7136, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 7168, 7200, 4928, 7232,
    7264, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 6560, 6560, 6560,
    6560, 7296, 6560, 7328, 7360, 6560, 6560, 6560, 6560, 6560, 6560, 6560,
    6560, 4928, 7392, 7424, 7456, 7488, 4928, 4928, 4928, 7520, 7552, 7584,
    7616, 224, 224, 224, 7648, 7680, 7712, 1344, 7744, 7776, 7808, 7808,
    704, 7840, 7872, 7904, 1824, 7936, 4928, 4928, 7968, 4928, 4928, 4928,
    4928, 4928, 4928, 8000, 8032, 8064, 8096, 3232, 1344, 8128, 4192, 1344,
    8160, 8192, 8224, 1344, 1344, 8256, 8288, 4928, 8320, 8352, 8384, 8416,
    4928, 8384, 8448, 4928, 8352, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    8480, 8512, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 8544, 4928, 8576, 5408, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 8608, 8640, 224, 8672, 8704, 1344, 1344, 8736, 8768, 8800, 224,
    8832, 8864, 8896, 8928, 8960, 8992, 9024, 1344, 9056, 9088, 9120, 9152,
    9184, 1632, 9216, 9248, 9280, 1952, 9312, 9344, 9376, 1344, 9408, 9440,
    9472, 1344, 9504, 9536, 9568, 9600, 9632, 9664, 9696, 9728, 9728, 1344,
    9760, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    9920, 9920, 9920, 9920, 9920, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 9952, 1344, 1344, 9984, 1824, 10016, 10048,
    10080, 1344, 1344, 10112, 10144, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 10176, 10208, 1344, 10240, 1344, 10272, 10304,
    10336, 10368, 10400, 10432, 1344, 1344, 1344, 10464, 10496, 64, 10528,
    10560, 10592, 4736, 10624, 10656
#if TCL_UTF_MAX > 3
    ,10688, 10720, 10752, 1824, 1344, 1344, 1344, 8288, 10784, 10816, 10848,
    10880, 10912, 10944, 10976, 11008, 1824, 1824, 1824, 1824, 9280, 1344,
    11040, 11072, 1344, 11104, 11136, 11168, 11200, 1344, 11232, 1824,
    11264, 11296, 11328, 1344, 11360, 11392, 11424, 11456, 1344, 11488,
    1344, 11520, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 7776, 4704, 10272, 1824, 1824, 1824, 1824,
    11552, 11584, 11616, 11648, 4736, 11680, 1824, 11712, 11744, 11776,
    1824, 1824, 1344, 11808, 11840, 6880, 11872, 11904, 11936, 11968, 12000,
    1824, 12032, 12064, 1344, 12096, 12128, 12160, 12192, 12224, 1824,
    1824, 1344, 1344, 12256, 1824, 12288, 12320, 12352, 12384, 1344, 12416,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 12448, 1824,
    1824, 1824, 1824, 12000, 12480, 12512, 1824, 1824, 1824, 1824, 7776,
    12544, 12576, 12608, 12640, 5248, 12672, 12704, 12736, 12768, 12800,
    12832, 12864, 5248, 12896, 12928, 12960, 12992, 13024, 1824, 1824,
    13056, 13088, 13120, 13152, 13184, 13216, 13248, 13280, 1824, 1824,
    1824, 1824, 1344, 13312, 13344, 1824, 1344, 13376, 13408, 1824, 1824,
    1824, 1824, 1824, 1344, 13440, 13472, 1824, 1344, 13504, 13536, 13568,
    1344, 13600, 13632, 1824, 4032, 13664, 1824, 1824, 1824, 1824, 1824,
    1824, 1344, 13696, 1824, 1824, 1824, 13728, 13760, 13792, 1824, 1824,
    1824, 1824, 1824, 13824, 13856, 13888, 13920, 13952, 13984, 1344, 14016,
    14048, 1344, 4608, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    14080, 14112, 14144, 14176, 14208, 14240, 1824, 1824, 14272, 14304,
    14336, 14368, 14400, 13632, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 14432, 1824, 1824, 1824, 1824, 1824, 1824, 14464, 14496,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 9984, 1824, 1824, 1824, 10848, 10848, 10848,
    14528, 1344, 1344, 1344, 1344, 1344, 1344, 14560, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 14592, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14624, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
................................................................................
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 4608, 4736, 14656,
    1824, 1824, 10208, 14688, 1344, 14720, 14752, 14784, 8480, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 13728, 13760, 14816, 1824,
    1824, 1824, 1344, 1344, 14848, 14880, 14912, 1824, 1824, 14944, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 14976,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 15008,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
................................................................................
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 4736, 1824, 15040, 15072, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 9856, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 1344, 1344,
    15104, 15136, 15168, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 8000, 4928, 15200,
    4928, 15232, 15264, 15296, 4928, 15328, 4928, 4928, 15360, 1824, 1824,
    1824, 1824, 15392, 4928, 4928, 15424, 15456, 1824, 1824, 1824, 1824,
    15488, 15520, 15552, 15584, 15616, 15648, 15680, 15712, 15744, 15776,
    15808, 15840, 15872, 15488, 15520, 15904, 15584, 15936, 15968, 16000,
    15712, 16032, 16064, 16096, 16128, 16160, 16192, 16224, 16256, 16288,
    16320, 16352, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 704, 16384, 704, 16416, 16448,
    16480, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 16512, 16544, 1824,
    1824, 1824, 1824, 1824, 1824, 1344, 16576, 16608, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344, 16640, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 16672, 1824,
    16704, 16736, 16768, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,

    1824, 1824, 1824, 1824, 16800, 6880, 16832, 1824, 1824, 16864, 16896,
    1824, 1824, 1824, 1824, 1824, 1824, 16928, 16960, 16992, 17024, 17056,
    17088, 1824, 17120, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    4928, 17152, 4928, 4928, 7968, 17184, 17216, 8000, 17248, 4928, 4928,
    17280, 4928, 17312, 1824, 17344, 17376, 17408, 17440, 17472, 1824,
    1824, 1824, 1824, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 17504,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928,
    4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 4928, 8000, 17536,
    4928, 4928, 4928, 7968, 4928, 4928, 17568, 17600, 17152, 4928, 17632,
    4928, 17664, 17696, 1824, 1824, 17728, 4928, 4928, 17760, 4928, 17792,
    17824, 4928, 4928, 4928, 7968, 17856, 17888, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 7776, 1824, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 17920, 1344, 1344, 1344, 1344, 1344, 1344,
    11360, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 17952, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
................................................................................
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,













































































    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 17984, 1824,




















    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824,
    1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1824, 1344,
    1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344, 1344,
    1344, 1344, 1344, 11360
#endif /* TCL_UTF_MAX > 3 */
};

/*
 * The groupMap is indexed by combining the alternate page number with
 * the page offset and returns a group number that identifies a unique
 * set of character attributes.
................................................................................
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    21, 48, 49, 50, 23, 24, 52, 53, 23, 24, 23, 24, 23, 24, 23, 24, 54,
    21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 21, 21, 21, 21, 21, 21, 55, 23, 24, 56, 57, 58, 58, 23, 24,
    59, 60, 61, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 62, 63, 64, 65,
    66, 21, 67, 67, 21, 68, 21, 69, 70, 21, 21, 21, 67, 71, 21, 72, 21,
    73, 74, 21, 75, 76, 74, 77, 78, 21, 21, 76, 21, 79, 80, 21, 21, 81,
    21, 21, 21, 21, 21, 21, 21, 82, 21, 21, 83, 21, 84, 83, 21, 21, 21,
    85, 83, 86, 87, 87, 88, 21, 21, 21, 21, 21, 89, 21, 15, 21, 21, 21,
    21, 21, 21, 21, 21, 90, 91, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 11, 11, 11, 11, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 92, 92, 92, 92, 92, 11, 11, 11, 11, 11, 11, 11, 92,
    11, 92, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 23, 24, 23,
    24, 92, 11, 23, 24, 0, 0, 92, 42, 42, 42, 3, 95, 0, 0, 0, 0, 11, 11,
    96, 3, 97, 97, 97, 0, 98, 0, 99, 99, 21, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 100, 101, 101, 101, 21, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 102, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 103, 104, 104, 105, 106, 107, 108, 108, 108, 109, 110, 111,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 112, 113, 114, 115, 116, 117, 7, 23, 24,
    118, 23, 24, 21, 54, 54, 54, 119, 119, 119, 119, 119, 119, 119, 119,
    119, 119, 119, 119, 119, 119, 119, 119, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 113, 113, 113, 113, 113, 113, 113, 113, 113,
    113, 113, 113, 113, 113, 113, 113, 23, 24, 14, 93, 93, 93, 93, 93,
    120, 120, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 121, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 122, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,



    23, 24, 23, 24, 0, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    0, 0, 92, 3, 3, 3, 3, 3, 3, 21, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 21, 21, 3, 8, 0, 0, 14, 14, 4, 0, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 8, 93, 3, 93, 93, 3, 93, 93, 3, 93, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0,
    15, 15, 15, 15, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17,
    17, 17, 17, 7, 7, 7, 3, 3, 4, 3, 3, 14, 14, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 3, 17, 0, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 15,
    93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 3, 15, 93, 93, 93, 93, 93, 93, 93, 17, 14, 93, 93, 93, 93,
    93, 93, 92, 92, 93, 93, 14, 93, 93, 93, 93, 15, 15, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 15, 15, 15, 14, 14, 15, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 0, 17, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 14, 3, 3, 3, 92, 0, 0,
    93, 4, 4, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 92, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 92, 93, 93, 93, 92, 93, 93, 93, 93, 93, 0, 0, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 93, 93, 93, 0, 0, 3, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 17,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 93, 125, 93, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93,
    93, 125, 125, 125, 125, 93, 125, 125, 15, 93, 93, 93, 93, 93, 93, 93,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 3, 3, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 3, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0,
    15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    0, 0, 0, 15, 15, 15, 15, 0, 0, 93, 15, 125, 125, 125, 93, 93, 93, 93,
    0, 0, 125, 125, 0, 0, 125, 125, 93, 15, 0, 0, 0, 0, 0, 0, 0, 0, 125,
    0, 0, 0, 0, 15, 15, 0, 15, 15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 15, 15, 4, 4, 18, 18, 18, 18, 18, 18, 14, 4, 15, 3, 93,
    0, 0, 93, 93, 125, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0,
    15, 15, 0, 15, 15, 0, 0, 93, 0, 125, 125, 125, 93, 93, 0, 0, 0, 0,
    93, 93, 0, 0, 93, 93, 93, 0, 0, 0, 93, 0, 0, 0, 0, 0, 0, 0, 15, 15,
    15, 15, 0, 15, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 93,
    93, 15, 15, 15, 93, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 93, 125, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15,
    0, 0, 93, 15, 125, 125, 125, 93, 93, 93, 93, 93, 0, 93, 93, 125, 0,
    125, 125, 93, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 4, 0, 0, 0,
    0, 0, 0, 0, 15, 93, 93, 93, 93, 93, 93, 0, 93, 125, 125, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0,
    93, 15, 125, 93, 125, 93, 93, 93, 93, 0, 0, 125, 125, 0, 0, 125, 125,
    93, 0, 0, 0, 0, 0, 0, 0, 0, 93, 125, 0, 0, 0, 0, 15, 15, 0, 15, 15,
    15, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 14, 15, 18, 18, 18,
    18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 0, 15, 15, 15, 15,
    15, 15, 0, 0, 0, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 0, 15, 15, 0,
    15, 0, 15, 15, 0, 0, 0, 15, 15, 0, 0, 0, 15, 15, 15, 0, 0, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 125, 125, 93, 125,
    125, 0, 0, 0, 125, 125, 125, 0, 125, 125, 125, 93, 0, 0, 15, 0, 0,
    0, 0, 0, 0, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 14, 14, 14, 14, 14, 14, 4, 14, 0,
    0, 0, 0, 0, 93, 125, 125, 125, 93, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 93, 93, 93, 125,
    125, 125, 125, 0, 93, 93, 93, 0, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0,
    0, 93, 93, 0, 15, 15, 15, 0, 0, 0, 0, 0, 15, 15, 93, 93, 0, 0, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 3, 18, 18, 18, 18, 18,
    18, 18, 14, 15, 93, 125, 125, 3, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 0, 93, 15, 125, 93, 125,
    125, 125, 125, 125, 0, 93, 125, 125, 0, 125, 125, 93, 93, 0, 0, 0,
    0, 0, 0, 0, 125, 125, 0, 0, 0, 0, 0, 0, 0, 15, 0, 15, 15, 93, 93, 0,
    0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 93, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 15, 125, 125, 125,
    93, 93, 93, 93, 0, 125, 125, 125, 0, 125, 125, 125, 93, 15, 14, 0,
    0, 0, 0, 15, 15, 15, 125, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 93,
    93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 14, 15, 15, 15, 15, 15, 15, 0, 0, 125, 125, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 93, 0, 0, 0, 0, 125,
    125, 125, 93, 93, 93, 0, 93, 0, 125, 125, 125, 125, 125, 125, 125,
    125, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 125, 125,
    3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 93, 15, 15, 93, 93, 93, 93, 93, 93, 93,
    0, 0, 0, 0, 4, 15, 15, 15, 15, 15, 15, 92, 93, 93, 93, 93, 93, 93,
    93, 93, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 0, 0, 0, 0, 0, 15, 15,
    0, 15, 0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 15, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 15, 0, 0, 15, 15, 15, 15, 15, 0, 92, 0, 93,
    93, 93, 93, 93, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 15, 15,
    15, 15, 15, 14, 14, 14, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    14, 3, 14, 14, 14, 93, 93, 14, 14, 14, 14, 14, 14, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 93, 14, 93,
    14, 93, 5, 6, 5, 6, 125, 125, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 125, 93, 93, 93, 93, 93, 3, 93, 93, 15, 15, 15, 15, 15, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 14, 14, 14, 14,
    14, 14, 14, 14, 93, 14, 14, 14, 14, 14, 14, 0, 14, 14, 3, 3, 3, 3,
    3, 14, 14, 14, 14, 3, 3, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 125, 125, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93,
    93, 125, 93, 93, 125, 125, 93, 93, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 125, 125, 93, 93, 15, 15,
    15, 15, 93, 93, 93, 15, 125, 125, 125, 15, 15, 125, 125, 125, 125,
    125, 125, 125, 15, 15, 15, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 93, 125, 125, 93, 93, 125, 125, 125, 125,
    125, 125, 93, 15, 125, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 125, 125, 125,
    93, 14, 14, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
    126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126,
    126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 0,
    126, 0, 0, 0, 0, 0, 126, 0, 0, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
    127, 127, 127, 127, 127, 127, 127, 3, 92, 127, 127, 127, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 0, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
    0, 0, 0, 0, 0, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    128, 128, 128, 128, 128, 128, 128, 128, 128, 105, 105, 105, 105, 105,
    105, 0, 0, 111, 111, 111, 111, 111, 111, 0, 0, 8, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 14, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 2, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    5, 6, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3,
    129, 129, 129, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15,
    15, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 3,
    3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15,
    15, 15, 0, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    93, 93, 125, 93, 93, 93, 93, 93, 93, 93, 125, 125, 125, 125, 125, 125,
    125, 125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    3, 3, 3, 92, 3, 3, 3, 4, 15, 93, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0,
    0, 0, 0, 3, 3, 3, 3, 3, 3, 8, 3, 3, 3, 3, 93, 93, 93, 17, 0, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 92, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 93, 93, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 15, 0, 0, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 93, 93, 93, 125, 125, 125, 125,
    93, 93, 125, 125, 125, 0, 0, 0, 0, 125, 125, 93, 125, 125, 125, 125,
    125, 125, 93, 93, 93, 0, 0, 0, 0, 14, 0, 0, 0, 3, 3, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 125, 125, 93, 0, 0, 3,
    3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 125, 93, 125, 93, 93, 93, 93, 93, 93, 93, 0, 93,
    125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 125, 125,
    125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 93, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 92, 3, 3, 3, 3, 3, 3, 0, 0,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 120, 0, 93,
    93, 93, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    93, 125, 93, 93, 93, 93, 93, 125, 93, 125, 125, 125, 125, 125, 93,
    125, 125, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 0, 0, 0, 93, 93, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 125, 93, 93, 93, 93, 125, 125, 93, 93, 125, 93, 93, 93,
    15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 93, 125, 93, 93, 125, 125, 125, 93, 125, 93, 93, 93,
    125, 125, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 15, 15, 15, 15, 125,
    125, 125, 125, 125, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93,
    125, 125, 93, 93, 0, 0, 0, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 0, 0, 0, 15, 15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 92, 92, 92, 92, 3, 3, 130,
    131, 132, 133, 133, 134, 135, 136, 137, 0, 0, 0, 0, 0, 0, 0, 138, 138,
    138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138,
    138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138,
    138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 0,
    0, 138, 138, 138, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 93,
    93, 93, 3, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125,
    93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 93, 15, 15, 15, 15, 15,
    15, 93, 15, 15, 125, 93, 93, 15, 0, 0, 0, 0, 0, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 139, 21, 21,
    21, 140, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 141, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 92, 92, 92,
    92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 21, 21, 21, 21, 21, 142, 21, 21, 143, 21, 144,
    144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145, 145, 145,
    145, 144, 144, 144, 144, 144, 144, 0, 0, 145, 145, 145, 145, 145, 145,
    0, 0, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145, 145, 145,
    145, 145, 145, 144, 144, 144, 144, 144, 144, 144, 144, 145, 145, 145,
    145, 145, 145, 145, 145, 144, 144, 144, 144, 144, 144, 0, 0, 145, 145,
    145, 145, 145, 145, 0, 0, 21, 144, 21, 144, 21, 144, 21, 144, 0, 145,
    0, 145, 0, 145, 0, 145, 144, 144, 144, 144, 144, 144, 144, 144, 145,
    145, 145, 145, 145, 145, 145, 145, 146, 146, 147, 147, 147, 147, 148,
    148, 149, 149, 150, 150, 151, 151, 0, 0, 144, 144, 144, 144, 144, 144,
    144, 144, 152, 152, 152, 152, 152, 152, 152, 152, 144, 144, 144, 144,
    144, 144, 144, 144, 152, 152, 152, 152, 152, 152, 152, 152, 144, 144,
    144, 144, 144, 144, 144, 144, 152, 152, 152, 152, 152, 152, 152, 152,
    144, 144, 21, 153, 21, 0, 21, 21, 145, 145, 154, 154, 155, 11, 156,
    11, 11, 11, 21, 153, 21, 0, 21, 21, 157, 157, 157, 157, 155, 11, 11,
    11, 144, 144, 21, 21, 0, 0, 21, 21, 145, 145, 158, 158, 0, 11, 11,
    11, 144, 144, 21, 21, 21, 114, 21, 21, 145, 145, 159, 159, 118, 11,
    11, 11, 0, 0, 21, 153, 21, 0, 21, 21, 160, 160, 161, 161, 155, 11,
    11, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 17, 17, 17, 17, 17, 8, 8, 8,
    8, 8, 8, 3, 3, 16, 20, 5, 16, 16, 20, 5, 16, 3, 3, 3, 3, 3, 3, 3, 3,
    162, 163, 17, 17, 17, 17, 17, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 16, 20,
    3, 3, 3, 3, 12, 12, 3, 3, 3, 7, 5, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 7, 3, 12, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 17, 17, 17, 17, 17, 0,
    17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 92, 0, 0, 18, 18, 18, 18,
    18, 18, 7, 7, 7, 5, 6, 92, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    7, 7, 7, 5, 6, 0, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    120, 120, 120, 120, 93, 120, 120, 120, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
    14, 108, 14, 14, 14, 14, 108, 14, 14, 21, 108, 108, 108, 21, 21, 108,
    108, 108, 21, 14, 108, 14, 14, 7, 108, 108, 108, 108, 108, 14, 14,
    14, 14, 14, 14, 108, 14, 164, 14, 108, 14, 165, 166, 108, 108, 14,
    21, 108, 108, 167, 108, 21, 15, 15, 15, 15, 21, 14, 14, 21, 21, 108,
    108, 7, 7, 7, 7, 7, 108, 21, 21, 21, 21, 14, 7, 14, 14, 168, 14, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 169, 169,
    169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169,
    170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170,
    170, 170, 129, 129, 129, 23, 24, 129, 129, 129, 129, 18, 14, 14, 0,
    0, 0, 0, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 7, 7, 14, 14, 14, 14, 7,
    14, 14, 7, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 14, 14, 7, 14, 7, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14,
    14, 14, 14, 5, 6, 5, 6, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 14, 14, 14, 14, 14, 14, 14,
    5, 6, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 171, 171, 171, 171, 171, 171, 171, 171,
    171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171,
    171, 171, 171, 171, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172,
    172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172, 172,
    172, 172, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 7, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5,
    6, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 5, 6, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 5, 6, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 14, 14, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123,
    123, 123, 123, 123, 123, 123, 123, 123, 123, 0, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124,
    124, 0, 23, 24, 173, 174, 175, 176, 177, 23, 24, 23, 24, 23, 24, 178,
    179, 180, 181, 21, 23, 24, 21, 23, 24, 21, 21, 21, 21, 21, 92, 92,
    182, 182, 23, 24, 23, 24, 21, 14, 14, 14, 14, 14, 14, 23, 24, 23, 24,
    93, 93, 93, 23, 24, 0, 0, 0, 0, 0, 3, 3, 3, 3, 18, 3, 3, 183, 183,
    183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183,
    183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183, 183,
    183, 183, 183, 183, 183, 183, 183, 183, 0, 183, 0, 0, 0, 0, 0, 183,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 92, 3, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15,
    0, 3, 3, 16, 20, 16, 20, 3, 3, 3, 16, 20, 3, 16, 20, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 8, 3, 3, 8, 3, 16, 20, 3, 3, 16, 20, 5, 6, 5, 6, 5, 6,
    5, 6, 3, 3, 3, 3, 3, 92, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 8, 8, 3, 3,
    3, 3, 8, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 0, 0, 0, 0, 2, 3, 3, 3, 14, 92, 15, 129, 5, 6, 5, 6, 5,
    6, 5, 6, 5, 6, 14, 14, 5, 6, 5, 6, 5, 6, 5, 6, 8, 5, 6, 6, 14, 129,
    129, 129, 129, 129, 129, 129, 129, 129, 93, 93, 93, 93, 125, 125, 8,
    92, 92, 92, 92, 92, 14, 14, 129, 129, 129, 92, 15, 3, 14, 14, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 93, 93, 11, 11, 92, 92, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 3, 92, 92, 92, 15, 0, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 14, 14, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 14,
    14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18,
    18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 92, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    92, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 15, 93, 120, 120, 120, 3, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 3, 92, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    23, 24, 92, 92, 93, 93, 15, 15, 15, 15, 15, 15, 129, 129, 129, 129,
    129, 129, 129, 129, 129, 129, 93, 93, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0,
    0, 0, 0, 0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 11, 11, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24,
    21, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 92, 21,
    21, 21, 21, 21, 21, 21, 21, 23, 24, 23, 24, 184, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 92, 11, 11, 23, 24, 185, 21, 15, 23, 24, 23, 24,
    186, 21, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23,
    24, 23, 24, 23, 24, 187, 188, 189, 190, 187, 21, 191, 192, 193, 194,
    23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 0, 0, 23, 24, 195,
    196, 197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 15, 92, 92, 21, 15, 15, 15, 15, 15, 15, 15, 93, 15,
    15, 15, 93, 15, 15, 15, 15, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 93,
    93, 125, 14, 14, 14, 14, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 14, 14,
    4, 14, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0,
    0, 125, 125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15,
    3, 3, 3, 15, 3, 15, 15, 93, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93,
    93, 93, 93, 93, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 125, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 125,
    125, 93, 93, 93, 93, 125, 125, 93, 93, 125, 125, 125, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 3, 3, 3, 0, 92, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0,
    0, 0, 3, 3, 15, 15, 15, 15, 15, 93, 92, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 15, 15, 15, 15, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93,
    125, 125, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 93, 15, 15,
    15, 15, 15, 15, 15, 15, 93, 125, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    0, 0, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 92, 15, 15, 15, 15, 15, 15, 14, 14, 14, 15, 125, 93, 125,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 93, 15, 93, 93, 93, 15, 15, 93, 93, 15, 15, 15, 15, 15, 93, 93,
    15, 93, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 92, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 125, 93, 93, 125, 125, 3, 3, 15, 92, 92, 125, 93, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15,
    15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 198, 21,
    21, 21, 21, 21, 21, 21, 11, 92, 92, 92, 92, 21, 21, 21, 21, 21, 21,
    21, 21, 0, 0, 0, 0, 0, 0, 0, 0, 199, 199, 199, 199, 199, 199, 199,
    199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199,
    199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199,
    199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 15,
    15, 15, 125, 125, 93, 125, 125, 93, 125, 125, 3, 125, 93, 0, 0, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0,
    200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
    200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
    200, 200, 200, 200, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201,
    201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201,
    201, 201, 201, 201, 201, 201, 201, 201, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 21, 21, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 21, 21, 21, 21, 21, 0, 0, 0, 0, 0, 15, 93, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 7, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 0, 15, 15,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 11, 11, 11, 11, 11, 11,
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 6, 5, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 4, 14, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 5, 6, 3, 0, 0, 0,
    0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 3, 8, 8, 12, 12, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6,
    3, 3, 5, 6, 3, 3, 3, 3, 12, 12, 12, 3, 3, 3, 0, 3, 3, 3, 3, 8, 5, 6,
    5, 6, 5, 6, 3, 3, 3, 7, 8, 7, 7, 7, 0, 3, 4, 3, 3, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 17, 0, 3, 3, 3, 4, 3,
    3, 3, 5, 6, 3, 7, 3, 8, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 7,
    7, 7, 3, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 5, 7, 6, 7, 5, 6, 3,
    5, 6, 3, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 92, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 92, 92, 0, 0, 15, 15, 15, 15, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 0, 0, 15,
    15, 15, 0, 0, 0, 4, 4, 7, 11, 14, 4, 4, 0, 14, 7, 7, 7, 7, 14, 14,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 14, 14, 0, 0
#if TCL_UTF_MAX > 3
    ,15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129,
    129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129,
    129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129,
    129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129, 18,
    18, 18, 18, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 18, 18, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 93, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 18, 18, 18, 18,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 129, 15, 15, 15, 15, 15, 15,
    15, 15, 129, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    3, 15, 15, 15, 15, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 3, 129,
    129, 129, 129, 129, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 202, 202, 202, 202,
    202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202,
    202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202,
    202, 202, 202, 202, 202, 202, 202, 202, 203, 203, 203, 203, 203, 203,
    203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203,
    203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203,
    203, 203, 203, 203, 203, 203, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 202,
    202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202,
    202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202, 202,
    202, 202, 202, 202, 202, 202, 202, 0, 0, 0, 0, 203, 203, 203, 203,
    203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203,
    203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203, 203,
    203, 203, 203, 203, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 0, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15,
    0, 0, 0, 15, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
................................................................................
    0, 0, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18,
    0, 0, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 3, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 18, 18, 15, 15, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 15, 93, 93, 93, 0, 93, 93,
    0, 0, 0, 0, 0, 93, 93, 93, 93, 15, 15, 15, 15, 0, 15, 15, 15, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 0, 0,
    0, 0, 93, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 18, 18, 3, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 14,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 0, 0, 0, 0, 18,
    18, 18, 18, 18, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 18, 18, 18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 18, 18,
    18, 18, 18, 18, 18, 18, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98,
    98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98,
    98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98,
    98, 98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103, 103, 103, 103,
    103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103,
    103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103,
    103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103,
    103, 103, 103, 103, 103, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18,
    15, 15, 15, 15, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 0, 18, 18, 18, 18, 18, 18, 18, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 18, 18, 18, 18, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 125, 93,
    125, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125,
    93, 93, 93, 93, 125, 125, 93, 93, 3, 3, 17, 3, 3, 3, 3, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 93,
    93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 93, 93, 93, 93, 93, 125, 93, 93, 93, 93, 93, 93, 93,
    93, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 15, 125, 125, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 93, 3, 3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 125, 15,
    15, 15, 15, 3, 3, 3, 3, 93, 93, 93, 93, 3, 0, 0, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 15, 3, 15, 3, 3, 3, 0, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125,
    93, 93, 93, 125, 125, 93, 125, 93, 93, 3, 3, 3, 3, 3, 3, 93, 0, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 3, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 93, 125, 125, 125, 93, 93, 93, 93, 93, 93,
    93, 93, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0,
    0, 93, 93, 125, 125, 0, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0,
    15, 15, 15, 15, 15, 0, 93, 93, 15, 125, 125, 93, 125, 125, 125, 125,
    0, 0, 125, 125, 0, 0, 125, 125, 125, 0, 0, 15, 0, 0, 0, 0, 0, 0, 125,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 125, 125, 0, 0, 93, 93, 93, 93,
    93, 93, 93, 0, 0, 0, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93,
    125, 125, 93, 93, 93, 125, 93, 15, 15, 15, 15, 3, 3, 3, 3, 3, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 0, 3, 0, 3, 93, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93,
    93, 93, 93, 125, 93, 125, 125, 125, 125, 93, 93, 125, 93, 93, 15, 15,
    3, 15, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0,
    0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 125, 125, 125, 93, 93, 93, 93, 0, 0, 125, 125, 125, 125, 93, 93,
    125, 93, 93, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    3, 3, 3, 3, 3, 15, 15, 15, 15, 93, 93, 0, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93,
    93, 93, 93, 93, 93, 125, 125, 93, 125, 93, 93, 3, 3, 3, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0,
    0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 93, 125, 93, 125, 125, 93, 93, 93, 93, 93, 93, 125, 93, 15, 0,
    0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125, 125, 93, 93, 93,
    93, 125, 93, 93, 93, 93, 93, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 18, 18, 3, 3, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 125, 125, 125, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93,
    3, 0, 0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
    10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 125, 125, 125, 93, 93, 93, 93, 0, 0, 93, 93,
    125, 125, 125, 125, 93, 15, 3, 15, 125, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93,
    93, 93, 125, 15, 93, 93, 93, 93, 3, 3, 3, 3, 3, 3, 3, 3, 93, 0, 0,
    0, 0, 0, 0, 0, 0, 15, 93, 93, 93, 93, 93, 93, 125, 125, 93, 93, 93,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93,


    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 125, 93, 93, 3, 3, 3, 15, 3,
    3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 125, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93,
    93, 125, 93, 15, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 3, 3, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,


    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 125, 93,
    93, 93, 93, 93, 93, 93, 125, 93, 93, 125, 93, 93, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,


    93, 93, 93, 93, 93, 93, 0, 0, 0, 93, 0, 93, 93, 0, 93, 93, 93, 93,
    93, 93, 93, 15, 93, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 0, 15, 15, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 125, 125, 125,
    125, 125, 0, 93, 93, 0, 125, 125, 93, 125, 93, 15, 0, 0, 0, 0, 0, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 93, 93, 125, 125, 3, 3, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 14, 14, 14, 14, 14, 14, 14, 14, 4, 4, 4, 4, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 3, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129,
    129, 129, 129, 129, 129, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 17, 17, 17, 17, 17, 17, 17, 17,
    17, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 0, 0, 93, 93, 93, 93, 93, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 93, 93,

    93, 93, 93, 93, 93, 3, 3, 3, 3, 3, 14, 14, 14, 14, 92, 92, 92, 92,
    3, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    0, 18, 18, 18, 18, 18, 18, 18, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 15,
    15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 3, 3, 3, 3, 0, 0, 0, 0, 0, 15, 15,




    15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 93, 15, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125,
    125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 0, 0, 0, 0, 0, 0,
    0, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
    92, 92, 92, 3, 92, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0,
    0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 0, 0, 0,
    0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0,
    0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 0, 0, 14, 93, 93, 3, 17, 17, 17, 17, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

    14, 14, 14, 14, 14, 125, 125, 93, 93, 93, 14, 14, 14, 125, 125, 125,
    125, 125, 125, 17, 17, 17, 17, 17, 17, 17, 17, 93, 93, 93, 93, 93,

    93, 93, 93, 14, 14, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 93, 93, 93, 93, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 14, 14, 93, 93, 93, 14, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0,


    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108,

    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108,


    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,


    21, 21, 21, 108, 0, 108, 108, 0, 0, 108, 0, 0, 108, 108, 0, 0, 108,
    108, 108, 108, 0, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21,
    21, 0, 21, 0, 21, 21, 21, 21, 21, 21, 21, 0, 21, 21, 21, 21, 21, 21,


    21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 0, 108, 108,

    108, 108, 0, 0, 108, 108, 108, 108, 108, 108, 108, 108, 0, 108, 108,
    108, 108, 108, 108, 108, 0, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108,


    108, 0, 108, 108, 108, 108, 0, 108, 108, 108, 108, 108, 0, 108, 0,
    0, 0, 108, 108, 108, 108, 108, 108, 108, 0, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,


    21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108,

    108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,


    21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108,



    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 21, 21, 21,
    21, 21, 21, 0, 0, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21,


    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108,


    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    7, 21, 21, 21, 21, 21, 21, 108, 108, 108, 108, 108, 108, 108, 108,

    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21,


    21, 21, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108,
    108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 7,
    21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
    21, 21, 21, 21, 21, 21, 21, 21, 7, 21, 21, 21, 21, 21, 21, 108, 21,
    0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,



    9, 9, 9, 9, 9, 9, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14, 14, 14, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 14, 14,
    14, 14, 14, 14, 14, 14, 93, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

    14, 14, 14, 14, 93, 14, 14, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 0, 93, 93, 93, 93, 93, 93,
    93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 0, 0, 93, 93, 93, 93, 93,
    93, 93, 0, 93, 93, 0, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0,


    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15,

    15, 15, 15, 15, 15, 0, 0, 0, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92,
    92, 92, 92, 92, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 15,
    14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15,





    15, 15, 15, 15, 15, 15, 15, 15, 93, 93, 93, 93, 9, 9, 9, 9, 9, 9, 9,
    9, 9, 9, 0, 0, 0, 0, 0, 4, 15, 15, 15, 15, 15, 0, 0, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 93, 93, 93, 93, 93, 93, 93, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204,
    204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204,
    204, 204, 204, 204, 204, 204, 204, 205, 205, 205, 205, 205, 205, 205,
    205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205,
    205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 205, 93,
    93, 93, 93, 93, 93, 93, 92, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9,
    9, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 4, 18,
    18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 0, 0, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 15, 15, 0, 15, 0, 0, 15, 0, 15, 15, 15, 15, 15,

    15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 0, 15, 0, 0, 0, 0, 0,
    0, 15, 0, 0, 0, 0, 15, 0, 15, 0, 15, 0, 15, 15, 15, 0, 15, 15, 0, 15,
    0, 0, 15, 0, 15, 0, 15, 0, 15, 0, 15, 0, 15, 15, 0, 15, 0, 0, 15, 15,

    15, 15, 0, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 0, 15, 15,
    15, 15, 0, 15, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0,
    0, 0, 15, 15, 15, 0, 15, 15, 15, 15, 15, 0, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0,
    0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 18, 18, 18, 18, 18,
    18, 18, 18, 18, 18, 18, 18, 18, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0,
    0, 0, 0, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14,
    14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    11, 11, 11, 11, 11, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0,
    0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0,
    0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0,
    0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
    14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 0, 0,
    0, 0, 14, 14, 14, 0, 0, 0, 0, 0, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
    15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* TCL_UTF_MAX > 3 */
};

/*
 * Each group represents a unique set of character attributes.  The attributes
 * are encoded into a 32-bit value as follows:
 *
................................................................................
    5, 23, 16, 11, -190078, 24, 2, -30846, 321, 386, -50879, 59522,
    -30911, 76930, -49790, 53825, 52801, 52545, 20289, 51777, 52033,
    53057, -24702, 54081, 53569, -41598, 54593, -33150, 54849, 55873,
    55617, 56129, -14206, 609, 451, 674, 20354, -24767, -14271, -33215,
    2763585, -41663, 2762817, -2768510, -49855, 17729, 18241, -2760318,
    -2759550, -2760062, 53890, 52866, 52610, 51842, 52098, -10833534,
    -10832510, 53122, -10823550, -10830718, 53634, 54146, -2750078,
    -10829950, -2751614, 54658, 54914, -2745982, 55938, -10830462,
    -10824062, 17794, 55682, 18306, 56194, -10818686, -10817918, 4,
    6, -21370, 29761, 9793, 9537, 16449, 16193, 9858, 9602, 8066,
    16514, 16258, 2113, 16002, 14722, 1, 12162, 13954, 2178, 22146,
    20610, -1662, 29826, -15295, 24706, -1727, 20545, 7, 3905, 3970,
    12353, 12418, 8, 1859649, -769822, 9949249, 10, 1601154, 1600898,
    1598594, 1598082, 1598338, 1596546, 1582466, -9027966, -769983,
    -9044862, -976254, -9058174, 15234, -1949375, -1918, -1983, -18814,
    -21886, -25470, -32638, -28542, -32126, -1981, -2174, -18879,
    -2237, 1844610, -21951, -25535, -28607, -32703, -32191, 13, 14,
    -1924287, -2145983, -2115007, 7233, 7298, 4170, 4234, 6749, 6813,
    -2750143, -976319, -2746047, 2763650, 2762882, -2759615, -2751679,
    -2760383, -2760127, -2768575, 1859714, -9044927, -10823615, -12158,
    -10830783, -10833599, -10832575, -10830015, -10817983, -10824127,
    -10818751, 237633, -12223, -10830527, -9058239, 237698, 9949314,
    18, 17, 10305, 10370, 8769, 8834
};

#if TCL_UTF_MAX > 3
#   define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1fffff) >= 0x2fa20)
#else
#   define UNICODE_OUT_OF_RANGE(ch) (((ch) & 0x1f0000) != 0)

Changes to generic/tclUtf.c.

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
...
186
187
188
189
190
191
192
193
194
195
196
197



198
199
200
201
202
203
204
...
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314














315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
...
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
...
351
352
353
354
355
356
357
358
359
360
361
362
363

364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
...
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
...
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
...
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
...
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
...
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
...
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
...
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
	    return 2;
	}
	if (ch <= 0xFFFF) {
#if TCL_UTF_MAX > 3
	    if ((ch & 0xF800) == 0xD800) {
		if (ch & 0x0400) {
		    /* Low surrogate */
		    if (((buf[0] & 0xF8) == 0xF0) && ((buf[1] & 0xC0) == 0x80)
			    && ((buf[2] & 0xCF) == 0)) {
			/* Previous Tcl_UniChar was a High surrogate, so combine */
			buf[3] = (char) ((ch & 0x3F) | 0x80);
			buf[2] |= (char) (((ch >> 6) & 0x0F) | 0x80);
			return 4;
		    }
		    /* Previous Tcl_UniChar was not a High surrogate, so just output */
		} else {
		    /* High surrogate */
		    ch += 0x40;
		    /* Fill buffer with specific 3-byte (invalid) byte combination,
		       so following Low surrogate can recognize it and combine */
		    buf[2] = (char) ((ch << 4) & 0x30);
		    buf[1] = (char) (((ch >> 2) & 0x3F) | 0x80);
		    buf[0] = (char) (((ch >> 8) & 0x07) | 0xF0);
		    return 0;
		}
	    }
#endif
	    goto three;
	}

#if TCL_UTF_MAX > 3
................................................................................
	    buf[3] = (char) ((ch | 0x80) & 0xBF);
	    buf[2] = (char) (((ch >> 6) | 0x80) & 0xBF);
	    buf[1] = (char) (((ch >> 12) | 0x80) & 0xBF);
	    buf[0] = (char) ((ch >> 18) | 0xF0);
	    return 4;
	}
    } else if (ch == -1) {
	if (((buf[0] & 0xF8) == 0xF0) && ((buf[1] & 0xC0) == 0x80)
		&& ((buf[2] & 0xCF) == 0)) {
	    ch = 0xD7C0 + ((buf[0] & 0x07) << 8) + ((buf[1] & 0x3F) << 2)
		    + ((buf[2] & 0x30) >> 4);
	    goto three;



	}
#endif
    }

    ch = 0xFFFD;
three:
    buf[2] = (char) ((ch | 0x80) & 0xBF);
................................................................................

int
Tcl_UtfToUniChar(
    register const char *src,	/* The UTF-8 string. */
    register Tcl_UniChar *chPtr)/* Filled with the Tcl_UniChar represented by
				 * the UTF-8 string. */
{
    register int byte;

    /*
     * Unroll 1 to 3 (or 4) byte UTF-8 sequences.
     */

    byte = *((unsigned char *) src);
    if (byte < 0xC0) {
	/*
	 * Handles properly formed UTF-8 characters between 0x01 and 0x7F.
	 * Also treats \0 and naked trail bytes 0x80 to 0xBF as valid
	 * characters representing themselves.
	 */















	*chPtr = (Tcl_UniChar) byte;
	return 1;
    } else if (byte < 0xE0) {
	if ((src[1] & 0xC0) == 0x80) {
	    /*
	     * Two-byte-character lead-byte followed by a trail-byte.
	     */

	    *chPtr = (Tcl_UniChar) (((byte & 0x1F) << 6) | (src[1] & 0x3F));
	    if ((unsigned)(*chPtr - 1) >= (UNICODE_SELF - 1)) {
		return 2;
	    }
	}

	/*
	 * A two-byte-character lead-byte not followed by trail-byte
................................................................................
	 */
    } else if (byte < 0xF0) {
	if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80)) {
	    /*
	     * Three-byte-character lead byte followed by two trail bytes.
	     */

	    *chPtr = (Tcl_UniChar) (((byte & 0x0F) << 12)
		    | ((src[1] & 0x3F) << 6) | (src[2] & 0x3F));
	    if (*chPtr > 0x7FF) {
		return 3;
	    }
	}

	/*
................................................................................
#if TCL_UTF_MAX > 3
    else if (byte < 0xF8) {
	if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80) && ((src[3] & 0xC0) == 0x80)) {
	    /*
	     * Four-byte-character lead byte followed by three trail bytes.
	     */
#if TCL_UTF_MAX == 4
	    Tcl_UniChar surrogate;

	    byte = (((byte & 0x07) << 18) | ((src[1] & 0x3F) << 12)
		    | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F)) - 0x10000;
	    surrogate = (Tcl_UniChar) (0xD800 + (byte >> 10));
	    if (byte & 0x100000) {

		/* out of range, < 0x10000 or > 0x10ffff */
	    } else if (*chPtr != surrogate) {
		/* produce high surrogate, but don't advance source pointer */
		*chPtr = surrogate;
		return 0;
	    } else {
		/* produce low surrogate, and advance source pointer */
		*chPtr = (Tcl_UniChar) (0xDC00 | (byte & 0x3FF));

		return 4;
	    }
#else
	    *chPtr = (Tcl_UniChar) (((byte & 0x07) << 18) | ((src[1] & 0x3F) << 12)
		    | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F));
	    if ((unsigned)(*chPtr - 0x10000) <= 0xFFFFF) {
		return 4;
	    }
#endif
	}

	/*
	 * A four-byte-character lead-byte not followed by two trail-bytes
	 * represents itself.
	 */
    }
#endif

    *chPtr = (Tcl_UniChar) byte;
    return 1;
}
 
/*
 *---------------------------------------------------------------------------
 *
 * Tcl_UtfToUniCharDString --
................................................................................
    int len, fullchar;
    Tcl_UniChar find = 0;

    while (1) {
	len = TclUtfToUniChar(src, &find);
	fullchar = find;
#if TCL_UTF_MAX == 4
	if (!len) {
	    len += TclUtfToUniChar(src, &find);
	    fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000;
	}
#endif
	if (fullchar == ch) {
	    return src;
	}
	if (*src == '\0') {
................................................................................
    const char *last;

    last = NULL;
    while (1) {
	len = TclUtfToUniChar(src, &find);
	fullchar = find;
#if TCL_UTF_MAX == 4
	if (!len) {
	    len += TclUtfToUniChar(src, &find);
	    fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000;
	}
#endif
	if (fullchar == ch) {
	    last = src;
	}
	if (*src == '\0') {
................................................................................
Tcl_UtfNext(
    const char *src)		/* The current location in the string. */
{
    Tcl_UniChar ch = 0;
    int len = TclUtfToUniChar(src, &ch);

#if TCL_UTF_MAX == 4
    if (len == 0) {
      len = TclUtfToUniChar(src, &ch);
    }
#endif
    return src + len;
}
 
/*
 *---------------------------------------------------------------------------
................................................................................

const char *
Tcl_UtfAtIndex(
    register const char *src,	/* The UTF-8 string. */
    register int index)		/* The position of the desired character. */
{
    Tcl_UniChar ch = 0;
    int len = 1;

    while (index-- > 0) {
	len = TclUtfToUniChar(src, &ch);
	src += len;
    }
#if TCL_UTF_MAX == 4
     if (!len) {
	/* Index points at character following High Surrogate */
	src += TclUtfToUniChar(src, &ch);
    }
#endif
    return src;
}
 
/*
................................................................................

int
Tcl_UtfToUpper(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, upChar;
    char *src, *dst;
    int bytes;

    /*
     * Iterate over the string until we hit the terminating null.
     */

    src = dst = str;
    while (*src) {
	bytes = TclUtfToUniChar(src, &ch);
	upChar = Tcl_UniCharToUpper(ch);

	/*
	 * To keep badly formed Utf strings from getting inflated by the
	 * conversion (thereby causing a segfault), only copy the upper case
	 * char to dst if its size is <= the original char.
	 */

	if (bytes < UtfCount(upChar)) {
	    memcpy(dst, src, (size_t) bytes);
	    dst += bytes;
	} else {
	    dst += Tcl_UniCharToUtf(upChar, dst);
	}
	src += bytes;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------
................................................................................

int
Tcl_UtfToLower(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, lowChar;
    char *src, *dst;
    int bytes;

    /*
     * Iterate over the string until we hit the terminating null.
     */

    src = dst = str;
    while (*src) {
	bytes = TclUtfToUniChar(src, &ch);
	lowChar = Tcl_UniCharToLower(ch);

	/*
	 * To keep badly formed Utf strings from getting inflated by the
	 * conversion (thereby causing a segfault), only copy the lower case
	 * char to dst if its size is <= the original char.
	 */

	if (bytes < UtfCount(lowChar)) {
	    memcpy(dst, src, (size_t) bytes);
	    dst += bytes;
	} else {
	    dst += Tcl_UniCharToUtf(lowChar, dst);
	}
	src += bytes;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------
................................................................................

int
Tcl_UtfToTitle(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, titleChar, lowChar;
    char *src, *dst;
    int bytes;

    /*
     * Capitalize the first character and then lowercase the rest of the
     * characters until we get to a null.
     */

    src = dst = str;

    if (*src) {
	bytes = TclUtfToUniChar(src, &ch);
	titleChar = Tcl_UniCharToTitle(ch);

	if (bytes < UtfCount(titleChar)) {
	    memcpy(dst, src, (size_t) bytes);
	    dst += bytes;
	} else {
	    dst += Tcl_UniCharToUtf(titleChar, dst);
	}
	src += bytes;
    }
    while (*src) {
	bytes = TclUtfToUniChar(src, &ch);
	lowChar = ch;
	/* Special exception for Georgian Asomtavruli chars, no titlecase. */
	if ((unsigned)(lowChar - 0x1C90) >= 0x30) {
	    lowChar = Tcl_UniCharToLower(lowChar);
	}

	if (bytes < UtfCount(lowChar)) {
	    memcpy(dst, src, (size_t) bytes);
	    dst += bytes;
	} else {
	    dst += Tcl_UniCharToUtf(lowChar, dst);
	}
	src += bytes;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------






|
<
|
|
|
|

|




|



|







 







|
|
|
|
|
>
>
>







 







|













>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







|







 







|







 







<
<
|
|
<
<
>

<
<
<
<

|
<
>
|


|

|












|







 







|
|







 







|
|







 







|
|







 







|






|
|







 







|







|








|
|
|



|







 







|







|








|
|
|



|







 







|









|


|
|
|



|


|






|
|
|



|







154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
...
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
...
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
...
367
368
369
370
371
372
373


374
375


376
377




378
379

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
...
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
...
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
...
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
...
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
...
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
...
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
...
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
	    return 2;
	}
	if (ch <= 0xFFFF) {
#if TCL_UTF_MAX > 3
	    if ((ch & 0xF800) == 0xD800) {
		if (ch & 0x0400) {
		    /* Low surrogate */
		    if (((buf[0] & 0xC0) == 0x80) && ((buf[1] & 0xCF) == 0)) {

			/* Previous Tcl_UniChar was a high surrogate, so combine */
			buf[2] = (char) ((ch & 0x3F) | 0x80);
			buf[1] |= (char) (((ch >> 6) & 0x0F) | 0x80);
			return 3;
		    }
		    /* Previous Tcl_UniChar was not a high surrogate, so just output */
		} else {
		    /* High surrogate */
		    ch += 0x40;
		    /* Fill buffer with specific 3-byte (invalid) byte combination,
		       so following low surrogate can recognize it and combine */
		    buf[2] = (char) ((ch << 4) & 0x30);
		    buf[1] = (char) (((ch >> 2) & 0x3F) | 0x80);
		    buf[0] = (char) (((ch >> 8) & 0x07) | 0xF0);
		    return 1;
		}
	    }
#endif
	    goto three;
	}

#if TCL_UTF_MAX > 3
................................................................................
	    buf[3] = (char) ((ch | 0x80) & 0xBF);
	    buf[2] = (char) (((ch >> 6) | 0x80) & 0xBF);
	    buf[1] = (char) (((ch >> 12) | 0x80) & 0xBF);
	    buf[0] = (char) ((ch >> 18) | 0xF0);
	    return 4;
	}
    } else if (ch == -1) {
	if (((buf[0] & 0xC0) == 0x80) && ((buf[1] & 0xCF) == 0)
		&& ((buf[-1] & 0xF8) == 0xF0)) {
	    ch = 0xD7C0 + ((buf[-1] & 0x07) << 8) + ((buf[0] & 0x3F) << 2)
		    + ((buf[1] & 0x30) >> 4);
	    buf[1] = (char) ((ch | 0x80) & 0xBF);
	    buf[0] = (char) (((ch >> 6) | 0x80) & 0xBF);
	    buf[-1] = (char) ((ch >> 12) | 0xE0);
	    return 2;
	}
#endif
    }

    ch = 0xFFFD;
three:
    buf[2] = (char) ((ch | 0x80) & 0xBF);
................................................................................

int
Tcl_UtfToUniChar(
    register const char *src,	/* The UTF-8 string. */
    register Tcl_UniChar *chPtr)/* Filled with the Tcl_UniChar represented by
				 * the UTF-8 string. */
{
    Tcl_UniChar byte;

    /*
     * Unroll 1 to 3 (or 4) byte UTF-8 sequences.
     */

    byte = *((unsigned char *) src);
    if (byte < 0xC0) {
	/*
	 * Handles properly formed UTF-8 characters between 0x01 and 0x7F.
	 * Also treats \0 and naked trail bytes 0x80 to 0xBF as valid
	 * characters representing themselves.
	 */

#if TCL_UTF_MAX == 4
	/* If *chPtr contains a high surrogate (produced by a previous
	 * Tcl_UtfToUniChar() call) and the next 3 bytes are UTF-8 continuation
	 * bytes, then we must produce a follow-up low surrogate. We only
	 * do that if the high surrogate matches the bits we encounter.
	 */
	if ((byte >= 0x80)
		&& (((((byte - 0x10) << 2) & 0xFC) | 0xD800) == (*chPtr & 0xFCFC))
		&& ((src[1] & 0xF0) == (((*chPtr << 4) & 0x30) | 0x80))
		&& ((src[2] & 0xC0) == 0x80)) {
	    *chPtr = ((src[1] & 0x0F) << 6) + (src[2] & 0x3F) + 0xDC00;
	    return 3;
	}
#endif
	*chPtr = byte;
	return 1;
    } else if (byte < 0xE0) {
	if ((src[1] & 0xC0) == 0x80) {
	    /*
	     * Two-byte-character lead-byte followed by a trail-byte.
	     */

	    *chPtr = (((byte & 0x1F) << 6) | (src[1] & 0x3F));
	    if ((unsigned)(*chPtr - 1) >= (UNICODE_SELF - 1)) {
		return 2;
	    }
	}

	/*
	 * A two-byte-character lead-byte not followed by trail-byte
................................................................................
	 */
    } else if (byte < 0xF0) {
	if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80)) {
	    /*
	     * Three-byte-character lead byte followed by two trail bytes.
	     */

	    *chPtr = (((byte & 0x0F) << 12)
		    | ((src[1] & 0x3F) << 6) | (src[2] & 0x3F));
	    if (*chPtr > 0x7FF) {
		return 3;
	    }
	}

	/*
................................................................................
#if TCL_UTF_MAX > 3
    else if (byte < 0xF8) {
	if (((src[1] & 0xC0) == 0x80) && ((src[2] & 0xC0) == 0x80) && ((src[3] & 0xC0) == 0x80)) {
	    /*
	     * Four-byte-character lead byte followed by three trail bytes.
	     */
#if TCL_UTF_MAX == 4


	    Tcl_UniChar high = (((byte & 0x07) << 8) | ((src[1] & 0x3F) << 2)
		    | ((src[2] & 0x3F) >> 4)) - 0x40;


	    if (high >= 0x400) {
		/* out of range, < 0x10000 or > 0x10ffff */




	    } else {
		/* produce high surrogate, advance source pointer */

		*chPtr = 0xD800 + high;
		return 1;
	    }
#else
	    *chPtr = (((byte & 0x07) << 18) | ((src[1] & 0x3F) << 12)
		    | ((src[2] & 0x3F) << 6) | (src[3] & 0x3F));
	    if ((*chPtr - 0x10000) <= 0xFFFFF) {
		return 4;
	    }
#endif
	}

	/*
	 * A four-byte-character lead-byte not followed by two trail-bytes
	 * represents itself.
	 */
    }
#endif

    *chPtr = byte;
    return 1;
}
 
/*
 *---------------------------------------------------------------------------
 *
 * Tcl_UtfToUniCharDString --
................................................................................
    int len, fullchar;
    Tcl_UniChar find = 0;

    while (1) {
	len = TclUtfToUniChar(src, &find);
	fullchar = find;
#if TCL_UTF_MAX == 4
	if ((ch >= 0xD800) && (len < 3)) {
	    len += TclUtfToUniChar(src + len, &find);
	    fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000;
	}
#endif
	if (fullchar == ch) {
	    return src;
	}
	if (*src == '\0') {
................................................................................
    const char *last;

    last = NULL;
    while (1) {
	len = TclUtfToUniChar(src, &find);
	fullchar = find;
#if TCL_UTF_MAX == 4
	if ((ch >= 0xD800) && (len < 3)) {
	    len += TclUtfToUniChar(src + len, &find);
	    fullchar = (((fullchar & 0x3ff) << 10) | (find & 0x3ff)) + 0x10000;
	}
#endif
	if (fullchar == ch) {
	    last = src;
	}
	if (*src == '\0') {
................................................................................
Tcl_UtfNext(
    const char *src)		/* The current location in the string. */
{
    Tcl_UniChar ch = 0;
    int len = TclUtfToUniChar(src, &ch);

#if TCL_UTF_MAX == 4
    if ((ch >= 0xD800) && (len < 3)) {
	len += TclUtfToUniChar(src + len, &ch);
    }
#endif
    return src + len;
}
 
/*
 *---------------------------------------------------------------------------
................................................................................

const char *
Tcl_UtfAtIndex(
    register const char *src,	/* The UTF-8 string. */
    register int index)		/* The position of the desired character. */
{
    Tcl_UniChar ch = 0;
    int len = 0;

    while (index-- > 0) {
	len = TclUtfToUniChar(src, &ch);
	src += len;
    }
#if TCL_UTF_MAX == 4
    if ((ch >= 0xD800) && (len < 3)) {
	/* Index points at character following high Surrogate */
	src += TclUtfToUniChar(src, &ch);
    }
#endif
    return src;
}
 
/*
................................................................................

int
Tcl_UtfToUpper(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, upChar;
    char *src, *dst;
    int len;

    /*
     * Iterate over the string until we hit the terminating null.
     */

    src = dst = str;
    while (*src) {
	len = TclUtfToUniChar(src, &ch);
	upChar = Tcl_UniCharToUpper(ch);

	/*
	 * To keep badly formed Utf strings from getting inflated by the
	 * conversion (thereby causing a segfault), only copy the upper case
	 * char to dst if its size is <= the original char.
	 */

	if (len < UtfCount(upChar)) {
	    memcpy(dst, src, len);
	    dst += len;
	} else {
	    dst += Tcl_UniCharToUtf(upChar, dst);
	}
	src += len;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------
................................................................................

int
Tcl_UtfToLower(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, lowChar;
    char *src, *dst;
    int len;

    /*
     * Iterate over the string until we hit the terminating null.
     */

    src = dst = str;
    while (*src) {
	len = TclUtfToUniChar(src, &ch);
	lowChar = Tcl_UniCharToLower(ch);

	/*
	 * To keep badly formed Utf strings from getting inflated by the
	 * conversion (thereby causing a segfault), only copy the lower case
	 * char to dst if its size is <= the original char.
	 */

	if (len < UtfCount(lowChar)) {
	    memcpy(dst, src, len);
	    dst += len;
	} else {
	    dst += Tcl_UniCharToUtf(lowChar, dst);
	}
	src += len;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------
................................................................................

int
Tcl_UtfToTitle(
    char *str)			/* String to convert in place. */
{
    Tcl_UniChar ch = 0, titleChar, lowChar;
    char *src, *dst;
    int len;

    /*
     * Capitalize the first character and then lowercase the rest of the
     * characters until we get to a null.
     */

    src = dst = str;

    if (*src) {
	len = TclUtfToUniChar(src, &ch);
	titleChar = Tcl_UniCharToTitle(ch);

	if (len < UtfCount(titleChar)) {
	    memcpy(dst, src, len);
	    dst += len;
	} else {
	    dst += Tcl_UniCharToUtf(titleChar, dst);
	}
	src += len;
    }
    while (*src) {
	len = TclUtfToUniChar(src, &ch);
	lowChar = ch;
	/* Special exception for Georgian Asomtavruli chars, no titlecase. */
	if ((unsigned)(lowChar - 0x1C90) >= 0x30) {
	    lowChar = Tcl_UniCharToLower(lowChar);
	}

	if (len < UtfCount(lowChar)) {
	    memcpy(dst, src, len);
	    dst += len;
	} else {
	    dst += Tcl_UniCharToUtf(lowChar, dst);
	}
	src += len;
    }
    *dst = '\0';
    return (dst - str);
}
 
/*
 *----------------------------------------------------------------------

Changes to generic/tclUtil.c.

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
char
Tcl_Backslash(
    const char *src,		/* Points to the backslash character of a
				 * backslash sequence. */
    int *readPtr)		/* Fill in with number of characters read from
				 * src, unless NULL. */
{
    char buf[TCL_UTF_MAX];
    Tcl_UniChar ch = 0;

    Tcl_UtfBackslash(src, readPtr, buf);
    TclUtfToUniChar(buf, &ch);
    return (char) ch;
}
 






|







1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
char
Tcl_Backslash(
    const char *src,		/* Points to the backslash character of a
				 * backslash sequence. */
    int *readPtr)		/* Fill in with number of characters read from
				 * src, unless NULL. */
{
    char buf[TCL_UTF_MAX] = "";
    Tcl_UniChar ch = 0;

    Tcl_UtfBackslash(src, readPtr, buf);
    TclUtfToUniChar(buf, &ch);
    return (char) ch;
}
 

Changes to library/tclIndex.

69
70
71
72
73
74
75



set auto_index(::tcl::tm::add) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::remove) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::list) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::Defaults) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::UnknownHandler) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::roots) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::path) [list source [file join $dir tm.tcl]]









>
>
>
69
70
71
72
73
74
75
76
77
78
set auto_index(::tcl::tm::add) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::remove) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::list) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::Defaults) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::UnknownHandler) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::roots) [list source [file join $dir tm.tcl]]
set auto_index(::tcl::tm::path) [list source [file join $dir tm.tcl]]
if {[namespace exists ::tcl::unsupported]} {
    set auto_index(timerate) {namespace import ::tcl::unsupported::timerate}
}

Changes to libtommath/LICENSE.

1
2
3
4






















LibTomMath is hereby released into the Public Domain.  

-- Tom St Denis























|

|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
                          The LibTom license

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.

In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org/>

Added libtommath/README.md.


















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# libtommath

This is the git repository for [LibTomMath](http://www.libtom.net/LibTomMath/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.

## Build Status

master: [![Build Status](https://api.travis-ci.org/libtom/libtommath.png?branch=master)](https://travis-ci.org/libtom/libtommath)

develop: [![Build Status](https://api.travis-ci.org/libtom/libtommath.png?branch=develop)](https://travis-ci.org/libtom/libtommath)

API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/)

## Summary

The `develop` branch contains the in-development version. Stable releases are tagged.

Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`. There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used.

The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms.

## Testing

Tests are located in `demo/` and can be built in two flavors.
* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
* `make test_standalone` creates a stand-alone test binary that executes several test routines.

Changes to libtommath/bn_error.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43




#include <tommath.h>
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

static const struct {
     int code;
     char *msg;
} msgs[] = {
     { MP_OKAY, "Successful" },
     { MP_MEM,  "Out of heap" },
     { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
char *mp_error_to_string(int code)
{
   int x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
       if (msgs[x].code == code) {
          return msgs[x].msg;
       }
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif




|










|
<
<
<



|
|

|
|
|



|

|


|
|
|
|







>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

static const struct {
   int code;
   const char *msg;
} msgs[] = {
   { MP_OKAY, "Successful" },
   { MP_MEM,  "Out of heap" },
   { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
   size_t x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) {
      if (msgs[x].code == code) {
         return msgs[x].msg;
      }
   }

   /* generic reply for invalid code */
   return "Invalid error code";
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_mp_invmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48






49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136








137
138
139
140

141
142
143
144




#include <tommath.h>
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)

{
  mp_int  x, y, u, v, B, D;
  int     res, neg;

  /* 2. [modified] b must be odd   */
  if (mp_iseven (b) == 1) {
    return MP_VAL;
  }

  /* init all our temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x == modulus, y == value to invert */
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* we need y = |a| */
  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }







  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if B is odd then */
    if (mp_isodd (&B) == 1) {
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* B = B/2 */
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
      /* D = (D-x)/2 */
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
    /* D = D/2 */
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0) {
    goto top;
  }

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* b is now the inverse */
  neg = a->sign;
  while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }








  mp_exch (&D, c);
  c->sign = neg;
  res = MP_OKAY;


LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  return res;
}
#endif




|










|
<
|
<
<

|
|

|


<
>

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

>
>
>
>
>
>
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
|
|
|

>
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "tommath_private.h"
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* computes the modular inverse via binary extended euclidean algorithm,
 * that is c = 1/a mod b
 *
 * Based on slow invmod except this is optimized for the case where b is
 * odd as per HAC Note 14.64 on pp. 610
 */

int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, B, D;
   int     res, neg;

   /* 2. [modified] b must be odd   */
   if (mp_iseven(b) == MP_YES) {
      return MP_VAL;
   }

   /* init all our temps */
   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x == modulus, y == value to invert */
   if ((res = mp_copy(b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* we need y = |a| */
   if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* if one of x,y is zero return an error! */
   if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if B is odd then */
      if (mp_isodd(&B) == MP_YES) {
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* B = B/2 */
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if D is odd then */
      if (mp_isodd(&D) == MP_YES) {
         /* D = (D-x)/2 */
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* D = D/2 */
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO) {
      goto top;
   }

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* b is now the inverse */
   neg = a->sign;
   while (D.sign == MP_NEG) {
      if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&D, b) != MP_LT) {
      if ((res = mp_sub(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   mp_exch(&D, c);
   c->sign = neg;
   res = MP_OKAY;

LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_mp_montgomery_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30




31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168




#include <tommath.h>
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
  int     ix, res, olduse;
  mp_word W[MP_WARRAY];





  /* get old used count */
  olduse = x->used;

  /* grow a as required */
  if (x->alloc < n->used + 1) {
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
      return res;
    }
  }

  /* first we have to get the digits of the input into
   * an array of double precision words W[...]
   */
  {
    register mp_word *_W;
    register mp_digit *tmpx;

    /* alias for the W[] array */
    _W   = W;

    /* alias for the digits of  x*/
    tmpx = x->dp;

    /* copy the digits of a into W[0..a->used-1] */
    for (ix = 0; ix < x->used; ix++) {
      *_W++ = *tmpx++;
    }

    /* zero the high words of W[a->used..m->used*2] */
    for (; ix < n->used * 2 + 1; ix++) {

      *_W++ = 0;
    }
  }

  /* now we proceed to zero successive digits
   * from the least significant upwards
   */
  for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * m' mod b
     *
     * We avoid a double precision multiplication (which isn't required)
     * by casting the value down to a mp_digit.  Note this requires
     * that W[ix-1] have  the carry cleared (see after the inner loop)
     */
    register mp_digit mu;
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

    /* a = a + mu * m * b**i
     *
     * This is computed in place and on the fly.  The multiplication
     * by b**i is handled by offseting which columns the results
     * are added to.
     *
     * Note the comba method normally doesn't handle carries in the
     * inner loop In this case we fix the carry from the previous
     * column since the Montgomery reduction requires digits of the
     * result (so far) [see above] to work.  This is
     * handled by fixing up one carry after the inner loop.  The
     * carry fixups are done in order so after these loops the
     * first m->used words of W[] have the carries fixed
     */
    {
      register int iy;
      register mp_digit *tmpn;
      register mp_word *_W;

      /* alias for the digits of the modulus */
      tmpn = n->dp;

      /* Alias for the columns set by an offset of ix */
      _W = W + ix;

      /* inner loop */
      for (iy = 0; iy < n->used; iy++) {
          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);

      }
    }

    /* now fix carry for next digit, W[ix+1] */
    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
  }

  /* now we have to propagate the carries and
   * shift the words downward [all those least
   * significant digits we zeroed].
   */
  {
    register mp_digit *tmpx;
    register mp_word *_W, *_W1;

    /* nox fix rest of carries */

    /* alias for current word */
    _W1 = W + ix;

    /* alias for next word, where the carry goes */
    _W = W + ++ix;

    for (; ix <= n->used * 2 + 1; ix++) {

      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    }

    /* copy out, A = A/b**n
     *
     * The result is A/b**n but instead of converting from an
     * array of mp_word to mp_digit than calling mp_rshd
     * we just copy them in the right order
     */

    /* alias for destination word */
    tmpx = x->dp;

    /* alias for shifted double precision result */
    _W = W + n->used;

    for (ix = 0; ix < n->used + 1; ix++) {
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));

    }

    /* zero oldused digits, if the input a was larger than
     * m->used+1 we'll have to clear the digits
     */
    for (; ix < olduse; ix++) {
      *tmpx++ = 0;
    }
  }

  /* set the max used and clamp */
  x->used = n->used + 1;
  mp_clamp (x);

  /* if A >= m then A = A - m */
  if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
  }
  return MP_OKAY;
}
#endif




|










|
<
<
<










|

|
|

>
>
>
>
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
<
>
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
<
>
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

<
>
|
|

|
|
|
|
|
|

|
|

|
|

|
<
>
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "tommath_private.h"
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int     ix, res, olduse;
   mp_word W[MP_WARRAY];

   if (x->used > (int)MP_WARRAY) {
      return MP_VAL;
   }

   /* get old used count */
   olduse = x->used;

   /* grow a as required */
   if (x->alloc < (n->used + 1)) {
      if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* first we have to get the digits of the input into
    * an array of double precision words W[...]
    */
   {
      mp_word *_W;
      mp_digit *tmpx;

      /* alias for the W[] array */
      _W   = W;

      /* alias for the digits of  x*/
      tmpx = x->dp;

      /* copy the digits of a into W[0..a->used-1] */
      for (ix = 0; ix < x->used; ix++) {
         *_W++ = *tmpx++;
      }

      /* zero the high words of W[a->used..m->used*2] */

      for (; ix < ((n->used * 2) + 1); ix++) {
         *_W++ = 0;
      }
   }

   /* now we proceed to zero successive digits
    * from the least significant upwards
    */
   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * m' mod b
       *
       * We avoid a double precision multiplication (which isn't required)
       * by casting the value down to a mp_digit.  Note this requires
       * that W[ix-1] have  the carry cleared (see after the inner loop)
       */
      mp_digit mu;
      mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;

      /* a = a + mu * m * b**i
       *
       * This is computed in place and on the fly.  The multiplication
       * by b**i is handled by offseting which columns the results
       * are added to.
       *
       * Note the comba method normally doesn't handle carries in the
       * inner loop In this case we fix the carry from the previous
       * column since the Montgomery reduction requires digits of the
       * result (so far) [see above] to work.  This is
       * handled by fixing up one carry after the inner loop.  The
       * carry fixups are done in order so after these loops the
       * first m->used words of W[] have the carries fixed
       */
      {
         int iy;
         mp_digit *tmpn;
         mp_word *_W;

         /* alias for the digits of the modulus */
         tmpn = n->dp;

         /* Alias for the columns set by an offset of ix */
         _W = W + ix;

         /* inner loop */
         for (iy = 0; iy < n->used; iy++) {

            *_W++ += (mp_word)mu * (mp_word)*tmpn++;
         }
      }

      /* now fix carry for next digit, W[ix+1] */
      W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT;
   }

   /* now we have to propagate the carries and
    * shift the words downward [all those least
    * significant digits we zeroed].
    */
   {
      mp_digit *tmpx;
      mp_word *_W, *_W1;

      /* nox fix rest of carries */

      /* alias for current word */
      _W1 = W + ix;

      /* alias for next word, where the carry goes */
      _W = W + ++ix;


      for (; ix <= ((n->used * 2) + 1); ix++) {
         *_W++ += *_W1++ >> (mp_word)DIGIT_BIT;
      }

      /* copy out, A = A/b**n
       *
       * The result is A/b**n but instead of converting from an
       * array of mp_word to mp_digit than calling mp_rshd
       * we just copy them in the right order
       */

      /* alias for destination word */
      tmpx = x->dp;

      /* alias for shifted double precision result */
      _W = W + n->used;

      for (ix = 0; ix < (n->used + 1); ix++) {

         *tmpx++ = *_W++ & (mp_word)MP_MASK;
      }

      /* zero oldused digits, if the input a was larger than
       * m->used+1 we'll have to clear the digits
       */
      for (; ix < olduse; ix++) {
         *tmpx++ = 0;
      }
   }

   /* set the max used and clamp */
   x->used = n->used + 1;
   mp_clamp(x);

   /* if A >= m then A = A - m */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_mul_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103




#include <tommath.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of 
 * digits of output so if say only a half-product is required 
 * you don't have to compute the upper half (a feature 
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  register mp_word  _W;

  /* grow the destination as required */
  if (c->alloc < digs) {
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = MIN(digs, a->used + b->used);

  /* clear the carry */
  _W = 0;
  for (ix = 0; ix < pa; ix++) { 
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially 
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
 }

  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    register mp_digit *tmpc;
    tmpc = c->dp;
    for (ix = 0; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|










|
<
<
<




|
|
|



|
|
|





|

|
|
|

|
|
|
|
|
|

|
|

|
|
|












|






|




|


|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((res = mp_grow(c, digs)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;

      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_mul_high_digs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94




#include <tommath.h>
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
  int     olduse, res, pa, ix, iz;
  mp_digit W[MP_WARRAY];
  mp_word  _W;

  /* grow the destination as required */
  pa = a->used + b->used;
  if (c->alloc < pa) {
    if ((res = mp_grow (c, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  pa = a->used + b->used;
  _W = 0;
  for (ix = digs; ix < pa; ix++) { 
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its 
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* store term */
      W[ix] = ((mp_digit)_W) & MP_MASK;

      /* make next carry */
      _W = _W >> ((mp_word)DIGIT_BIT);
  }
  
  /* setup dest */
  olduse  = c->used;
  c->used = pa;

  {
    register mp_digit *tmpc;

    tmpc = c->dp + digs;
    for (ix = digs; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      *tmpc++ = W[ix];
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpc++ = 0;
    }
  }
  mp_clamp (c);
  return MP_OKAY;
}
#endif




|










|
<
<
<











|

|
|
|

|
|
|
|
|
|
|

|
|
|
|











|






|



|


|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   pa = a->used + b->used;
   if (c->alloc < pa) {
      if ((res = mp_grow(c, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = a->used + b->used;
   _W = 0;
   for (ix = digs; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;

      tmpc = c->dp + digs;
      for (ix = digs; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_fast_s_mp_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110




#include <tommath.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that 
 * starts closer to zero] can't equal the offset of tmpy.  
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those 
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
  int       olduse, res, pa, ix, iz;
  mp_digit   W[MP_WARRAY], *tmpx;
  mp_word   W1;

  /* grow the destination as required */
  pa = a->used + a->used;
  if (b->alloc < pa) {
    if ((res = mp_grow (b, pa)) != MP_OKAY) {
      return res;
    }
  }

  /* number of output digits to produce */
  W1 = 0;
  for (ix = 0; ix < pa; ix++) { 
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

................................................................................
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty 
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, (ty-tx+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
      }

      /* double the inner product and add carry */
      _W = _W + _W + W1;

      /* even columns have the square term in them */
      if ((ix&1) == 0) {
         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
      }

      /* store it */
      W[ix] = (mp_digit)(_W & MP_MASK);

      /* make next carry */
      W1 = _W >> ((mp_word)DIGIT_BIT);
  }

  /* setup dest */
  olduse  = b->used;
  b->used = a->used+a->used;

  {
    mp_digit *tmpb;
    tmpb = b->dp;
    for (ix = 0; ix < pa; ix++) {
      *tmpb++ = W[ix] & MP_MASK;
    }

    /* clear unused digits [that existed in the old copy of c] */
    for (; ix < olduse; ix++) {
      *tmpb++ = 0;
    }
  }
  mp_clamp (b);
  return MP_OKAY;
}
#endif




|










|
<
<
<



|
|

|





|

|
|
|

|
|
|
|
|
|
|

|
|
|







 







|



|



|






|
|



|


|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
..
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that
 * starts closer to zero] can't equal the offset of tmpy.
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
   int       olduse, res, pa, ix, iz;
   mp_digit   W[MP_WARRAY], *tmpx;
   mp_word   W1;

   /* grow the destination as required */
   pa = a->used + a->used;
   if (b->alloc < pa) {
      if ((res = mp_grow(b, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   W1 = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

................................................................................
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* double the inner product and add carry */
      _W = _W + _W + W1;

      /* even columns have the square term in them */
      if (((unsigned)ix & 1u) == 0u) {
         _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1];
      }

      /* store it */
      W[ix] = _W & MP_MASK;

      /* make next carry */
      W1 = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = b->used;
   b->used = a->used+a->used;

   {
      mp_digit *tmpb;
      tmpb = b->dp;
      for (ix = 0; ix < pa; ix++) {
         *tmpb++ = W[ix] & MP_MASK;
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpb++ = 0;
      }
   }
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_2expt.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
int
mp_2expt (mp_int * a, int b)
{
  int     res;

  /* zero a as per default */
  mp_zero (a);

  /* grow a to accomodate the single bit */
  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {

    return res;
  }

  /* set the used count of where the bit will go */
  a->used = b / DIGIT_BIT + 1;

  /* put the single bit in its place */
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

  return MP_OKAY;
}
#endif




|










|
<
|
<
<

|




|
<

|

|
|

|
<
>
|
|

|
|

|
|

|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* computes a = 2**b
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
int mp_2expt(mp_int *a, int b)

{
   int     res;

   /* zero a as per default */
   mp_zero(a);

   /* grow a to accomodate the single bit */

   if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
      return res;
   }

   /* set the used count of where the bit will go */
   a->used = (b / DIGIT_BIT) + 1;

   /* put the single bit in its place */
   a->dp[b / DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % DIGIT_BIT);

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_abs.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* b = |a| 
 *
 * Simple function copies the input and fixes the sign to positive
 */
int
mp_abs (mp_int * a, mp_int * b)
{
  int     res;

  /* copy a to b */
  if (a != b) {
     if ((res = mp_copy (a, b)) != MP_OKAY) {
       return res;
     }
  }

  /* force the sign of b to positive */
  b->sign = MP_ZPOS;

  return MP_OKAY;
}
#endif




|










|
<
|
<
<

|



|
<

|

|
|
|
|
|
|

|
|

|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "tommath_private.h"
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* b = |a|
 *
 * Simple function copies the input and fixes the sign to positive
 */
int mp_abs(const mp_int *a, mp_int *b)

{
   int     res;

   /* copy a to b */
   if (a != b) {
      if ((res = mp_copy(a, b)) != MP_OKAY) {
         return res;
      }
   }

   /* force the sign of b to positive */
   b->sign = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_add.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49




#include <tommath.h>
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* high level addition (handles signs) */
int mp_add (mp_int * a, mp_int * b, mp_int * c)
{
  int     sa, sb, res;

  /* get sign of both inputs */
  sa = a->sign;
  sb = b->sign;

  /* handle two cases, not four */
  if (sa == sb) {
    /* both positive or both negative */
    /* add their magnitudes, copy the sign */
    c->sign = sa;
    res = s_mp_add (a, b, c);
  } else {
    /* one positive, the other negative */
    /* subtract the one with the greater magnitude from */
    /* the one of the lesser magnitude.  The result gets */
    /* the sign of the one with the greater magnitude. */
    if (mp_cmp_mag (a, b) == MP_LT) {
      c->sign = sb;
      res = s_mp_sub (b, a, c);
    } else {
      c->sign = sa;
      res = s_mp_sub (a, b, c);
    }
  }
  return res;
}

#endif




|










|
<
<
<



|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include "tommath_private.h"
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* high level addition (handles signs) */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     sa, sb, res;

   /* get sign of both inputs */
   sa = a->sign;
   sb = b->sign;

   /* handle two cases, not four */
   if (sa == sb) {
      /* both positive or both negative */
      /* add their magnitudes, copy the sign */
      c->sign = sa;
      res = s_mp_add(a, b, c);
   } else {
      /* one positive, the other negative */
      /* subtract the one with the greater magnitude from */
      /* the one of the lesser magnitude.  The result gets */
      /* the sign of the one with the greater magnitude. */
      if (mp_cmp_mag(a, b) == MP_LT) {
         c->sign = sb;
         res = s_mp_sub(b, a, c);
      } else {
         c->sign = sa;
         res = s_mp_sub(a, b, c);
      }
   }
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_add_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98



99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <tommath.h>
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtom.org
 */

/* single digit addition */
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, ix, oldused;
  mp_digit *tmpa, *tmpc, mu;

  /* grow c as required */
  if (c->alloc < a->used + 1) {
     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
        return res;
     }
  }

  /* if a is negative and |a| >= b, call c = |a| - b */

  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
     /* temporarily fix sign of a */
     a->sign = MP_ZPOS;

     /* c = |a| - b */
     res = mp_sub_d(a, b, c);

     /* fix sign  */
     a->sign = c->sign = MP_NEG;

     /* clamp */
     mp_clamp(c);

     return res;
  }

  /* old number of used digits in c */
  oldused = c->used;

  /* sign always positive */
  c->sign = MP_ZPOS;

  /* source alias */
  tmpa    = a->dp;

  /* destination alias */
  tmpc    = c->dp;

  /* if a is positive */
  if (a->sign == MP_ZPOS) {
     /* add digit, after this we're propagating
      * the carry.
      */
     *tmpc   = *tmpa++ + b;
     mu      = *tmpc >> DIGIT_BIT;
     *tmpc++ &= MP_MASK;

     /* now handle rest of the digits */
     for (ix = 1; ix < a->used; ix++) {
        *tmpc   = *tmpa++ + mu;
        mu      = *tmpc >> DIGIT_BIT;
        *tmpc++ &= MP_MASK;
     }
     /* set final carry */
     ix++;
     *tmpc++  = mu;

     /* setup size */
     c->used = a->used + 1;
  } else {
     /* a was negative and |a| < b */
     c->used  = 1;

     /* the result is a single digit */
     if (a->used == 1) {
        *tmpc++  =  b - a->dp[0];
     } else {
        *tmpc++  =  b;
     }

     /* setup count so the clearing of oldused
      * can fall through correctly
      */
     ix       = 1;
  }




  /* now zero to oldused */
  while (ix++ < oldused) {
     *tmpc++ = 0;
  }
  mp_clamp(c);

  return MP_OKAY;
}

#endif

/* $Source$ */
/* $Revision: 0.41 $ */
/* $Date: 2007-04-18 09:58:18 +0000 $ */
|










|
<
<
<



<
|

|
|

|
|
|
|
|
|

|
>
|
|
|

|
|

|
|

|
|

|
|

|
|

<
<
<
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

>
>
>
|
|
|
|
|

|




|
|
|
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include "tommath_private.h"
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* single digit addition */

int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
   int     res, ix, oldused;
   mp_digit *tmpa, *tmpc, mu;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* if a is negative and |a| >= b, call c = |a| - b */
   if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
      mp_int a_ = *a;
      /* temporarily fix sign of a */
      a_.sign = MP_ZPOS;

      /* c = |a| - b */
      res = mp_sub_d(&a_, b, c);

      /* fix sign  */
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return res;
   }

   /* old number of used digits in c */
   oldused = c->used;




   /* source alias */
   tmpa    = a->dp;

   /* destination alias */
   tmpc    = c->dp;

   /* if a is positive */
   if (a->sign == MP_ZPOS) {
      /* add digit, after this we're propagating
       * the carry.
       */
      *tmpc   = *tmpa++ + b;
      mu      = *tmpc >> DIGIT_BIT;
      *tmpc++ &= MP_MASK;

      /* now handle rest of the digits */
      for (ix = 1; ix < a->used; ix++) {
         *tmpc   = *tmpa++ + mu;
         mu      = *tmpc >> DIGIT_BIT;
         *tmpc++ &= MP_MASK;
      }
      /* set final carry */
      ix++;
      *tmpc++  = mu;

      /* setup size */
      c->used = a->used + 1;
   } else {
      /* a was negative and |a| < b */
      c->used  = 1;

      /* the result is a single digit */
      if (a->used == 1) {
         *tmpc++  =  b - a->dp[0];
      } else {
         *tmpc++  =  b;
      }

      /* setup count so the clearing of oldused
       * can fall through correctly
       */
      ix       = 1;
   }

   /* sign always positive */
   c->sign = MP_ZPOS;

   /* now zero to oldused */
   while (ix++ < oldused) {
      *tmpc++ = 0;
   }
   mp_clamp(c);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_addmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37




#include <tommath.h>
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* d = a + b (mod c) */
int
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  int     res;
  mp_int  t;

  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_add (a, b, &t)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }
  res = mp_mod (&t, c, d);
  mp_clear (&t);
  return res;
}
#endif




|










|
<
<
<



|
<

|
|

|
|
|

|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)

{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_add(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_and.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53




#include <tommath.h>
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* AND two ints together */
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
  int     res, ix, px;
  mp_int  t, *x;


  if (a->used > b->used) {
    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
      return res;
    }
    px = b->used;
    x = b;
  } else {
    if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
      return res;
    }
    px = a->used;
    x = a;
  }

  for (ix = 0; ix < px; ix++) {
    t.dp[ix] &= x->dp[ix];
  }

  /* zero digits above the last from the smallest mp_int */
  for (; ix < t.used; ix++) {
    t.dp[ix] = 0;
  }

  mp_clamp (&t);
  mp_exch (c, &t);
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|










|
<
<
<



|
<

|
|
>

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* AND two ints together */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)

{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;

   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }
      px = b->used;
      x = b;
   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;
      x = a;
   }

   for (ix = 0; ix < px; ix++) {
      t.dp[ix] &= x->dp[ix];
   }

   /* zero digits above the last from the smallest mp_int */
   for (; ix < t.used; ix++) {
      t.dp[ix] = 0;
   }

   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clamp.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */
void
mp_clamp (mp_int * a)
{
  /* decrease used while the most significant digit is
   * zero.
   */
  while (a->used > 0 && a->dp[a->used - 1] == 0) {
    --(a->used);
  }

  /* reset the sign flag if used == 0 */
  if (a->used == 0) {
    a->sign = MP_ZPOS;
  }
}
#endif




|










|
<
|
<
<

|






<
|

|
|
|
|
|
|

|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* trim unused digits
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */

void mp_clamp(mp_int *a)
{
   /* decrease used while the most significant digit is
    * zero.
    */
   while ((a->used > 0) && (a->dp[a->used - 1] == 0u)) {
      --(a->used);
   }

   /* reset the sign flag if used == 0 */
   if (a->used == 0) {
      a->sign = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clear.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* clear one (frees)  */
void
mp_clear (mp_int * a)
{
  int i;

  /* only do anything if a hasn't been freed previously */
  if (a->dp != NULL) {
    /* first zero the digits */
    for (i = 0; i < a->used; i++) {
        a->dp[i] = 0;
    }

    /* free ram */
    XFREE(a->dp);

    /* reset members to make debugging easier */
    a->dp    = NULL;
    a->alloc = a->used = 0;
    a->sign  = MP_ZPOS;
  }
}
#endif




|










|
<
<
<



<
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* clear one (frees)  */

void mp_clear(mp_int *a)
{
   int i;

   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {
      /* first zero the digits */
      for (i = 0; i < a->used; i++) {
         a->dp[i] = 0;
      }

      /* free ram */
      XFREE(a->dp);

      /* reset members to make debugging easier */
      a->dp    = NULL;
      a->alloc = a->used = 0;
      a->sign  = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_clear_multi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30




#include <tommath.h>
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */
#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...) 
{
    mp_int* next_mp = mp;
    va_list args;
    va_start(args, mp);
    while (next_mp != NULL) {
        mp_clear(next_mp);
        next_mp = va_arg(args, mp_int*);
    }
    va_end(args);
}
#endif




|










|
|
|
<
<


|

|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */



#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...)
{
   mp_int *next_mp = mp;
   va_list args;
   va_start(args, mp);
   while (next_mp != NULL) {
      mp_clear(next_mp);
      next_mp = va_arg(args, mp_int *);
   }
   va_end(args);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* compare two ints (signed)*/
int
mp_cmp (const mp_int * a, const mp_int * b)
{
  /* compare based on sign */
  if (a->sign != b->sign) {
     if (a->sign == MP_NEG) {
        return MP_LT;
     } else {
        return MP_GT;
     }
  }
  
  /* compare digits */
  if (a->sign == MP_NEG) {
     /* if negative compare opposite direction */
     return mp_cmp_mag(b, a);
  } else {
     return mp_cmp_mag(a, b);
  }
}
#endif




|










|
<
<
<



<
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "tommath_private.h"
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* compare two ints (signed)*/

int mp_cmp(const mp_int *a, const mp_int *b)
{
   /* compare based on sign */
   if (a->sign != b->sign) {
      if (a->sign == MP_NEG) {
         return MP_LT;
      } else {
         return MP_GT;
      }
   }

   /* compare digits */
   if (a->sign == MP_NEG) {
      /* if negative compare opposite direction */
      return mp_cmp_mag(b, a);
   } else {
      return mp_cmp_mag(a, b);
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40




#include <tommath.h>
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* compare a digit */
int mp_cmp_d(const mp_int * a, mp_digit b)
{
  /* compare based on sign */
  if (a->sign == MP_NEG) {
    return MP_LT;
  }

  /* compare based on magnitude */
  if (a->used > 1) {
    return MP_GT;
  }

  /* compare the only digit of a to b */
  if (a->dp[0] > b) {
    return MP_GT;
  } else if (a->dp[0] < b) {
    return MP_LT;
  } else {
    return MP_EQ;
  }
}
#endif




|










|
<
<
<



|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* compare a digit */
int mp_cmp_d(const mp_int *a, mp_digit b)
{
   /* compare based on sign */
   if (a->sign == MP_NEG) {
      return MP_LT;
   }

   /* compare based on magnitude */
   if (a->used > 1) {
      return MP_GT;
   }

   /* compare the only digit of a to b */
   if (a->dp[0] > b) {
      return MP_GT;
   } else if (a->dp[0] < b) {
      return MP_LT;
   } else {
      return MP_EQ;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cmp_mag.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51




#include <tommath.h>
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag (const mp_int * a, const mp_int * b)
{
  int     n;
  mp_digit *tmpa, *tmpb;

  /* compare based on # of non-zero digits */
  if (a->used > b->used) {
    return MP_GT;
  }
  
  if (a->used < b->used) {
    return MP_LT;
  }

  /* alias for a */
  tmpa = a->dp + (a->used - 1);

  /* alias for b */
  tmpb = b->dp + (a->used - 1);

  /* compare based on digits  */
  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
    if (*tmpa > *tmpb) {
      return MP_GT;
    }

    if (*tmpa < *tmpb) {
      return MP_LT;
    }
  }
  return MP_EQ;
}
#endif




|










|
<
<
<



|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "tommath_private.h"
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag(const mp_int *a, const mp_int *b)
{
   int     n;
   mp_digit *tmpa, *tmpb;

   /* compare based on # of non-zero digits */
   if (a->used > b->used) {
      return MP_GT;
   }

   if (a->used < b->used) {
      return MP_LT;
   }

   /* alias for a */
   tmpa = a->dp + (a->used - 1);

   /* alias for b */
   tmpb = b->dp + (a->used - 1);

   /* compare based on digits  */
   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
      if (*tmpa > *tmpb) {
         return MP_GT;
      }

      if (*tmpa < *tmpb) {
         return MP_LT;
      }
   }
   return MP_EQ;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_cnt_lsb.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49




#include <tommath.h>
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

static const int lnz[16] = { 
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == 1) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; x < a->used && a->dp[x] == 0; x++);
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1) == 0) {
      do {
         qq  = q & 15;
         x  += lnz[qq];
         q >>= 4;
      } while (qq == 0);
   }
   return x;
}

#endif




|










|
<
|
<
<

|










|




|




|

|


|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include "tommath_private.h"
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



static const int lnz[16] = {
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == MP_YES) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1u) == 0u) {
      do {
         qq  = q & 15u;
         x  += lnz[qq];
         q >>= 4;
      } while (qq == 0u);
   }
   return x;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_complement.c.


















































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_COMPLEMENT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = ~a */
int mp_complement(const mp_int *a, mp_int *b)
{
   int res = mp_neg(a, b);
   return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_copy.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64




#include <tommath.h>
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* copy, b = a */
int
mp_copy (const mp_int * a, mp_int * b)
{
  int     res, n;

  /* if dst == src do nothing */
  if (a == b) {
    return MP_OKAY;
  }

  /* grow dest */
  if (b->alloc < a->used) {
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
     }
  }

  /* zero b and copy the parameters over */
  {
    register mp_digit *tmpa, *tmpb;

    /* pointer aliases */

    /* source */
    tmpa = a->dp;

    /* destination */
    tmpb = b->dp;

    /* copy all the digits */
    for (n = 0; n < a->used; n++) {
      *tmpb++ = *tmpa++;
    }

    /* clear high digits */
    for (; n < b->used; n++) {
      *tmpb++ = 0;
    }
  }

  /* copy used count and sign */
  b->used = a->used;
  b->sign = a->sign;
  return MP_OKAY;
}
#endif




|










|
<
<
<



<
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include "tommath_private.h"
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* copy, b = a */

int mp_copy(const mp_int *a, mp_int *b)
{
   int     res, n;

   /* if dst == src do nothing */
   if (a == b) {
      return MP_OKAY;
   }

   /* grow dest */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   /* zero b and copy the parameters over */
   {
      mp_digit *tmpa, *tmpb;

      /* pointer aliases */

      /* source */
      tmpa = a->dp;

      /* destination */
      tmpb = b->dp;

      /* copy all the digits */
      for (n = 0; n < a->used; n++) {
         *tmpb++ = *tmpa++;
      }

      /* clear high digits */
      for (; n < b->used; n++) {
         *tmpb++ = 0;
      }
   }

   /* copy used count and sign */
   b->used = a->used;
   b->sign = a->sign;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_count_bits.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41




#include <tommath.h>
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* returns the number of bits in an int */
int
mp_count_bits (const mp_int * a)
{
  int     r;
  mp_digit q;

  /* shortcut */
  if (a->used == 0) {
    return 0;
  }

  /* get number of digits and add that */
  r = (a->used - 1) * DIGIT_BIT;
  
  /* take the last digit and count the bits in it */
  q = a->dp[a->used - 1];
  while (q > ((mp_digit) 0)) {
    ++r;
    q >>= ((mp_digit) 1);
  }
  return r;
}
#endif




|










|
<
<
<



<
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* returns the number of bits in an int */

int mp_count_bits(const mp_int *a)
{
   int     r;
   mp_digit q;

   /* shortcut */
   if (a->used == 0) {
      return 0;
   }

   /* get number of digits and add that */
   r = (a->used - 1) * DIGIT_BIT;

   /* take the last digit and count the bits in it */
   q = a->dp[a->used - 1];
   while (q > (mp_digit)0) {
      ++r;
      q >>= (mp_digit)1;
   }
   return r;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203

204
205
206
207
208
209

210
211

212
213
214
215

216
217
218

219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272


273
274
275
276
277

278

279
280

281


282
283
284
285
286
287
288




#include <tommath.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }
	
  /* init our temps */
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
     return res;
  }


  mp_set(&tq, 1);
  n = mp_count_bits(a) - mp_count_bits(b);
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
  }

  while (n-- >= 0) {
     if (mp_cmp(&tb, &ta) != MP_GT) {
        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
           goto LBL_ERR;
        }
     }
     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
           goto LBL_ERR;
     }
  }

  /* now q == quotient and ta == remainder */
  n  = a->sign;
  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
  if (c != NULL) {
     mp_exch(c, &q);
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
  }
  if (d != NULL) {
     mp_exch(d, &ta);
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
  }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division. 
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly 
 * incomplete.  For example, it doesn't consider 
 * the case where digits are removed from 'x' in 
 * the inner loop.  It also doesn't consider the 
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as 
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    return res;
  }
  q.used = a->used + 2;

  if ((res = mp_init (&t1)) != MP_OKAY) {
    goto LBL_Q;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
    goto LBL_T2;
  }

  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
    goto LBL_X;
  }

  /* fix the sign */
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  x.sign = y.sign = MP_ZPOS;

  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
  norm = mp_count_bits(&y) % DIGIT_BIT;
  if (norm < (int)(DIGIT_BIT-1)) {
     norm = (DIGIT_BIT-1) - norm;
     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
       goto LBL_Y;
     }
     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
       goto LBL_Y;
     }
  } else {
     norm = 0;
  }

  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
  n = x.used - 1;
  t = y.used - 1;

  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
    goto LBL_Y;
  }

  while (mp_cmp (&x, &y) != MP_LT) {
    ++(q.dp[n - t]);
    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
      goto LBL_Y;
    }
  }

  /* reset y by shifting it back down */
  mp_rshd (&y, n - t);

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK)
        tmp = MP_MASK;
      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }



    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
             xi * b**2 + xi-1 * b + xi-2 
     
       do q{i-t-1} -= 1; 
    */
    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;

    do {
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;


      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];

      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {

        goto LBL_Y;
      }

      /* find right hand */
      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];

      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {

      goto LBL_Y;
    }

    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
      goto LBL_Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {

        goto LBL_Y;
      }
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
        goto LBL_Y;
      }

      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;

    }
  }

  /* now q is the quotient and x is the remainder 
   * [which we have to normalize] 
   */
  
  /* get sign before writing to c */
  x.sign = x.used == 0 ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_exch (&q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    mp_div_2d (&x, norm, &x, NULL);


    mp_exch (&x, d);
  }

  res = MP_OKAY;


LBL_Y:mp_clear (&y);

LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);

LBL_T1:mp_clear (&t1);


LBL_Q:mp_clear (&q);
  return res;
}

#endif

#endif




|










|
<
<
<





|




|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|







|



|
|
|
|


|


|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
<
|
>
|
>
|
|
|
|
|
<
>
|
<
>

|
|
<
>
|
|
<
>
|
|

|
<
|
>
|
|
|

|
|
|
|

<
>
|
|

|
|
|

|
|
|
|
|
<
>
|
|
|
|
|

<
>
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
>
>
|
|

|

>
|
>
|
|
>
|
>
>
|
|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206

207
208

209
210
211
212

213
214
215

216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   /* init our temps */
   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return res;
   }


   mp_set(&tq, 1uL);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
   }

   while (n-- >= 0) {
      if (mp_cmp(&tb, &ta) != MP_GT) {
         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
         }
      }
      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
         goto LBL_ERR;
      }
   }

   /* now q == quotient and ta == remainder */
   n  = a->sign;
   n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   if (c != NULL) {
      mp_exch(c, &q);
      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
   }
   if (d != NULL) {
      mp_exch(d, &ta);
      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
   }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;

   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return res;
   }
   q.used = a->used + 2;

   if ((res = mp_init(&t1)) != MP_OKAY) {
      goto LBL_Q;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
      goto LBL_T2;
   }

   if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
      goto LBL_X;
   }

   /* fix the sign */
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
   norm = mp_count_bits(&y) % DIGIT_BIT;
   if (norm < (DIGIT_BIT - 1)) {
      norm = (DIGIT_BIT - 1) - norm;
      if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
      if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
         goto LBL_Y;
      }
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
      goto LBL_Y;
   }

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1;
      } else {
         mp_word tmp;
         tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT;
         tmp |= (mp_word)x.dp[i - 1];
         tmp /= (mp_word)y.dp[t];
         if (tmp > (mp_word)MP_MASK) {
            tmp = MP_MASK;

         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
      }

      /* while (q{i-t-1} * (yt * b + y{t-1})) >
               xi * b**2 + xi-1 * b + xi-2

         do q{i-t-1} -= 1;
      */

      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
      do {

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;

         /* find left hand */
         mp_zero(&t1);

         t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;

         if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* find right hand */

         t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
         t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
         goto LBL_Y;
      }


      if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (x.sign == MP_NEG) {
         if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
            goto LBL_Y;
         }


         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
      }
   }

   /* now q is the quotient and x is the remainder
    * [which we have to normalize]
    */

   /* get sign before writing to c */
   x.sign = (x.used == 0) ? MP_ZPOS : a->sign;

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = neg;
   }

   if (d != NULL) {
      if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
         goto LBL_Y;
      }
      mp_exch(&x, d);
   }

   res = MP_OKAY;

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return res;
}

#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_2.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64




#include <tommath.h>
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* b = a/2 */
int mp_div_2(mp_int * a, mp_int * b)
{
  int     x, res, oldused;

  /* copy */
  if (b->alloc < a->used) {
    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
      return res;
    }
  }

  oldused = b->used;
  b->used = a->used;
  {
    register mp_digit r, rr, *tmpa, *tmpb;

    /* source alias */
    tmpa = a->dp + b->used - 1;

    /* dest alias */
    tmpb = b->dp + b->used - 1;

    /* carry */
    r = 0;
    for (x = b->used - 1; x >= 0; x--) {
      /* get the carry for the next iteration */
      rr = *tmpa & 1;

      /* shift the current digit, add in carry and store */
      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

      /* forward carry to next iteration */
      r = rr;
    }

    /* zero excess digits */
    tmpb = b->dp + b->used;
    for (x = b->used; x < oldused; x++) {
      *tmpb++ = 0;
    }
  }
  b->sign = a->sign;
  mp_clamp (b);
  return MP_OKAY;
}
#endif




|










|
<
<
<



|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include "tommath_private.h"
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b)
{
   int     x, res, oldused;

   /* copy */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   oldused = b->used;
   b->used = a->used;
   {
      mp_digit r, rr, *tmpa, *tmpb;

      /* source alias */
      tmpa = a->dp + b->used - 1;

      /* dest alias */
      tmpb = b->dp + b->used - 1;

      /* carry */
      r = 0;
      for (x = b->used - 1; x >= 0; x--) {
         /* get the carry for the next iteration */
         rr = *tmpa & 1u;

         /* shift the current digit, add in carry and store */
         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

         /* forward carry to next iteration */
         r = rr;
      }

      /* zero excess digits */
      tmpb = b->dp + b->used;
      for (x = b->used; x < oldused; x++) {
         *tmpb++ = 0;
      }
   }
   b->sign = a->sign;
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_2d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93




#include <tommath.h>
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
{
  mp_digit D, r, rr;
  int     x, res;
  mp_int  t;


  /* if the shift count is <= 0 then we do no work */
  if (b <= 0) {
    res = mp_copy (a, c);
    if (d != NULL) {
      mp_zero (d);
    }
    return res;
  }


  if ((res = mp_init (&t)) != MP_OKAY) {
    return res;
  }


  /* get the remainder */
  if (d != NULL) {
    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
  }

  /* copy */
  if ((res = mp_copy (a, c)) != MP_OKAY) {
    mp_clear (&t);
    return res;
  }

  /* shift by as many digits in the bit count */
  if (b >= (int)DIGIT_BIT) {
    mp_rshd (c, b / DIGIT_BIT);
  }

  /* shift any bit count < DIGIT_BIT */
  D = (mp_digit) (b % DIGIT_BIT);
  if (D != 0) {
    register mp_digit *tmpc, mask, shift;

    /* mask */
    mask = (((mp_digit)1) << D) - 1;

    /* shift for lsb */
    shift = DIGIT_BIT - D;

    /* alias */
    tmpc = c->dp + (c->used - 1);

    /* carry */
    r = 0;
    for (x = c->used - 1; x >= 0; x--) {
      /* get the lower  bits of this word in a temp */
      rr = *tmpc & mask;

      /* shift the current word and mix in the carry bits from the previous word */
      *tmpc = (*tmpc >> D) | (r << shift);
      --tmpc;

      /* set the carry to the carry bits of the current word found above */
      r = rr;
    }
  }
  mp_clamp (c);
  if (d != NULL) {
    mp_exch (&t, d);
  }
  mp_clear (&t);
  return MP_OKAY;
}
#endif




|










|
<
<
<



|

|
|
<

<
|
|
|
|
|
|
|
|

>
|
|
|
>

|
|
|
<
|
|
|

<
<
<
<
<
<
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
<
<
<
<
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42






43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76




77
78
79
80
81
82
83
#include "tommath_private.h"
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
{
   mp_digit D, r, rr;
   int     x, res;



   /* if the shift count is <= 0 then we do no work */
   if (b <= 0) {
      res = mp_copy(a, c);
      if (d != NULL) {
         mp_zero(d);
      }
      return res;
   }

   /* copy */
   if ((res = mp_copy(a, c)) != MP_OKAY) {
      return res;
   }
   /* 'a' should not be used after here - it might be the same as d */

   /* get the remainder */
   if (d != NULL) {
      if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) {

         return res;
      }
   }







   /* shift by as many digits in the bit count */
   if (b >= DIGIT_BIT) {
      mp_rshd(c, b / DIGIT_BIT);
   }

   /* shift any bit count < DIGIT_BIT */
   D = (mp_digit)(b % DIGIT_BIT);
   if (D != 0u) {
      mp_digit *tmpc, mask, shift;

      /* mask */
      mask = ((mp_digit)1 << D) - 1uL;

      /* shift for lsb */
      shift = (mp_digit)DIGIT_BIT - D;

      /* alias */
      tmpc = c->dp + (c->used - 1);

      /* carry */
      r = 0;
      for (x = c->used - 1; x >= 0; x--) {
         /* get the lower  bits of this word in a temp */
         rr = *tmpc & mask;

         /* shift the current word and mix in the carry bits from the previous word */
         *tmpc = (*tmpc >> D) | (r << shift);
         --tmpc;

         /* set the carry to the carry bits of the current word found above */
         r = rr;
      }
   }
   mp_clamp(c);




   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_3.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75




#include <tommath.h>
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* divide by three (based on routine from MPI and the GMP manual) */
int
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
  mp_int   q;
  mp_word  w, t;
  mp_digit b;
  int      res, ix;
  
  /* b = 2**DIGIT_BIT / 3 */
  b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);


  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
     return res;
  }
  
  q.used = a->used;
  q.sign = a->sign;
  w = 0;
  for (ix = a->used - 1; ix >= 0; ix--) {
     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);


     if (w >= 3) {
        /* multiply w by [1/3] */
        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);


        /* now subtract 3 * [w/3] from w, to get the remainder */
        w -= t+t+t;

        /* fixup the remainder as required since
         * the optimization is not exact.
         */
        while (w >= 3) {
           t += 1;
           w -= 3;
        }
      } else {
        t = 0;
      }
      q.dp[ix] = (mp_digit)t;
  }

  /* [optional] store the remainder */
  if (d != NULL) {
     *d = (mp_digit)w;
  }

  /* [optional] store the quotient */
  if (c != NULL) {
     mp_clamp(&q);
     mp_exch(&q, c);
  }
  mp_clear(&q);
  
  return res;
}

#endif




|










|
<
<
<



<
|

|
|
|
|
|
|
<
>

|
|
|
|
|
|
|
|
<
>

|
|
<
>

|
|

|
|
|
|
|
|
|

|


|

|
|
|
|

|
|
|
|
|
|
|
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "tommath_private.h"
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* divide by three (based on routine from MPI and the GMP manual) */

int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
   mp_int   q;
   mp_word  w, t;
   mp_digit b;
   int      res, ix;

   /* b = 2**DIGIT_BIT / 3 */

   b = ((mp_word)1 << (mp_word)DIGIT_BIT) / (mp_word)3;

   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {

      w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= 3u) {
         /* multiply w by [1/3] */

         t = (w * (mp_word)b) >> (mp_word)DIGIT_BIT;

         /* now subtract 3 * [w/3] from w, to get the remainder */
         w -= t+t+t;

         /* fixup the remainder as required since
          * the optimization is not exact.
          */
         while (w >= 3u) {
            t += 1u;
            w -= 3u;
         }
      } else {
         t = 0;
      }
      q.dp[ix] = (mp_digit)t;
   }

   /* [optional] store the remainder */
   if (d != NULL) {
      *d = (mp_digit)w;
   }

   /* [optional] store the quotient */
   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_div_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60






61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110




#include <tommath.h>
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   /* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */
   if ((b==0) || (b & (b-1))) {
       return 0;
   }
   for (x = 1; x < DIGIT_BIT; x++) {
      if (b == (((mp_digit)1)<<x)) {
         *p = x;
         return 1;
      }
   }
   return 0;
}

/* single digit division (based on routine from MPI) */
int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)

{
  mp_int  q;
  mp_word w;
  mp_digit t;
  int     res, ix;

  /* cannot divide by zero */
  if (b == 0) {
     return MP_VAL;
  }

  /* quick outs */
  if (b == 1 || mp_iszero(a) == 1) {
     if (d != NULL) {
        *d = 0;
     }
     if (c != NULL) {
        return mp_copy(a, c);
     }
     return MP_OKAY;
  }

  /* power of two ? */
  if (s_is_power_of_two(b, &ix) == 1) {






     if (d != NULL) {
        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
     }
     if (c != NULL) {
        return mp_div_2d(a, ix, c, NULL);
     }
     return MP_OKAY;
  }

#ifdef BN_MP_DIV_3_C
  /* three? */
  if (b == 3) {
     return mp_div_3(a, c, d);
  }
#endif

  /* no easy answer [c'est la vie].  Just division */
  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
     return res;
  }
  
  q.used = a->used;
  q.sign = a->sign;
  w = 0;
  for (ix = a->used - 1; ix >= 0; ix--) {
     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

     
     if (w >= b) {
        t = (mp_digit)(w / b);
        w -= ((mp_word)t) * ((mp_word)b);

      } else {
        t = 0;
      }
      q.dp[ix] = (mp_digit)t;
  }
  
  if (d != NULL) {
     *d = (mp_digit)w;
  }
  
  if (c != NULL) {
     mp_clamp(&q);
     mp_exch(&q, c);
  }
  mp_clear(&q);
  
  return res;
}

#endif




|










|
<
|
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
>

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
<
>
>
>
>
>
>
|
|
|
|
|
|
|
|


|
|
|
|


|
|
|
|
|
|
|
|
|
<
>
|
|
|
<
>

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14

















15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include "tommath_private.h"
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */




















/* single digit division (based on routine from MPI) */

int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
   mp_int  q;
   mp_word w;
   mp_digit t;
   int     res, ix;

   /* cannot divide by zero */
   if (b == 0u) {
      return MP_VAL;
   }

   /* quick outs */
   if ((b == 1u) || (mp_iszero(a) == MP_YES)) {
      if (d != NULL) {
         *d = 0;
      }
      if (c != NULL) {
         return mp_copy(a, c);
      }
      return MP_OKAY;
   }

   /* power of two ? */

   if (((b & (b-1)) == 0)) {
      for (ix = 1; ix < DIGIT_BIT; ix++) {
         if (b == (((mp_digit)1)<<ix)) {
            break;
         }
      }
      if (d != NULL) {
         *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
      }
      if (c != NULL) {
         return mp_div_2d(a, ix, c, NULL);
      }
      return MP_OKAY;
   }

#ifdef BN_MP_DIV_3_C
   /* three? */
   if (b == 3u) {
      return mp_div_3(a, c, d);
   }
#endif

   /* no easy answer [c'est la vie].  Just division */
   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {

      w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= b) {
         t = (mp_digit)(w / b);

         w -= (mp_word)t * (mp_word)b;
      } else {
         t = 0;
      }
      q.dp[ix] = t;
   }

   if (d != NULL) {
      *d = (mp_digit)w;
   }

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_is_modulus.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39




#include <tommath.h>
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return 0;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
       if (a->dp[ix] != MP_MASK) {
          return 0;
       }
   }
   return 1;
}

#endif




|










|
<
<
<



|












|
|
|





>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return 0;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
      if (a->dp[ix] != MP_MASK) {
         return 0;
      }
   }
   return 1;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_reduce.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


86
87
88
89
90




#include <tommath.h>
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
................................................................................
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int
mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
  int      err, i, m;
  mp_word  r;
  mp_digit mu, *tmpx1, *tmpx2;

  /* m = digits in modulus */
  m = n->used;

  /* ensure that "x" has at least 2m digits */
  if (x->alloc < m + m) {
    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
      return err;
    }
  }

/* top of loop, this is where the code resumes if
 * another reduction pass is required.
 */
top:
  /* aliases for digits */
  /* alias for lower half of x */
  tmpx1 = x->dp;

  /* alias for upper half of x, or x/B**m */
  tmpx2 = x->dp + m;

  /* set carry to zero */
  mu = 0;

  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
  for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
  }

  /* set final carry */
  *tmpx1++ = mu;

  /* zero words above m */
  for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
  }

  /* clamp, sub and return */
  mp_clamp (x);

  /* if x >= n then subtract and reduce again
   * Each successive "recursion" makes the input smaller and smaller.
   */
  if (mp_cmp_mag (x, n) != MP_LT) {
    s_mp_sub(x, n, x);


    goto top;
  }
  return MP_OKAY;
}
#endif




|










|
<
<
<







 







|
<

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|


|

|
|

|
|

|

|
|

|
|
|
|
|
>
>
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
..
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include "tommath_private.h"
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
................................................................................
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)

{
   int      err, i, m;
   mp_word  r;
   mp_digit mu, *tmpx1, *tmpx2;

   /* m = digits in modulus */
   m = n->used;

   /* ensure that "x" has at least 2m digits */
   if (x->alloc < (m + m)) {
      if ((err = mp_grow(x, m + m)) != MP_OKAY) {
         return err;
      }
   }

   /* top of loop, this is where the code resumes if
    * another reduction pass is required.
    */
top:
   /* aliases for digits */
   /* alias for lower half of x */
   tmpx1 = x->dp;

   /* alias for upper half of x, or x/B**m */
   tmpx2 = x->dp + m;

   /* set carry to zero */
   mu = 0;

   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
   for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
   }

   /* set final carry */
   *tmpx1++ = mu;

   /* zero words above m */
   for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
   }

   /* clamp, sub and return */
   mp_clamp(x);

   /* if x >= n then subtract and reduce again
    * Each successive "recursion" makes the input smaller and smaller.
    */
   if (mp_cmp_mag(x, n) != MP_LT) {
      if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
         return err;
      }
      goto top;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_dr_setup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include <tommath.h>
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
        ((mp_word)a->dp[0]));
}

#endif




|










|
<
<
<



|




|
<



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* determines the setup value */
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - (mp_word)a->dp[0]);

}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exch.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30




#include <tommath.h>
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* swap the elements of two integers, for cases where you can't simply swap the 
 * mp_int pointers around
 */
void
mp_exch (mp_int * a, mp_int * b)

{
  mp_int  t;

  t  = *a;
  *a = *b;
  *b = t;
}
#endif




|










|
<
|
<
<

|


<
<
>

|

|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17


18
19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* swap the elements of two integers, for cases where you can't simply swap the
 * mp_int pointers around
 */


void mp_exch(mp_int *a, mp_int *b)
{
   mp_int  t;

   t  = *a;
   *a = *b;
   *b = t;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_export.c.








































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include "tommath_private.h"
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_export(void *rop, size_t *countp, int order, size_t size,
              int endian, size_t nails, const mp_int *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j, bits, count;
   unsigned char odd_nail_mask;

   mp_int t;

   if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
      return result;
   }

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;
      lint.i = 0x01020304;

      endian = (lint.c[0] == '\x04') ? -1 : 1;
   }

   odd_nails = (nails % 8u);
   odd_nail_mask = 0xff;
   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (unsigned char)(1u << (7u - i));
   }
   nail_bytes = nails / 8u;

   bits = (size_t)mp_count_bits(&t);
   count = (bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u);

   for (i = 0; i < count; ++i) {
      for (j = 0; j < size; ++j) {
         unsigned char *byte = (unsigned char *)rop +
                               (((order == -1) ? i : ((count - 1u) - i)) * size) +
                               ((endian == -1) ? j : ((size - 1u) - j));

         if (j >= (size - nail_bytes)) {
            *byte = 0;
            continue;
         }

         *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL));

         if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) {
            mp_clear(&t);
            return result;
         }
      }
   }

   mp_clear(&t);

   if (countp != NULL) {
      *countp = count;
   }

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_expt_d.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53




#include <tommath.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* calculate c = a**b  using a square-multiply algorithm */

int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
  int     res, x;
  mp_int  g;


  if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
    return res;
  }

  /* set initial result */
  mp_set (c, 1);

  for (x = 0; x < (int) DIGIT_BIT; x++) {
    /* square */
    if ((res = mp_sqr (c, c)) != MP_OKAY) {
      mp_clear (&g);
      return res;
    }

    /* if the bit is set multiply */
    if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
      if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
         mp_clear (&g);
         return res;
      }
    }

    /* shift to next bit */
    b <<= 1;
  }

  mp_clear (&g);
  return MP_OKAY;
}
#endif




|










|
<
|
<
<

<
>
|

<
<
>
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14

15
16
17


18
19


20


























21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */




/* wrapper function for mp_expt_d_ex() */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{


   return mp_expt_d_ex(a, b, c, 0);
}





























#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_expt_d_ex.c.






























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   int     res;
   unsigned int x;

   mp_int  g;

   if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
      return res;
   }

   /* set initial result */
   mp_set(c, 1uL);

   if (fast != 0) {
      while (b > 0u) {
         /* if the bit is set multiply */
         if ((b & 1u) != 0u) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* square */
         if (b > 1u) {
            if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b >>= 1;
      }
   } else {
      for (x = 0; x < (unsigned)DIGIT_BIT; x++) {
         /* square */
         if ((res = mp_sqr(c, c)) != MP_OKAY) {
            mp_clear(&g);
            return res;
         }

         /* if the bit is set multiply */
         if ((b & ((mp_digit)1 << (DIGIT_BIT - 1))) != 0u) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b <<= 1;
      }
   } /* if ... else */

   mp_clear(&g);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exptmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108




#include <tommath.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
  int dr;

  /* modulus P must be positive */
  if (P->sign == MP_NEG) {
     return MP_VAL;
  }

  /* if exponent X is negative we have to recurse */
  if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
     mp_int tmpG, tmpX;
     int err;

     /* first compute 1/G mod P */
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
        return err;
     }
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }

     /* now get |X| */
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
        mp_clear_multi(&tmpG, &tmpX, NULL);
        return err;
     }

     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
     mp_clear_multi(&tmpG, &tmpX, NULL);
     return err;
#else 
     /* no invmod */
     return MP_VAL;
#endif
  }

/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
  if (mp_reduce_is_2k_l(P) == MP_YES) {
     return s_mp_exptmod(G, X, P, Y, 1);
  }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
  /* is it a DR modulus? */
  dr = mp_dr_is_modulus(P);
#else
  /* default to no */
  dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
  /* if not, is it a unrestricted DR modulus? */
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
#endif
    
  /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
  if (mp_isodd (P) == 1 || dr !=  0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y, 0);
#else
    /* no exptmod for evens */
    return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
  }
#endif
}

#endif




|










|
<
<
<








|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|



|
|

|
|



|
|
|
|

|
|

|
|
|


|
|

|
|


|




>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      int err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }

      /* now get |X| */
      if ((err = mp_init(&tmpX)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
         mp_clear_multi(&tmpG, &tmpX, NULL);
         return err;
      }

      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
      mp_clear_multi(&tmpG, &tmpX, NULL);
      return err;
#else
      /* no invmod */
      return MP_VAL;
#endif
   }

   /* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = mp_dr_is_modulus(P);
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = mp_reduce_is_2k(P) << 1;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
   if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
      return mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exptmod_fast.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161




162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316





#include <tommath.h>
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
   #define TAB_SIZE 32
#else
   #define TAB_SIZE 256
#endif

int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
  mp_int  M[TAB_SIZE], res;
  mp_digit buf, mp;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* use a pointer to the reduction algorithm.  This allows us to use
   * one of many reduction algorithms without modding the guts of
   * the code with if statements everywhere.
   */
  int     (*redux)(mp_int*,mp_int*,mp_digit);

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

#ifdef MP_LOW_MEM
  if (winsize > 5) {
     winsize = 5;
  }
#endif

  /* init M array */
  /* init first cell */
  if ((err = mp_init(&M[1])) != MP_OKAY) {
     return err;
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init(&M[x])) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* determine and setup reduction code */
  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C     
     /* now setup montgomery  */
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if (((P->used * 2 + 1) < MP_WARRAY) &&
          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
#else
        err = MP_VAL;
        goto LBL_M;
#endif
     }
  } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
     /* setup DR reduction for moduli of the form B**k - b */
     mp_dr_setup(P, &mp);
     redux = mp_dr_reduce;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
     /* setup DR reduction for moduli of the form 2**k - b */
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
     redux = mp_reduce_2k;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  }

  /* setup result */
  if ((err = mp_init (&res)) != MP_OKAY) {
    goto LBL_M;
  }

  /* create M table
   *

   *
   * The first half of the table is not computed though accept for M[0] and M[1]
   */

  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
     /* now we need R mod m */
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
       goto LBL_RES;
     }
#else 
     err = MP_VAL;
     goto LBL_RES;
#endif

     /* now set M[1] to G * R mod m */
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
       goto LBL_RES;
     }




  } else {
     mp_set(&res, 1);
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
        goto LBL_RES;
     }
  }

  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto LBL_RES;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* create upper table */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits so break */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset bitcnt */
      buf    = X->dp[digidx--];
      bitcnt = (int)DIGIT_BIT;
    }

    /* grab the next msb from the exponent */
    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if (mode == 0 && y == 0) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if (mode == 1 && y == 0) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if (mode == 2 && bitcpy > 0) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* get next bit of the window */
      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }
    }
  }

  if (redmode == 0) {
     /* fixup result if Montgomery reduction is used
      * recall that any value in a Montgomery system is
      * actually multiplied by R mod n.  So we have
      * to reduce one more time to cancel out the factor
      * of R.
      */
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
       goto LBL_RES;
     }
  }

  /* swap res with Y */
  mp_exch (&res, Y);
  err = MP_OKAY;
LBL_RES:mp_clear (&res);

LBL_M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
#endif





|










|
<
<
<











|

|


|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|


|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|


|

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
<
<
<
<

|
|
|
|
>
>
>
>
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
>

|
|
|
|
|


>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149




150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res;
   mp_digit buf, mp;
   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

   /* use a pointer to the reduction algorithm.  This allows us to use
    * one of many reduction algorithms without modding the guts of
    * the code with if statements everywhere.
    */
   int (*redux)(mp_int *x, const mp_int *n, mp_digit rho);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

#ifdef MP_LOW_MEM
   if (winsize > 5) {
      winsize = 5;
   }
#endif

   /* init M array */
   /* init first cell */
   if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* determine and setup reduction code */
   if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C
      /* now setup montgomery  */
      if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
         goto LBL_M;
      }
#else
      err = MP_VAL;
      goto LBL_M;
#endif

      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
      if ((((P->used * 2) + 1) < (int)MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
         redux = fast_mp_montgomery_reduce;
      } else
#endif
      {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
         /* use slower baseline Montgomery method */
         redux = mp_montgomery_reduce;
#else
         err = MP_VAL;
         goto LBL_M;
#endif
      }
   } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
      /* setup DR reduction for moduli of the form B**k - b */
      mp_dr_setup(P, &mp);
      redux = mp_dr_reduce;
#else
      err = MP_VAL;
      goto LBL_M;
#endif
   } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
      /* setup DR reduction for moduli of the form 2**k - b */
      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
         goto LBL_M;
      }
      redux = mp_reduce_2k;
#else
      err = MP_VAL;
      goto LBL_M;
#endif
   }

   /* setup result */
   if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) {
      goto LBL_M;
   }

   /* create M table
    *

    *
    * The first half of the table is not computed though accept for M[0] and M[1]
    */

   if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
      /* now we need R mod m */
      if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
         goto LBL_RES;
      }





      /* now set M[1] to G * R mod m */
      if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) {
         goto LBL_RES;
      }
#else
      err = MP_VAL;
      goto LBL_RES;
#endif
   } else {
      mp_set(&res, 1uL);
      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
   if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
   }

   for (x = 0; x < (winsize - 1); x++) {
      if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
         goto LBL_RES;
      }
      if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* create upper table */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
         goto LBL_RES;
      }
      if ((err = redux(&M[x], P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits so break */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, mp)) != MP_OKAY) {
               goto LBL_RES;
            }
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
            goto LBL_RES;
         }
         if ((err = redux(&res, P, mp)) != MP_OKAY) {
            goto LBL_RES;
         }

         /* get next bit of the window */
         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
               goto LBL_RES;
            }
            if ((err = redux(&res, P, mp)) != MP_OKAY) {
               goto LBL_RES;
            }
         }
      }
   }

   if (redmode == 0) {
      /* fixup result if Montgomery reduction is used
       * recall that any value in a Montgomery system is
       * actually multiplied by R mod n.  So we have
       * to reduce one more time to cancel out the factor
       * of R.
       */
      if ((err = redux(&res, P, mp)) != MP_OKAY) {
         goto LBL_RES;
      }
   }

   /* swap res with Y */
   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_exteuclid.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

33

34
35
36

37

38
39
40
41

42

43
44


45


46


47


48


49

50

51
52


53


54

55

56
57


58


59


60
61
62
63
64


65


66

67
68

69
70


71


72

73

74

75
76
77
78




#include <tommath.h>
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* Extended euclidean algorithm of (a, b) produces 
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;

   int err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1);
   if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        { goto _ERR; }



   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1);
   if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        { goto _ERR; }



   /* loop while v3 != 0 */
   while (mp_iszero(&v3) == MP_NO) {
       /* q = u3/v3 */
       if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         { goto _ERR; }



       /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
       if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }


       if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             { goto _ERR; }


       if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }


       if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             { goto _ERR; }


       if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }


       if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             { goto _ERR; }



       /* (u1,u2,u3) = (v1,v2,v3) */
       if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  { goto _ERR; }


       if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  { goto _ERR; }


       if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  { goto _ERR; }



       /* (v1,v2,v3) = (t1,t2,t3) */
       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; }


       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; }


       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; }


   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
      mp_neg(&u1, &u1);


      mp_neg(&u2, &u2);


      mp_neg(&u3, &u3);

   }


   /* copy result out */
   if (U1 != NULL) { mp_exch(U1, &u1); }


   if (U2 != NULL) { mp_exch(U2, &u2); }


   if (U3 != NULL) { mp_exch(U3, &u3); }



   err = MP_OKAY;

_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif




|










|
<
|
<
<

|


|

<
>







|
|
>
|
>

|
|
>
|
>


|
|
>
|
>
|
|
>
>
|
>
>
|
>
>
|
>
>
|
>
>
|
>
|
>
|
|
>
>
|
>
>
|
>
|
>
|
|
>
>
|
>
>
|
>
>




|
>
>
|
>
>
|
>
|
|
>

|
>
>
|
>
>
|
>
|
>

>
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include "tommath_private.h"
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{

   mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
   int err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1uL);
   if ((err = mp_copy(a, &u3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1uL);
   if ((err = mp_copy(b, &v3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* loop while v3 != 0 */
   while (mp_iszero(&v3) == MP_NO) {
      /* q = u3/v3 */
      if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
      if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* (u1,u2,u3) = (v1,v2,v3) */
      if ((err = mp_copy(&v1, &u1)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&v2, &u2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&v3, &u3)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* (v1,v2,v3) = (t1,t2,t3) */
      if ((err = mp_copy(&t1, &v1)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&t2, &v2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_copy(&t3, &v3)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* make sure U3 >= 0 */
   if (u3.sign == MP_NEG) {
      if ((err = mp_neg(&u1, &u1)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_neg(&u2, &u2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_neg(&u3, &u3)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* copy result out */
   if (U1 != NULL) {
      mp_exch(U1, &u1);
   }
   if (U2 != NULL) {
      mp_exch(U2, &u2);
   }
   if (U3 != NULL) {
      mp_exch(U3, &u3);
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_fread.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63




#include <tommath.h>
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */


/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;

   
   /* clear a */
   mp_zero(a);
   
   /* if first digit is - then set negative */
   ch = fgetc(stream);
   if (ch == '-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }
   
   for (;;) {
      /* find y in the radix map */
      for (y = 0; y < radix; y++) {
          if (mp_s_rmap[y] == ch) {
             break;
          }
      }
      if (y == radix) {



         break;
      }
      
      /* shift up and add */
      if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
         return err;
      }
      
      ch = fgetc(stream);
   }
   if (mp_cmp_d(a, 0) != MP_EQ) {
      a->sign = neg;
   }
   
   return MP_OKAY;
}


#endif




|










|
<
|
<
<

>




>
|


|


|





|

|
<
|
|
|
|
<
>
>
>


|

|


|


|


|


|


>


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "tommath_private.h"
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;
   unsigned pos;

   /* clear a */
   mp_zero(a);

   /* if first digit is - then set negative */
   ch = fgetc(stream);
   if (ch == (int)'-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }

   for (;;) {
      pos = (unsigned)(ch - (int)'(');

      if (mp_s_rmap_reverse_sz < pos) {
         break;
      }


      y = (int)mp_s_rmap_reverse[pos];

      if ((y == 0xff) || (y >= radix)) {
         break;
      }

      /* shift up and add */
      if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
         return err;
      }

      ch = fgetc(stream);
   }
   if (mp_cmp_d(a, 0uL) != MP_EQ) {
      a->sign = neg;
   }

   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_fwrite.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48




#include <tommath.h>
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */


int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;
   
   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = OPT_CAST(char) XMALLOC (len);
   if (buf == NULL) {
      return MP_MEM;
   }
   
   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      XFREE (buf);
      return err;
   }
   
   for (x = 0; x < len; x++) {
       if (fputc(buf[x], stream) == EOF) {
          XFREE (buf);
          return MP_VAL;
       }
   }
   
   XFREE (buf);
   return MP_OKAY;
}


#endif




|










|
<
|
<
<

>
|



|




|



|

|


|

|
|
|
|

|
|


>


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "tommath_private.h"
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



#ifndef LTM_NO_FILE
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
   char *buf;
   int err, len, x;

   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = OPT_CAST(char) XMALLOC((size_t)len);
   if (buf == NULL) {
      return MP_MEM;
   }

   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      XFREE(buf);
      return err;
   }

   for (x = 0; x < len; x++) {
      if (fputc((int)buf[x], stream) == EOF) {
         XFREE(buf);
         return MP_VAL;
      }
   }

   XFREE(buf);
   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_gcd.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98
99
100
101




#include <tommath.h>
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  u, v;
  int     k, u_lsb, v_lsb, res;

  /* either zero than gcd is the largest */
  if (mp_iszero (a) == MP_YES) {
    return mp_abs (b, c);
  }
  if (mp_iszero (b) == MP_YES) {
    return mp_abs (a, c);
  }

  /* get copies of a and b we can modify */
  if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
    goto LBL_U;
  }

  /* must be positive for the remainder of the algorithm */
  u.sign = v.sign = MP_ZPOS;

  /* B1.  Find the common power of two for u and v */
  u_lsb = mp_cnt_lsb(&u);
  v_lsb = mp_cnt_lsb(&v);
  k     = MIN(u_lsb, v_lsb);

  if (k > 0) {
     /* divide the power of two out */
     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }

     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  /* divide any remaining factors of two out */
  if (u_lsb != k) {
     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  if (v_lsb != k) {
     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     }
  }

  while (mp_iszero(&v) == 0) {
     /* make sure v is the largest */
     if (mp_cmp_mag(&u, &v) == MP_GT) {
        /* swap u and v to make sure v is >= u */
        mp_exch(&u, &v);
     }
     
     /* subtract smallest from largest */
     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
        goto LBL_V;
     }
     
     /* Divide out all factors of two */
     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
        goto LBL_V;
     } 
  } 

  /* multiply by 2**k which we divided out at the beginning */
  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
     goto LBL_V;
  }
  c->sign = MP_ZPOS;
  res = MP_OKAY;

LBL_V:mp_clear (&u);

LBL_U:mp_clear (&v);
  return res;
}
#endif




|










|
<
<
<



|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
>
|
>
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include "tommath_private.h"
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* Greatest Common Divisor using the binary method */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;

   /* either zero than gcd is the largest */
   if (mp_iszero(a) == MP_YES) {
      return mp_abs(b, c);
   }
   if (mp_iszero(b) == MP_YES) {
      return mp_abs(a, c);
   }

   /* get copies of a and b we can modify */
   if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
      goto LBL_U;
   }

   /* must be positive for the remainder of the algorithm */
   u.sign = v.sign = MP_ZPOS;

   /* B1.  Find the common power of two for u and v */
   u_lsb = mp_cnt_lsb(&u);
   v_lsb = mp_cnt_lsb(&v);
   k     = MIN(u_lsb, v_lsb);

   if (k > 0) {
      /* divide the power of two out */
      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }

      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* divide any remaining factors of two out */
   if (u_lsb != k) {
      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   if (v_lsb != k) {
      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   while (mp_iszero(&v) == MP_NO) {
      /* make sure v is the largest */
      if (mp_cmp_mag(&u, &v) == MP_GT) {
         /* swap u and v to make sure v is >= u */
         mp_exch(&u, &v);
      }

      /* subtract smallest from largest */
      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_V;
      }

      /* Divide out all factors of two */
      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* multiply by 2**k which we divided out at the beginning */
   if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
      goto LBL_V;
   }
   c->sign = MP_ZPOS;
   res = MP_OKAY;
LBL_V:
   mp_clear(&u);
LBL_U:
   mp_clear(&v);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_get_bit.c.












































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_GET_BIT_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Checks the bit at position b and returns MP_YES
   if the bit is 1, MP_NO if it is 0 and MP_VAL
   in case of error */
int mp_get_bit(const mp_int *a, int b)
{
   int limb;
   mp_digit bit, isset;

   if (b < 0) {
      return MP_VAL;
   }

   limb = b / DIGIT_BIT;

   /*
    * Zero is a special value with the member "used" set to zero.
    * Needs to be tested before the check for the upper boundary
    * otherwise (limb >= a->used) would be true for a = 0
    */

   if (mp_iszero(a) != MP_NO) {
      return MP_NO;
   }

   if (limb >= a->used) {
      return MP_VAL;
   }

   bit = (mp_digit)(1) << (b % DIGIT_BIT);

   isset = a->dp[limb] & bit;
   return (isset != 0u) ? MP_YES : MP_NO;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_get_double.c.






























































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "tommath_private.h"
#ifdef BN_MP_GET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

double mp_get_double(const mp_int *a)
{
   int i;
   double d = 0.0, fac = 1.0;
   for (i = 0; i < DIGIT_BIT; ++i) {
      fac *= 2.0;
   }
   for (i = USED(a); i --> 0;) {
      d = (d * fac) + (double)DIGIT(a, i);
   }
   return (mp_isneg(a) != MP_NO) ? -d : d;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_get_int.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41




#include <tommath.h>
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a) 
{
  int i;
  unsigned long res;

  if (a->used == 0) {
     return 0;
  }

  /* get number of digits of the lsb we have to read */
  i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;

  /* get most significant digit of result */
  res = DIGIT(a,i);
   
  while (--i >= 0) {
    res = (res << DIGIT_BIT) | DIGIT(a,i);
  }

  /* force result to 32-bits always so it is consistent on non 32-bit platforms */
  return res & 0xFFFFFFFFUL;
}
#endif




|










|
<
<
<



|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int *a)
{
   int i;
   mp_min_u32 res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }

   /* force result to 32-bits always so it is consistent on non 32-bit platforms */
   return res & 0xFFFFFFFFUL;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_get_long.c.




















































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(const mp_int *a)
{
   int i;
   unsigned long res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, ((((int)sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }
#endif
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_get_long_long.c.




















































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long(const mp_int *a)
{
   int i;
   unsigned long long res;

   if (a->used == 0) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, ((((int)sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = DIGIT(a, i);

#if DIGIT_BIT < 64
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | DIGIT(a, i);
   }
#endif
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_grow.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53




#include <tommath.h>
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* grow as required */
int mp_grow (mp_int * a, int size)
{
  int     i;
  mp_digit *tmp;

  /* if the alloc size is smaller alloc more ram */
  if (a->alloc < size) {
    /* ensure there are always at least MP_PREC digits extra on top */
    size += (MP_PREC * 2) - (size % MP_PREC);

    /* reallocate the array a->dp
     *
     * We store the return in a temporary variable
     * in case the operation failed we don't want
     * to overwrite the dp member of a.
     */
    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
    if (tmp == NULL) {
      /* reallocation failed but "a" is still valid [can be freed] */
      return MP_MEM;
    }

    /* reallocation succeeded so set a->dp */
    a->dp = tmp;

    /* zero excess digits */
    i        = a->alloc;
    a->alloc = size;
    for (; i < a->alloc; i++) {
      a->dp[i] = 0;
    }
  }
  return MP_OKAY;
}
#endif




|










|
<
<
<



|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* grow as required */
int mp_grow(mp_int *a, int size)
{
   int     i;
   mp_digit *tmp;

   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {
      /* ensure there are always at least MP_PREC digits extra on top */
      size += (MP_PREC * 2) - (size % MP_PREC);

      /* reallocate the array a->dp
       *
       * We store the return in a temporary variable
       * in case the operation failed we don't want
       * to overwrite the dp member of a.
       */
      tmp = OPT_CAST(mp_digit) XREALLOC(a->dp, sizeof(mp_digit) * (size_t)size);
      if (tmp == NULL) {
         /* reallocation failed but "a" is still valid [can be freed] */
         return MP_MEM;
      }

      /* reallocation succeeded so set a->dp */
      a->dp = tmp;

      /* zero excess digits */
      i        = a->alloc;
      a->alloc = size;
      for (; i < a->alloc; i++) {
         a->dp[i] = 0;
      }
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Added libtommath/bn_mp_import.c.








































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "tommath_private.h"
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_import(mp_int *rop, size_t count, int order, size_t size,
              int endian, size_t nails, const void *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j;
   unsigned char odd_nail_mask;

   mp_zero(rop);

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;
      lint.i = 0x01020304;

      endian = (lint.c[0] == '\x04') ? -1 : 1;
   }

   odd_nails = (nails % 8u);
   odd_nail_mask = 0xff;
   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (unsigned char)(1u << (7u - i));
   }
   nail_bytes = nails / 8u;

   for (i = 0; i < count; ++i) {
      for (j = 0; j < (size - nail_bytes); ++j) {
         unsigned char byte = *((unsigned char *)op +
                                (((order == 1) ? i : ((count - 1u) - i)) * size) +
                                ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes)));

         if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) {
            return result;
         }

         rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte;
         rop->used  += 1;
      }
   }

   mp_clamp(rop);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42




#include <tommath.h>
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* init a new mp_int */
int mp_init (mp_int * a)
{
  int i;

  /* allocate memory required and clear it */
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the digits to zero */
  for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
  }

  /* set the used to zero, allocated digits to the default precision
   * and sign to positive */
  a->used  = 0;
  a->alloc = MP_PREC;
  a->sign  = MP_ZPOS;

  return MP_OKAY;
}
#endif




|










|
<
<
<



|

|

|
|
|
|
|

|
|

|

|
|
|
|
|

|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "tommath_private.h"
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* init a new mp_int */
int mp_init(mp_int *a)
{
   int i;

   /* allocate memory required and clear it */
   a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)MP_PREC);
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the digits to zero */
   for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
   }

   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
   a->alloc = MP_PREC;
   a->sign  = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_copy.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25





26
27
28




#include <tommath.h>
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* creates "a" then copies b into it */
int mp_init_copy (mp_int * a, mp_int * b)
{
  int     res;

  if ((res = mp_init (a)) != MP_OKAY) {
    return res;
  }





  return mp_copy (b, a);
}
#endif




|










|
<
<
<



|

|

|
|
|
>
>
>
>
>
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* creates "a" then copies b into it */
int mp_init_copy(mp_int *a, const mp_int *b)
{
   int     res;

   if ((res = mp_init_size(a, b->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_copy(b, a)) != MP_OKAY) {
      mp_clear(a);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_multi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55




#include <tommath.h>
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...) 
{
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
    int n = 0;                 /* Number of ok inits */
    mp_int* cur_arg = mp;
    va_list args;

    va_start(args, mp);        /* init args to next argument from caller */
    while (cur_arg != NULL) {
        if (mp_init(cur_arg) != MP_OKAY) {
            /* Oops - error! Back-track and mp_clear what we already
               succeeded in init-ing, then return error.
            */
            va_list clean_args;
            
            /* end the current list */
            va_end(args);
            
            /* now start cleaning up */            
            cur_arg = mp;
            va_start(clean_args, mp);
            while (n--) {
                mp_clear(cur_arg);
                cur_arg = va_arg(clean_args, mp_int*);
            }
            va_end(clean_args);
            res = MP_MEM;
            break;
        }
        n++;
        cur_arg = va_arg(args, mp_int*);
    }
    va_end(args);
    return res;                /* Assumed ok, if error flagged above. */
}

#endif




|










|
|
|
<
<


|

|
|
|
|

|
|
|
|
|
|
|
|
<
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */



#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...)
{
   mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
   int n = 0;                 /* Number of ok inits */
   mp_int *cur_arg = mp;
   va_list args;

   va_start(args, mp);        /* init args to next argument from caller */
   while (cur_arg != NULL) {
      if (mp_init(cur_arg) != MP_OKAY) {
         /* Oops - error! Back-track and mp_clear what we already
            succeeded in init-ing, then return error.
         */
         va_list clean_args;




         /* now start cleaning up */
         cur_arg = mp;
         va_start(clean_args, mp);
         while (n-- != 0) {
            mp_clear(cur_arg);
            cur_arg = va_arg(clean_args, mp_int *);
         }
         va_end(clean_args);
         res = MP_MEM;
         break;
      }
      n++;
      cur_arg = va_arg(args, mp_int *);
   }
   va_end(args);
   return res;                /* Assumed ok, if error flagged above. */
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_set.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include <tommath.h>
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  mp_set(a, b);
  return err;
}
#endif




|










|
<
<
<



|

|
|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   mp_set(a, b);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_set_int.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include <tommath.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
  int err;
  if ((err = mp_init(a)) != MP_OKAY) {
     return err;
  }
  return mp_set_int(a, b);
}
#endif




|










|
<
<
<



|

|
|
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* initialize and set a digit */
int mp_init_set_int(mp_int *a, unsigned long b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   return mp_set_int(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_init_size.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44




#include <tommath.h>
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
  int x;

  /* pad size so there are always extra digits */
  size += (MP_PREC * 2) - (size % MP_PREC);	
  
  /* alloc mem */
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
  if (a->dp == NULL) {
    return MP_MEM;
  }

  /* set the members */
  a->used  = 0;
  a->alloc = size;
  a->sign  = MP_ZPOS;

  /* zero the digits */
  for (x = 0; x < size; x++) {
      a->dp[x] = 0;
  }

  return MP_OKAY;
}
#endif




|










|
<
<
<



|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* init an mp_init for a given size */
int mp_init_size(mp_int *a, int size)
{
   int x;

   /* pad size so there are always extra digits */
   size += (MP_PREC * 2) - (size % MP_PREC);

   /* alloc mem */
   a->dp = OPT_CAST(mp_digit) XMALLOC(sizeof(mp_digit) * (size_t)size);
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the members */
   a->used  = 0;
   a->alloc = size;
   a->sign  = MP_ZPOS;

   /* zero the digits */
   for (x = 0; x < size; x++) {
      a->dp[x] = 0;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_invmod.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39




#include <tommath.h>
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

#ifdef BN_FAST_MP_INVMOD_C
  /* if the modulus is odd we can use a faster routine instead */
  if (mp_isodd (b) == 1) {
    return fast_mp_invmod (a, b, c);
  }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
  return mp_invmod_slow(a, b, c);
#endif

  return MP_VAL;

}
#endif




|










|
<
<
<



|

|
|
|
|


|
|
|
|



|
|
<
|
>


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* hac 14.61, pp608 */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   /* b cannot be negative and has to be >1 */
   if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
      return MP_VAL;
   }

#ifdef BN_FAST_MP_INVMOD_C
   /* if the modulus is odd we can use a faster routine instead */
   if ((mp_isodd(b) == MP_YES)) {
      return fast_mp_invmod(a, b, c);
   }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
   return mp_invmod_slow(a, b, c);
#else

   return MP_VAL;
#endif
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_invmod_slow.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171




#include <tommath.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x, y, u, v, A, B, C, D;
  int     res;

  /* b cannot be negative */
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
    return MP_VAL;
  }

  /* init temps */
  if ((res = mp_init_multi(&x, &y, &u, &v, 
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
     return res;
  }

  /* x = a, y = b */
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
  }
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
    goto LBL_ERR;
  }

  /* 2. [modified] if x,y are both even then return an error! */
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
    goto LBL_ERR;
  }
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
    goto LBL_ERR;
  }
  mp_set (&A, 1);
  mp_set (&D, 1);

top:
  /* 4.  while u is even do */
  while (mp_iseven (&u) == 1) {
    /* 4.1 u = u/2 */
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 4.2 if A or B is odd then */
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
      /* A = (A+y)/2, B = (B-x)/2 */
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* A = A/2, B = B/2 */
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 5.  while v is even do */
  while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    /* 5.2 if C or D is odd then */
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
      /* C = (C+y)/2, D = (D-x)/2 */
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
    }
    /* C = C/2, D = D/2 */
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* 6.  if u >= v then */
  if (mp_cmp (&u, &v) != MP_LT) {
    /* u = u - v, A = A - C, B = B - D */
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
      goto LBL_ERR;
    }
  } else {
    /* v - v - u, C = C - A, D = D - B */
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
      goto LBL_ERR;
    }

    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
      goto LBL_ERR;
    }
  }

  /* if not zero goto step 4 */
  if (mp_iszero (&u) == 0)
    goto top;

  /* now a = C, b = D, gcd == g*v */

  /* if v != 1 then there is no inverse */
  if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
  }

  /* if its too low */
  while (mp_cmp_d(&C, 0) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* too big */
  while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
  }
  
  /* C is now the inverse */
  mp_exch (&C, c);
  res = MP_OKAY;

LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
  return res;
}
#endif




|










|
<
<
<



|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|



|
|
|
|



|
|
|
|
|
>
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "tommath_private.h"
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* hac 14.61, pp608 */
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, A, B, C, D;
   int     res;

   /* b cannot be negative */
   if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
      return MP_VAL;
   }

   /* init temps */
   if ((res = mp_init_multi(&x, &y, &u, &v,
                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x = a, y = b */
   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* 2. [modified] if x,y are both even then return an error! */
   if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&A, 1uL);
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if A or B is odd then */
      if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) {
         /* A = (A+y)/2, B = (B-x)/2 */
         if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* A = A/2, B = B/2 */
      if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if C or D is odd then */
      if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) {
         /* C = (C+y)/2, D = (D-x)/2 */
         if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* C = C/2, D = D/2 */
      if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, A = A - C, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, C = C - A, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO)
      goto top;

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* if its too low */
   while (mp_cmp_d(&C, 0uL) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* C is now the inverse */
   mp_exch(&C, c);
   res = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_is_square.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105




#include <tommath.h>
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};

static const char rem_105[105] = {
 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret) 
{
  int           res;
  mp_digit      c;
  mp_int        t;
  unsigned long r;

  /* Default to Non-square :) */
  *ret = MP_NO; 

  if (arg->sign == MP_NEG) {
    return MP_VAL;
  }

  /* digits used?  (TSD) */
  if (arg->used == 0) {
     return MP_OKAY;
  }

  /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
  if (rem_128[127 & DIGIT(arg,0)] == 1) {
     return MP_OKAY;
  }

  /* Next check mod 105 (3*5*7) */
  if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
     return res;
  }
  if (rem_105[c] == 1) {
     return MP_OKAY;
  }


  if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
     return res;
  }
  if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
     goto ERR;
  }
  r = mp_get_int(&t);
  /* Check for other prime modules, note it's not an ERROR but we must
   * free "t" so the easiest way is to goto ERR.  We know that res
   * is already equal to MP_OKAY from the mp_mod call 
   */ 
  if ( (1L<<(r%11)) & 0x5C4L )             goto ERR;
  if ( (1L<<(r%13)) & 0x9E4L )             goto ERR;
  if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR;
  if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR;
  if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR;
  if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR;
  if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR;

  /* Final check - is sqr(sqrt(arg)) == arg ? */
  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
     goto ERR;
  }
  if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
     goto ERR;
  }

  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;

ERR:mp_clear(&t);
  return res;
}
#endif




|










|
<
<
<




|
|
|
|
|
|
|
|



|
|
|
|
|
|
|



|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
>
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include "tommath_private.h"
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};

static const char rem_105[105] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
   0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
   1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(const mp_int *arg, int *ret)
{
   int           res;
   mp_digit      c;
   mp_int        t;
   unsigned long r;

   /* Default to Non-square :) */
   *ret = MP_NO;

   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* digits used?  (TSD) */
   if (arg->used == 0) {
      return MP_OKAY;
   }

   /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
   if (rem_128[127u & DIGIT(arg, 0)] == (char)1) {
      return MP_OKAY;
   }

   /* Next check mod 105 (3*5*7) */
   if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
      return res;
   }
   if (rem_105[c] == (char)1) {
      return MP_OKAY;
   }


   if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
      return res;
   }
   if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   r = mp_get_int(&t);
   /* Check for other prime modules, note it's not an ERROR but we must
    * free "t" so the easiest way is to goto LBL_ERR.  We know that res
    * is already equal to MP_OKAY from the mp_mod call
    */
   if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL)        goto LBL_ERR;
   if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL)       goto LBL_ERR;
   if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL)      goto LBL_ERR;
   if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL)     goto LBL_ERR;
   if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL)    goto LBL_ERR;

   /* Final check - is sqr(sqrt(arg)) == arg ? */
   if ((res = mp_sqrt(arg, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sqr(&t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }

   *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
LBL_ERR:
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_jacobi.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101




#include <tommath.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * HAC pp. 73 Algorithm 2.149
 */
int mp_jacobi (mp_int * a, mp_int * p, int *c)
{
  mp_int  a1, p1;
  int     k, s, r, res;
  mp_digit residue;

  /* if p <= 0 return MP_VAL */
  if (mp_cmp_d(p, 0) != MP_GT) {

     return MP_VAL;
  }

  /* step 1.  if a == 0, return 0 */
  if (mp_iszero (a) == 1) {
    *c = 0;
    return MP_OKAY;
  }

  /* step 2.  if a == 1, return 1 */
  if (mp_cmp_d (a, 1) == MP_EQ) {
    *c = 1;
    return MP_OKAY;
  }

  /* default */
  s = 0;


  /* step 3.  write a = a1 * 2**k  */
  if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&p1)) != MP_OKAY) {
    goto LBL_A1;
  }

  /* divide out larger power of two */
  k = mp_cnt_lsb(&a1);
  if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
     goto LBL_P1;
  }

  /* step 4.  if e is even set s=1 */
  if ((k & 1) == 0) {
    s = 1;
  } else {
    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
    residue = p->dp[0] & 7;

    if (residue == 1 || residue == 7) {
      s = 1;
    } else if (residue == 3 || residue == 5) {
      s = -1;
    }
  }

  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
  if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
    s = -s;
  }

  /* if a1 == 1 we're done */
  if (mp_cmp_d (&a1, 1) == MP_EQ) {
    *c = s;
  } else {
    /* n1 = n mod a1 */
    if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
      goto LBL_P1;
    }
    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
      goto LBL_P1;
    }
    *c = s * r;
  }

  /* done */
  res = MP_OKAY;
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
  return res;
}
#endif




|










|
<
<
<



|

|

<
<
<
<
|
<
>
|
|

<
<
<
|
<
<
<
|
<
|
|

<
<
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12



13
14
15
16
17
18
19




20

21
22
23
24



25



26

27
28
29


30
31






















































32
33
34
35
36
#include "tommath_private.h"
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense



 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * Kept for legacy reasons, please use mp_kronecker() instead
 */
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{




   /* if a < 0 return MP_VAL */

   if (mp_isneg(a) == MP_YES) {
      return MP_VAL;
   }




   /* if n <= 0 return MP_VAL */



   if (mp_cmp_d(n, 0uL) != MP_GT) {

      return MP_VAL;
   }



   return mp_kronecker(a, n, c);
}






















































#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_karatsuba_mul.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154

155

156

157

158

159
160
161
162
163




#include <tommath.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b => 
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be 
 * computed once.  So in total three half size (half # of 
 * digit) multiplications are performed, a0b0, a1b1 and 
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in 
 * total after one call 25% of the single precision multiplications 
 * are saved.  Note also that the call to mp_mul can end up back 
 * in this function if the a0, a1, b0, or b1 are above the threshold.  
 * This is known as divide-and-conquer and leads to the famous 
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
 * the standard O(N**2) that the baseline/comba methods use.  
 * Generally though the overhead of this method doesn't pay off 
 * until a certain size (N ~ 80) is reached.
 */
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
  int     B, err;

  /* default the return code to an error */
  err = MP_MEM;

  /* min # of digits */
  B = MIN (a->used, b->used);

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;
  if (mp_init_size (&y0, B) != MP_OKAY)
    goto X1;
  if (mp_init_size (&y1, b->used - B) != MP_OKAY)
    goto Y0;

  /* init temps */
  if (mp_init_size (&t1, B * 2) != MP_OKAY)
    goto Y1;
  if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
    goto X0Y0;

  /* now shift the digits */
  x0.used = y0.used = B;
  x1.used = a->used - B;
  y1.used = b->used - B;

  {
    register int x;
    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

    /* we copy the digits directly instead of using higher level functions
     * since we also need to shift the digits
     */
    tmpa = a->dp;
    tmpb = b->dp;

    tmpx = x0.dp;
    tmpy = y0.dp;
    for (x = 0; x < B; x++) {
      *tmpx++ = *tmpa++;
      *tmpy++ = *tmpb++;
    }

    tmpx = x1.dp;
    for (x = B; x < a->used; x++) {
      *tmpx++ = *tmpa++;
    }

    tmpy = y1.dp;
    for (x = B; x < b->used; x++) {
      *tmpy++ = *tmpb++;
    }
  }

  /* only need to clamp the lower words since by definition the 
   * upper words x1/y1 must have a known number of digits
   */
  mp_clamp (&x0);
  mp_clamp (&y0);

  /* now calc the products x0y0 and x1y1 */
  /* after this x0 is no longer required, free temp [x0==t2]! */
  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
    goto X1Y1;          /* x0y0 = x0*y0 */
  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1*y1 */

  /* now calc x1+x0 and y1+y0 */
  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x1 - x0 */
  if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = y1 - y0 */
  if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */

  /* add x0y0 */
  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
    goto X1Y1;          /* t2 = x0y0 + x1y1 */
  if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
  if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
    goto X1Y1;          /* x1y1 = x1y1 << 2*B */

  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 */
  if (mp_add (&t1, &x1y1, c) != MP_OKAY)
    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */

  /* Algorithm succeeded set the return code to MP_OKAY */
  err = MP_OKAY;


X1Y1:mp_clear (&x1y1);

X0Y0:mp_clear (&x0y0);

T1:mp_clear (&t1);

Y1:mp_clear (&y1);

Y0:mp_clear (&y0);

X1:mp_clear (&x1);

X0:mp_clear (&x0);
ERR:
  return err;
}
#endif




|










|
<
|
<
<

|


|
|





|


|
|
|



|
|
|
|
|
|
|
|


|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

>
|
>
|
>
|
>
|
>
|
>
|
>
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "tommath_private.h"
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* c = |a| * |b| using Karatsuba Multiplication using
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
 * let n represent half of the number of digits in
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b =>
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be
 * computed once.  So in total three half size (half # of
 * digit) multiplications are performed, a0b0, a1b1 and
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in
 * total after one call 25% of the single precision multiplications
 * are saved.  Note also that the call to mp_mul can end up back
 * in this function if the a0, a1, b0, or b1 are above the threshold.
 * This is known as divide-and-conquer and leads to the famous
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 * the standard O(N**2) that the baseline/comba methods use.
 * Generally though the overhead of this method doesn't pay off
 * until a certain size (N ~ 80) is reached.
 */
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
   int     B, err;

   /* default the return code to an error */
   err = MP_MEM;

   /* min # of digits */
   B = MIN(a->used, b->used);

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto LBL_ERR;
   if (mp_init_size(&x1, a->used - B) != MP_OKAY)
      goto X0;
   if (mp_init_size(&y0, B) != MP_OKAY)
      goto X1;
   if (mp_init_size(&y1, b->used - B) != MP_OKAY)
      goto Y0;

   /* init temps */
   if (mp_init_size(&t1, B * 2) != MP_OKAY)
      goto Y1;
   if (mp_init_size(&x0y0, B * 2) != MP_OKAY)
      goto T1;
   if (mp_init_size(&x1y1, B * 2) != MP_OKAY)
      goto X0Y0;

   /* now shift the digits */
   x0.used = y0.used = B;
   x1.used = a->used - B;
   y1.used = b->used - B;

   {
      int x;
      mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

      /* we copy the digits directly instead of using higher level functions
       * since we also need to shift the digits
       */
      tmpa = a->dp;
      tmpb = b->dp;

      tmpx = x0.dp;
      tmpy = y0.dp;
      for (x = 0; x < B; x++) {
         *tmpx++ = *tmpa++;
         *tmpy++ = *tmpb++;
      }

      tmpx = x1.dp;
      for (x = B; x < a->used; x++) {
         *tmpx++ = *tmpa++;
      }

      tmpy = y1.dp;
      for (x = B; x < b->used; x++) {
         *tmpy++ = *tmpb++;
      }
   }

   /* only need to clamp the lower words since by definition the
    * upper words x1/y1 must have a known number of digits
    */
   mp_clamp(&x0);
   mp_clamp(&y0);

   /* now calc the products x0y0 and x1y1 */
   /* after this x0 is no longer required, free temp [x0==t2]! */
   if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY)
      goto X1Y1;          /* x0y0 = x0*y0 */
   if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY)
      goto X1Y1;          /* x1y1 = x1*y1 */

   /* now calc x1+x0 and y1+y0 */
   if (s_mp_add(&x1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = x1 - x0 */
   if (s_mp_add(&y1, &y0, &x0) != MP_OKAY)
      goto X1Y1;          /* t2 = y1 - y0 */
   if (mp_mul(&t1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */

   /* add x0y0 */
   if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY)
      goto X1Y1;          /* t2 = x0y0 + x1y1 */
   if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */

   /* shift by B */
   if (mp_lshd(&t1, B) != MP_OKAY)
      goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
   if (mp_lshd(&x1y1, B * 2) != MP_OKAY)
      goto X1Y1;          /* x1y1 = x1y1 << 2*B */

   if (mp_add(&x0y0, &t1, &t1) != MP_OKAY)
      goto X1Y1;          /* t1 = x0y0 + t1 */
   if (mp_add(&t1, &x1y1, c) != MP_OKAY)
      goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */

   /* Algorithm succeeded set the return code to MP_OKAY */
   err = MP_OKAY;

X1Y1:
   mp_clear(&x1y1);
X0Y0:
   mp_clear(&x0y0);
T1:
   mp_clear(&t1);
Y1:
   mp_clear(&y1);
Y0:
   mp_clear(&y0);
X1:
   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

Changes to libtommath/bn_mp_karatsuba_sqr.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

109

110

111

112

113
114
115
116
117




#include <tommath.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://math.libtomcrypt.com
 */

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
  mp_int  x0, x1, t1, t2, x0x0, x1x1;
  int     B, err;

  err = MP_MEM;

  /* min # of digits */
  B = a->used;

  /* now divide in two */
  B = B >> 1;

  /* init copy all the temps */
  if (mp_init_size (&x0, B) != MP_OKAY)
    goto ERR;
  if (mp_init_size (&x1, a->used - B) != MP_OKAY)
    goto X0;

  /* init temps */
  if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
    goto X1;
  if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
    goto T1;
  if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
    goto T2;
  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
    goto X0X0;

  {
    register int x;
    register mp_digit *dst, *src;

    src = a->dp;

    /* now shift the digits */
    dst = x0.dp;
    for (x = 0; x < B; x++) {
      *dst++ = *src++;
    }

    dst = x1.dp;
    for (x = B; x < a->used; x++) {
      *dst++ = *src++;
    }
  }

  x0.used = B;
  x1.used = a->used - B;

  mp_clamp (&x0);

  /* now calc the products x0*x0 and x1*x1 */
  if (mp_sqr (&x0, &x0x0) != MP_OKAY)
    goto X1X1;           /* x0x0 = x0*x0 */
  if (mp_sqr (&x1, &x1x1) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1*x1 */

  /* now calc (x1+x0)**2 */
  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x1 - x0 */
  if (mp_sqr (&t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */

  /* add x0y0 */
  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
    goto X1X1;           /* t2 = x0x0 + x1x1 */
  if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

  /* shift by B */
  if (mp_lshd (&t1, B) != MP_OKAY)
    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
  if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
    goto X1X1;           /* x1x1 = x1x1 << 2*B */

  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 */
  if (mp_add (&t1, &x1x1, b) != MP_OKAY)
    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */

  err = MP_OKAY;


X1X1:mp_clear (&x1x1);

X0X0:mp_clear (&x0x0);

T2:mp_clear (&t2);

T1:mp_clear (&t1);

X1:mp_clear (&x1);

X0:mp_clear (&x0);
ERR:
  return err;
}
#endif




|










|
<
|
<
<

|


|
|


|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

>
|
>
|
>
|
>
|
>
|
>
|
|
|


>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12

13


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include "tommath_private.h"
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */



/* Karatsuba squaring, computes b = a*a using three
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It
 * is essentially the same algorithm but merely
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   mp_int  x0, x1, t1, t2, x0x0, x1x1;
   int     B, err;

   err = MP_MEM;

   /* min # of digits */
   B = a->used;

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto LBL_ERR;
   if (mp_init_size(&x1, a->used - B) != MP_OKAY)
      goto X0;

   /* init temps */
   if (mp_init_size(&t1, a->used * 2) != MP_OKAY)
      goto X1;
   if (mp_init_size(&t2, a->used * 2) != MP_OKAY)
      goto T1;
   if (mp_init_size(&x0x0, B * 2) != MP_OKAY)
      goto T2;
   if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY)
      goto X0X0;

   {
      int x;