Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge libtommath |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | libtommath-no-stdint.h |
Files: | files | file ages | folders |
SHA3-256: |
042fb1427b99b5d1469d3f30c93cf380 |
User & Date: | jan.nijtmans 2019-06-13 21:28:11.680 |
Context
2019-07-05
| ||
14:54 | Merge libtommath check-in: 81d9516c89 user: jan.nijtmans tags: libtommath-no-stdint.h | |
2019-06-14
| ||
21:48 | Latest libtommath's "develop" branch adapted for Tcl 8.6. And Tcl 8.6 adapted for changes in libtom... check-in: 125328a27d user: jan.nijtmans tags: libtommath-no-stdint.h-for-8.6 | |
2019-06-13
| ||
21:28 | Merge libtommath check-in: 042fb1427b user: jan.nijtmans tags: libtommath-no-stdint.h | |
19:07 | Update to latest libtommath's "develop" branch. On the way to 1.2.0 check-in: 94cf70186e user: jan.nijtmans tags: libtommath | |
2019-04-10
| ||
20:07 | Eliminate use of int32_t (doesn't work on MSVC++ 6.0) check-in: a0a32b3e13 user: jan.nijtmans tags: libtommath-no-stdint.h | |
Changes
Changes to .fossil-settings/ignore-glob.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | *.a *.dll *.dylib *.exe *.exp *.lib *.o *.obj *.pdb *.res *.sl *.so */Makefile */config.cache */config.log */config.status */tclConfig.sh */tclsh* */tcltest* */versions.vc html libtommath/bn.ilg libtommath/bn.ind libtommath/doc libtommath/pretty.build libtommath/tommath.src libtommath/*.pdf | > > > > > > | > | | > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | *.a *.dll *.dylib *.exe *.exp *.la *.lib *.lo *.o *.obj *.pdb *.res *.sl *.so */Makefile */config.cache */config.log */config.status */tclConfig.sh */tclsh* */tcltest* */versions.vc */version.vc */libtcl.vfs */libtcl_*.zip html libtommath/bn.ilg libtommath/bn.ind libtommath/doc libtommath/pretty.build libtommath/tommath.src libtommath/*.log libtommath/*.pdf libtommath/gen.pl libtommath/*.sh libtommath/doc/* libtommath/tombc/* libtommath/pre_gen/* libtommath/pics/* libtommath/mtest/* libtommath/logs/* libtommath/etc/* libtommath/demo/* libtommath/*.out libtommath/*.tex unix/autoMkindex.tcl unix/dltest.marker unix/tcl.pc unix/tclIndex unix/pkgs/* win/Debug* win/Release* win/pkgs/* win/coffbase.txt win/tcl.hpj win/nmhlp-out.txt |
Changes to libtommath/README.md.
︙ | ︙ | |||
19 20 21 22 23 24 25 | The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms. ## Testing Tests are located in `demo/` and can be built in two flavors. * `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm * `make test_standalone` creates a stand-alone test binary that executes several test routines. | > > > > | 19 20 21 22 23 24 25 26 27 28 29 | The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms. ## Testing Tests are located in `demo/` and can be built in two flavors. * `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm * `make test_standalone` creates a stand-alone test binary that executes several test routines. ## Building and Installing Building is straightforward for GNU Linux only, the section "Building LibTomMath" in the documentation in `doc/bn.pdf` has the details. |
Changes to libtommath/astylerc.
1 2 3 4 5 6 7 8 9 10 11 12 | # Artistic Style, see http://astyle.sourceforge.net/ # full documentation, see: http://astyle.sourceforge.net/astyle.html # # usage: # astyle --options=astylerc *.[ch] ## Bracket Style Options style=kr ## Tab Options indent=spaces=3 | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Artistic Style, see http://astyle.sourceforge.net/ # full documentation, see: http://astyle.sourceforge.net/astyle.html # # usage: # astyle --options=astylerc *.[ch] # Do not create backup, annonying in the times of git suffix=none ## Bracket Style Options style=kr ## Tab Options indent=spaces=3 |
︙ | ︙ |
Name change from libtommath/bncore.c to libtommath/bn_cutoffs.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < < | < < < < | < | < | | < | < < < > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #include "tommath_private.h" #ifdef BN_CUTOFFS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef MP_FIXED_CUTOFFS #include "tommath_cutoffs.h" int KARATSUBA_MUL_CUTOFF = MP_DEFAULT_KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF = MP_DEFAULT_KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF = MP_DEFAULT_TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF = MP_DEFAULT_TOOM_SQR_CUTOFF; #endif #endif |
Added libtommath/bn_deprecated.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | #include "tommath_private.h" #ifdef BN_DEPRECATED_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_GET_BIT_C int mp_get_bit(const mp_int *a, int b) { if (b < 0) { return MP_VAL; } return (s_mp_get_bit(a, (unsigned int)b) == MP_YES) ? MP_YES : MP_NO; } #endif #ifdef BN_MP_JACOBI_C mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c) { if (a->sign == MP_NEG) { return MP_VAL; } if (mp_cmp_d(n, 0uL) != MP_GT) { return MP_VAL; } return mp_kronecker(a, n, c); } #endif #ifdef BN_MP_PRIME_RANDOM_EX_C mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat) { return s_mp_prime_random_ex(a, t, size, flags, cb, dat); } #endif #ifdef BN_MP_RAND_DIGIT_C mp_err mp_rand_digit(mp_digit *r) { mp_err err = s_mp_rand_source(r, sizeof(mp_digit)); *r &= MP_MASK; return err; } #endif #ifdef BN_FAST_MP_INVMOD_C mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { return s_mp_invmod_fast(a, b, c); } #endif #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { return s_mp_montgomery_reduce_fast(x, n, rho); } #endif #ifdef BN_FAST_S_MP_MUL_DIGS_C mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { return s_mp_mul_digs_fast(a, b, c, digs); } #endif #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { return s_mp_mul_high_digs_fast(a, b, c, digs); } #endif #ifdef BN_FAST_S_MP_SQR_C mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b) { return s_mp_sqr_fast(a, b); } #endif #ifdef BN_MP_BALANCE_MUL_C mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c) { return s_mp_balance_mul(a, b, c); } #endif #ifdef BN_MP_EXPTMOD_FAST_C mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { return s_mp_exptmod_fast(G, X, P, Y, redmode); } #endif #ifdef BN_MP_INVMOD_SLOW_C mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) { return s_mp_invmod_slow(a, b, c); } #endif #ifdef BN_MP_KARATSUBA_MUL_C mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) { return s_mp_karatsuba_mul(a, b, c); } #endif #ifdef BN_MP_KARATSUBA_SQR_C mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b) { return s_mp_karatsuba_sqr(a, b); } #endif #ifdef BN_MP_TOOM_MUL_C mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) { return s_mp_toom_mul(a, b, c); } #endif #ifdef BN_MP_TOOM_SQR_C mp_err mp_toom_sqr(const mp_int *a, mp_int *b) { return s_mp_toom_sqr(a, b); } #endif #ifdef S_MP_REVERSE_C void bn_reverse(unsigned char *s, int len) { s_mp_reverse(s, len); } #endif #ifdef BN_MP_TC_AND_C mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) { return mp_and(a, b, c); } #endif #ifdef BN_MP_TC_OR_C mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) { return mp_or(a, b, c); } #endif #ifdef BN_MP_TC_XOR_C mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c) { return mp_xor(a, b, c); } #endif #ifdef BN_MP_TC_DIV_2D_C mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c) { return mp_signed_rsh(a, b, c); } #endif #ifdef BN_MP_INIT_SET_INT_C mp_err mp_init_set_int(mp_int *a, unsigned long b) { return mp_init_u32(a, (unsigned int)b); } #endif #ifdef BN_MP_SET_INT_C mp_err mp_set_int(mp_int *a, unsigned long b) { mp_set_ul(a, (unsigned int)b); return MP_OKAY; } #endif #ifdef BN_MP_SET_LONG_C mp_err mp_set_long(mp_int *a, unsigned long b) { mp_set_u64(a, b); return MP_OKAY; } #endif #ifdef BN_MP_SET_LONG_LONG_C mp_err mp_set_long_long(mp_int *a, unsigned long long b) { mp_set_u64(a, b); return MP_OKAY; } #endif #ifdef BN_MP_GET_INT_C unsigned long mp_get_int(const mp_int *a) { return mp_get_mag32(a); } #endif #ifdef BN_MP_GET_LONG_C unsigned long mp_get_long(const mp_int *a) { return (sizeof(long) > sizeof(int32_t)) ? (unsigned long)mp_get_mag64(a) : (unsigned long)mp_get_mag32(a); } #endif #ifdef BN_MP_GET_LONG_LONG_C unsigned long long mp_get_long_long(const mp_int *a) { return (unsigned long long)mp_get_mag64(a); } #endif #ifdef BN_MP_PRIME_IS_DIVISIBLE_C mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result) { return s_mp_prime_is_divisible(a, result); } #endif #ifdef BN_MP_EXPT_D_EX_C mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) { (void)fast; return mp_expt_d(a, b, c); } #endif #ifdef BN_MP_N_ROOT_EX_C mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) { (void)fast; return mp_n_root(a, b, c); } #endif #endif |
Changes to libtommath/bn_mp_2expt.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_2EXPT_C | | < < < < < < < < | < | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #include "tommath_private.h" #ifdef BN_MP_2EXPT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. */ mp_err mp_2expt(mp_int *a, int b) { mp_err err; /* zero a as per default */ mp_zero(a); /* grow a to accomodate the single bit */ if ((err = mp_grow(a, (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) { return err; } /* set the used count of where the bit will go */ a->used = (b / MP_DIGIT_BIT) + 1; /* put the single bit in its place */ a->dp[b / MP_DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_abs.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_ABS_C | | < < < < < < < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include "tommath_private.h" #ifdef BN_MP_ABS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* b = |a| * * Simple function copies the input and fixes the sign to positive */ mp_err mp_abs(const mp_int *a, mp_int *b) { mp_err err; /* copy a to b */ if (a != b) { if ((err = mp_copy(a, b)) != MP_OKAY) { return err; } } /* force the sign of b to positive */ b->sign = MP_ZPOS; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_add.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_ADD_C | | < < < < < < < < | < | | > | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* high level addition (handles signs) */ mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) { mp_sign sa, sb; mp_err err; /* get sign of both inputs */ sa = a->sign; sb = b->sign; /* handle two cases, not four */ if (sa == sb) { /* both positive or both negative */ /* add their magnitudes, copy the sign */ c->sign = sa; err = s_mp_add(a, b, c); } else { /* one positive, the other negative */ /* subtract the one with the greater magnitude from */ /* the one of the lesser magnitude. The result gets */ /* the sign of the one with the greater magnitude. */ if (mp_cmp_mag(a, b) == MP_LT) { c->sign = sb; err = s_mp_sub(b, a, c); } else { c->sign = sa; err = s_mp_sub(a, b, c); } } return err; } #endif |
Changes to libtommath/bn_mp_add_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_ADD_D_C | | < < < < < < < < | < | > | | | | | | | < < < < < | < | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include "tommath_private.h" #ifdef BN_MP_ADD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* single digit addition */ mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c) { mp_err err; int ix, oldused; mp_digit *tmpa, *tmpc; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { return err; } } /* if a is negative and |a| >= b, call c = |a| - b */ if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) { mp_int a_ = *a; /* temporarily fix sign of a */ a_.sign = MP_ZPOS; /* c = |a| - b */ err = mp_sub_d(&a_, b, c); /* fix sign */ c->sign = MP_NEG; /* clamp */ mp_clamp(c); return err; } /* old number of used digits in c */ oldused = c->used; /* source alias */ tmpa = a->dp; /* destination alias */ tmpc = c->dp; /* if a is positive */ if (a->sign == MP_ZPOS) { /* add digits, mu is carry */ mp_digit mu = b; for (ix = 0; ix < a->used; ix++) { *tmpc = *tmpa++ + mu; mu = *tmpc >> MP_DIGIT_BIT; *tmpc++ &= MP_MASK; } /* set final carry */ ix++; *tmpc++ = mu; /* setup size */ |
︙ | ︙ | |||
90 91 92 93 94 95 96 | ix = 1; } /* sign always positive */ c->sign = MP_ZPOS; /* now zero to oldused */ | | < < < < < < | 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | ix = 1; } /* sign always positive */ c->sign = MP_ZPOS; /* now zero to oldused */ MP_ZERO_DIGITS(tmpc, oldused - ix); mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_addmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_ADDMOD_C | | < < < < < < < < | < | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_ADDMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* d = a + b (mod c) */ mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { mp_err err; mp_int t; if ((err = mp_init(&t)) != MP_OKAY) { return err; } if ((err = mp_add(a, b, &t)) != MP_OKAY) { mp_clear(&t); return err; } err = mp_mod(&t, c, d); mp_clear(&t); return err; } #endif |
Changes to libtommath/bn_mp_and.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_AND_C | | < < < < < < < < | < | | | | | > | | | > | > > > > > > | > | | < | > > > | > > > | < | | > > > > > | < < < > > | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement and */ mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) { int used = MP_MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x & y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_clamp.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CLAMP_C | | < < < < < < < < | < | 1 2 3 4 5 6 7 8 9 10 11 | #include "tommath_private.h" #ifdef BN_MP_CLAMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* trim unused digits * * This is used to ensure that leading zero digits are * trimed and the leading "used" digit will be non-zero * Typically very fast. Also fixes the sign if there * are no more leading digits |
︙ | ︙ | |||
30 31 32 33 34 35 36 | /* reset the sign flag if used == 0 */ if (a->used == 0) { a->sign = MP_ZPOS; } } #endif | < < < < | 21 22 23 24 25 26 27 | /* reset the sign flag if used == 0 */ if (a->used == 0) { a->sign = MP_ZPOS; } } #endif |
Changes to libtommath/bn_mp_clear.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_C | | < < < < < < < < | < < < < < < < < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* clear one (frees) */ void mp_clear(mp_int *a) { /* only do anything if a hasn't been freed previously */ if (a->dp != NULL) { /* free ram */ MP_FREE_DIGITS(a->dp, a->alloc); /* reset members to make debugging easier */ a->dp = NULL; a->alloc = a->used = 0; a->sign = MP_ZPOS; } } #endif |
Changes to libtommath/bn_mp_clear_multi.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_MULTI_C | | < < < < < < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | #include "tommath_private.h" #ifdef BN_MP_CLEAR_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #include <stdarg.h> void mp_clear_multi(mp_int *mp, ...) { mp_int *next_mp = mp; va_list args; va_start(args, mp); while (next_mp != NULL) { mp_clear(next_mp); next_mp = va_arg(args, mp_int *); } va_end(args); } #endif |
Changes to libtommath/bn_mp_cmp.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CMP_C | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include "tommath_private.h" #ifdef BN_MP_CMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare two ints (signed)*/ mp_ord mp_cmp(const mp_int *a, const mp_int *b) { /* compare based on sign */ if (a->sign != b->sign) { if (a->sign == MP_NEG) { return MP_LT; } else { return MP_GT; } } /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ return mp_cmp_mag(b, a); } else { return mp_cmp_mag(a, b); } } #endif |
Changes to libtommath/bn_mp_cmp_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CMP_D_C | | < < < < < < < < | < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #include "tommath_private.h" #ifdef BN_MP_CMP_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare a digit */ mp_ord mp_cmp_d(const mp_int *a, mp_digit b) { /* compare based on sign */ if (a->sign == MP_NEG) { return MP_LT; } /* compare based on magnitude */ |
︙ | ︙ | |||
31 32 33 34 35 36 37 | } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; } } #endif | < < < < | 22 23 24 25 26 27 28 | } else if (a->dp[0] < b) { return MP_LT; } else { return MP_EQ; } } #endif |
Changes to libtommath/bn_mp_cmp_mag.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CMP_MAG_C | | < < < < < < < < | < | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #include "tommath_private.h" #ifdef BN_MP_CMP_MAG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* compare maginitude of two ints (unsigned) */ mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) { int n; const mp_digit *tmpa, *tmpb; /* compare based on # of non-zero digits */ if (a->used > b->used) { return MP_GT; } if (a->used < b->used) { |
︙ | ︙ | |||
42 43 44 45 46 47 48 | if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ; } #endif | < < < < | 33 34 35 36 37 38 39 | if (*tmpa < *tmpb) { return MP_LT; } } return MP_EQ; } #endif |
Changes to libtommath/bn_mp_cnt_lsb.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_CNT_LSB_C | | < < < < < < < < | < | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_CNT_LSB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(const mp_int *a) { int x; mp_digit q, qq; /* easy out */ if (MP_IS_ZERO(a)) { return 0; } /* scan lower digits until non-zero */ for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {} q = a->dp[x]; x *= MP_DIGIT_BIT; /* now scan this digit until a 1 is found */ if ((q & 1u) == 0u) { do { qq = q & 15u; x += lnz[qq]; q >>= 4; } while (qq == 0u); } return x; } #endif |
Changes to libtommath/bn_mp_complement.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_COMPLEMENT_C | | < < < < < < < < | < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 | #include "tommath_private.h" #ifdef BN_MP_COMPLEMENT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* b = ~a */ mp_err mp_complement(const mp_int *a, mp_int *b) { mp_err err = mp_neg(a, b); return (err == MP_OKAY) ? mp_sub_d(b, 1uL, b) : err; } #endif |
Changes to libtommath/bn_mp_copy.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_COPY_C | | < < < < < < < < | < | | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | #include "tommath_private.h" #ifdef BN_MP_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* copy, b = a */ mp_err mp_copy(const mp_int *a, mp_int *b) { int n; mp_err err; /* if dst == src do nothing */ if (a == b) { return MP_OKAY; } /* grow dest */ if (b->alloc < a->used) { if ((err = mp_grow(b, a->used)) != MP_OKAY) { return err; } } /* zero b and copy the parameters over */ { mp_digit *tmpa, *tmpb; |
︙ | ︙ | |||
43 44 45 46 47 48 49 | /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ | | < < < < < < | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | /* copy all the digits */ for (n = 0; n < a->used; n++) { *tmpb++ = *tmpa++; } /* clear high digits */ MP_ZERO_DIGITS(tmpb, b->used - n); } /* copy used count and sign */ b->used = a->used; b->sign = a->sign; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_count_bits.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_COUNT_BITS_C | | < < < < < < < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_COUNT_BITS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* returns the number of bits in an int */ int mp_count_bits(const mp_int *a) { int r; mp_digit q; /* shortcut */ if (MP_IS_ZERO(a)) { return 0; } /* get number of digits and add that */ r = (a->used - 1) * MP_DIGIT_BIT; /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; while (q > 0u) { ++r; q >>= 1u; } return r; } #endif |
Added libtommath/bn_mp_decr.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | #include "tommath_private.h" #ifdef BN_MP_DECR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Decrement "a" by one like "a--". Changes input! */ mp_err mp_decr(mp_int *a) { if (MP_IS_ZERO(a)) { mp_set(a,1uL); a->sign = MP_NEG; return MP_OKAY; } else if (a->sign == MP_NEG) { mp_err err; a->sign = MP_ZPOS; if ((err = mp_incr(a)) != MP_OKAY) { return err; } /* There is no -0 in LTM */ if (!MP_IS_ZERO(a)) { a->sign = MP_NEG; } return MP_OKAY; } else if (a->dp[0] > 1uL) { a->dp[0]--; if (a->dp[0] == 0u) { mp_zero(a); } return MP_OKAY; } else { return mp_sub_d(a, 1uL,a); } } #endif |
Changes to libtommath/bn_mp_div.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DIV_C | | < < < < < < < < | < | | > | | | | | | | | | | | | | | | | | | | > > | | | | | | | | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | #include "tommath_private.h" #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; int n, n2; mp_err err; /* is divisor zero ? */ if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { err = mp_copy(a, d); } else { err = MP_OKAY; } if (c != NULL) { mp_zero(c); } return err; } /* init our temps */ if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return err; } mp_set(&tq, 1uL); n = mp_count_bits(a) - mp_count_bits(b); if (((err = mp_abs(a, &ta)) != MP_OKAY) || ((err = mp_abs(b, &tb)) != MP_OKAY) || ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; } while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if (((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || ((err = mp_add(&q, &tq, &q)) != MP_OKAY)) { goto LBL_ERR; } } if (((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { goto LBL_ERR; } } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return err; } #else /* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; int n, t, i, norm; mp_sign neg; mp_err err; /* is divisor zero ? */ if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { err = mp_copy(a, d); } else { err = MP_OKAY; } if (c != NULL) { mp_zero(c); } return err; } if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) { return err; } q.used = a->used + 2; if ((err = mp_init(&t1)) != MP_OKAY) { goto LBL_Q; } if ((err = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((err = mp_init_copy(&x, a)) != MP_OKAY) { goto LBL_T2; } if ((err = mp_init_copy(&y, b)) != MP_OKAY) { goto LBL_X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */ norm = mp_count_bits(&y) % MP_DIGIT_BIT; if (norm < (MP_DIGIT_BIT - 1)) { norm = (MP_DIGIT_BIT - 1) - norm; if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) { goto LBL_Y; } if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) { goto LBL_Y; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ if ((err = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ goto LBL_Y; } while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) { goto LBL_Y; } } /* reset y by shifting it back down */ mp_rshd(&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1; } else { mp_word tmp; tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT; tmp |= (mp_word)x.dp[i - 1]; tmp /= (mp_word)y.dp[t]; if (tmp > (mp_word)MP_MASK) { tmp = MP_MASK; } q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK); } |
︙ | ︙ | |||
209 210 211 212 213 214 215 | q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; | | | | | | | | | | 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2]; t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */ t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((err = mp_copy(&y, &t1)) != MP_OKAY) { goto LBL_Y; } if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK; } } |
︙ | ︙ | |||
263 264 265 266 267 268 269 | if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { | | | | < < < < | 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) { goto LBL_Y; } mp_exch(&x, d); } err = MP_OKAY; LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); LBL_Q: mp_clear(&q); return err; } #endif #endif |
Changes to libtommath/bn_mp_div_2.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DIV_2_C | | < < < < < < < < | < | | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_DIV_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* b = a/2 */ mp_err mp_div_2(const mp_int *a, mp_int *b) { int x, oldused; mp_err err; /* copy */ if (b->alloc < a->used) { if ((err = mp_grow(b, a->used)) != MP_OKAY) { return err; } } oldused = b->used; b->used = a->used; { mp_digit r, rr, *tmpa, *tmpb; |
︙ | ︙ | |||
38 39 40 41 42 43 44 | /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1u; /* shift the current digit, add in carry and store */ | | | < < < < < < < | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1u; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (MP_DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero excess digits */ MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used); } b->sign = a->sign; mp_clamp(b); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_div_2d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DIV_2D_C | | < < < < < < < < | < | | > | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_DIV_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) { mp_digit D, r, rr; int x; mp_err err; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { err = mp_copy(a, c); if (d != NULL) { mp_zero(d); } return err; } /* copy */ if ((err = mp_copy(a, c)) != MP_OKAY) { return err; } /* 'a' should not be used after here - it might be the same as d */ /* get the remainder */ if (d != NULL) { if ((err = mp_mod_2d(a, b, d)) != MP_OKAY) { return err; } } /* shift by as many digits in the bit count */ if (b >= MP_DIGIT_BIT) { mp_rshd(c, b / MP_DIGIT_BIT); } /* shift any bit count < MP_DIGIT_BIT */ D = (mp_digit)(b % MP_DIGIT_BIT); if (D != 0u) { mp_digit *tmpc, mask, shift; /* mask */ mask = ((mp_digit)1 << D) - 1uL; /* shift for lsb */ shift = (mp_digit)MP_DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); /* carry */ r = 0; for (x = c->used - 1; x >= 0; x--) { |
︙ | ︙ | |||
73 74 75 76 77 78 79 | r = rr; } } mp_clamp(c); return MP_OKAY; } #endif | < < < < | 65 66 67 68 69 70 71 | r = rr; } } mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_div_3.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DIV_3_C | | < < < < < < < < | < | > | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_DIV_3_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* divide by three (based on routine from MPI and the GMP manual) */ mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) { mp_int q; mp_word w, t; mp_digit b; mp_err err; int ix; /* b = 2**MP_DIGIT_BIT / 3 */ b = ((mp_word)1 << (mp_word)MP_DIGIT_BIT) / (mp_word)3; if ((err = mp_init_size(&q, a->used)) != MP_OKAY) { return err; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= 3u) { /* multiply w by [1/3] */ t = (w * (mp_word)b) >> (mp_word)MP_DIGIT_BIT; /* now subtract 3 * [w/3] from w, to get the remainder */ w -= t+t+t; /* fixup the remainder as required since * the optimization is not exact. */ |
︙ | ︙ | |||
61 62 63 64 65 66 67 | /* [optional] store the quotient */ if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); | | < < < < | 53 54 55 56 57 58 59 60 61 62 63 | /* [optional] store the quotient */ if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return err; } #endif |
Changes to libtommath/bn_mp_div_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DIV_D_C | | < < < < < < < < | < < < < < < < < < < < < < < < < < < < | > | | | > > > > | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | #include "tommath_private.h" #ifdef BN_MP_DIV_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* single digit division (based on routine from MPI) */ mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) { mp_int q; mp_word w; mp_digit t; mp_err err; int ix; /* cannot divide by zero */ if (b == 0u) { return MP_VAL; } /* quick outs */ if ((b == 1u) || MP_IS_ZERO(a)) { if (d != NULL) { *d = 0; } if (c != NULL) { return mp_copy(a, c); } return MP_OKAY; } /* power of two ? */ if ((b & (b-1)) == 0u) { ix = 1; while ((ix < MP_DIGIT_BIT) && (b != (((mp_digit)1)<<ix))) { ix++; } if (d != NULL) { *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL); } if (c != NULL) { return mp_div_2d(a, ix, c, NULL); } return MP_OKAY; } #ifdef BN_MP_DIV_3_C /* three? */ if (b == 3u) { return mp_div_3(a, c, d); } #endif /* no easy answer [c'est la vie]. Just division */ if ((err = mp_init_size(&q, a->used)) != MP_OKAY) { return err; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= b) { t = (mp_digit)(w / b); w -= (mp_word)t * (mp_word)b; } else { t = 0; } q.dp[ix] = t; } if (d != NULL) { *d = (mp_digit)w; } if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return err; } #endif |
Changes to libtommath/bn_mp_dr_is_modulus.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DR_IS_MODULUS_C | | < < < < < < < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | #include "tommath_private.h" #ifdef BN_MP_DR_IS_MODULUS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines if a number is a valid DR modulus */ mp_bool mp_dr_is_modulus(const mp_int *a) { int ix; /* must be at least two digits */ if (a->used < 2) { return MP_NO; } /* must be of the form b**k - a [a <= b] so all * but the first digit must be equal to -1 (mod b). */ for (ix = 1; ix < a->used; ix++) { if (a->dp[ix] != MP_MASK) { return MP_NO; } } return MP_YES; } #endif |
Changes to libtommath/bn_mp_dr_reduce.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DR_REDUCE_C | | < < < < < < < < | < | | > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include "tommath_private.h" #ifdef BN_MP_DR_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. * * Based on algorithm from the paper * * "Generating Efficient Primes for Discrete Log Cryptosystems" * Chae Hoon Lim, Pil Joong Lee, * POSTECH Information Research Laboratories * * The modulus must be of a special format [see manual] * * Has been modified to use algorithm 7.10 from the LTM book instead * * Input x must be in the range 0 <= x <= (n-1)**2 */ mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) { mp_err err; int i, m; mp_word r; mp_digit mu, *tmpx1, *tmpx2; /* m = digits in modulus */ m = n->used; /* ensure that "x" has at least 2m digits */ |
︙ | ︙ | |||
56 57 58 59 60 61 62 | /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); | | < | < < < < < | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | /* set carry to zero */ mu = 0; /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT)); } /* set final carry */ *tmpx1++ = mu; /* zero words above m */ MP_ZERO_DIGITS(tmpx1, (x->used - m) - 1); /* clamp, sub and return */ mp_clamp(x); /* if x >= n then subtract and reduce again * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag(x, n) != MP_LT) { if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { return err; } goto top; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_dr_setup.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_DR_SETUP_C | | < < < < < < < < | < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | #include "tommath_private.h" #ifdef BN_MP_DR_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines the setup value */ void mp_dr_setup(const mp_int *a, mp_digit *d) { /* the casts are required if MP_DIGIT_BIT is one less than * the number of bits in a mp_digit [e.g. MP_DIGIT_BIT==31] */ *d = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - (mp_word)a->dp[0]); } #endif |
Name change from libtommath/bn_error.c to libtommath/bn_mp_error_to_string.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < < < < < < < < < < | > > > | | < < | | < < | < > > > > | | | < < < < > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_MP_ERROR_TO_STRING_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* return a char * string for a given code */ const char *mp_error_to_string(mp_err code) { switch (code) { case MP_OKAY: return "Successful"; case MP_ERR: return "Unknown error"; case MP_MEM: return "Out of heap"; case MP_VAL: return "Value out of range"; case MP_ITER: return "Max. iterations reached"; default: return "Invalid error code"; } } #endif |
Changes to libtommath/bn_mp_exch.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_EXCH_C | | < < < < < < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #include "tommath_private.h" #ifdef BN_MP_EXCH_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around */ void mp_exch(mp_int *a, mp_int *b) { mp_int t; t = *a; *a = *b; *b = t; } #endif |
Changes to libtommath/bn_mp_export.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_EXPORT_C | | < < < < < < < < | < | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include "tommath_private.h" #ifdef BN_MP_EXPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* based on gmp's mpz_export. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ mp_err mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op) { mp_err err; size_t odd_nails, nail_bytes, i, j, bits, count; unsigned char odd_nail_mask; mp_int t; if ((err = mp_init_copy(&t, op)) != MP_OKAY) { return err; } if (endian == 0) { union { unsigned int i; char c[4]; } lint; |
︙ | ︙ | |||
57 58 59 60 61 62 63 | if (j >= (size - nail_bytes)) { *byte = 0; continue; } *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL)); | | | < < < < | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | if (j >= (size - nail_bytes)) { *byte = 0; continue; } *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL)); if ((err = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) { mp_clear(&t); return err; } } } mp_clear(&t); if (countp != NULL) { *countp = count; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_expt_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_EXPT_D_C | | > | | > > > | > | > > > | < | > | < < > > > > > > | < < > | > > > > | | | | > > | | > > > | < > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #include "tommath_private.h" #ifdef BN_MP_EXPT_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* calculate c = a**b using a square-multiply algorithm */ mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) { mp_err err; mp_int g; if ((err = mp_init_copy(&g, a)) != MP_OKAY) { return err; } /* set initial result */ mp_set(c, 1uL); while (b > 0u) { /* if the bit is set multiply */ if ((b & 1u) != 0u) { if ((err = mp_mul(c, &g, c)) != MP_OKAY) { mp_clear(&g); return err; } } /* square */ if (b > 1u) { if ((err = mp_sqr(&g, &g)) != MP_OKAY) { mp_clear(&g); return err; } } /* shift to next bit */ b >>= 1; } mp_clear(&g); return MP_OKAY; } #endif |
Deleted libtommath/bn_mp_expt_d_ex.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Changes to libtommath/bn_mp_exptmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C | | < < < < < < < < | < < | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { #ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; mp_err err; /* first compute 1/G mod P */ if ((err = mp_init(&tmpG)) != MP_OKAY) { return err; } if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { mp_clear(&tmpG); |
︙ | ︙ | |||
67 68 69 70 71 72 73 | if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); } #endif #ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ | | | | | | | < < < < | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); } #endif #ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ dr = (mp_dr_is_modulus(P) == MP_YES) ? 1 : 0; #else /* default to no */ dr = 0; #endif #ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ if (dr == 0) { dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; } #endif /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_S_MP_EXPTMOD_FAST_C if (MP_IS_ODD(P) || (dr != 0)) { return s_mp_exptmod_fast(G, X, P, Y, dr); } else { #endif #ifdef BN_S_MP_EXPTMOD_C /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); #else /* no exptmod for evens */ return MP_VAL; #endif #ifdef BN_S_MP_EXPTMOD_FAST_C } #endif } #endif |
Changes to libtommath/bn_mp_exteuclid.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_EXTEUCLID_C | | < < < < < < < < | < | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_EXTEUCLID_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) { mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp; mp_err err; if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { return err; } /* initialize, (u1,u2,u3) = (1,0,a) */ mp_set(&u1, 1uL); if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto LBL_ERR; } /* initialize, (v1,v2,v3) = (0,1,b) */ mp_set(&v2, 1uL); if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto LBL_ERR; } /* loop while v3 != 0 */ while (!MP_IS_ZERO(&v3)) { /* q = u3/v3 */ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto LBL_ERR; } /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { |
︙ | ︙ | |||
112 113 114 115 116 117 118 | err = MP_OKAY; LBL_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); return err; } #endif | < < < < | 103 104 105 106 107 108 109 | err = MP_OKAY; LBL_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); return err; } #endif |
Changes to libtommath/bn_mp_fread.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_FREAD_C | | < < < < < < < < | < | | | | < < < | > > > > | > > > > > | < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include "tommath_private.h" #ifdef BN_MP_FREAD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef MP_NO_FILE /* read a bigint from a file stream in ASCII */ mp_err mp_fread(mp_int *a, int radix, FILE *stream) { mp_err err; mp_sign neg; /* if first digit is - then set negative */ int ch = fgetc(stream); if (ch == (int)'-') { neg = MP_NEG; ch = fgetc(stream); } else { neg = MP_ZPOS; } /* no digits, return error */ if (ch == EOF) { return MP_ERR; } /* clear a */ mp_zero(a); do { int y; unsigned pos = (unsigned)(ch - (int)'('); if (mp_s_rmap_reverse_sz < pos) { break; } y = (int)mp_s_rmap_reverse[pos]; if ((y == 0xff) || (y >= radix)) { break; } /* shift up and add */ if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) { return err; } if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return err; } } while ((ch = fgetc(stream)) != EOF); if (a->used != 0) { a->sign = neg; } return MP_OKAY; } #endif #endif |
Changes to libtommath/bn_mp_fwrite.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_FWRITE_C | | < < < < < < < < | < | | > | | | < | | | | | | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_MP_FWRITE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef MP_NO_FILE mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream) { char *buf; mp_err err; int len; if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { return err; } buf = (char *) MP_MALLOC((size_t)len); if (buf == NULL) { return MP_MEM; } if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { MP_FREE_BUFFER(buf, (size_t)len); return err; } if (fwrite(buf, (size_t)len, 1uL, stream) != 1uL) { MP_FREE_BUFFER(buf, (size_t)len); return MP_ERR; } MP_FREE_BUFFER(buf, (size_t)len); return MP_OKAY; } #endif #endif |
Changes to libtommath/bn_mp_gcd.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_GCD_C | | < < < < < < < < | < | | > | | | | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | #include "tommath_private.h" #ifdef BN_MP_GCD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Greatest Common Divisor using the binary method */ mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) { mp_int u, v; int k, u_lsb, v_lsb; mp_err err; /* either zero than gcd is the largest */ if (MP_IS_ZERO(a)) { return mp_abs(b, c); } if (MP_IS_ZERO(b)) { return mp_abs(a, c); } /* get copies of a and b we can modify */ if ((err = mp_init_copy(&u, a)) != MP_OKAY) { return err; } if ((err = mp_init_copy(&v, b)) != MP_OKAY) { goto LBL_U; } /* must be positive for the remainder of the algorithm */ u.sign = v.sign = MP_ZPOS; /* B1. Find the common power of two for u and v */ u_lsb = mp_cnt_lsb(&u); v_lsb = mp_cnt_lsb(&v); k = MP_MIN(u_lsb, v_lsb); if (k > 0) { /* divide the power of two out */ if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { goto LBL_V; } if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* divide any remaining factors of two out */ if (u_lsb != k) { if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { goto LBL_V; } } if (v_lsb != k) { if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } while (!MP_IS_ZERO(&v)) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ mp_exch(&u, &v); } /* subtract smallest from largest */ if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } /* Divide out all factors of two */ if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* multiply by 2**k which we divided out at the beginning */ if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) { goto LBL_V; } c->sign = MP_ZPOS; err = MP_OKAY; LBL_V: mp_clear(&u); LBL_U: mp_clear(&v); return err; } #endif |
Changes to libtommath/bn_mp_get_double.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_GET_DOUBLE_C | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #include "tommath_private.h" #ifdef BN_MP_GET_DOUBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ double mp_get_double(const mp_int *a) { int i; double d = 0.0, fac = 1.0; for (i = 0; i < MP_DIGIT_BIT; ++i) { fac *= 2.0; } for (i = a->used; i --> 0;) { d = (d * fac) + (double)a->dp[i]; } return (a->sign == MP_NEG) ? -d : d; } #endif |
Added libtommath/bn_mp_get_i32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_GET_I32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_GET_SIGNED(int32_t, mp_get_i32, mp_get_mag32) #endif |
Added libtommath/bn_mp_get_i64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_GET_I64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_GET_SIGNED(long long, mp_get_i64, mp_get_mag64) #endif |
Deleted libtommath/bn_mp_get_int.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_get_long.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_get_long_long.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Added libtommath/bn_mp_get_mag32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_GET_MAG32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_GET_MAG(uint32_t, mp_get_mag32) #endif |
Added libtommath/bn_mp_get_mag64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_GET_MAG64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_GET_MAG(unsigned long long, mp_get_mag64) #endif |
Changes to libtommath/bn_mp_grow.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_GROW_C | | < < < < < < < < | < | < < < | | | | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_GROW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* grow as required */ mp_err mp_grow(mp_int *a, int size) { int i; mp_digit *tmp; /* if the alloc size is smaller alloc more ram */ if (a->alloc < size) { /* reallocate the array a->dp * * We store the return in a temporary variable * in case the operation failed we don't want * to overwrite the dp member of a. */ tmp = (mp_digit *) MP_REALLOC(a->dp, (size_t)a->alloc * sizeof(mp_digit), (size_t)size * sizeof(mp_digit)); if (tmp == NULL) { /* reallocation failed but "a" is still valid [can be freed] */ return MP_MEM; } /* reallocation succeeded so set a->dp */ a->dp = tmp; /* zero excess digits */ i = a->alloc; a->alloc = size; MP_ZERO_DIGITS(a->dp + i, a->alloc - i); } return MP_OKAY; } #endif |
Added libtommath/bn_mp_ilogb.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | #include "tommath_private.h" #ifdef BN_MP_ILOGB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Compute log_{base}(a) */ static mp_word s_pow(mp_word base, mp_word exponent) { mp_word result = 1uLL; while (exponent != 0u) { if ((exponent & 1u) == 1u) { result *= base; } exponent >>= 1; base *= base; } return result; } static mp_digit s_digit_ilogb(mp_digit base, mp_digit n) { mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N; mp_digit ret, high = 1uL, low = 0uL, mid; if (n < base) { return 0uL; } if (n == base) { return 1uL; } bracket_high = (mp_word) base ; N = (mp_word) n; while (bracket_high < N) { low = high; bracket_low = bracket_high; high <<= 1; bracket_high *= bracket_high; } while (((mp_digit)(high - low)) > 1uL) { mid = (low + high) >> 1; bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low)); if (N < bracket_mid) { high = mid ; bracket_high = bracket_mid ; } if (N > bracket_mid) { low = mid ; bracket_low = bracket_mid ; } if (N == bracket_mid) { return (mp_digit) mid; } } if (bracket_high == N) { ret = high; } else { ret = low; } return ret; } /* TODO: output could be "int" because the output of mp_radix_size is int, too, as is the output of mp_bitcount. With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only! */ mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c) { mp_err err; mp_ord cmp; unsigned int high, low, mid; mp_int bracket_low, bracket_high, bracket_mid, t, bi_base; err = MP_OKAY; if (a->sign == MP_NEG) { return MP_VAL; } if (MP_IS_ZERO(a)) { return MP_VAL; } if (base < 2u) { return MP_VAL; } if (base == 2u) { mp_set_u32(c, (uint32_t)(mp_count_bits(a) - 1)); return err; } if (a->used == 1) { mp_set(c, s_digit_ilogb(base, a->dp[0])); return err; } cmp = mp_cmp_d(a, base); if (cmp == MP_LT) { mp_zero(c); return err; } if (cmp == MP_EQ) { mp_set(c, 1uL); return err; } if ((err = mp_init_multi(&bracket_low, &bracket_high, &bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) { return err; } low = 0u; mp_set(&bracket_low, 1uL); high = 1u; mp_set(&bracket_high, base); /* A kind of Giant-step/baby-step algorithm. Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/ The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped for small n. */ while (mp_cmp(&bracket_high, a) == MP_LT) { low = high; if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) { goto LBL_ERR; } high <<= 1; if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) { goto LBL_ERR; } } mp_set(&bi_base, base); while ((high - low) > 1u) { mid = (high + low) >> 1; /* Difference can be larger then the type behind mp_digit can hold */ if ((mid - low) > (unsigned int)(MP_MASK)) { err = MP_VAL; goto LBL_ERR; } if ((err = mp_expt_d(&bi_base, (mp_digit)(mid - low), &t)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) { goto LBL_ERR; } cmp = mp_cmp(a, &bracket_mid); if (cmp == MP_LT) { high = mid; mp_exch(&bracket_mid, &bracket_high); } if (cmp == MP_GT) { low = mid; mp_exch(&bracket_mid, &bracket_low); } if (cmp == MP_EQ) { mp_set_u32(c, mid); goto LBL_END; } } if (mp_cmp(&bracket_high, a) == MP_EQ) { mp_set_u32(c, high); } else { mp_set_u32(c, low); } LBL_END: LBL_ERR: mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid, &t, &bi_base, NULL); return err; } #endif |
Changes to libtommath/bn_mp_import.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_IMPORT_C | | < < < < < < < < | < | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | #include "tommath_private.h" #ifdef BN_MP_IMPORT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* based on gmp's mpz_import. * see http://gmplib.org/manual/Integer-Import-and-Export.html */ mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op) { mp_err err; size_t odd_nails, nail_bytes, i, j; unsigned char odd_nail_mask; mp_zero(rop); if (endian == 0) { union { |
︙ | ︙ | |||
39 40 41 42 43 44 45 | for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (unsigned char)(1u << (7u - i)); } nail_bytes = nails / 8u; for (i = 0; i < count; ++i) { for (j = 0; j < (size - nail_bytes); ++j) { | | | | < < < < | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | for (i = 0; i < odd_nails; ++i) { odd_nail_mask ^= (unsigned char)(1u << (7u - i)); } nail_bytes = nails / 8u; for (i = 0; i < count; ++i) { for (j = 0; j < (size - nail_bytes); ++j) { unsigned char byte = *((const unsigned char *)op + (((order == 1) ? i : ((count - 1u) - i)) * size) + ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes))); if ((err = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) { return err; } rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte; rop->used += 1; } } mp_clamp(rop); return MP_OKAY; } #endif |
Added libtommath/bn_mp_incr.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #include "tommath_private.h" #ifdef BN_MP_INCR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Increment "a" by one like "a++". Changes input! */ mp_err mp_incr(mp_int *a) { if (MP_IS_ZERO(a)) { mp_set(a,1uL); return MP_OKAY; } else if (a->sign == MP_NEG) { mp_err err; a->sign = MP_ZPOS; if ((err = mp_decr(a)) != MP_OKAY) { return err; } /* There is no -0 in LTM */ if (!MP_IS_ZERO(a)) { a->sign = MP_NEG; } return MP_OKAY; } else if (a->dp[0] < MP_MASK) { a->dp[0]++; return MP_OKAY; } else { return mp_add_d(a, 1uL,a); } } #endif |
Changes to libtommath/bn_mp_init.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INIT_C | | < < < < < < < < | < | < < | < < < < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #include "tommath_private.h" #ifdef BN_MP_INIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* init a new mp_int */ mp_err mp_init(mp_int *a) { /* allocate memory required and clear it */ a->dp = (mp_digit *) MP_CALLOC((size_t)MP_PREC, sizeof(mp_digit)); if (a->dp == NULL) { return MP_MEM; } /* set the used to zero, allocated digits to the default precision * and sign to positive */ a->used = 0; a->alloc = MP_PREC; a->sign = MP_ZPOS; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_init_copy.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INIT_COPY_C | | < < < < < < < < | < | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #include "tommath_private.h" #ifdef BN_MP_INIT_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* creates "a" then copies b into it */ mp_err mp_init_copy(mp_int *a, const mp_int *b) { mp_err err; if ((err = mp_init_size(a, b->used)) != MP_OKAY) { return err; } if ((err = mp_copy(b, a)) != MP_OKAY) { mp_clear(a); } return err; } #endif |
Added libtommath/bn_mp_init_i32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_INIT_I32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_INIT_INT(mp_init_i32, mp_set_i32, int32_t) #endif |
Added libtommath/bn_mp_init_i64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_INIT_I64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_INIT_INT(mp_init_i64, mp_set_i64, long long) #endif |
Changes to libtommath/bn_mp_init_multi.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INIT_MULTI_C | | < < < < < < < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_INIT_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #include <stdarg.h> mp_err mp_init_multi(mp_int *mp, ...) { mp_err err = MP_OKAY; /* Assume ok until proven otherwise */ int n = 0; /* Number of ok inits */ mp_int *cur_arg = mp; va_list args; va_start(args, mp); /* init args to next argument from caller */ while (cur_arg != NULL) { if (mp_init(cur_arg) != MP_OKAY) { /* Oops - error! Back-track and mp_clear what we already succeeded in init-ing, then return error. */ va_list clean_args; /* now start cleaning up */ cur_arg = mp; va_start(clean_args, mp); while (n-- != 0) { mp_clear(cur_arg); cur_arg = va_arg(clean_args, mp_int *); } va_end(clean_args); err = MP_MEM; break; } n++; cur_arg = va_arg(args, mp_int *); } va_end(args); return err; /* Assumed ok, if error flagged above. */ } #endif |
Changes to libtommath/bn_mp_init_set.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INIT_SET_C | | < < < < < < < < | < | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #include "tommath_private.h" #ifdef BN_MP_INIT_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* initialize and set a digit */ mp_err mp_init_set(mp_int *a, mp_digit b) { mp_err err; if ((err = mp_init(a)) != MP_OKAY) { return err; } mp_set(a, b); return err; } #endif |
Deleted libtommath/bn_mp_init_set_int.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Changes to libtommath/bn_mp_init_size.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INIT_SIZE_C | | < < < < < < < < | < | < | < < | < < < < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_INIT_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* init an mp_init for a given size */ mp_err mp_init_size(mp_int *a, int size) { size = MP_MAX(MP_MIN_PREC, size); /* alloc mem */ a->dp = (mp_digit *) MP_CALLOC((size_t)size, sizeof(mp_digit)); if (a->dp == NULL) { return MP_MEM; } /* set the members */ a->used = 0; a->alloc = size; a->sign = MP_ZPOS; return MP_OKAY; } #endif |
Added libtommath/bn_mp_init_u32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_INIT_U32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_INIT_INT(mp_init_u32, mp_set_u32, uint32_t) #endif |
Added libtommath/bn_mp_init_u64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_INIT_U64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_INIT_INT(mp_init_u64, mp_set_u64, unsigned long long) #endif |
Changes to libtommath/bn_mp_invmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_INVMOD_C | | < < < < < < < < | < | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | #include "tommath_private.h" #ifdef BN_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { /* b cannot be negative and has to be >1 */ if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) { return MP_VAL; } #ifdef BN_S_MP_INVMOD_FAST_C /* if the modulus is odd we can use a faster routine instead */ if (MP_IS_ODD(b)) { return s_mp_invmod_fast(a, b, c); } #endif #ifdef BN_S_MP_INVMOD_SLOW_C return s_mp_invmod_slow(a, b, c); #else return MP_VAL; #endif } #endif |
Changes to libtommath/bn_mp_is_square.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_IS_SQUARE_C | | < < < < < < < < | < | 1 2 3 4 5 6 7 8 9 10 11 | #include "tommath_private.h" #ifdef BN_MP_IS_SQUARE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Check if remainders are possible squares - fast exclude non-squares */ static const char rem_128[128] = { 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, |
︙ | ︙ | |||
31 32 33 34 35 36 37 | 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 }; /* Store non-zero to ret if arg is square, and zero if not */ | | | | | | | | | | | | | | | < < < < | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 }; /* Store non-zero to ret if arg is square, and zero if not */ mp_err mp_is_square(const mp_int *arg, mp_bool *ret) { mp_err err; mp_digit c; mp_int t; unsigned long r; /* Default to Non-square :) */ *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; } if (MP_IS_ZERO(arg)) { return MP_OKAY; } /* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */ if (rem_128[127u & arg->dp[0]] == (char)1) { return MP_OKAY; } /* Next check mod 105 (3*5*7) */ if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) { return err; } if (rem_105[c] == (char)1) { return MP_OKAY; } if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) { return err; } if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) { goto LBL_ERR; } r = mp_get_u32(&t); /* Check for other prime modules, note it's not an ERROR but we must * free "t" so the easiest way is to goto LBL_ERR. We know that err * is already equal to MP_OKAY from the mp_mod call */ if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR; if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR; if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR; if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((err = mp_sqrt(arg, &t)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sqr(&t, &t)) != MP_OKAY) { goto LBL_ERR; } *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO; LBL_ERR: mp_clear(&t); return err; } #endif |
Added libtommath/bn_mp_iseven.c.
> > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 | #include "tommath_private.h" #ifdef BN_MP_ISEVEN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ mp_bool mp_iseven(const mp_int *a) { return MP_IS_EVEN(a) ? MP_YES : MP_NO; } #endif |
Added libtommath/bn_mp_isodd.c.
> > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 | #include "tommath_private.h" #ifdef BN_MP_ISODD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ mp_bool mp_isodd(const mp_int *a) { return MP_IS_ODD(a) ? MP_YES : MP_NO; } #endif |
Deleted libtommath/bn_mp_jacobi.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Changes to libtommath/bn_mp_kronecker.c.
1 2 3 | #include "tommath_private.h" #ifdef BN_MP_KRONECKER_C | | < < < < < < < < | < | | < | < > | | | | < | | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | #include "tommath_private.h" #ifdef BN_MP_KRONECKER_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Kronecker symbol (a|p) Straightforward implementation of algorithm 1.4.10 in Henri Cohen: "A Course in Computational Algebraic Number Theory" @book{cohen2013course, title={A course in computational algebraic number theory}, author={Cohen, Henri}, volume={138}, year={2013}, publisher={Springer Science \& Business Media} } */ mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) { mp_int a1, p1, r; mp_err err; int v, k; static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1}; if (MP_IS_ZERO(p)) { if ((a->used == 1) && (a->dp[0] == 1u)) { *c = 1; } else { *c = 0; } return MP_OKAY; } if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) { *c = 0; return MP_OKAY; } if ((err = mp_init_copy(&a1, a)) != MP_OKAY) { return err; } if ((err = mp_init_copy(&p1, p)) != MP_OKAY) { goto LBL_KRON_0; } v = mp_cnt_lsb(&p1); if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) { goto LBL_KRON_1; } if ((v & 1) == 0) { k = 1; } else { k = table[a->dp[0] & 7u]; } if (p1.sign == MP_NEG) { p1.sign = MP_ZPOS; if (a1.sign == MP_NEG) { k = -k; } } if ((err = mp_init(&r)) != MP_OKAY) { goto LBL_KRON_1; } for (;;) { if (MP_IS_ZERO(&a1)) { if (mp_cmp_d(&p1, 1uL) == MP_EQ) { *c = k; goto LBL_KRON; } else { *c = 0; goto LBL_KRON; } } v = mp_cnt_lsb(&a1); if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) { goto LBL_KRON; } if ((v & 1) == 1) { k = k * table[p1.dp[0] & 7u]; } if (a1.sign == MP_NEG) { /* * Compute k = (-1)^((a1)*(p1-1)/4) * k * a1.dp[0] + 1 cannot overflow because the MSB * of the type mp_digit is not set by definition */ if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) { k = -k; } } else { /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */ if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) { k = -k; } } if ((err = mp_copy(&a1, &r)) != MP_OKAY) { goto LBL_KRON; } r.sign = MP_ZPOS; if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) { goto LBL_KRON; } if ((err = mp_copy(&r, &p1)) != MP_OKAY) { goto LBL_KRON; } } LBL_KRON: mp_clear(&r); LBL_KRON_1: mp_clear(&p1); LBL_KRON_0: mp_clear(&a1); return err; } #endif |
Changes to libtommath/bn_mp_lcm.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_LCM_C | | < < < < < < < < | < | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_MP_LCM_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes least common multiple as |a*b|/(a, b) */ mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) { mp_err err; mp_int t1, t2; if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { return err; } /* t1 = get the GCD of the two inputs */ if ((err = mp_gcd(a, b, &t1)) != MP_OKAY) { goto LBL_T; } /* divide the smallest by the GCD */ if (mp_cmp_mag(a, b) == MP_LT) { /* store quotient in t2 such that t2 * b is the LCM */ if ((err = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } err = mp_mul(b, &t2, c); } else { /* store quotient in t2 such that t2 * a is the LCM */ if ((err = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } err = mp_mul(a, &t2, c); } /* fix the sign to positive */ c->sign = MP_ZPOS; LBL_T: mp_clear_multi(&t1, &t2, NULL); return err; } #endif |
Changes to libtommath/bn_mp_lshd.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_LSHD_C | | < < < < < < < < | < | | > > | | | < < < | | | | | | | | | | | | | | | < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include "tommath_private.h" #ifdef BN_MP_LSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shift left a certain amount of digits */ mp_err mp_lshd(mp_int *a, int b) { int x; mp_err err; mp_digit *top, *bottom; /* if its less than zero return */ if (b <= 0) { return MP_OKAY; } /* no need to shift 0 around */ if (MP_IS_ZERO(a)) { return MP_OKAY; } /* grow to fit the new digits */ if (a->alloc < (a->used + b)) { if ((err = mp_grow(a, a->used + b)) != MP_OKAY) { return err; } } /* increment the used by the shift amount then copy upwards */ a->used += b; /* top */ top = a->dp + a->used - 1; /* base */ bottom = (a->dp + a->used - 1) - b; /* much like mp_rshd this is implemented using a sliding window * except the window goes the otherway around. Copying from * the bottom to the top. see bn_mp_rshd.c for more info. */ for (x = a->used - 1; x >= b; x--) { *top-- = *bottom--; } /* zero the lower digits */ MP_ZERO_DIGITS(a->dp, b); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MOD_C | | < < < < < < < < | < | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #include "tommath_private.h" #ifdef BN_MP_MOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */ mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int t; mp_err err; if ((err = mp_init_size(&t, b->used)) != MP_OKAY) { return err; } if ((err = mp_div(a, b, NULL, &t)) != MP_OKAY) { mp_clear(&t); return err; } if (MP_IS_ZERO(&t) || (t.sign == b->sign)) { err = MP_OKAY; mp_exch(&t, c); } else { err = mp_add(b, &t, c); } mp_clear(&t); return err; } #endif |
Changes to libtommath/bn_mp_mod_2d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MOD_2D_C | | < < < < < < < < | < | | > | | < | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_MOD_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* calc a value mod 2**b */ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c) { int x; mp_err err; /* if b is <= 0 then zero the int */ if (b <= 0) { mp_zero(c); return MP_OKAY; } /* if the modulus is larger than the value than return */ if (b >= (a->used * MP_DIGIT_BIT)) { return mp_copy(a, c); } /* copy */ if ((err = mp_copy(a, c)) != MP_OKAY) { return err; } /* zero digits above the last digit of the modulus */ x = (b / MP_DIGIT_BIT) + (((b % MP_DIGIT_BIT) == 0) ? 0 : 1); MP_ZERO_DIGITS(c->dp + x, c->used - x); /* clear the digit that is not completely outside/inside the modulus */ c->dp[b / MP_DIGIT_BIT] &= ((mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT)) - (mp_digit)1; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mod_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MOD_D_C | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 | #include "tommath_private.h" #ifdef BN_MP_MOD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) { return mp_div_d(a, b, NULL, c); } #endif |
Changes to libtommath/bn_mp_montgomery_calc_normalization.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C | | < < < < < < < < | < | | > | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* * shifts with subtractions when the result is greater than b. * * The method is slightly modified to shift B unconditionally upto just under * the leading bit of b. This saves alot of multiple precision shifting. */ mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) { int x, bits; mp_err err; /* how many bits of last digit does b use */ bits = mp_count_bits(b) % MP_DIGIT_BIT; if (b->used > 1) { if ((err = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) { return err; } } else { mp_set(a, 1uL); bits = 1; } /* now compute C = A * B mod b */ for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) { if ((err = mp_mul_2(a, a)) != MP_OKAY) { return err; } if (mp_cmp_mag(a, b) != MP_LT) { if ((err = s_mp_sub(a, b, a)) != MP_OKAY) { return err; } } } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_montgomery_reduce.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_REDUCE_C | | < < < < < < < < | < | | > | | | < | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) { int ix, digs; mp_err err; mp_digit mu; /* can the fast reduction [comba] method be used? * * Note that unlike in mul you're safely allowed *less* * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ digs = (n->used * 2) + 1; if ((digs < MP_WARRAY) && (x->used <= MP_WARRAY) && (n->used < MP_MAXFAST)) { return s_mp_montgomery_reduce_fast(x, n, rho); } /* grow the input as required */ if (x->alloc < digs) { if ((err = mp_grow(x, digs)) != MP_OKAY) { return err; } } x->used = digs; for (ix = 0; ix < n->used; ix++) { /* mu = ai * rho mod b * |
︙ | ︙ | |||
69 70 71 72 73 74 75 | /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word)*tmpn++) + (mp_word)u + (mp_word)*tmpx; /* get carry */ | | | | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ r = ((mp_word)mu * (mp_word)*tmpn++) + (mp_word)u + (mp_word)*tmpx; /* get carry */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); /* fix digit */ *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK); } /* At this point the ix'th digit of x should be zero */ /* propagate carries upwards as required*/ while (u != 0u) { *tmpx += u; u = *tmpx >> MP_DIGIT_BIT; *tmpx++ &= MP_MASK; } } } /* at this point the n.used'th least * significant digits of x are all zero |
︙ | ︙ | |||
105 106 107 108 109 110 111 | if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif | < < < < | 96 97 98 99 100 101 102 | if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_montgomery_setup.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_SETUP_C | | < < < < < < < < | < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #include "tommath_private.h" #ifdef BN_MP_MONTGOMERY_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* setups the montgomery reduction stuff */ mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho) { mp_digit x, b; /* fast inversion mod 2**k * * Based on the fact that * |
︙ | ︙ | |||
40 41 42 43 44 45 46 | x *= 2u - (b * x); /* here x*a==1 mod 2**32 */ #endif #ifdef MP_64BIT x *= 2u - (b * x); /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ | | < < < < | 31 32 33 34 35 36 37 38 39 40 41 42 | x *= 2u - (b * x); /* here x*a==1 mod 2**32 */ #endif #ifdef MP_64BIT x *= 2u - (b * x); /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ *rho = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - x) & MP_MASK; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mul.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MUL_C | | > | | < > > > > > > > > > > > | < < < > > > > > > > > > > | < > > > > > > | > > | | < > > | < < > > | | | | | | | | | < | | | > | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | #include "tommath_private.h" #ifdef BN_MP_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* high level multiplication (handles sign) */ mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_err err; mp_sign neg; #ifdef BN_S_MP_BALANCE_MUL_C int len_b, len_a; #endif neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; #ifdef BN_S_MP_BALANCE_MUL_C len_a = a->used; len_b = b->used; if (len_a == len_b) { goto GO_ON; } /* * Check sizes. The smaller one needs to be larger than the Karatsuba cut-off. * The bigger one needs to be at least about one KARATSUBA_MUL_CUTOFF bigger * to make some sense, but it depends on architecture, OS, position of the * stars... so YMMV. * Using it to cut the input into slices small enough for fast_s_mp_mul_digs * was actually slower on the author's machine, but YMMV. */ if ((MP_MIN(len_a, len_b) < MP_KARATSUBA_MUL_CUTOFF) || ((MP_MAX(len_a, len_b) / 2) < MP_KARATSUBA_MUL_CUTOFF)) { goto GO_ON; } /* * Not much effect was observed below a ratio of 1:2, but again: YMMV. */ if ((MP_MAX(len_a, len_b) / MP_MIN(len_a, len_b)) < 2) { goto GO_ON; } err = s_mp_balance_mul(a,b,c); goto END; GO_ON: #endif /* use Toom-Cook? */ #ifdef BN_S_MP_TOOM_MUL_C if (MP_MIN(a->used, b->used) >= MP_TOOM_MUL_CUTOFF) { err = s_mp_toom_mul(a, b, c); } else #endif #ifdef BN_S_MP_KARATSUBA_MUL_C /* use Karatsuba? */ if (MP_MIN(a->used, b->used) >= MP_KARATSUBA_MUL_CUTOFF) { err = s_mp_karatsuba_mul(a, b, c); } else #endif { /* can we use the fast multiplier? * * The fast multiplier can be used if the output will * have less than MP_WARRAY digits and the number of * digits won't affect carry propagation */ int digs = a->used + b->used + 1; #ifdef BN_S_MP_MUL_DIGS_FAST_C if ((digs < MP_WARRAY) && (MP_MIN(a->used, b->used) <= MP_MAXFAST)) { err = s_mp_mul_digs_fast(a, b, c, digs); } else #endif { #ifdef BN_S_MP_MUL_DIGS_C err = s_mp_mul_digs(a, b, c, a->used + b->used + 1); #else err = MP_VAL; #endif } } END: c->sign = (c->used > 0) ? neg : MP_ZPOS; return err; } #endif |
Changes to libtommath/bn_mp_mul_2.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MUL_2_C | | < < < < < < < < | < | | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_MUL_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* b = a*2 */ mp_err mp_mul_2(const mp_int *a, mp_int *b) { int x, oldused; mp_err err; /* grow to accomodate result */ if (b->alloc < (a->used + 1)) { if ((err = mp_grow(b, a->used + 1)) != MP_OKAY) { return err; } } oldused = b->used; b->used = a->used; { |
︙ | ︙ | |||
39 40 41 42 43 44 45 | /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ | | | < < < < < < < | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ rr = *tmpa >> (mp_digit)(MP_DIGIT_BIT - 1); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK; /* copy the carry that would be from the source * digit into the next iteration */ r = rr; } /* new leading digit? */ if (r != 0u) { /* add a MSB which is always 1 at this point */ *tmpb = 1; ++(b->used); } /* now zero any excess digits on the destination * that we didn't write to */ MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used); } b->sign = a->sign; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mul_2d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MUL_2D_C | | < < < < < < < < | < | | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | #include "tommath_private.h" #ifdef BN_MP_MUL_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shift left by a certain bit count */ mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c) { mp_digit d; mp_err err; /* copy */ if (a != c) { if ((err = mp_copy(a, c)) != MP_OKAY) { return err; } } if (c->alloc < (c->used + (b / MP_DIGIT_BIT) + 1)) { if ((err = mp_grow(c, c->used + (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) { return err; } } /* shift by as many digits in the bit count */ if (b >= MP_DIGIT_BIT) { if ((err = mp_lshd(c, b / MP_DIGIT_BIT)) != MP_OKAY) { return err; } } /* shift any bit count < MP_DIGIT_BIT */ d = (mp_digit)(b % MP_DIGIT_BIT); if (d != 0u) { mp_digit *tmpc, shift, mask, r, rr; int x; /* bitmask for carries */ mask = ((mp_digit)1 << d) - (mp_digit)1; /* shift for msbs */ shift = (mp_digit)MP_DIGIT_BIT - d; /* alias */ tmpc = c->dp; /* carry */ r = 0; for (x = 0; x < c->used; x++) { |
︙ | ︙ | |||
72 73 74 75 76 77 78 | c->dp[(c->used)++] = r; } } mp_clamp(c); return MP_OKAY; } #endif | < < < < | 63 64 65 66 67 68 69 | c->dp[(c->used)++] = r; } } mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mul_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MUL_D_C | | < < < < < < < < | < | > | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_MUL_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* multiply by a digit */ mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit u, *tmpa, *tmpc; mp_word r; mp_err err; int ix, olduse; /* make sure c is big enough to hold a*b */ if (c->alloc < (a->used + 1)) { if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { return err; } } /* get the original destinations used count */ olduse = c->used; /* set the sign */ |
︙ | ︙ | |||
46 47 48 49 50 51 52 | /* compute product and carry sum for this term */ r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK); /* send carry into next iteration */ | | | < < < < < < | 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | /* compute product and carry sum for this term */ r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK); /* send carry into next iteration */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } /* store final carry [if any] and increment ix offset */ *tmpc++ = u; ++ix; /* now zero digits above the top */ MP_ZERO_DIGITS(tmpc, olduse - ix); /* set used count */ c->used = a->used + 1; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_mulmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_MULMOD_C | | < < < < < < < < | < | < > | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_MULMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* d = a * b (mod c) */ mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { mp_err err; mp_int t; if ((err = mp_init_size(&t, c->used)) != MP_OKAY) { return err; } if ((err = mp_mul(a, b, &t)) != MP_OKAY) { mp_clear(&t); return err; } err = mp_mod(&t, c, d); mp_clear(&t); return err; } #endif |
Changes to libtommath/bn_mp_n_root.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_N_ROOT_C | | > | > > > > > > > > > > > > > > > | > > > > | > > > | > > > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > > > > > > > > > | > > > > | > > > > | | > > > > | > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | #include "tommath_private.h" #ifdef BN_MP_N_ROOT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* find the n'th root of an integer * * Result found such that (c)**b <= a and (c+1)**b > a * * This algorithm uses Newton's approximation * x[i+1] = x[i] - f(x[i])/f'(x[i]) * which will find the root in log(N) time where * each step involves a fair bit. */ mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c) { mp_int t1, t2, t3, a_; mp_ord cmp; int ilog2; mp_err err; /* input must be positive if b is even */ if (((b & 1u) == 0u) && (a->sign == MP_NEG)) { return MP_VAL; } if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) { return err; } /* if a is negative fudge the sign but keep track */ a_ = *a; a_.sign = MP_ZPOS; /* Compute seed: 2^(log_2(n)/b + 2)*/ ilog2 = mp_count_bits(a); /* GCC and clang do not understand the sizeof tests and complain, icc (the Intel compiler) seems to understand, at least it doesn't complain. 2 of 3 say these macros are necessary, so there they are. */ #if ( !(defined MP_8BIT) && !(defined MP_16BIT) ) /* The type of mp_digit might be larger than an int. If "b" is larger than INT_MAX it is also larger than log_2(n) because the bit-length of the "n" is measured with an int and hence the root is always < 2 (two). */ if (sizeof(mp_digit) >= sizeof(int)) { if (b > (mp_digit)(INT_MAX/2)) { mp_set(c, 1uL); c->sign = a->sign; err = MP_OKAY; goto LBL_ERR; } } #endif /* "b" is smaller than INT_MAX, we can cast safely */ if (ilog2 < (int)b) { mp_set(c, 1uL); c->sign = a->sign; err = MP_OKAY; goto LBL_ERR; } ilog2 = ilog2 / ((int)b); if (ilog2 == 0) { mp_set(c, 1uL); c->sign = a->sign; err = MP_OKAY; goto LBL_ERR; } /* Start value must be larger than root */ ilog2 += 2; if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) { goto LBL_ERR; } do { /* t1 = t2 */ if ((err = mp_copy(&t2, &t1)) != MP_OKAY) { goto LBL_ERR; } /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t3 = t1**(b-1) */ if ((err = mp_expt_d(&t1, b - 1u, &t3)) != MP_OKAY) { goto LBL_ERR; } /* numerator */ /* t2 = t1**b */ if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { goto LBL_ERR; } /* t2 = t1**b - a */ if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) { goto LBL_ERR; } /* denominator */ /* t3 = t1**(b-1) * b */ if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { goto LBL_ERR; } /* t3 = (t1**b - a)/(b * t1**(b-1)) */ if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) { goto LBL_ERR; } /* Number of rounds is at most log_2(root). If it is more it got stuck, so break out of the loop and do the rest manually. */ if (ilog2-- == 0) { break; } } while (mp_cmp(&t1, &t2) != MP_EQ); /* result can be off by a few so check */ /* Loop beneath can overshoot by one if found root is smaller than actual root */ for (;;) { if ((err = mp_expt_d(&t1, b, &t2)) != MP_OKAY) { goto LBL_ERR; } cmp = mp_cmp(&t2, &a_); if (cmp == MP_EQ) { err = MP_OKAY; goto LBL_ERR; } if (cmp == MP_LT) { if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) { goto LBL_ERR; } } else { break; } } /* correct overshoot from above or from recurrence */ for (;;) { if ((err = mp_expt_d(&t1, b, &t2)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp(&t2, &a_) == MP_GT) { if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) { goto LBL_ERR; } } else { break; } } /* set the result */ mp_exch(&t1, c); /* set the sign of the result */ c->sign = a->sign; err = MP_OKAY; LBL_ERR: mp_clear_multi(&t1, &t2, &t3, NULL); return err; } #endif |
Deleted libtommath/bn_mp_n_root_ex.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Changes to libtommath/bn_mp_neg.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_NEG_C | | < < < < < < < < | < | < > | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_NEG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* b = -a */ mp_err mp_neg(const mp_int *a, mp_int *b) { mp_err err; if (a != b) { if ((err = mp_copy(a, b)) != MP_OKAY) { return err; } } if (!MP_IS_ZERO(b)) { b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; } else { b->sign = MP_ZPOS; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_or.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_OR_C | | < < < < < < < < | < | | | | | > | | | > | > > > > > > | > | | < | > > > | > > > | > | > > > | > | > > > > | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement or */ mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) { int used = MP_MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = ((a->sign == MP_NEG) || (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x | y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_prime_fermat.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FERMAT_C | | < < < < < < < < | < | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* performs one Fermat test. * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). * * Sets result to 1 if the congruence holds, or zero otherwise. */ mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) { mp_int t; mp_err err; /* default to composite */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1uL) != MP_GT) { return MP_VAL; |
︙ | ︙ | |||
50 51 52 53 54 55 56 | err = MP_OKAY; LBL_T: mp_clear(&t); return err; } #endif | < < < < | 41 42 43 44 45 46 47 | err = MP_OKAY; LBL_T: mp_clear(&t); return err; } #endif |
Changes to libtommath/bn_mp_prime_frobenius_underwood.c.
1 2 3 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C | | < < < < < < < < | < | | | | | > | > | < < < < | | | < | < | | | | | | | | | | | | < < < < | | | | | | < < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | #include "tommath_private.h" #ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_FIPS_ONLY #ifdef MP_8BIT /* * floor of positive solution of * (2^16)-1 = (a+4)*(2*a+5) * TODO: Both values are smaller than N^(1/4), would have to use a bigint * for a instead but any a biger than about 120 are already so rare that * it is possible to ignore them and still get enough pseudoprimes. * But it is still a restriction of the set of available pseudoprimes * which makes this implementation less secure if used stand-alone. */ #define LTM_FROBENIUS_UNDERWOOD_A 177 #else #define LTM_FROBENIUS_UNDERWOOD_A 32764 #endif mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) { mp_int T1z, T2z, Np1z, sz, tz; int a, ap2, length, i, j; mp_err err; *result = MP_NO; if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) { return err; } for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) { /* TODO: That's ugly! No, really, it is! */ if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) || (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) { continue; } /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */ mp_set_u32(&T1z, (uint32_t)a); if ((err = mp_sqr(&T1z, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY) { goto LBL_FU_ERR; } if (j == -1) { break; } if (j == 0) { /* composite */ goto LBL_FU_ERR; } } /* Tell it a composite and set return value accordingly */ if (a >= LTM_FROBENIUS_UNDERWOOD_A) { err = MP_ITER; goto LBL_FU_ERR; } /* Composite if N and (a+4)*(2*a+5) are not coprime */ mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5))); if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) { goto LBL_FU_ERR; } ap2 = a + 2; if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) { goto LBL_FU_ERR; } mp_set(&sz, 1uL); mp_set(&tz, 2uL); length = mp_count_bits(&Np1z); for (i = length - 2; i >= 0; i--) { /* * temp = (sz*(a*sz+2*tz))%N; * tz = ((tz-sz)*(tz+sz))%N; * sz = temp; */ if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } /* a = 0 at about 50% of the cases (non-square and odd input) */ if (a != 0) { if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((err = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_add(&sz, &tz, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_mod(&tz, N, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_mod(&T1z, N, &sz)) != MP_OKAY) { goto LBL_FU_ERR; } if (s_mp_get_bit(&Np1z, (unsigned int)i) == MP_YES) { /* * temp = (a+2) * sz + tz * tz = 2 * tz - sz * sz = temp */ if (a == 0) { if ((err = mp_mul_2(&sz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } else { if ((err = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } } if ((err = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) { goto LBL_FU_ERR; } if ((err = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) { goto LBL_FU_ERR; } mp_exch(&sz, &T1z); } } mp_set_u32(&T1z, (uint32_t)((2 * a) + 5)); if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY) { goto LBL_FU_ERR; } if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) { *result = MP_YES; goto LBL_FU_ERR; } LBL_FU_ERR: mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL); return err; } #endif #endif |
Changes to libtommath/bn_mp_prime_is_prime.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_PRIME_IS_PRIME_C | | < < < < < < < < | < | | > > < < < < < | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include "tommath_private.h" #ifdef BN_MP_PRIME_IS_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* portable integer log of two with small footprint */ static unsigned int s_floor_ilog2(int value) { unsigned int r = 0; while ((value >>= 1) != 0) { r++; } return r; } mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) { mp_int b; int ix, p_max = 0, size_a, len; mp_bool res; mp_err err; unsigned int fips_rand, mask; /* default to no */ *result = MP_NO; /* Some shortcuts */ /* N > 3 */ if (a->used == 1) { if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) { *result = MP_NO; return MP_OKAY; } if (a->dp[0] == 2u) { *result = MP_YES; return MP_OKAY; } } /* N must be odd */ if (MP_IS_EVEN(a)) { return MP_OKAY; } /* N is not a perfect square: floor(sqrt(N))^2 != N */ if ((err = mp_is_square(a, &res)) != MP_OKAY) { return err; } if (res != MP_NO) { return MP_OKAY; } /* is the input equal to one of the primes in the table? */ for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) { if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) { *result = MP_YES; return MP_OKAY; } } #ifdef MP_8BIT /* The search in the loop above was exhaustive in this case */ if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) { return MP_OKAY; } #endif /* first perform trial division */ if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) { return err; } /* return if it was trivially divisible */ if (res == MP_YES) { return MP_OKAY; } |
︙ | ︙ | |||
145 146 147 148 149 150 151 | /* run at least one Miller-Rabin test with a random base */ if (t == 0) { t = 1; } /* | < | > | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | /* run at least one Miller-Rabin test with a random base */ if (t == 0) { t = 1; } /* Only recommended if the input range is known to be < 3317044064679887385961981 It uses the bases necessary for a deterministic M-R test if the input is smaller than 3317044064679887385961981 The caller has to check the size. TODO: can be made a bit finer grained but comparing is not free. */ if (t < 0) { t = -t; /* Sorenson, Jonathan; Webster, Jonathan (2015). "Strong Pseudoprimes to Twelve Prime Bases". */ |
︙ | ︙ | |||
208 209 210 211 212 213 214 | p_max = 13; } else { err = MP_VAL; goto LBL_B; } } | < < < < < < < < < | | 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | p_max = 13; } else { err = MP_VAL; goto LBL_B; } } /* we did bases 2 and 3 already, skip them */ for (ix = 2; ix < p_max; ix++) { mp_set(&b, s_mp_prime_tab[ix]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } |
︙ | ︙ | |||
292 293 294 295 296 297 298 | */ fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask); #ifdef MP_8BIT /* * One 8-bit digit is too small, so concatenate two if the size of * unsigned int allows for it. */ | | | | | | | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | */ fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask); #ifdef MP_8BIT /* * One 8-bit digit is too small, so concatenate two if the size of * unsigned int allows for it. */ if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) { if ((err = mp_rand(&b, 1)) != MP_OKAY) { goto LBL_B; } fips_rand <<= MP_SIZEOF_BITS(mp_digit); fips_rand |= (unsigned int) b.dp[0]; fips_rand &= mask; } #endif if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) { len = INT_MAX / MP_DIGIT_BIT; } else { len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT); } /* Unlikely. */ if (len < 0) { ix--; continue; } /* |
︙ | ︙ | |||
328 329 330 331 332 333 334 | } #endif if ((err = mp_rand(&b, len)) != MP_OKAY) { goto LBL_B; } /* * That number might got too big and the witness has to be | | | | < | 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | } #endif if ((err = mp_rand(&b, len)) != MP_OKAY) { goto LBL_B; } /* * That number might got too big and the witness has to be * smaller than "a" */ len = mp_count_bits(&b); if (len >= size_a) { len = (len - size_a) + 1; if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) { goto LBL_B; } } /* Although the chance for b <= 3 is miniscule, try again. */ if (mp_cmp_d(&b, 3uL) != MP_GT) { ix--; continue; } if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; |
︙ | ︙ | |||
360 361 362 363 364 365 366 | *result = MP_YES; LBL_B: mp_clear(&b); return err; } #endif | < < < < | 309 310 311 312 313 314 315 | *result = MP_YES; LBL_B: mp_clear(&b); return err; } #endif |
Changes to libtommath/bn_mp_prime_miller_rabin.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_PRIME_MILLER_RABIN_C | | < < < < < < < < | < | > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_PRIME_MILLER_RABIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. * Randomly the chance of error is no more than 1/4 and often * very much lower. */ mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result) { mp_int n1, y, r; mp_err err; int s, j; /* default */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1uL) != MP_GT) { return MP_VAL; |
︙ | ︙ | |||
93 94 95 96 97 98 99 | LBL_R: mp_clear(&r); LBL_N1: mp_clear(&n1); return err; } #endif | < < < < | 85 86 87 88 89 90 91 | LBL_R: mp_clear(&r); LBL_N1: mp_clear(&n1); return err; } #endif |
Changes to libtommath/bn_mp_prime_next_prime.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_PRIME_NEXT_PRIME_C | | < < < < < < < < | < | | > > | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include "tommath_private.h" #ifdef BN_MP_PRIME_NEXT_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style) { int x, y; mp_err err; mp_bool res = MP_NO; mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep; mp_int b; /* force positive */ a->sign = MP_ZPOS; /* simple algo if a is less than the largest prime in the table */ if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) { /* find which prime it is bigger than */ for (x = PRIVATE_MP_PRIME_TAB_SIZE - 2; x >= 0; x--) { if (mp_cmp_d(a, s_mp_prime_tab[x]) != MP_LT) { if (bbs_style == 1) { /* ok we found a prime smaller or * equal [so the next is larger] * * however, the prime must be * congruent to 3 mod 4 */ if ((s_mp_prime_tab[x + 1] & 3u) != 3u) { /* scan upwards for a prime congruent to 3 mod 4 */ for (y = x + 1; y < PRIVATE_MP_PRIME_TAB_SIZE; y++) { if ((s_mp_prime_tab[y] & 3u) == 3u) { mp_set(a, s_mp_prime_tab[y]); return MP_OKAY; } } } } else { mp_set(a, s_mp_prime_tab[x + 1]); return MP_OKAY; } } } /* at this point a maybe 1 */ if (mp_cmp_d(a, 1uL) == MP_EQ) { mp_set(a, 2uL); |
︙ | ︙ | |||
71 72 73 74 75 76 77 | /* at this point we will use a combination of a sieve and Miller-Rabin */ if (bbs_style == 1) { /* if a mod 4 != 3 subtract the correct value to make it so */ if ((a->dp[0] & 3u) != 3u) { if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) { return err; | < | > | | | | | | | | | < < < < | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | /* at this point we will use a combination of a sieve and Miller-Rabin */ if (bbs_style == 1) { /* if a mod 4 != 3 subtract the correct value to make it so */ if ((a->dp[0] & 3u) != 3u) { if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) { return err; } } } else { if (MP_IS_EVEN(a)) { /* force odd */ if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) { return err; } } } /* generate the restable */ for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) { if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) { return err; } } /* init temp used for Miller-Rabin Testing */ if ((err = mp_init(&b)) != MP_OKAY) { return err; } for (;;) { /* skip to the next non-trivially divisible candidate */ step = 0; do { /* y == 1 if any residue was zero [e.g. cannot be prime] */ y = 0; /* increase step to next candidate */ step += kstep; /* compute the new residue without using division */ for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) { /* add the step to each residue */ res_tab[x] += kstep; /* subtract the modulus [instead of using division] */ if (res_tab[x] >= s_mp_prime_tab[x]) { res_tab[x] -= s_mp_prime_tab[x]; } /* set flag if zero */ if (res_tab[x] == 0u) { y = 1; } } } while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep))); /* add the step */ if ((err = mp_add_d(a, step, a)) != MP_OKAY) { goto LBL_ERR; } /* if didn't pass sieve and step == MP_MAX then skip test */ if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) { continue; } if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto LBL_ERR; } if (res == MP_YES) { break; } } err = MP_OKAY; LBL_ERR: mp_clear(&b); return err; } #endif |
Changes to libtommath/bn_mp_prime_rabin_miller_trials.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C | | < < < < < < < < | < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | #include "tommath_private.h" #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ static const struct { int k, t; } sizes[] = { { 80, -1 }, /* Use deterministic algorithm for size <= 80 bits */ { 81, 39 }, { 96, 37 }, { 128, 32 }, { 160, 27 }, { 192, 21 }, { 256, 16 }, { 384, 10 }, { 512, 7 }, { 640, 6 }, { 768, 5 }, { 896, 4 }, { 1024, 4 }, { 2048, 2 } /* For bigger keysizes use always at least 2 Rounds */ }; /* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/ int mp_prime_rabin_miller_trials(int size) { int x; for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { if (sizes[x].k == size) { return sizes[x].t; } else if (sizes[x].k > size) { return (x == 0) ? sizes[0].t : sizes[x - 1].t; } } return sizes[x-1].t; } #endif |
Name change from libtommath/bn_mp_prime_random_ex.c to libtommath/bn_mp_prime_rand.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | | | | > > | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include "tommath_private.h" #ifdef BN_MP_PRIME_RAND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * MP_PRIME_BBS - make prime congruent to 3 mod 4 * MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS) * MP_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ /* This is possibly the mother of all prime generation functions, muahahahahaha! */ mp_err s_mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat) { unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; int bsize, maskOR_msb_offset; mp_bool res; mp_err err; /* sanity check the input */ if ((size <= 1) || (t <= 0)) { return MP_VAL; } /* MP_PRIME_SAFE implies MP_PRIME_BBS */ if ((flags & MP_PRIME_SAFE) != 0) { flags |= MP_PRIME_BBS; } /* calc the byte size */ bsize = (size>>3) + ((size&7)?1:0); /* we need a buffer of bsize bytes */ tmp = (unsigned char *) MP_MALLOC((size_t)bsize); if (tmp == NULL) { return MP_MEM; } /* calc the maskAND value for the MSbyte*/ maskAND = ((size&7) == 0) ? 0xFFu : (unsigned char)(0xFFu >> (8 - (size & 7))); /* calc the maskOR_msb */ maskOR_msb = 0; maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; if ((flags & MP_PRIME_2MSB_ON) != 0) { maskOR_msb |= (unsigned char)(0x80 >> ((9 - size) & 7)); } /* get the maskOR_lsb */ maskOR_lsb = 1u; if ((flags & MP_PRIME_BBS) != 0) { maskOR_lsb |= 3u; } do { /* read the bytes */ if (cb(tmp, bsize, dat) != bsize) { err = MP_VAL; goto error; |
︙ | ︙ | |||
91 92 93 94 95 96 97 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } if (res == MP_NO) { continue; } | | | | > | > > | | > | > > > | > > > > | > | 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } if (res == MP_NO) { continue; } if ((flags & MP_PRIME_SAFE) != 0) { /* see if (a-1)/2 is prime */ if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) { goto error; } if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } } } while (res == MP_NO); if ((flags & MP_PRIME_SAFE) != 0) { /* restore a to the original value */ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) { goto error; } } err = MP_OKAY; error: MP_FREE_BUFFER(tmp, (size_t)bsize); return err; } static int s_mp_rand_cb(unsigned char *dst, int len, void *dat) { (void)dat; if (len <= 0) { return len; } if (s_mp_rand_source(dst, (size_t)len) != MP_OKAY) { return 0; } return len; } mp_err mp_prime_rand(mp_int *a, int t, int size, int flags) { return s_mp_prime_random_ex(a, t, size, flags, s_mp_rand_cb, NULL); } #endif |
Changes to libtommath/bn_mp_prime_strong_lucas_selfridge.c.
1 2 3 | #include "tommath_private.h" #ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C | | < < < < < < < < | < | | < < < < | < < | < < < < < < | | | | | | | < < | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | #include "tommath_private.h" #ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_FIPS_ONLY /* * 8-bit is just too small. You can try the Frobenius test * but that frobenius test can fail, too, for the same reason. */ #ifndef MP_8BIT /* * multiply bigint a with int d and put the result in c * Like mp_mul_d() but with a signed long as the small input */ static mp_err s_mp_mul_si(const mp_int *a, int32_t d, mp_int *c) { mp_int t; mp_err err; if ((err = mp_init(&t)) != MP_OKAY) { return err; } /* * mp_digit might be smaller than a long, which excludes * the use of mp_mul_d() here. */ mp_set_i32(&t, d); err = mp_mul(a, &t, c); mp_clear(&t); return err; } /* Strong Lucas-Selfridge test. returns MP_YES if it is a strong L-S prime, MP_NO if it is composite Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. Released into the public domain by the author, who disclaims any legal liability arising from its use The multi-line comments are made by Thomas R. Nicely and are copied verbatim. Additional comments marked "CZ" (without the quotes) are by the code-portist. (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium (P5x, I think) Intel processor) */ mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result) { /* CZ TODO: choose better variable names! */ mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz; /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */ int D, Ds, J, sign, P, Q, r, s, u, Nbits; mp_err err; mp_bool oddness; *result = MP_NO; /* Find the first element D in the sequence {5, -7, 9, -11, 13, ...} such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory indicates that, if N is not a perfect square, D will "nearly always" be "small." Just in case, an overflow trap for D is included. */ if ((err = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, NULL)) != MP_OKAY) { return err; } D = 5; sign = 1; for (;;) { Ds = sign * D; sign = -sign; mp_set_u32(&Dz, (uint32_t)D); if ((err = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) { goto LBL_LS_ERR; } /* if 1 < GCD < N then N is composite with factor "D", and Jacobi(D,N) is technically undefined (but often returned as zero). */ if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) { goto LBL_LS_ERR; } if (Ds < 0) { Dz.sign = MP_NEG; } if ((err = mp_kronecker(&Dz, a, &J)) != MP_OKAY) { goto LBL_LS_ERR; } if (J == -1) { break; } D += 2; if (D > (INT_MAX - 2)) { err = MP_VAL; goto LBL_LS_ERR; } } P = 1; /* Selfridge's choice */ |
︙ | ︙ | |||
165 166 167 168 169 170 171 | only (roughly) 30 % as many pseudoprimes (and every strong Lucas pseudoprime is also a standard Lucas pseudoprime). Thus the evidence indicates that the strong Lucas-Selfridge test is more effective than the standard Lucas-Selfridge test, and a Baillie-PSW test based on the strong Lucas-Selfridge test should be more reliable. */ | | | | < < | | < < | < < | | < < | | | | | | | | | < < < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < | 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | only (roughly) 30 % as many pseudoprimes (and every strong Lucas pseudoprime is also a standard Lucas pseudoprime). Thus the evidence indicates that the strong Lucas-Selfridge test is more effective than the standard Lucas-Selfridge test, and a Baillie-PSW test based on the strong Lucas-Selfridge test should be more reliable. */ if ((err = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) { goto LBL_LS_ERR; } s = mp_cnt_lsb(&Np1); /* CZ * This should round towards zero because * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp() * and mp_div_2d() is equivalent. Additionally: * dividing an even number by two does not produce * any leftovers. */ if ((err = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) { goto LBL_LS_ERR; } /* We must now compute U_d and V_d. Since d is odd, the accumulated values U and V are initialized to U_1 and V_1 (if the target index were even, U and V would be initialized instead to U_0=0 and V_0=2). The values of U_2m and V_2m are also initialized to U_1 and V_1; the FOR loop calculates in succession U_2 and V_2, U_4 and V_4, U_8 and V_8, etc. If the corresponding bits (1, 2, 3, ...) of t are on (the zero bit having been accounted for in the initialization of U and V), these values are then combined with the previous totals for U and V, using the composition formulas for addition of indices. */ mp_set(&Uz, 1uL); /* U=U_1 */ mp_set(&Vz, (mp_digit)P); /* V=V_1 */ mp_set(&U2mz, 1uL); /* U_1 */ mp_set(&V2mz, (mp_digit)P); /* V_1 */ if (Q < 0) { Q = -Q; mp_set_u32(&Qmz, (uint32_t)Q); if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ mp_set_u32(&Qkdz, (uint32_t)Q); Qmz.sign = MP_NEG; Q2mz.sign = MP_NEG; Qkdz.sign = MP_NEG; Q = -Q; } else { mp_set_u32(&Qmz, (uint32_t)Q); if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Initializes calculation of Q^d */ mp_set_u32(&Qkdz, (uint32_t)Q); } Nbits = mp_count_bits(&Dz); for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */ /* Formulas for doubling of indices (carried out mod N). Note that * the indices denoted as "2m" are actually powers of 2, specifically * 2^(ul-1) beginning each loop and 2^ul ending each loop. * * U_2m = U_m*V_m * V_2m = V_m*V_m - 2*Q^m */ if ((err = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Must calculate powers of Q for use in V_2m, also for Q^d later */ if ((err = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } /* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */ if ((err = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { goto LBL_LS_ERR; } if (s_mp_get_bit(&Dz, (unsigned int)u) == MP_YES) { /* Formulas for addition of indices (carried out mod N); * * U_(m+n) = (U_m*V_n + U_n*V_m)/2 * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2 * * Be careful with division by 2 (mod N)! */ if ((err = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = s_mp_mul_si(&T4z, Ds, &T4z)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if (MP_IS_ODD(&Uz)) { if ((err = mp_add(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } /* CZ * This should round towards negative infinity because * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp(). * But mp_div_2() does not do so, it is truncating instead. */ oddness = MP_IS_ODD(&Uz) ? MP_YES : MP_NO; if ((err = mp_div_2(&Uz, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) { if ((err = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((err = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (MP_IS_ODD(&Vz)) { if ((err = mp_add(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } oddness = MP_IS_ODD(&Vz) ? MP_YES : MP_NO; if ((err = mp_div_2(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) { if ((err = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } } if ((err = mp_mod(&Uz, a, &Uz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } /* Calculating Q^d for later use */ if ((err = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ if (MP_IS_ZERO(&Uz) || MP_IS_ZERO(&Vz)) { *result = MP_YES; goto LBL_LS_ERR; } /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed., 1995/6) omits the condition V0 on p.142, but includes it on p. 130. The condition is NECESSARY; otherwise the test will return false negatives---e.g., the primes 29 and 2000029 will be returned as composite. */ /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d} by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of these are congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */ /* Initialize 2*Q^(d*2^r) for V_2m */ if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } for (r = 1; r < s; r++) { if ((err = mp_sqr(&Vz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { goto LBL_LS_ERR; } if (MP_IS_ZERO(&Vz)) { *result = MP_YES; goto LBL_LS_ERR; } /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */ if (r < (s - 1)) { if ((err = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { goto LBL_LS_ERR; } if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { goto LBL_LS_ERR; } } } LBL_LS_ERR: mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL); return err; } #endif #endif #endif |
Changes to libtommath/bn_mp_radix_size.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SIZE_C | | < < < < < < < < | < | > | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* returns size of ASCII reprensentation */ mp_err mp_radix_size(const mp_int *a, int radix, int *size) { mp_err err; int digs; mp_int t; mp_digit d; *size = 0; /* make sure the radix is in range */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } if (MP_IS_ZERO(a)) { *size = 2; return MP_OKAY; } /* special case for binary */ if (radix == 2) { *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; return MP_OKAY; } /* digs is the digit count */ digs = 0; /* if it's negative add one for the sign */ if (a->sign == MP_NEG) { ++digs; } /* init a copy of the input */ if ((err = mp_init_copy(&t, a)) != MP_OKAY) { return err; } /* force temp to positive */ t.sign = MP_ZPOS; /* fetch out all of the digits */ while (!MP_IS_ZERO(&t)) { if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return err; } ++digs; } mp_clear(&t); /* return digs + 1, the 1 is for the NULL byte that would be required. */ *size = digs + 1; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_radix_smap.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SMAP_C | | < < < < < < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_RADIX_SMAP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* chars used in radix conversions */ const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; const unsigned char mp_s_rmap_reverse[] = { 0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */ 0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */ 0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */ 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */ 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */ 0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */ 0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */ 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */ 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */ 0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */ }; const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse); #endif |
Changes to libtommath/bn_mp_rand.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_RAND_C | | < < < < < < < < | < < < < < < < < < | < | < < < < < < < < < < < | < < | < < < < < < < | < < < | < < < | < < < | < | < < < < < < < < | | < < < < < < | < < < < < | < < < < < < | | < < < < < < < < < < < < < | < < < < < < < < < < < < | | < < < < | < < < < < < | | < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < | < < | < < < < < | | | < | < | | < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | #include "tommath_private.h" #ifdef BN_MP_RAND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ mp_err(*s_mp_rand_source)(void *out, size_t size) = s_mp_rand_platform; void mp_rand_source(mp_err(*source)(void *out, size_t size)) { s_mp_rand_source = (source == NULL) ? s_mp_rand_platform : source; } mp_err mp_rand(mp_int *a, int digits) { int i; mp_err err; mp_zero(a); if (digits <= 0) { return MP_OKAY; } if ((err = mp_grow(a, digits)) != MP_OKAY) { return err; } if ((err = s_mp_rand_source(a->dp, (size_t)digits * sizeof(mp_digit))) != MP_OKAY) { return err; } /* TODO: We ensure that the highest digit is nonzero. Should this be removed? */ while ((a->dp[digits - 1] & MP_MASK) == 0u) { if ((err = s_mp_rand_source(a->dp + digits - 1, sizeof(mp_digit))) != MP_OKAY) { return err; } } a->used = digits; for (i = 0; i < digits; ++i) { a->dp[i] &= MP_MASK; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_read_radix.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_READ_RADIX_C | | < < < < < < < < | < | > | > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_READ_RADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c)) /* read a string [ASCII] in a given radix */ mp_err mp_read_radix(mp_int *a, const char *str, int radix) { mp_err err; int y; mp_sign neg; unsigned pos; char ch; /* zero the digit bignum */ mp_zero(a); /* make sure the radix is ok */ if ((radix < 2) || (radix > 64)) { return MP_VAL; |
︙ | ︙ | |||
58 59 60 61 62 63 64 | /* if the char was found in the map * and is less than the given radix add it * to the number, otherwise exit the loop. */ if ((y == 0xff) || (y >= radix)) { break; } | | | | | | < < < < | 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | /* if the char was found in the map * and is less than the given radix add it * to the number, otherwise exit the loop. */ if ((y == 0xff) || (y >= radix)) { break; } if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) { return err; } if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) { return err; } ++str; } /* if an illegal character was found, fail. */ if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) { mp_zero(a); return MP_VAL; } /* set the sign only if a != 0 */ if (!MP_IS_ZERO(a)) { a->sign = neg; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_read_signed_bin.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_READ_SIGNED_BIN_C | | < < < < < < < < | < | < > | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_MP_READ_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* read signed bin, big endian, first byte is 0==positive or 1==negative */ mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) { mp_err err; /* read magnitude */ if ((err = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) { return err; } /* first byte is 0 for positive, non-zero for negative */ if (b[0] == (unsigned char)0) { a->sign = MP_ZPOS; } else { a->sign = MP_NEG; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_read_unsigned_bin.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_READ_UNSIGNED_BIN_C | | < < < < < < < < | < | < > | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #include "tommath_private.h" #ifdef BN_MP_READ_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reads a unsigned char array, assumes the msb is stored first [big endian] */ mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) { mp_err err; /* make sure there are at least two digits */ if (a->alloc < 2) { if ((err = mp_grow(a, 2)) != MP_OKAY) { return err; } } /* zero the int */ mp_zero(a); /* read the bytes in */ while (c-- > 0) { if ((err = mp_mul_2d(a, 8, a)) != MP_OKAY) { return err; } #ifndef MP_8BIT a->dp[0] |= *b++; a->used += 1; #else a->dp[0] = (*b & MP_MASK); a->dp[1] |= ((*b++ >> 7) & 1u); a->used += 2; #endif } mp_clamp(a); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_reduce.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_C | | < < < < < < < < | < | > | | | | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reduces x mod m, assumes 0 < x < m**2, mu is * precomputed via mp_reduce_setup. * From HAC pp.604 Algorithm 14.42 */ mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) { mp_int q; mp_err err; int um = m->used; /* q = x */ if ((err = mp_init_copy(&q, x)) != MP_OKAY) { return err; } /* q1 = x / b**(k-1) */ mp_rshd(&q, um - 1); /* according to HAC this optimization is ok */ if ((mp_digit)um > ((mp_digit)1 << (MP_DIGIT_BIT - 1))) { if ((err = mp_mul(&q, mu, &q)) != MP_OKAY) { goto CLEANUP; } } else { #ifdef BN_S_MP_MUL_HIGH_DIGS_C if ((err = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #elif defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C) if ((err = s_mp_mul_high_digs_fast(&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } #else { err = MP_VAL; goto CLEANUP; } #endif } /* q3 = q2 / b**(k+1) */ mp_rshd(&q, um + 1); /* x = x mod b**(k+1), quick (no division) */ if ((err = mp_mod_2d(x, MP_DIGIT_BIT * (um + 1), x)) != MP_OKAY) { goto CLEANUP; } /* q = q * m mod b**(k+1), quick (no division) */ if ((err = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) { goto CLEANUP; } /* x = x - q */ if ((err = mp_sub(x, &q, x)) != MP_OKAY) { goto CLEANUP; } /* If x < 0, add b**(k+1) to it */ if (mp_cmp_d(x, 0uL) == MP_LT) { mp_set(&q, 1uL); if ((err = mp_lshd(&q, um + 1)) != MP_OKAY) goto CLEANUP; if ((err = mp_add(x, &q, x)) != MP_OKAY) goto CLEANUP; } /* Back off if it's too big */ while (mp_cmp(x, m) != MP_LT) { if ((err = s_mp_sub(x, m, x)) != MP_OKAY) { goto CLEANUP; } } CLEANUP: mp_clear(&q); return err; } #endif |
Changes to libtommath/bn_mp_reduce_2k.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_C | | < < < < < < < < | < | > | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reduces a modulo n where n is of the form 2**p - d */ mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) { mp_int q; mp_err err; int p; if ((err = mp_init(&q)) != MP_OKAY) { return err; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((err = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (d != 1u) { /* q = q * d */ if ((err = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto LBL_ERR; } } /* a = a + q */ if ((err = s_mp_add(a, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((err = s_mp_sub(a, n, a)) != MP_OKAY) { goto LBL_ERR; } goto top; } LBL_ERR: mp_clear(&q); return err; } #endif |
Changes to libtommath/bn_mp_reduce_2k_l.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_L_C | | < < < < < < < < | < | > | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) { mp_int q; mp_err err; int p; if ((err = mp_init(&q)) != MP_OKAY) { return err; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((err = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto LBL_ERR; } /* q = q * d */ if ((err = mp_mul(&q, d, &q)) != MP_OKAY) { goto LBL_ERR; } /* a = a + q */ if ((err = s_mp_add(a, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((err = s_mp_sub(a, n, a)) != MP_OKAY) { goto LBL_ERR; } goto top; } LBL_ERR: mp_clear(&q); return err; } #endif |
Changes to libtommath/bn_mp_reduce_2k_setup.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_C | | < < < < < < < < | < | < > > | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines the setup value */ mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) { mp_err err; mp_int tmp; int p; if ((err = mp_init(&tmp)) != MP_OKAY) { return err; } p = mp_count_bits(a); if ((err = mp_2expt(&tmp, p)) != MP_OKAY) { mp_clear(&tmp); return err; } if ((err = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { mp_clear(&tmp); return err; } *d = tmp.dp[0]; mp_clear(&tmp); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_reduce_2k_setup_l.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_L_C | | < < < < < < < < | < | < > | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_2K_SETUP_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines the setup value */ mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) { mp_err err; mp_int tmp; if ((err = mp_init(&tmp)) != MP_OKAY) { return err; } if ((err = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { goto LBL_ERR; } if ((err = s_mp_sub(&tmp, a, d)) != MP_OKAY) { goto LBL_ERR; } LBL_ERR: mp_clear(&tmp); return err; } #endif |
Changes to libtommath/bn_mp_reduce_is_2k.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_C | | < < < < < < < < | < | | | > | | > < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines if mp_reduce_2k can be used */ mp_bool mp_reduce_is_2k(const mp_int *a) { int ix, iy, iw; mp_digit iz; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { iy = mp_count_bits(a); iz = 1; iw = 1; /* Test every bit from the second digit up, must be 1 */ for (ix = MP_DIGIT_BIT; ix < iy; ix++) { if ((a->dp[iw] & iz) == 0u) { return MP_NO; } iz <<= 1; if (iz > MP_MASK) { ++iw; iz = 1; } } return MP_YES; } else { return MP_YES; } } #endif |
Changes to libtommath/bn_mp_reduce_is_2k_l.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_L_C | | < < < < < < < < | < | | < | > < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_IS_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines if reduce_2k_l can be used */ mp_bool mp_reduce_is_2k_l(const mp_int *a) { int ix, iy; if (a->used == 0) { return MP_NO; } else if (a->used == 1) { return MP_YES; } else if (a->used > 1) { /* if more than half of the digits are -1 we're sold */ for (iy = ix = 0; ix < a->used; ix++) { if (a->dp[ix] == MP_MASK) { ++iy; } } return (iy >= (a->used/2)) ? MP_YES : MP_NO; } else { return MP_NO; } } #endif |
Changes to libtommath/bn_mp_reduce_setup.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_SETUP_C | | < < < < < < < < | < | < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #include "tommath_private.h" #ifdef BN_MP_REDUCE_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* pre-calculate the value required for Barrett reduction * For a given modulus "b" it calulates the value required in "a" */ mp_err mp_reduce_setup(mp_int *a, const mp_int *b) { mp_err err; if ((err = mp_2expt(a, b->used * 2 * MP_DIGIT_BIT)) != MP_OKAY) { return err; } return mp_div(a, b, a, NULL); } #endif |
Changes to libtommath/bn_mp_rshd.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_RSHD_C | | < < < < < < < < | < > < < < | | | | | | | | | | | | | | | | | | | < | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include "tommath_private.h" #ifdef BN_MP_RSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shift right a certain amount of digits */ void mp_rshd(mp_int *a, int b) { int x; mp_digit *bottom, *top; /* if b <= 0 then ignore it */ if (b <= 0) { return; } /* if b > used then simply zero it and return */ if (a->used <= b) { mp_zero(a); return; } /* shift the digits down */ /* bottom */ bottom = a->dp; /* top [offset into digits] */ top = a->dp + b; /* this is implemented as a sliding window where * the window is b-digits long and digits from * the top of the window are copied to the bottom * * e.g. b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> /\ | ----> \-------------------/ ----> */ for (x = 0; x < (a->used - b); x++) { *bottom++ = *top++; } /* zero the top digits */ MP_ZERO_DIGITS(bottom, a->used - x); /* remove excess digits */ a->used -= b; } #endif |
Changes to libtommath/bn_mp_set.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SET_C | | < < < < < < < < | < < > > < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #include "tommath_private.h" #ifdef BN_MP_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* set to a digit */ void mp_set(mp_int *a, mp_digit b) { a->dp[0] = b & MP_MASK; a->sign = MP_ZPOS; a->used = (a->dp[0] != 0u) ? 1 : 0; MP_ZERO_DIGITS(a->dp + a->used, a->alloc - a->used); } #endif |
Changes to libtommath/bn_mp_set_double.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SET_DOUBLE_C | | < < < < < < < < | < | | > | | | < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #include "tommath_private.h" #ifdef BN_MP_SET_DOUBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559) mp_err mp_set_double(mp_int *a, double b) { uint64_t frac; int exp; mp_err err; union { double dbl; uint64_t bits; } cast; cast.dbl = b; exp = (int)((unsigned)(cast.bits >> 52) & 0x7FFu); frac = (cast.bits & ((1uLL << 52) - 1uLL)) | (1uLL << 52); if (exp == 0x7FF) { /* +-inf, NaN */ return MP_VAL; } exp -= 1023 + 52; mp_set_u64(a, frac); err = (exp < 0) ? mp_div_2d(a, -exp, a, NULL) : mp_mul_2d(a, exp, a); if (err != MP_OKAY) { return err; } if (((cast.bits >> 63) != 0uLL) && !MP_IS_ZERO(a)) { a->sign = MP_NEG; } return MP_OKAY; } #else /* pragma message() not supported by several compilers (in mostly older but still used versions) */ # ifdef _MSC_VER # pragma message("mp_set_double implementation is only available on platforms with IEEE754 floating point format") # else # warning "mp_set_double implementation is only available on platforms with IEEE754 floating point format" # endif #endif #endif |
Added libtommath/bn_mp_set_i32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_SET_I32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_SET_SIGNED(mp_set_i32, mp_set_u32, int32_t, uint32_t) #endif |
Added libtommath/bn_mp_set_i64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_SET_I64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_SET_SIGNED(mp_set_i64, mp_set_u64, long long, unsigned long long) #endif |
Deleted libtommath/bn_mp_set_int.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_set_long.c.
|
| < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_set_long_long.c.
|
| < < < < < < < < < < < < < < < < < < < < < |
Added libtommath/bn_mp_set_u32.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_SET_U32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_SET_UNSIGNED(mp_set_u32, uint32_t) #endif |
Added libtommath/bn_mp_set_u64.c.
> > > > > > > | 1 2 3 4 5 6 7 | #include "tommath_private.h" #ifdef BN_MP_SET_U64_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MP_SET_UNSIGNED(mp_set_u64, unsigned long long) #endif |
Changes to libtommath/bn_mp_shrink.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SHRINK_C | | < < < < < < < < | < | < | < < < < | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_SHRINK_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shrink a bignum */ mp_err mp_shrink(mp_int *a) { mp_digit *tmp; int alloc = MP_MAX(MP_MIN_PREC, a->used); if (a->alloc != alloc) { if ((tmp = (mp_digit *) MP_REALLOC(a->dp, (size_t)a->alloc * sizeof(mp_digit), (size_t)alloc * sizeof(mp_digit))) == NULL) { return MP_MEM; } a->dp = tmp; a->alloc = alloc; } return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_signed_bin_size.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SIGNED_BIN_SIZE_C | | < < < < < < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 | #include "tommath_private.h" #ifdef BN_MP_SIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* get the size for an signed equivalent */ int mp_signed_bin_size(const mp_int *a) { return 1 + mp_unsigned_bin_size(a); } #endif |
Name change from libtommath/bn_mp_tc_div_2d.c to libtommath/bn_mp_signed_rsh.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_MP_SIGNED_RSH_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* shift right by a certain bit count with sign extension */ mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c) { mp_err res; if (a->sign == MP_ZPOS) { return mp_div_2d(a, b, c, NULL); } res = mp_add_d(a, 1uL, c); if (res != MP_OKAY) { return res; } res = mp_div_2d(c, b, c, NULL); return (res == MP_OKAY) ? mp_sub_d(c, 1uL, c) : res; } #endif |
Changes to libtommath/bn_mp_sqr.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SQR_C | | < < < < < < < < | < | < > | | | | | | | | | < | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | #include "tommath_private.h" #ifdef BN_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes b = a*a */ mp_err mp_sqr(const mp_int *a, mp_int *b) { mp_err err; #ifdef BN_S_MP_TOOM_SQR_C /* use Toom-Cook? */ if (a->used >= MP_TOOM_SQR_CUTOFF) { err = s_mp_toom_sqr(a, b); /* Karatsuba? */ } else #endif #ifdef BN_S_MP_KARATSUBA_SQR_C if (a->used >= MP_KARATSUBA_SQR_CUTOFF) { err = s_mp_karatsuba_sqr(a, b); } else #endif { #ifdef BN_S_MP_SQR_FAST_C /* can we use the fast comba multiplier? */ if ((((a->used * 2) + 1) < MP_WARRAY) && (a->used < (MP_MAXFAST / 2))) { err = s_mp_sqr_fast(a, b); } else #endif { #ifdef BN_S_MP_SQR_C err = s_mp_sqr(a, b); #else err = MP_VAL; #endif } } b->sign = MP_ZPOS; return err; } #endif |
Changes to libtommath/bn_mp_sqrmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SQRMOD_C | | < < < < < < < < | < | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_SQRMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* c = a * a (mod b) */ mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c) { mp_err err; mp_int t; if ((err = mp_init(&t)) != MP_OKAY) { return err; } if ((err = mp_sqr(a, &t)) != MP_OKAY) { mp_clear(&t); return err; } err = mp_mod(&t, b, c); mp_clear(&t); return err; } #endif |
Changes to libtommath/bn_mp_sqrt.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include "tommath_private.h" #ifdef BN_MP_SQRT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* this function is less generic than mp_n_root, simpler and faster */ mp_err mp_sqrt(const mp_int *arg, mp_int *ret) { mp_err err; mp_int t1, t2; /* must be positive */ if (arg->sign == MP_NEG) { return MP_VAL; } /* easy out */ if (MP_IS_ZERO(arg)) { mp_zero(ret); return MP_OKAY; } if ((err = mp_init_copy(&t1, arg)) != MP_OKAY) { return err; } if ((err = mp_init(&t2)) != MP_OKAY) { goto E2; } /* First approx. (not very bad for large arg) */ mp_rshd(&t1, t1.used/2); /* t1 > 0 */ if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* And now t1 > sqrt(arg) */ do { if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) { goto E1; } if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) { goto E1; } if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) { goto E1; } /* t1 >= sqrt(arg) >= t2 at this point */ } while (mp_cmp_mag(&t1, &t2) == MP_GT); mp_exch(&t1, ret); E1: mp_clear(&t2); E2: mp_clear(&t1); return err; } #endif |
Changes to libtommath/bn_mp_sqrtmod_prime.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C | | < < < < < < < < | < | > | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | #include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { mp_err err; int legendre; mp_int t1, C, Q, S, Z, M, T, R, two; mp_digit i; /* first handle the simple cases */ if (mp_cmp_d(n, 0uL) == MP_EQ) { mp_zero(ret); return MP_OKAY; } if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { return err; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: err = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; if (i == 3u) { if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; err = MP_OKAY; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; /* Q = prime - 1 */ mp_zero(&S); /* S = 0 */ while (MP_IS_EVEN(&Q)) { if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; /* Q = Q / 2 */ if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ mp_set_u32(&Z, 2u); /* Z = 2 */ while (1) { if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; if (legendre == -1) break; if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; /* Z = Z + 1 */ } if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; /* C = Z ^ Q mod prime */ if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; /* t1 = (Q + 1) / 2 */ if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; /* T = n ^ Q mod prime */ if ((err = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; /* M = S */ mp_set_u32(&two, 2u); while (1) { if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; i = 0; while (1) { if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; i++; } if (i == 0u) { if ((err = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; err = MP_OKAY; goto cleanup; } if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = 2 ^ (M - i - 1) */ if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; /* C = (t1 * t1) mod prime */ if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; /* R = (R * t1) mod prime */ if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; /* T = (T * C) mod prime */ mp_set(&M, i); /* M = i */ } cleanup: mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); return err; } #endif |
Changes to libtommath/bn_mp_sub.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SUB_C | | < < < < < < < < | < | < < < | > | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include "tommath_private.h" #ifdef BN_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* high level subtraction (handles signs) */ mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) { mp_sign sa = a->sign, sb = b->sign; mp_err err; if (sa != sb) { /* subtract a negative from a positive, OR */ /* subtract a positive from a negative. */ /* In either case, ADD their magnitudes, */ /* and use the sign of the first number. */ c->sign = sa; err = s_mp_add(a, b, c); } else { /* subtract a positive from a positive, OR */ /* subtract a negative from a negative. */ /* First, take the difference between their */ /* magnitudes, then... */ if (mp_cmp_mag(a, b) != MP_LT) { /* Copy the sign from the first */ c->sign = sa; /* The first has a larger or equal magnitude */ err = s_mp_sub(a, b, c); } else { /* The result has the *opposite* sign from */ /* the first number. */ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; /* The second has a larger magnitude */ err = s_mp_sub(b, a, c); } } return err; } #endif |
Changes to libtommath/bn_mp_sub_d.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SUB_D_C | | < < < < < < < < | < | | > | | | | | > > | < < < < < | | | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include "tommath_private.h" #ifdef BN_MP_SUB_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* single digit subtraction */ mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit *tmpa, *tmpc; mp_err err; int ix, oldused; /* grow c as required */ if (c->alloc < (a->used + 1)) { if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { return err; } } /* if a is negative just do an unsigned * addition [with fudged signs] */ if (a->sign == MP_NEG) { mp_int a_ = *a; a_.sign = MP_ZPOS; err = mp_add_d(&a_, b, c); c->sign = MP_NEG; /* clamp */ mp_clamp(c); return err; } /* setup regs */ oldused = c->used; tmpa = a->dp; tmpc = c->dp; /* if a <= b simply fix the single digit */ if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { if (a->used == 1) { *tmpc++ = b - *tmpa; } else { *tmpc++ = b; } ix = 1; /* negative/1digit */ c->sign = MP_NEG; c->used = 1; } else { mp_digit mu = b; /* positive/size */ c->sign = MP_ZPOS; c->used = a->used; /* subtract digits, mu is carry */ for (ix = 0; ix < a->used; ix++) { *tmpc = *tmpa++ - mu; mu = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u); *tmpc++ &= MP_MASK; } } /* zero excess digits */ MP_ZERO_DIGITS(tmpc, oldused - ix); mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_submod.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_SUBMOD_C | | < < < < < < < < | < | < > | < | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_MP_SUBMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* d = a - b (mod c) */ mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) { mp_err err; mp_int t; if ((err = mp_init(&t)) != MP_OKAY) { return err; } if ((err = mp_sub(a, b, &t)) != MP_OKAY) { mp_clear(&t); return err; } err = mp_mod(&t, c, d); mp_clear(&t); return err; } #endif |
Deleted libtommath/bn_mp_tc_and.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_tc_or.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted libtommath/bn_mp_tc_xor.c.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Changes to libtommath/bn_mp_to_signed_bin.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_C | | < < < < < < < < | < | < | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* store in signed [big endian] format */ mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b) { mp_err err; if ((err = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) { return err; } b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1; return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_to_signed_bin_n.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_N_C | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | #include "tommath_private.h" #ifdef BN_MP_TO_SIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* store in signed [big endian] format */ mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) { if (*outlen < (unsigned long)mp_signed_bin_size(a)) { return MP_VAL; } *outlen = (unsigned long)mp_signed_bin_size(a); return mp_to_signed_bin(a, b); } #endif |
Changes to libtommath/bn_mp_to_unsigned_bin.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_C | | < < < < < < < < | < | | > | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* store in unsigned [big endian] format */ mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b) { int x; mp_err err; mp_int t; if ((err = mp_init_copy(&t, a)) != MP_OKAY) { return err; } x = 0; while (!MP_IS_ZERO(&t)) { #ifndef MP_8BIT b[x++] = (unsigned char)(t.dp[0] & 255u); #else b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 1u) << 7)); #endif if ((err = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) { mp_clear(&t); return err; } } s_mp_reverse(b, x); mp_clear(&t); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_to_unsigned_bin_n.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_N_C | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | #include "tommath_private.h" #ifdef BN_MP_TO_UNSIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* store in unsigned [big endian] format */ mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) { if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) { return MP_VAL; } *outlen = (unsigned long)mp_unsigned_bin_size(a); return mp_to_unsigned_bin(a, b); } #endif |
Changes to libtommath/bn_mp_toradix.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_C | | < < < < < < < < | < | > | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* stores a bignum as a ASCII string in a given radix (2..64) */ mp_err mp_toradix(const mp_int *a, char *str, int radix) { mp_err err; int digs; mp_int t; mp_digit d; char *_s = str; /* check range of the radix */ if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ if (MP_IS_ZERO(a)) { *str++ = '0'; *str = '\0'; return MP_OKAY; } if ((err = mp_init_copy(&t, a)) != MP_OKAY) { return err; } /* if it is negative output a - */ if (t.sign == MP_NEG) { ++_s; *str++ = '-'; t.sign = MP_ZPOS; } digs = 0; while (!MP_IS_ZERO(&t)) { if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return err; } *str++ = mp_s_rmap[d]; ++digs; } /* reverse the digits of the string. In this case _s points * to the first digit [exluding the sign] of the number] */ s_mp_reverse((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; mp_clear(&t); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_toradix_n.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_N_C | | < < < < < < < < | < | | > | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | #include "tommath_private.h" #ifdef BN_MP_TORADIX_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* stores a bignum as a ASCII string in a given radix (2..64) * * Stores upto maxlen-1 chars and always a NULL byte */ mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) { int digs; mp_err err; mp_int t; mp_digit d; char *_s = str; /* check range of the maxlen, radix */ if ((maxlen < 2) || (radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ if (MP_IS_ZERO(a)) { *str++ = '0'; *str = '\0'; return MP_OKAY; } if ((err = mp_init_copy(&t, a)) != MP_OKAY) { return err; } /* if it is negative output a - */ if (t.sign == MP_NEG) { /* we have to reverse our digits later... but not the - sign!! */ ++_s; /* store the flag and mark the number as positive */ *str++ = '-'; t.sign = MP_ZPOS; /* subtract a char */ --maxlen; } digs = 0; while (!MP_IS_ZERO(&t)) { if (--maxlen < 1) { /* no more room */ break; } if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) { mp_clear(&t); return err; } *str++ = mp_s_rmap[d]; ++digs; } /* reverse the digits of the string. In this case _s points * to the first digit [exluding the sign] of the number */ s_mp_reverse((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; mp_clear(&t); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_unsigned_bin_size.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_UNSIGNED_BIN_SIZE_C | | < < < < < < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 | #include "tommath_private.h" #ifdef BN_MP_UNSIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* get the size for an unsigned equivalent */ int mp_unsigned_bin_size(const mp_int *a) { int size = mp_count_bits(a); return (size / 8) + ((((unsigned)size & 7u) != 0u) ? 1 : 0); } #endif |
Changes to libtommath/bn_mp_xor.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_XOR_C | | < < < < < < < < | < | | | | | > | | | > | > > > > > > | > | | < | > > > | > > > | > | > > > | > | > > > > | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #include "tommath_private.h" #ifdef BN_MP_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* two complement xor */ mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c) { int used = MP_MAX(a->used, b->used) + 1, i; mp_err err; mp_digit ac = 1, bc = 1, cc = 1; mp_sign csign = (a->sign != b->sign) ? MP_NEG : MP_ZPOS; if (c->alloc < used) { if ((err = mp_grow(c, used)) != MP_OKAY) { return err; } } for (i = 0; i < used; i++) { mp_digit x, y; /* convert to two complement if negative */ if (a->sign == MP_NEG) { ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK); x = ac & MP_MASK; ac >>= MP_DIGIT_BIT; } else { x = (i >= a->used) ? 0uL : a->dp[i]; } /* convert to two complement if negative */ if (b->sign == MP_NEG) { bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK); y = bc & MP_MASK; bc >>= MP_DIGIT_BIT; } else { y = (i >= b->used) ? 0uL : b->dp[i]; } c->dp[i] = x ^ y; /* convert to to sign-magnitude if negative */ if (csign == MP_NEG) { cc += ~c->dp[i] & MP_MASK; c->dp[i] = cc & MP_MASK; cc >>= MP_DIGIT_BIT; } } c->used = used; c->sign = csign; mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_mp_zero.c.
1 2 | #include "tommath_private.h" #ifdef BN_MP_ZERO_C | | < < < < < < < < | < < < < | < < < | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 | #include "tommath_private.h" #ifdef BN_MP_ZERO_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* set to zero */ void mp_zero(mp_int *a) { a->sign = MP_ZPOS; a->used = 0; MP_ZERO_DIGITS(a->dp, a->alloc); } #endif |
Changes to libtommath/bn_prime_tab.c.
1 2 | #include "tommath_private.h" #ifdef BN_PRIME_TAB_C | | < < < < < < < < | < | 1 2 3 4 5 6 7 8 9 10 11 | #include "tommath_private.h" #ifdef BN_PRIME_TAB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ const mp_digit ltm_prime_tab[] = { 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, #ifndef MP_8BIT |
︙ | ︙ | |||
48 49 50 51 52 53 54 55 56 | 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 #endif }; #endif | > > > > > > > > > > > > > < < < > | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 #endif }; #if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" const mp_digit *s_mp_prime_tab = ltm_prime_tab; #pragma GCC diagnostic pop #elif defined(_MSC_VER) && _MSC_VER >= 1500 #pragma warning(push) #pragma warning(disable: 4996) const mp_digit *s_mp_prime_tab = ltm_prime_tab; #pragma warning(pop) #else const mp_digit *s_mp_prime_tab = ltm_prime_tab; #endif #endif |
Changes to libtommath/bn_s_mp_add.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_ADD_C | | < < < < < < < < | < | > | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | #include "tommath_private.h" #ifdef BN_S_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* low level addition, based on HAC pp.594, Algorithm 14.7 */ mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) { const mp_int *x; mp_err err; int olduse, min, max; /* find sizes, we let |a| <= |b| which means we have to sort * them. "x" will point to the input with the most digits */ if (a->used > b->used) { min = b->used; max = a->used; x = a; } else { min = a->used; max = b->used; x = b; } /* init result */ if (c->alloc < (max + 1)) { if ((err = mp_grow(c, max + 1)) != MP_OKAY) { return err; } } /* get old used digit count and set new one */ olduse = c->used; c->used = max + 1; |
︙ | ︙ | |||
60 61 62 63 64 65 66 | /* zero the carry */ u = 0; for (i = 0; i < min; i++) { /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ *tmpc = *tmpa++ + *tmpb++ + u; /* U = carry bit of T[i] */ | | | | < < < < < < | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | /* zero the carry */ u = 0; for (i = 0; i < min; i++) { /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ *tmpc = *tmpa++ + *tmpb++ + u; /* U = carry bit of T[i] */ u = *tmpc >> (mp_digit)MP_DIGIT_BIT; /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, that is in A+B * if A or B has more digits add those in */ if (min != max) { for (; i < max; i++) { /* T[i] = X[i] + U */ *tmpc = x->dp[i] + u; /* U = carry bit of T[i] */ u = *tmpc >> (mp_digit)MP_DIGIT_BIT; /* take away carry bit from T[i] */ *tmpc++ &= MP_MASK; } } /* add carry */ *tmpc++ = u; /* clear digits above oldused */ MP_ZERO_DIGITS(tmpc, olduse - c->used); } mp_clamp(c); return MP_OKAY; } #endif |
Added libtommath/bn_s_mp_balance_mul.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | #include "tommath_private.h" #ifdef BN_S_MP_BALANCE_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* single-digit multiplication with the smaller number as the single-digit */ mp_err s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c) { int count, len_a, len_b, nblocks, i, j, bsize; mp_int a0, tmp, A, B, r; mp_err err; len_a = a->used; len_b = b->used; nblocks = MP_MAX(a->used, b->used) / MP_MIN(a->used, b->used); bsize = MP_MIN(a->used, b->used) ; if ((err = mp_init_size(&a0, bsize + 2)) != MP_OKAY) { return err; } if ((err = mp_init_multi(&tmp, &r, NULL)) != MP_OKAY) { mp_clear(&a0); return err; } /* Make sure that A is the larger one*/ if (len_a < len_b) { B = *a; A = *b; } else { A = *a; B = *b; } for (i = 0, j=0; i < nblocks; i++) { /* Cut a slice off of a */ a0.used = 0; for (count = 0; count < bsize; count++) { a0.dp[count] = A.dp[ j++ ]; a0.used++; } /* Multiply with b */ if ((err = mp_mul(&a0, &B, &tmp)) != MP_OKAY) { goto LBL_ERR; } /* Shift tmp to the correct position */ if ((err = mp_lshd(&tmp, bsize * i)) != MP_OKAY) { goto LBL_ERR; } /* Add to output. No carry needed */ if ((err = mp_add(&r, &tmp, &r)) != MP_OKAY) { goto LBL_ERR; } } /* The left-overs; there are always left-overs */ if (j < A.used) { a0.used = 0; for (count = 0; j < A.used; count++) { a0.dp[count] = A.dp[ j++ ]; a0.used++; } if ((err = mp_mul(&a0, &B, &tmp)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_lshd(&tmp, bsize * i)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_add(&r, &tmp, &r)) != MP_OKAY) { goto LBL_ERR; } } mp_exch(&r,c); LBL_ERR: mp_clear_multi(&a0, &tmp, &r,NULL); return err; } #endif |
Changes to libtommath/bn_s_mp_exptmod.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_C | | < < < < < < < < | < | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 #else # define TAB_SIZE 256 #endif mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res, mu; mp_digit buf; mp_err err; int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; |
︙ | ︙ | |||
146 147 148 149 150 151 152 | if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; | | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)MP_DIGIT_BIT; } /* grab the next msb from the exponent */ y = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ |
︙ | ︙ | |||
242 243 244 245 246 247 248 | mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif | < < < < | 234 235 236 237 238 239 240 | mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif |
Name change from libtommath/bn_mp_exptmod_fast.c to libtommath/bn_s_mp_exptmod_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 #else # define TAB_SIZE 256 #endif mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; mp_err err; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; |
︙ | ︙ | |||
88 89 90 91 92 93 94 | } #else err = MP_VAL; goto LBL_M; #endif /* automatically pick the comba one if available (saves quite a few calls/ifs) */ | | | | | | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | } #else err = MP_VAL; goto LBL_M; #endif /* automatically pick the comba one if available (saves quite a few calls/ifs) */ #ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C if ((((P->used * 2) + 1) < MP_WARRAY) && (P->used < MP_MAXFAST)) { redux = s_mp_montgomery_reduce_fast; } else #endif { #ifdef BN_MP_MONTGOMERY_REDUCE_C /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; #else |
︙ | ︙ | |||
200 201 202 203 204 205 206 | if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; | | | | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)MP_DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ |
︙ | ︙ | |||
308 309 310 311 312 313 314 | mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif | < < < < < | 300 301 302 303 304 305 306 | mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif |
Name change from libtommath/bn_mp_get_bit.c to libtommath/bn_s_mp_get_bit.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < < | < | < | | < < | < < < < < < < < < < < < < | | < < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #include "tommath_private.h" #ifdef BN_S_MP_GET_BIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Get bit at position b and return MP_YES if the bit is 1, MP_NO if it is 0 */ mp_bool s_mp_get_bit(const mp_int *a, unsigned int b) { mp_digit bit; int limb = (int)(b / MP_DIGIT_BIT); if (limb >= a->used) { return MP_NO; } bit = (mp_digit)1 << (b % MP_DIGIT_BIT); return ((a->dp[limb] & bit) != 0u) ? MP_YES : MP_NO; } #endif |
Name change from libtommath/bn_fast_mp_invmod.c to libtommath/bn_s_mp_invmod_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | #include "tommath_private.h" #ifdef BN_S_MP_INVMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; mp_sign neg; mp_err err; /* 2. [modified] b must be odd */ if (MP_IS_EVEN(b)) { return MP_VAL; } /* init all our temps */ if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return err; } /* x == modulus, y == value to invert */ if ((err = mp_copy(b, &x)) != MP_OKAY) { goto LBL_ERR; } /* we need y = |a| */ if ((err = mp_mod(a, b, &y)) != MP_OKAY) { goto LBL_ERR; } /* if one of x,y is zero return an error! */ if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) { err = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((err = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&D, 1uL); top: /* 4. while u is even do */ while (MP_IS_EVEN(&u)) { /* 4.1 u = u/2 */ if ((err = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ if (MP_IS_ODD(&B)) { if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* B = B/2 */ if ((err = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (MP_IS_EVEN(&v)) { /* 5.1 v = v/2 */ if ((err = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ if (MP_IS_ODD(&D)) { /* D = (D-x)/2 */ if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* D = D/2 */ if ((err = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, D = D - B */ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (!MP_IS_ZERO(&u)) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { err = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((err = mp_add(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&D, b) != MP_LT) { if ((err = mp_sub(&D, b, &D)) != MP_OKAY) { goto LBL_ERR; } } mp_exch(&D, c); c->sign = neg; err = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return err; } #endif |
Name change from libtommath/bn_mp_invmod_slow.c to libtommath/bn_s_mp_invmod_slow.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | #include "tommath_private.h" #ifdef BN_S_MP_INVMOD_SLOW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ mp_err s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, A, B, C, D; mp_err err; /* b cannot be negative */ if ((b->sign == MP_NEG) || MP_IS_ZERO(b)) { return MP_VAL; } /* init temps */ if ((err = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return err; } /* x = a, y = b */ if ((err = mp_mod(a, b, &x)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(b, &y)) != MP_OKAY) { goto LBL_ERR; } /* 2. [modified] if x,y are both even then return an error! */ if (MP_IS_EVEN(&x) && MP_IS_EVEN(&y)) { err = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((err = mp_copy(&x, &u)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_copy(&y, &v)) != MP_OKAY) { goto LBL_ERR; } mp_set(&A, 1uL); mp_set(&D, 1uL); top: /* 4. while u is even do */ while (MP_IS_EVEN(&u)) { /* 4.1 u = u/2 */ if ((err = mp_div_2(&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if A or B is odd then */ if (MP_IS_ODD(&A) || MP_IS_ODD(&B)) { /* A = (A+y)/2, B = (B-x)/2 */ if ((err = mp_add(&A, &y, &A)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } } /* A = A/2, B = B/2 */ if ((err = mp_div_2(&A, &A)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_div_2(&B, &B)) != MP_OKAY) { goto LBL_ERR; } } /* 5. while v is even do */ while (MP_IS_EVEN(&v)) { /* 5.1 v = v/2 */ if ((err = mp_div_2(&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if C or D is odd then */ if (MP_IS_ODD(&C) || MP_IS_ODD(&D)) { /* C = (C+y)/2, D = (D-x)/2 */ if ((err = mp_add(&C, &y, &C)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; } } /* C = C/2, D = D/2 */ if ((err = mp_div_2(&C, &C)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_div_2(&D, &D)) != MP_OKAY) { goto LBL_ERR; } } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, A = A - C, B = B - D */ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&A, &C, &A)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) { goto LBL_ERR; } } else { /* v - v - u, C = C - A, D = D - B */ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&C, &A, &C)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) { goto LBL_ERR; } } /* if not zero goto step 4 */ if (!MP_IS_ZERO(&u)) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { err = MP_VAL; goto LBL_ERR; } /* if its too low */ while (mp_cmp_d(&C, 0uL) == MP_LT) { if ((err = mp_add(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((err = mp_sub(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } /* C is now the inverse */ mp_exch(&C, c); err = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); return err; } #endif |
Name change from libtommath/bn_mp_karatsuba_mul.c to libtommath/bn_s_mp_karatsuba_mul.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #include "tommath_private.h" #ifdef BN_S_MP_KARATSUBA_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * * Let B represent the radix [e.g. 2**MP_DIGIT_BIT] and * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b => |
︙ | ︙ | |||
37 38 39 40 41 42 43 | * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ | | | < | < | | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x0, x1, y0, y1, t1, x0y0, x1y1; int B; mp_err err = MP_MEM; /* default the return code to an error */ /* min # of digits */ B = MP_MIN(a->used, b->used); /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto LBL_ERR; |
︙ | ︙ | |||
161 162 163 164 165 166 167 | mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif | < < < < | 150 151 152 153 154 155 156 | mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif |
Name change from libtommath/bn_mp_karatsuba_sqr.c to libtommath/bn_s_mp_karatsuba_sqr.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include "tommath_private.h" #ifdef BN_S_MP_KARATSUBA_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Karatsuba squaring, computes b = a*a using three * half size squarings * * See comments of karatsuba_mul for details. It * is essentially the same algorithm but merely * tuned to perform recursive squarings. */ mp_err s_mp_karatsuba_sqr(const mp_int *a, mp_int *b) { mp_int x0, x1, t1, t2, x0x0, x1x1; int B; mp_err err = MP_MEM; /* min # of digits */ B = a->used; /* now divide in two */ B = B >> 1; |
︙ | ︙ | |||
114 115 116 117 118 119 120 | mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif | < < < < | 104 105 106 107 108 109 110 | mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif |
Name change from libtommath/bn_fast_mp_montgomery_reduce.c to libtommath/bn_s_mp_montgomery_reduce_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include "tommath_private.h" #ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes xR**-1 == x (mod N) via Montgomery Reduction * * This is an optimized implementation of montgomery_reduce * which uses the comba method to quickly calculate the columns of the * reduction. * * Based on Algorithm 14.32 on pp.601 of HAC. */ mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho) { int ix, olduse; mp_err err; mp_word W[MP_WARRAY]; if (x->used > MP_WARRAY) { return MP_VAL; } /* get old used count */ olduse = x->used; /* grow a as required */ if (x->alloc < (n->used + 1)) { if ((err = mp_grow(x, n->used + 1)) != MP_OKAY) { return err; } } /* first we have to get the digits of the input into * an array of double precision words W[...] */ { |
︙ | ︙ | |||
54 55 56 57 58 59 60 | /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ | | | | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | /* copy the digits of a into W[0..a->used-1] */ for (ix = 0; ix < x->used; ix++) { *_W++ = *tmpx++; } /* zero the high words of W[a->used..m->used*2] */ if (ix < ((n->used * 2) + 1)) { MP_ZERO_BUFFER(_W, sizeof(mp_word) * (size_t)(((n->used * 2) + 1) - ix)); } } /* now we proceed to zero successive digits * from the least significant upwards */ for (ix = 0; ix < n->used; ix++) { |
︙ | ︙ | |||
104 105 106 107 108 109 110 | /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += (mp_word)mu * (mp_word)*tmpn++; } } /* now fix carry for next digit, W[ix+1] */ | | | | 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | /* inner loop */ for (iy = 0; iy < n->used; iy++) { *_W++ += (mp_word)mu * (mp_word)*tmpn++; } } /* now fix carry for next digit, W[ix+1] */ W[ix + 1] += W[ix] >> (mp_word)MP_DIGIT_BIT; } /* now we have to propagate the carries and * shift the words downward [all those least * significant digits we zeroed]. */ { mp_digit *tmpx; mp_word *_W, *_W1; /* nox fix rest of carries */ /* alias for current word */ _W1 = W + ix; /* alias for next word, where the carry goes */ _W = W + ++ix; for (; ix <= ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> (mp_word)MP_DIGIT_BIT; } /* copy out, A = A/b**n * * The result is A/b**n but instead of converting from an * array of mp_word to mp_digit than calling mp_rshd * we just copy them in the right order |
︙ | ︙ | |||
147 148 149 150 151 152 153 | for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = *_W++ & (mp_word)MP_MASK; } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ | | < < < < < < | 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = *_W++ & (mp_word)MP_MASK; } /* zero oldused digits, if the input a was larger than * m->used+1 we'll have to clear the digits */ MP_ZERO_DIGITS(tmpx, olduse - ix); } /* set the max used and clamp */ x->used = n->used + 1; mp_clamp(x); /* if A >= m then A = A - m */ if (mp_cmp_mag(x, n) != MP_LT) { return s_mp_sub(x, n, x); } return MP_OKAY; } #endif |
Changes to libtommath/bn_s_mp_mul_digs.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_DIGS_C | | < < < < < < < < | < | > | | | < | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* multiplies |a| * |b| and only computes upto digs digits of result * HAC pp. 595, Algorithm 14.12 Modified so you can control how * many digits of output are created. */ mp_err s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { mp_int t; mp_err err; int pa, pb, ix, iy; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ if ((digs < MP_WARRAY) && (MP_MIN(a->used, b->used) < MP_MAXFAST)) { return s_mp_mul_digs_fast(a, b, c, digs); } if ((err = mp_init_size(&t, digs)) != MP_OKAY) { return err; } t.used = digs; /* compute the digits of the product directly */ pa = a->used; for (ix = 0; ix < pa; ix++) { /* set the carry to zero */ u = 0; /* limit ourselves to making digs digits of output */ pb = MP_MIN(b->used, digs - ix); /* setup some aliases */ /* copy of the digit from a used within the nested loop */ tmpx = a->dp[ix]; /* an alias for the destination shifted ix places */ tmpt = t.dp + ix; |
︙ | ︙ | |||
62 63 64 65 66 67 68 | ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* the new column is the lower part of the result */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* get the carry word from the result */ | | < < < < | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* the new column is the lower part of the result */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* get the carry word from the result */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } /* set carry if it is placed below digs */ if ((ix + iy) < digs) { *tmpt = u; } } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif |
Name change from libtommath/bn_fast_s_mp_mul_digs.c to libtommath/bn_s_mp_mul_digs_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | | | | | | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_DIGS_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int olduse, pa, ix, iz; mp_err err; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ if (c->alloc < digs) { if ((err = mp_grow(c, digs)) != MP_OKAY) { return err; } } /* number of output digits to produce */ pa = MP_MIN(digs, a->used + b->used); /* clear the carry */ _W = 0; for (ix = 0; ix < pa; ix++) { int tx, ty; int iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MP_MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MP_MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; ++iz) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)MP_DIGIT_BIT; } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp; for (ix = 0; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ MP_ZERO_DIGITS(tmpc, olduse - ix); } mp_clamp(c); return MP_OKAY; } #endif |
Changes to libtommath/bn_s_mp_mul_high_digs.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_HIGH_DIGS_C | | < < < < < < < < | < | | | > | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* multiplies |a| * |b| and does not compute the lower digs digits * [meant to get the higher part of the product] */ mp_err s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) { mp_int t; int pa, pb, ix, iy; mp_err err; mp_digit u; mp_word r; mp_digit tmpx, *tmpt, *tmpy; /* can we use the fast multiplier? */ #ifdef BN_S_MP_MUL_HIGH_DIGS_FAST_C if (((a->used + b->used + 1) < MP_WARRAY) && (MP_MIN(a->used, b->used) < MP_MAXFAST)) { return s_mp_mul_high_digs_fast(a, b, c, digs); } #endif if ((err = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) { return err; } t.used = a->used + b->used + 1; pa = a->used; pb = b->used; for (ix = 0; ix < pa; ix++) { /* clear the carry */ |
︙ | ︙ | |||
57 58 59 60 61 62 63 | ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* get the lower part */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* carry the carry */ | | < < < < | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | ((mp_word)tmpx * (mp_word)*tmpy++) + (mp_word)u; /* get the lower part */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* carry the carry */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } *tmpt = u; } mp_clamp(&t); mp_exch(&t, c); mp_clear(&t); return MP_OKAY; } #endif |
Name change from libtommath/bn_fast_s_mp_mul_high_digs.c to libtommath/bn_s_mp_mul_high_digs_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | | | | | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #include "tommath_private.h" #ifdef BN_S_MP_MUL_HIGH_DIGS_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* this is a modified version of fast_s_mul_digs that only produces * output digits *above* digs. See the comments for fast_s_mul_digs * to see how it works. * * This is used in the Barrett reduction since for one of the multiplications * only the higher digits were needed. This essentially halves the work. * * Based on Algorithm 14.12 on pp.595 of HAC. */ mp_err s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int olduse, pa, ix, iz; mp_err err; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ pa = a->used + b->used; if (c->alloc < pa) { if ((err = mp_grow(c, pa)) != MP_OKAY) { return err; } } /* number of output digits to produce */ pa = a->used + b->used; _W = 0; for (ix = digs; ix < pa; ix++) { int tx, ty, iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MP_MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MP_MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)MP_DIGIT_BIT; } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp + digs; for (ix = digs; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ MP_ZERO_DIGITS(tmpc, olduse - ix); } mp_clamp(c); return MP_OKAY; } #endif |
Name change from libtommath/bn_mp_prime_is_divisible.c to libtommath/bn_s_mp_prime_is_divisible.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | > | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #include "tommath_private.h" #ifdef BN_S_MP_PRIME_IS_DIVISIBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* determines if an integers is divisible by one * of the first PRIME_SIZE primes or not * * sets result to 0 if not, 1 if yes */ mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result) { int ix; mp_err err; mp_digit res; /* default to not */ *result = MP_NO; for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) { /* what is a mod LBL_prime_tab[ix] */ if ((err = mp_mod_d(a, s_mp_prime_tab[ix], &res)) != MP_OKAY) { return err; } /* is the residue zero? */ if (res == 0u) { *result = MP_YES; return MP_OKAY; } } return MP_OKAY; } #endif |
Added libtommath/bn_s_mp_rand_jenkins.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #include "tommath_private.h" #ifdef BN_S_MP_RAND_JENKINS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Bob Jenkins' http://burtleburtle.net/bob/rand/smallprng.html */ /* Chosen for speed and a good "mix" */ typedef struct { uint64_t a; uint64_t b; uint64_t c; uint64_t d; } ranctx; static ranctx jenkins_x; #define rot(x,k) (((x)<<(k))|((x)>>(64-(k)))) static uint64_t s_rand_jenkins_val(void) { uint64_t e = jenkins_x.a - rot(jenkins_x.b, 7); jenkins_x.a = jenkins_x.b ^ rot(jenkins_x.c, 13); jenkins_x.b = jenkins_x.c + rot(jenkins_x.d, 37); jenkins_x.c = jenkins_x.d + e; jenkins_x.d = e + jenkins_x.a; return jenkins_x.d; } void s_mp_rand_jenkins_init(uint64_t seed) { uint64_t i; jenkins_x.a = 0xf1ea5eedULL; jenkins_x.b = jenkins_x.c = jenkins_x.d = seed; for (i = 0uLL; i < 20uLL; ++i) { (void)s_rand_jenkins_val(); } } mp_err s_mp_rand_jenkins(void *p, size_t n) { char *q = (char *)p; while (n > 0u) { int i; uint64_t x = s_rand_jenkins_val(); for (i = 0; (i < 8) && (n > 0u); ++i, --n) { *q++ = (char)(x & 0xFFuLL); x >>= 8; } } return MP_OKAY; } #endif |
Added libtommath/bn_s_mp_rand_platform.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | #include "tommath_private.h" #ifdef BN_S_MP_RAND_PLATFORM_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* First the OS-specific special cases * - *BSD * - Windows */ #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) # define MP_ARC4RANDOM #endif #if defined(_WIN32) || defined(_WIN32_WCE) #define MP_WIN_CSP #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0400 #endif #ifdef _WIN32_WCE #define UNDER_CE #define ARM #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning (disable : 4668) #endif #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <wincrypt.h> #ifdef _MSC_VER # pragma warning(pop) #endif static mp_err s_read_win_csp(void *p, size_t n) { static HCRYPTPROV hProv = 0; if (hProv == 0) { HCRYPTPROV h = 0; if (!CryptAcquireContext(&h, NULL, MS_DEF_PROV, PROV_RSA_FULL, (CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) && !CryptAcquireContext(&h, NULL, MS_DEF_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) { return MP_ERR; } hProv = h; } return CryptGenRandom(hProv, (DWORD)n, (BYTE *)p) == TRUE ? MP_OKAY : MP_ERR; } #endif /* WIN32 */ #if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ) #if __GLIBC_PREREQ(2, 25) #define MP_GETRANDOM #include <sys/random.h> #include <errno.h> static mp_err s_read_getrandom(void *p, size_t n) { char *q = (char *)p; while (n > 0u) { ssize_t ret = getrandom(q, n, 0); if (ret < 0) { if (errno == EINTR) { continue; } return MP_ERR; } q += ret; n -= (size_t)ret; } return MP_OKAY; } #endif #endif /* We assume all platforms besides windows provide "/dev/urandom". * In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time. */ #if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM) #ifndef MP_DEV_URANDOM #define MP_DEV_URANDOM "/dev/urandom" #endif #include <fcntl.h> #include <errno.h> #include <unistd.h> static mp_err s_read_dev_urandom(void *p, size_t n) { int fd; char *q = (char *)p; do { fd = open(MP_DEV_URANDOM, O_RDONLY); } while ((fd == -1) && (errno == EINTR)); if (fd == -1) return MP_ERR; while (n > 0u) { ssize_t ret = read(fd, p, n); if (ret < 0) { if (errno == EINTR) { continue; } close(fd); return MP_ERR; } q += ret; n -= (size_t)ret; } close(fd); return MP_OKAY; } #endif #if defined(MP_PRNG_ENABLE_LTM_RNG) unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); void (*ltm_rng_callback)(void); static mp_err s_read_ltm_rng(void *p, size_t n) { unsigned long res; if (ltm_rng == NULL) return MP_ERR; res = ltm_rng(p, n, ltm_rng_callback); if (res != n) return MP_ERR; return MP_OKAY; } #endif mp_err s_mp_rand_platform(void *p, size_t n) { #if defined(MP_ARC4RANDOM) arc4random_buf(p, n); return MP_OKAY; #else mp_err res = MP_ERR; #if defined(MP_WIN_CSP) res = s_read_win_csp(p, n); if (res == MP_OKAY) return res; #endif #if defined(MP_GETRANDOM) res = s_read_getrandom(p, n); if (res == MP_OKAY) return res; #endif #if defined(MP_DEV_URANDOM) res = s_read_dev_urandom(p, n); if (res == MP_OKAY) return res; #endif #if defined(MP_PRNG_ENABLE_LTM_RNG) res = s_read_ltm_rng(p, n); if (res == MP_OKAY) return res; #endif return res; #endif } #endif |
Name change from libtommath/bn_reverse.c to libtommath/bn_s_mp_reverse.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | #include "tommath_private.h" #ifdef BN_S_MP_REVERSE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* reverse an array, used for radix code */ void s_mp_reverse(unsigned char *s, int len) { int ix, iy; unsigned char t; ix = 0; iy = len - 1; while (ix < iy) { t = s[ix]; s[ix] = s[iy]; s[iy] = t; ++ix; --iy; } } #endif |
Changes to libtommath/bn_s_mp_sqr.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_SQR_C | | < < < < < < < < | < | | | > | | | | | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | #include "tommath_private.h" #ifdef BN_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ mp_err s_mp_sqr(const mp_int *a, mp_int *b) { mp_int t; int ix, iy, pa; mp_err err; mp_word r; mp_digit u, tmpx, *tmpt; pa = a->used; if ((err = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) { return err; } /* default used is maximum possible size */ t.used = (2 * pa) + 1; for (ix = 0; ix < pa; ix++) { /* first calculate the digit at 2*ix */ /* calculate double precision result */ r = (mp_word)t.dp[2*ix] + ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); /* store lower part in result */ t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK); /* get the carry */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); /* left hand side of A[ix] * A[iy] */ tmpx = a->dp[ix]; /* alias for where to store the results */ tmpt = t.dp + ((2 * ix) + 1); for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ r = (mp_word)tmpx * (mp_word)a->dp[iy]; /* now calculate the double precision result, note we use * addition instead of *2 since it's easier to optimize */ r = (mp_word)*tmpt + r + r + (mp_word)u; /* store lower part */ *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); /* get carry */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } /* propagate upwards */ while (u != 0uL) { r = (mp_word)*tmpt + (mp_word)u; *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } } mp_clamp(&t); mp_exch(&t, b); mp_clear(&t); return MP_OKAY; } #endif |
Name change from libtommath/bn_fast_s_mp_sqr.c to libtommath/bn_s_mp_sqr_fast.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < | | | > | | | | | | | | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | #include "tommath_private.h" #ifdef BN_S_MP_SQR_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* the jist of squaring... * you do like mult except the offset of the tmpx [one that * starts closer to zero] can't equal the offset of tmpy. * So basically you set up iy like before then you min it with * (ty-tx) so that it never happens. You double all those * you add in the inner loop After that loop you do the squares and add them in. */ mp_err s_mp_sqr_fast(const mp_int *a, mp_int *b) { int olduse, pa, ix, iz; mp_digit W[MP_WARRAY], *tmpx; mp_word W1; mp_err err; /* grow the destination as required */ pa = a->used + a->used; if (b->alloc < pa) { if ((err = mp_grow(b, pa)) != MP_OKAY) { return err; } } /* number of output digits to produce */ W1 = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; /* clear counter */ _W = 0; /* get offsets into the two bignums */ ty = MP_MIN(a->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = a->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MP_MIN(a->used-tx, ty+1); /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ iy = MP_MIN(iy, ((ty-tx)+1)>>1); /* execute loop */ for (iz = 0; iz < iy; iz++) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* double the inner product and add carry */ _W = _W + _W + W1; /* even columns have the square term in them */ if (((unsigned)ix & 1u) == 0u) { _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1]; } /* store it */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ W1 = _W >> (mp_word)MP_DIGIT_BIT; } /* setup dest */ olduse = b->used; b->used = a->used+a->used; { mp_digit *tmpb; tmpb = b->dp; for (ix = 0; ix < pa; ix++) { *tmpb++ = W[ix] & MP_MASK; } /* clear unused digits [that existed in the old copy of c] */ MP_ZERO_DIGITS(tmpb, olduse - ix); } mp_clamp(b); return MP_OKAY; } #endif |
Changes to libtommath/bn_s_mp_sub.c.
1 2 | #include "tommath_private.h" #ifdef BN_S_MP_SUB_C | | < < < < < < < < | < | | > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #include "tommath_private.h" #ifdef BN_S_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) { int olduse, min, max; mp_err err; /* find sizes */ min = b->used; max = a->used; /* init result */ if (c->alloc < max) { if ((err = mp_grow(c, max)) != MP_OKAY) { return err; } } olduse = c->used; c->used = max; { mp_digit u, *tmpa, *tmpb, *tmpc; |
︙ | ︙ | |||
46 47 48 49 50 51 52 | *tmpc = (*tmpa++ - *tmpb++) - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ | | | | < < < < < < | 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | *tmpc = (*tmpa++ - *tmpb++) - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ u = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* now copy higher words if any, e.g. if A has more digits than B */ for (; i < max; i++) { /* T[i] = A[i] - U */ *tmpc = *tmpa++ - u; /* U = carry bit of T[i] */ u = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; } /* clear digits above used (since we may not have grown result above) */ MP_ZERO_DIGITS(tmpc, olduse - c->used); } mp_clamp(c); return MP_OKAY; } #endif |
Name change from libtommath/bn_mp_toom_mul.c to libtommath/bn_s_mp_toom_mul.c.
1 | #include "tommath_private.h" | | | < < < < < < < < | < > > > > > > > > > > > > > > > > > > > | | | < < | | | | | | | | < > | | | | | < > < | < | | | < < > > < < > | | < | | | < | < | | | < < < > > > | | > > | < < < | | > | | > | | > | | > | | | | | | | | | < < < | < < | | < | > | | > | | > | | > | | | | | | | < | | < < < | < < | | > | | | < > > | < | < | < | < < < | | | | > | | | < > | | | | | | | | > | | | | | | | | | < < < | | | | | > | | | | | > | | > | | | > | | < | | < | | < | | > > | < | | | | | | < < | > < < | > | | < < > | < | | < | | | > | > | | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | #include "tommath_private.h" #ifdef BN_S_MP_TOOM_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* multiplication using the Toom-Cook 3-way algorithm * * Much more complicated than Karatsuba but has a lower * asymptotic running time of O(N**1.464). This algorithm is * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ /* This file contains code from J. Arndt's book "Matters Computational" and the accompanying FXT-library with permission of the author. */ /* Setup from Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae." 18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007. The interpolation from above needed one temporary variable more than the interpolation here: Bodrato, Marco, and Alberto Zanoni. "What about Toom-Cook matrices optimality." Centro Vito Volterra Universita di Roma Tor Vergata (2006) */ mp_err s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) { mp_int S1, S2, T1, a0, a1, a2, b0, b1, b2; int err, B, count; /* init temps */ if ((err = mp_init_multi(&S1, &S2, &T1, NULL)) != MP_OKAY) { return err; } /* B */ B = MP_MIN(a->used, b->used) / 3; /** a = a2 * x^2 + a1 * x + a0; */ if ((err = mp_init_size(&a0, B)) != MP_OKAY) { goto LTM_ERRa0; } for (count = 0; count < B; count++) { a0.dp[count] = a->dp[count]; a0.used++; } mp_clamp(&a0); if ((err = mp_init_size(&a1, B)) != MP_OKAY) { goto LTM_ERRa1; } for (; count < (2 * B); count++) { a1.dp[count - B] = a->dp[count]; a1.used++; } mp_clamp(&a1); if ((err = mp_init_size(&a2, B + (a->used - (3 * B)))) != MP_OKAY) { goto LTM_ERRa2; } for (; count < a->used; count++) { a2.dp[count - (2 * B)] = a->dp[count]; a2.used++; } /** b = b2 * x^2 + b1 * x + b0; */ if ((err = mp_init_size(&b0, B)) != MP_OKAY) { goto LTM_ERRb0; } for (count = 0; count < B; count++) { b0.dp[count] = b->dp[count]; b0.used++; } mp_clamp(&b0); if ((err = mp_init_size(&b1, B)) != MP_OKAY) { goto LTM_ERRb1; } for (; count < (2 * B); count++) { b1.dp[count - B] = b->dp[count]; b1.used++; } mp_clamp(&b1); if ((err = mp_init_size(&b2, B + (b->used - (3 * B)))) != MP_OKAY) { goto LTM_ERRb2; } for (; count < b->used; count++) { b2.dp[count - (2 * B)] = b->dp[count]; b2.used++; } /** \\ S1 = (a2+a1+a0) * (b2+b1+b0); */ /** T1 = a2 + a1; */ if ((err = mp_add(&a2, &a1, &T1)) != MP_OKAY) { goto LTM_ERR; } /** S2 = T1 + a0; */ if ((err = mp_add(&T1, &a0, &S2)) != MP_OKAY) { goto LTM_ERR; } /** c = b2 + b1; */ if ((err = mp_add(&b2, &b1, c)) != MP_OKAY) { goto LTM_ERR; } /** S1 = c + b0; */ if ((err = mp_add(c, &b0, &S1)) != MP_OKAY) { goto LTM_ERR; } /** S1 = S1 * S2; */ if ((err = mp_mul(&S1, &S2, &S1)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = (4*a2+2*a1+a0) * (4*b2+2*b1+b0); */ /** T1 = T1 + a2; */ if ((err = mp_add(&T1, &a2, &T1)) != MP_OKAY) { goto LTM_ERR; } /** T1 = T1 << 1; */ if ((err = mp_mul_2(&T1, &T1)) != MP_OKAY) { goto LTM_ERR; } /** T1 = T1 + a0; */ if ((err = mp_add(&T1, &a0, &T1)) != MP_OKAY) { goto LTM_ERR; } /** c = c + b2; */ if ((err = mp_add(c, &b2, c)) != MP_OKAY) { goto LTM_ERR; } /** c = c << 1; */ if ((err = mp_mul_2(c, c)) != MP_OKAY) { goto LTM_ERR; } /** c = c + b0; */ if ((err = mp_add(c, &b0, c)) != MP_OKAY) { goto LTM_ERR; } /** S2 = T1 * c; */ if ((err = mp_mul(&T1, c, &S2)) != MP_OKAY) { goto LTM_ERR; } /** \\S3 = (a2-a1+a0) * (b2-b1+b0); */ /** a1 = a2 - a1; */ if ((err = mp_sub(&a2, &a1, &a1)) != MP_OKAY) { goto LTM_ERR; } /** a1 = a1 + a0; */ if ((err = mp_add(&a1, &a0, &a1)) != MP_OKAY) { goto LTM_ERR; } /** b1 = b2 - b1; */ if ((err = mp_sub(&b2, &b1, &b1)) != MP_OKAY) { goto LTM_ERR; } /** b1 = b1 + b0; */ if ((err = mp_add(&b1, &b0, &b1)) != MP_OKAY) { goto LTM_ERR; } /** a1 = a1 * b1; */ if ((err = mp_mul(&a1, &b1, &a1)) != MP_OKAY) { goto LTM_ERR; } /** b1 = a2 * b2; */ if ((err = mp_mul(&a2, &b2, &b1)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = (S2 - S3)/3; */ /** S2 = S2 - a1; */ if ((err = mp_sub(&S2, &a1, &S2)) != MP_OKAY) { goto LTM_ERR; } /** S2 = S2 / 3; \\ this is an exact division */ if ((err = mp_div_3(&S2, &S2, NULL)) != MP_OKAY) { goto LTM_ERR; } /** a1 = S1 - a1; */ if ((err = mp_sub(&S1, &a1, &a1)) != MP_OKAY) { goto LTM_ERR; } /** a1 = a1 >> 1; */ if ((err = mp_div_2(&a1, &a1)) != MP_OKAY) { goto LTM_ERR; } /** a0 = a0 * b0; */ if ((err = mp_mul(&a0, &b0, &a0)) != MP_OKAY) { goto LTM_ERR; } /** S1 = S1 - a0; */ if ((err = mp_sub(&S1, &a0, &S1)) != MP_OKAY) { goto LTM_ERR; } /** S2 = S2 - S1; */ if ((err = mp_sub(&S2, &S1, &S2)) != MP_OKAY) { goto LTM_ERR; } /** S2 = S2 >> 1; */ if ((err = mp_div_2(&S2, &S2)) != MP_OKAY) { goto LTM_ERR; } /** S1 = S1 - a1; */ if ((err = mp_sub(&S1, &a1, &S1)) != MP_OKAY) { goto LTM_ERR; } /** S1 = S1 - b1; */ if ((err = mp_sub(&S1, &b1, &S1)) != MP_OKAY) { goto LTM_ERR; } /** T1 = b1 << 1; */ if ((err = mp_mul_2(&b1, &T1)) != MP_OKAY) { goto LTM_ERR; } /** S2 = S2 - T1; */ if ((err = mp_sub(&S2, &T1, &S2)) != MP_OKAY) { goto LTM_ERR; } /** a1 = a1 - S2; */ if ((err = mp_sub(&a1, &S2, &a1)) != MP_OKAY) { goto LTM_ERR; } /** P = b1*x^4+ S2*x^3+ S1*x^2+ a1*x + a0; */ if ((err = mp_lshd(&b1, 4 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(&S2, 3 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&b1, &S2, &b1)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(&S1, 2 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&b1, &S1, &b1)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(&a1, 1 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&b1, &a1, &b1)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&b1, &a0, c)) != MP_OKAY) { goto LTM_ERR; } /** a * b - P */ LTM_ERR: mp_clear(&b2); LTM_ERRb2: mp_clear(&b1); LTM_ERRb1: mp_clear(&b0); LTM_ERRb0: mp_clear(&a2); LTM_ERRa2: mp_clear(&a1); LTM_ERRa1: mp_clear(&a0); LTM_ERRa0: mp_clear_multi(&S1, &S2, &T1, NULL); return err; } #endif |
Name change from libtommath/bn_mp_toom_sqr.c to libtommath/bn_s_mp_toom_sqr.c.
1 | #include "tommath_private.h" | | | > | < | | > > | < < | | > | > > > | > | | > > | | | | | | | | | | | | | | | > | | | < < < | | < < | | < < < < < | < > | < < < | | | | > > | | | | | < | | > > | | | > | | | | < | < < < | < < | | > | > > | | | < | | | < < > | | | < < < | | | < < | | | > | | | < < | > | < < < | | | | > | | < < | > > | | | > > | | < < < | < < | < < > > | < | | < | | < | | < | | < < | | | | | | | | > < < | > | | < < > | < | | > | < < < | < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | #include "tommath_private.h" #ifdef BN_S_MP_TOOM_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* squaring using Toom-Cook 3-way algorithm */ /* This file contains code from J. Arndt's book "Matters Computational" and the accompanying FXT-library with permission of the author. */ /* squaring using Toom-Cook 3-way algorithm */ /* Setup and interpolation from algorithm SQR_3 in Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae." 18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007. */ mp_err s_mp_toom_sqr(const mp_int *a, mp_int *b) { mp_int S0, a0, a1, a2; mp_digit *tmpa, *tmpc; mp_err err, B, count; /* init temps */ if ((err = mp_init(&S0)) != MP_OKAY) { return err; } /* B */ B = a->used / 3; /** a = a2 * x^2 + a1 * x + a0; */ if ((err = mp_init_size(&a0, B)) != MP_OKAY) { goto LTM_ERRa0; } a0.used = B; if ((err = mp_init_size(&a1, B)) != MP_OKAY) { goto LTM_ERRa1; } a1.used = B; if ((err = mp_init_size(&a2, B + (a->used - (3 * B)))) != MP_OKAY) { goto LTM_ERRa2; } tmpa = a->dp; tmpc = a0.dp; for (count = 0; count < B; count++) { *tmpc++ = *tmpa++; } tmpc = a1.dp; for (; count < (2 * B); count++) { *tmpc++ = *tmpa++; } tmpc = a2.dp; for (; count < a->used; count++) { *tmpc++ = *tmpa++; a2.used++; } mp_clamp(&a0); mp_clamp(&a1); /** S0 = a0^2; */ if ((err = mp_sqr(&a0, &S0)) != MP_OKAY) { goto LTM_ERR; } /** \\S1 = (a2 + a1 + a0)^2 */ /** \\S2 = (a2 - a1 + a0)^2 */ /** \\S1 = a0 + a2; */ /** a0 = a0 + a2; */ if ((err = mp_add(&a0, &a2, &a0)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = S1 - a1; */ /** b = a0 - a1; */ if ((err = mp_sub(&a0, &a1, b)) != MP_OKAY) { goto LTM_ERR; } /** \\S1 = S1 + a1; */ /** a0 = a0 + a1; */ if ((err = mp_add(&a0, &a1, &a0)) != MP_OKAY) { goto LTM_ERR; } /** \\S1 = S1^2; */ /** a0 = a0^2; */ if ((err = mp_sqr(&a0, &a0)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = S2^2; */ /** b = b^2; */ if ((err = mp_sqr(b, b)) != MP_OKAY) { goto LTM_ERR; } /** \\ S3 = 2 * a1 * a2 */ /** \\S3 = a1 * a2; */ /** a1 = a1 * a2; */ if ((err = mp_mul(&a1, &a2, &a1)) != MP_OKAY) { goto LTM_ERR; } /** \\S3 = S3 << 1; */ /** a1 = a1 << 1; */ if ((err = mp_mul_2(&a1, &a1)) != MP_OKAY) { goto LTM_ERR; } /** \\S4 = a2^2; */ /** a2 = a2^2; */ if ((err = mp_sqr(&a2, &a2)) != MP_OKAY) { goto LTM_ERR; } /** \\ tmp = (S1 + S2)/2 */ /** \\tmp = S1 + S2; */ /** b = a0 + b; */ if ((err = mp_add(&a0, b, b)) != MP_OKAY) { goto LTM_ERR; } /** \\tmp = tmp >> 1; */ /** b = b >> 1; */ if ((err = mp_div_2(b, b)) != MP_OKAY) { goto LTM_ERR; } /** \\ S1 = S1 - tmp - S3 */ /** \\S1 = S1 - tmp; */ /** a0 = a0 - b; */ if ((err = mp_sub(&a0, b, &a0)) != MP_OKAY) { goto LTM_ERR; } /** \\S1 = S1 - S3; */ /** a0 = a0 - a1; */ if ((err = mp_sub(&a0, &a1, &a0)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = tmp - S4 -S0 */ /** \\S2 = tmp - S4; */ /** b = b - a2; */ if ((err = mp_sub(b, &a2, b)) != MP_OKAY) { goto LTM_ERR; } /** \\S2 = S2 - S0; */ /** b = b - S0; */ if ((err = mp_sub(b, &S0, b)) != MP_OKAY) { goto LTM_ERR; } /** \\P = S4*x^4 + S3*x^3 + S2*x^2 + S1*x + S0; */ /** P = a2*x^4 + a1*x^3 + b*x^2 + a0*x + S0; */ if ((err = mp_lshd(&a2, 4 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(&a1, 3 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(b, 2 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_lshd(&a0, 1 * B)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&a2, &a1, &a2)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(&a2, b, b)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(b, &a0, b)) != MP_OKAY) { goto LTM_ERR; } if ((err = mp_add(b, &S0, b)) != MP_OKAY) { goto LTM_ERR; } /** a^2 - P */ LTM_ERR: mp_clear(&a2); LTM_ERRa2: mp_clear(&a1); LTM_ERRa1: mp_clear(&a0); LTM_ERRa0: mp_clear(&S0); return err; } #endif |
Deleted libtommath/callgraph.txt.
more than 10,000 changes
Added libtommath/helper.pl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | #!/usr/bin/env perl use strict; use warnings; use Getopt::Long; use File::Find 'find'; use File::Basename 'basename'; use File::Glob 'bsd_glob'; sub read_file { my $f = shift; open my $fh, "<", $f or die "FATAL: read_rawfile() cannot open file '$f': $!"; binmode $fh; return do { local $/; <$fh> }; } sub write_file { my ($f, $data) = @_; die "FATAL: write_file() no data" unless defined $data; open my $fh, ">", $f or die "FATAL: write_file() cannot open file '$f': $!"; binmode $fh; print $fh $data or die "FATAL: write_file() cannot write to '$f': $!"; close $fh or die "FATAL: write_file() cannot close '$f': $!"; return; } sub sanitize_comments { my($content) = @_; $content =~ s{/\*(.*?)\*/}{my $x=$1; $x =~ s/\w/x/g; "/*$x*/";}egs; return $content; } sub check_source { my @all_files = ( bsd_glob("makefile*"), bsd_glob("*.{h,c,sh,pl}"), bsd_glob("*/*.{h,c,sh,pl}"), ); my $fails = 0; for my $file (sort @all_files) { my $troubles = {}; my $lineno = 1; my $content = read_file($file); $content = sanitize_comments $content; push @{$troubles->{crlf_line_end}}, '?' if $content =~ /\r/; for my $l (split /\n/, $content) { push @{$troubles->{merge_conflict}}, $lineno if $l =~ /^(<<<<<<<|=======|>>>>>>>)([^<=>]|$)/; push @{$troubles->{trailing_space}}, $lineno if $l =~ / $/; push @{$troubles->{tab}}, $lineno if $l =~ /\t/ && basename($file) !~ /^makefile/i; push @{$troubles->{non_ascii_char}}, $lineno if $l =~ /[^[:ascii:]]/; push @{$troubles->{cpp_comment}}, $lineno if $file =~ /\.(c|h)$/ && ($l =~ /\s\/\// || $l =~ /\/\/\s/); # we prefer using XMALLOC, XFREE, XREALLOC, XCALLOC ... push @{$troubles->{unwanted_malloc}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmalloc\s*\(/; push @{$troubles->{unwanted_realloc}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\brealloc\s*\(/; push @{$troubles->{unwanted_calloc}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bcalloc\s*\(/; push @{$troubles->{unwanted_free}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bfree\s*\(/; # and we probably want to also avoid the following push @{$troubles->{unwanted_memcpy}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcpy\s*\(/; push @{$troubles->{unwanted_memset}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemset\s*\(/; push @{$troubles->{unwanted_memcpy}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcpy\s*\(/; push @{$troubles->{unwanted_memmove}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemmove\s*\(/; push @{$troubles->{unwanted_memcmp}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcmp\s*\(/; push @{$troubles->{unwanted_strcmp}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrcmp\s*\(/; push @{$troubles->{unwanted_strcpy}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrcpy\s*\(/; push @{$troubles->{unwanted_strncpy}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrncpy\s*\(/; push @{$troubles->{unwanted_clock}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bclock\s*\(/; push @{$troubles->{unwanted_qsort}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bqsort\s*\(/; push @{$troubles->{sizeof_no_brackets}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bsizeof\s*[^\(]/; if ($file =~ m|^[^\/]+\.c$| && $l =~ /^static(\s+[a-zA-Z0-9_]+)+\s+([a-zA-Z0-9_]+)\s*\(/) { my $funcname = $2; # static functions should start with s_ push @{$troubles->{staticfunc_name}}, "$lineno($funcname)" if $funcname !~ /^s_/; } $lineno++; } for my $k (sort keys %$troubles) { warn "[$k] $file line:" . join(",", @{$troubles->{$k}}) . "\n"; $fails++; } } warn( $fails > 0 ? "check-source: FAIL $fails\n" : "check-source: PASS\n" ); return $fails; } sub check_comments { my $fails = 0; my $first_comment = <<'MARKER'; /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ MARKER #my @all_files = (bsd_glob("*.{h,c}"), bsd_glob("*/*.{h,c}")); my @all_files = (bsd_glob("*.{h,c}")); for my $f (@all_files) { my $txt = read_file($f); if ($txt !~ /\Q$first_comment\E/s) { warn "[first_comment] $f\n"; $fails++; } } warn( $fails > 0 ? "check-comments: FAIL $fails\n" : "check-comments: PASS\n" ); return $fails; } sub check_doc { my $fails = 0; my $tex = read_file('doc/bn.tex'); my $tmh = read_file('tommath.h'); my @functions = $tmh =~ /\n\s*[a-zA-Z0-9_* ]+?(mp_[a-z0-9_]+)\s*\([^\)]+\)\s*;/sg; my @macros = $tmh =~ /\n\s*#define\s+([a-z0-9_]+)\s*\([^\)]+\)/sg; for my $n (sort @functions) { (my $nn = $n) =~ s/_/\\_/g; # mp_sub_d >> mp\_sub\_d if ($tex !~ /index\Q{$nn}\E/) { warn "[missing_doc_for_function] $n\n"; $fails++ } } for my $n (sort @macros) { (my $nn = $n) =~ s/_/\\_/g; # mp_iszero >> mp\_iszero if ($tex !~ /index\Q{$nn}\E/) { warn "[missing_doc_for_macro] $n\n"; $fails++ } } warn( $fails > 0 ? "check_doc: FAIL $fails\n" : "check-doc: PASS\n" ); return $fails; } sub prepare_variable { my ($varname, @list) = @_; my $output = "$varname="; my $len = length($output); foreach my $obj (sort @list) { $len = $len + length $obj; $obj =~ s/\*/\$/; if ($len > 100) { $output .= "\\\n"; $len = length $obj; } $output .= $obj . ' '; } $output =~ s/ $//; return $output; } sub prepare_msvc_files_xml { my ($all, $exclude_re, $targets) = @_; my $last = []; my $depth = 2; # sort files in the same order as visual studio (ugly, I know) my @parts = (); for my $orig (@$all) { my $p = $orig; $p =~ s|/|/~|g; $p =~ s|/~([^/]+)$|/$1|g; my @l = map { sprintf "% -99s", $_ } split /\//, $p; push @parts, [ $orig, join(':', @l) ]; } my @sorted = map { $_->[0] } sort { $a->[1] cmp $b->[1] } @parts; my $files = "<Files>\r\n"; for my $full (@sorted) { my @items = split /\//, $full; # split by '/' $full =~ s|/|\\|g; # replace '/' bt '\' shift @items; # drop first one (src) pop @items; # drop last one (filename.ext) my $current = \@items; if (join(':', @$current) ne join(':', @$last)) { my $common = 0; $common++ while ($last->[$common] && $current->[$common] && $last->[$common] eq $current->[$common]); my $back = @$last - $common; if ($back > 0) { $files .= ("\t" x --$depth) . "</Filter>\r\n" for (1..$back); } my $fwd = [ @$current ]; splice(@$fwd, 0, $common); for my $i (0..scalar(@$fwd) - 1) { $files .= ("\t" x $depth) . "<Filter\r\n"; $files .= ("\t" x $depth) . "\tName=\"$fwd->[$i]\"\r\n"; $files .= ("\t" x $depth) . "\t>\r\n"; $depth++; } $last = $current; } $files .= ("\t" x $depth) . "<File\r\n"; $files .= ("\t" x $depth) . "\tRelativePath=\"$full\"\r\n"; $files .= ("\t" x $depth) . "\t>\r\n"; if ($full =~ $exclude_re) { for (@$targets) { $files .= ("\t" x $depth) . "\t<FileConfiguration\r\n"; $files .= ("\t" x $depth) . "\t\tName=\"$_\"\r\n"; $files .= ("\t" x $depth) . "\t\tExcludedFromBuild=\"true\"\r\n"; $files .= ("\t" x $depth) . "\t\t>\r\n"; $files .= ("\t" x $depth) . "\t\t<Tool\r\n"; $files .= ("\t" x $depth) . "\t\t\tName=\"VCCLCompilerTool\"\r\n"; $files .= ("\t" x $depth) . "\t\t\tAdditionalIncludeDirectories=\"\"\r\n"; $files .= ("\t" x $depth) . "\t\t\tPreprocessorDefinitions=\"\"\r\n"; $files .= ("\t" x $depth) . "\t\t/>\r\n"; $files .= ("\t" x $depth) . "\t</FileConfiguration>\r\n"; } } $files .= ("\t" x $depth) . "</File>\r\n"; } $files .= ("\t" x --$depth) . "</Filter>\r\n" for (@$last); $files .= "\t</Files>"; return $files; } sub patch_file { my ($content, @variables) = @_; for my $v (@variables) { if ($v =~ /^([A-Z0-9_]+)\s*=.*$/si) { my $name = $1; $content =~ s/\n\Q$name\E\b.*?[^\\]\n/\n$v\n/s; } else { die "patch_file failed: " . substr($v, 0, 30) . ".."; } } return $content; } sub process_makefiles { my $write = shift; my $changed_count = 0; my @o = map { my $x = $_; $x =~ s/\.c$/.o/; $x } bsd_glob("*.c"); my @all = bsd_glob("*.{c,h}"); my $var_o = prepare_variable("OBJECTS", @o); (my $var_obj = $var_o) =~ s/\.o\b/.obj/sg; # update MSVC project files my $msvc_files = prepare_msvc_files_xml(\@all, qr/NOT_USED_HERE/, ['Debug|Win32', 'Release|Win32', 'Debug|x64', 'Release|x64']); for my $m (qw/libtommath_VS2008.vcproj/) { my $old = read_file($m); my $new = $old; $new =~ s|<Files>.*</Files>|$msvc_files|s; if ($old ne $new) { write_file($m, $new) if $write; warn "changed: $m\n"; $changed_count++; } } # update OBJECTS + HEADERS in makefile* for my $m (qw/ makefile makefile.shared makefile_include.mk makefile.msvc makefile.unix makefile.mingw /) { my $old = read_file($m); my $new = $m eq 'makefile.msvc' ? patch_file($old, $var_obj) : patch_file($old, $var_o); if ($old ne $new) { write_file($m, $new) if $write; warn "changed: $m\n"; $changed_count++; } } if ($write) { return 0; # no failures } else { warn( $changed_count > 0 ? "check-makefiles: FAIL $changed_count\n" : "check-makefiles: PASS\n" ); return $changed_count; } } sub draw_func { my ($deplist, $depmap, $out, $indent, $funcslist) = @_; my @funcs = split ',', $funcslist; # try this if you want to have a look at a minimized version of the callgraph without all the trivial functions #if ($deplist =~ /$funcs[0]/ || $funcs[0] =~ /BN_MP_(ADD|SUB|CLEAR|CLEAR_\S+|DIV|MUL|COPY|ZERO|GROW|CLAMP|INIT|INIT_\S+|SET|ABS|CMP|CMP_D|EXCH)_C/) { if ($deplist =~ /$funcs[0]/) { return $deplist; } else { $deplist = $deplist . $funcs[0]; } if ($indent == 0) { } elsif ($indent >= 1) { print {$out} '| ' x ($indent - 1) . '+--->'; } print {$out} $funcs[0] . "\n"; shift @funcs; my $olddeplist = $deplist; foreach my $i (@funcs) { $deplist = draw_func($deplist, $depmap, $out, $indent + 1, ${$depmap}{$i}) if exists ${$depmap}{$i}; } return $olddeplist; } sub update_dep { #open class file and write preamble open(my $class, '>', 'tommath_class.h') or die "Couldn't open tommath_class.h for writing\n"; print {$class} << 'EOS'; /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #define LTM_INSIDE #if defined(LTM2) # define LTM3 #endif #if defined(LTM1) # define LTM2 #endif #define LTM1 #if defined(LTM_ALL) EOS foreach my $filename (glob 'bn*.c') { my $define = $filename; print "Processing $filename\n"; # convert filename to upper case so we can use it as a define $define =~ tr/[a-z]/[A-Z]/; $define =~ tr/\./_/; print {$class} "# define $define\n"; # now copy text and apply #ifdef as required my $apply = 0; open(my $src, '<', $filename); open(my $out, '>', 'tmp'); # first line will be the #ifdef my $line = <$src>; if ($line =~ /include/) { print {$out} $line; } else { print {$out} << "EOS"; #include "tommath_private.h" #ifdef $define /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ $line EOS $apply = 1; } while (<$src>) { if ($_ !~ /tommath\.h/) { print {$out} $_; } } if ($apply == 1) { print {$out} "#endif\n"; } close $src; close $out; unlink $filename; rename 'tmp', $filename; } print {$class} "#endif\n#endif\n"; # now do classes my %depmap; foreach my $filename (glob 'bn*.c') { my $content; if ($filename =~ "bn_deprecated.c") { open(my $src, '<', $filename) or die "Can't open source file!\n"; read $src, $content, -s $src; close $src; } else { my $cc = $ENV{'CC'} || 'gcc'; $content = `$cc -E -x c -DLTM_ALL $filename`; $content =~ s/^# 1 "$filename".*?^# 2 "$filename"//ms; } # convert filename to upper case so we can use it as a define $filename =~ tr/[a-z]/[A-Z]/; $filename =~ tr/\./_/; print {$class} "#if defined($filename)\n"; my $list = $filename; # strip comments $content =~ s{/\*.*?\*/}{}gs; # scan for mp_* and make classes my @deps = (); foreach my $line (split /\n/, $content) { while ($line =~ /(fast_)?(s_)?mp\_[a-z_0-9]*(?=\()|(?<=\()mp\_[a-z_0-9]*(?=,)/g) { my $a = $&; next if $a eq "mp_err"; $a =~ tr/[a-z]/[A-Z]/; $a = 'BN_' . $a . '_C'; push @deps, $a; } } @deps = sort(@deps); foreach my $a (@deps) { if ($list !~ /$a/) { print {$class} "# define $a\n"; } $list = $list . ',' . $a; } $depmap{$filename} = $list; print {$class} "#endif\n\n"; } print {$class} << 'EOS'; #ifdef LTM_INSIDE #undef LTM_INSIDE #ifdef LTM3 # define LTM_LAST #endif #include "tommath_superclass.h" #include "tommath_class.h" #else # define LTM_LAST #endif EOS close $class; #now let's make a cool call graph... open(my $out, '>', 'callgraph.txt'); foreach (sort keys %depmap) { draw_func("", \%depmap, $out, 0, $depmap{$_}); print {$out} "\n\n"; } close $out; return 0; } sub generate_def { my @files = split /\n/, `git ls-files`; @files = grep(/\.c/, @files); @files = map { my $x = $_; $x =~ s/^bn_|\.c$//g; $x; } @files; @files = grep(!/mp_radix_smap/, @files); push(@files, qw(mp_set_int mp_set_long mp_set_long_long mp_get_int mp_get_long mp_get_long_long mp_init_set_int)); my $files = join("\n ", sort(grep(/^mp_/, @files))); write_file "tommath.def", "; libtommath ; ; Use this command to produce a 32-bit .lib file, for use in any MSVC version ; lib -machine:X86 -name:libtommath.dll -def:tommath.def -out:tommath.lib ; Use this command to produce a 64-bit .lib file, for use in any MSVC version ; lib -machine:X64 -name:libtommath.dll -def:tommath.def -out:tommath.lib ; EXPORTS $files "; return 0; } sub die_usage { die <<"MARKER"; usage: $0 -s OR $0 --check-source $0 -o OR $0 --check-comments $0 -m OR $0 --check-makefiles $0 -a OR $0 --check-all $0 -u OR $0 --update-files MARKER } GetOptions( "s|check-source" => \my $check_source, "o|check-comments" => \my $check_comments, "m|check-makefiles" => \my $check_makefiles, "d|check-doc" => \my $check_doc, "a|check-all" => \my $check_all, "u|update-files" => \my $update_files, "h|help" => \my $help ) or die_usage; my $failure; $failure ||= check_source() if $check_all || $check_source; $failure ||= check_comments() if $check_all || $check_comments; $failure ||= check_doc() if $check_doc; # temporarily excluded from --check-all $failure ||= process_makefiles(0) if $check_all || $check_makefiles; $failure ||= process_makefiles(1) if $update_files; $failure ||= update_dep() if $update_files; $failure ||= generate_def() if $update_files; die_usage unless defined $failure; exit $failure ? 1 : 0; |
Changes to libtommath/libtommath_VS2008.vcproj.
︙ | ︙ | |||
309 310 311 312 313 314 315 | /> </Configuration> </Configurations> <References> </References> <Files> <File | | < < < < < < < < < < < < < < < < | | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | /> </Configuration> </Configurations> <References> </References> <Files> <File RelativePath="bn_cutoffs.c" > </File> <File RelativePath="bn_deprecated.c" > </File> <File RelativePath="bn_mp_2expt.c" > </File> <File |
︙ | ︙ | |||
395 396 397 398 399 400 401 402 403 404 405 406 407 408 | <File RelativePath="bn_mp_copy.c" > </File> <File RelativePath="bn_mp_count_bits.c" > </File> <File RelativePath="bn_mp_div.c" > </File> <File RelativePath="bn_mp_div_2.c" | > > > > | 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | <File RelativePath="bn_mp_copy.c" > </File> <File RelativePath="bn_mp_count_bits.c" > </File> <File RelativePath="bn_mp_decr.c" > </File> <File RelativePath="bn_mp_div.c" > </File> <File RelativePath="bn_mp_div_2.c" |
︙ | ︙ | |||
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | <File RelativePath="bn_mp_dr_reduce.c" > </File> <File RelativePath="bn_mp_dr_setup.c" > </File> <File RelativePath="bn_mp_exch.c" > </File> <File RelativePath="bn_mp_export.c" > </File> <File RelativePath="bn_mp_expt_d.c" > | > > > > < < < < < < < < < < < < | | | > > > > > > > > > > > > > > > > > > > > < < < < | | > > > > | | < < < < | 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | <File RelativePath="bn_mp_dr_reduce.c" > </File> <File RelativePath="bn_mp_dr_setup.c" > </File> <File RelativePath="bn_mp_error_to_string.c" > </File> <File RelativePath="bn_mp_exch.c" > </File> <File RelativePath="bn_mp_export.c" > </File> <File RelativePath="bn_mp_expt_d.c" > </File> <File RelativePath="bn_mp_exptmod.c" > </File> <File RelativePath="bn_mp_exteuclid.c" > </File> <File RelativePath="bn_mp_fread.c" > </File> <File RelativePath="bn_mp_fwrite.c" > </File> <File RelativePath="bn_mp_gcd.c" > </File> <File RelativePath="bn_mp_get_double.c" > </File> <File RelativePath="bn_mp_get_i32.c" > </File> <File RelativePath="bn_mp_get_i64.c" > </File> <File RelativePath="bn_mp_get_mag32.c" > </File> <File RelativePath="bn_mp_get_mag64.c" > </File> <File RelativePath="bn_mp_grow.c" > </File> <File RelativePath="bn_mp_ilogb.c" > </File> <File RelativePath="bn_mp_import.c" > </File> <File RelativePath="bn_mp_incr.c" > </File> <File RelativePath="bn_mp_init.c" > </File> <File RelativePath="bn_mp_init_copy.c" > </File> <File RelativePath="bn_mp_init_i32.c" > </File> <File RelativePath="bn_mp_init_i64.c" > </File> <File RelativePath="bn_mp_init_multi.c" > </File> <File RelativePath="bn_mp_init_set.c" > </File> <File RelativePath="bn_mp_init_size.c" > </File> <File RelativePath="bn_mp_init_u32.c" > </File> <File RelativePath="bn_mp_init_u64.c" > </File> <File RelativePath="bn_mp_invmod.c" > </File> <File RelativePath="bn_mp_is_square.c" > </File> <File RelativePath="bn_mp_iseven.c" > </File> <File RelativePath="bn_mp_isodd.c" > </File> <File RelativePath="bn_mp_kronecker.c" > </File> <File |
︙ | ︙ | |||
603 604 605 606 607 608 609 | <File RelativePath="bn_mp_mulmod.c" > </File> <File RelativePath="bn_mp_n_root.c" > | < < < < < < < < | | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | <File RelativePath="bn_mp_mulmod.c" > </File> <File RelativePath="bn_mp_n_root.c" > </File> <File RelativePath="bn_mp_neg.c" > </File> <File RelativePath="bn_mp_or.c" > </File> <File RelativePath="bn_mp_prime_fermat.c" > </File> <File RelativePath="bn_mp_prime_frobenius_underwood.c" > </File> <File RelativePath="bn_mp_prime_is_prime.c" > </File> <File RelativePath="bn_mp_prime_miller_rabin.c" > </File> <File RelativePath="bn_mp_prime_next_prime.c" > </File> <File RelativePath="bn_mp_prime_rabin_miller_trials.c" > </File> <File RelativePath="bn_mp_prime_rand.c" > </File> <File RelativePath="bn_mp_prime_strong_lucas_selfridge.c" > </File> <File |
︙ | ︙ | |||
721 722 723 724 725 726 727 | > </File> <File RelativePath="bn_mp_set_double.c" > </File> <File | | > > > > | | > > > > | 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | > </File> <File RelativePath="bn_mp_set_double.c" > </File> <File RelativePath="bn_mp_set_i32.c" > </File> <File RelativePath="bn_mp_set_i64.c" > </File> <File RelativePath="bn_mp_set_u32.c" > </File> <File RelativePath="bn_mp_set_u64.c" > </File> <File RelativePath="bn_mp_shrink.c" > </File> <File RelativePath="bn_mp_signed_bin_size.c" > </File> <File RelativePath="bn_mp_signed_rsh.c" > </File> <File RelativePath="bn_mp_sqr.c" > </File> <File RelativePath="bn_mp_sqrmod.c" |
︙ | ︙ | |||
767 768 769 770 771 772 773 | <File RelativePath="bn_mp_sub_d.c" > </File> <File RelativePath="bn_mp_submod.c" > | < < < < < < < < < < < < < < < < < < < < < < < < | 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | <File RelativePath="bn_mp_sub_d.c" > </File> <File RelativePath="bn_mp_submod.c" > </File> <File RelativePath="bn_mp_to_signed_bin.c" > </File> <File RelativePath="bn_mp_to_signed_bin_n.c" > </File> <File RelativePath="bn_mp_to_unsigned_bin.c" > </File> <File RelativePath="bn_mp_to_unsigned_bin_n.c" > </File> <File RelativePath="bn_mp_toradix.c" > </File> <File RelativePath="bn_mp_toradix_n.c" |
︙ | ︙ | |||
831 832 833 834 835 836 837 | <File RelativePath="bn_mp_zero.c" > </File> <File RelativePath="bn_prime_tab.c" > | < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | <File RelativePath="bn_mp_zero.c" > </File> <File RelativePath="bn_prime_tab.c" > </File> <File RelativePath="bn_s_mp_add.c" > </File> <File RelativePath="bn_s_mp_balance_mul.c" > </File> <File RelativePath="bn_s_mp_exptmod.c" > </File> <File RelativePath="bn_s_mp_exptmod_fast.c" > </File> <File RelativePath="bn_s_mp_get_bit.c" > </File> <File RelativePath="bn_s_mp_invmod_fast.c" > </File> <File RelativePath="bn_s_mp_invmod_slow.c" > </File> <File RelativePath="bn_s_mp_karatsuba_mul.c" > </File> <File RelativePath="bn_s_mp_karatsuba_sqr.c" > </File> <File RelativePath="bn_s_mp_montgomery_reduce_fast.c" > </File> <File RelativePath="bn_s_mp_mul_digs.c" > </File> <File RelativePath="bn_s_mp_mul_digs_fast.c" > </File> <File RelativePath="bn_s_mp_mul_high_digs.c" > </File> <File RelativePath="bn_s_mp_mul_high_digs_fast.c" > </File> <File RelativePath="bn_s_mp_prime_is_divisible.c" > </File> <File RelativePath="bn_s_mp_rand_jenkins.c" > </File> <File RelativePath="bn_s_mp_rand_platform.c" > </File> <File RelativePath="bn_s_mp_reverse.c" > </File> <File RelativePath="bn_s_mp_sqr.c" > </File> <File RelativePath="bn_s_mp_sqr_fast.c" > </File> <File RelativePath="bn_s_mp_sub.c" > </File> <File RelativePath="bn_s_mp_toom_mul.c" > </File> <File RelativePath="bn_s_mp_toom_sqr.c" > </File> <File RelativePath="tommath.h" > </File> <File RelativePath="tommath_class.h" > </File> <File RelativePath="tommath_cutoffs.h" > </File> <File RelativePath="tommath_private.h" > </File> <File RelativePath="tommath_superclass.h" > </File> </Files> <Globals> </Globals> </VisualStudioProject> |
Changes to libtommath/makefile.
︙ | ︙ | |||
22 23 24 25 26 27 28 | @echo " * ${CC} $@" endif ${silent} ${CC} -c ${CFLAGS} $< -o $@ LCOV_ARGS=--directory . #START_INS | < | | | | | | | | | | | | | | | | | | | | | | | > | > > | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | @echo " * ${CC} $@" endif ${silent} ${CC} -c ${CFLAGS} $< -o $@ LCOV_ARGS=--directory . #START_INS OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \ bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \ bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \ bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \ bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \ bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \ bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \ bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \ bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \ bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \ bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \ bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \ bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \ bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \ bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \ bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \ bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \ bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \ bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \ bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o #END_INS $(OBJECTS): $(HEADERS) $(LIBNAME): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) |
︙ | ︙ | |||
90 91 92 93 94 95 96 | install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH) install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) uninstall: rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) | | | | | > > > > < < < | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH) install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) uninstall: rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) test: demo/main.o demo/opponent.o demo/test.o $(LIBNAME) $(CC) $(CFLAGS) $^ $(LFLAGS) -o test test_standalone: demo/main.o demo/opponent.o demo/test.o $(LIBNAME) $(CC) $(CFLAGS) $^ $(LFLAGS) -o test .PHONY: mtest mtest: cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest timing: $(LIBNAME) demo/timing.c $(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o timing tune: $(LIBNAME) $(MAKE) -C etc tune $(MAKE) # You have to create a file .coveralls.yml with the content "repo_token: <the token>" # in the base folder to be able to submit to coveralls coveralls: lcov coveralls-lcov docdvi poster docs mandvi manual: $(MAKE) -C doc/ $@ V=$(V) .PHONY: pre_gen pre_gen: mkdir -p pre_gen perl gen.pl sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c rm mpi.c |
︙ | ︙ | |||
144 145 146 147 148 149 150 | cp doc/bn.pdf bn-$(VERSION).pdf cp doc/tommath.pdf tommath-$(VERSION).pdf rm -rf libtommath-$(VERSION) gpg -b -a ltm-$(VERSION).tar.xz gpg -b -a ltm-$(VERSION).zip new_file: | | < > | | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | cp doc/bn.pdf bn-$(VERSION).pdf cp doc/tommath.pdf tommath-$(VERSION).pdf rm -rf libtommath-$(VERSION) gpg -b -a ltm-$(VERSION).tar.xz gpg -b -a ltm-$(VERSION).zip new_file: perl helper.pl --update-files perlcritic: perlcritic *.pl doc/*.pl astyle: @echo " * run astyle on all sources" @astyle --options=astylerc --formatted $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c |
Changes to libtommath/makefile.mingw.
1 2 | # MAKEFILE for MS Windows (mingw + gcc + gmake) # | | | < | | | | | | | | | | | | | | | | | | | | | | | > | > > | < | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # MAKEFILE for MS Windows (mingw + gcc + gmake) # # BEWARE: variable OBJECTS is updated via helper.pl ### USAGE: # Open a command prompt with gcc + gmake in PATH and start: # # gmake -f makefile.mingw all # test.exe # gmake -f makefile.mingw PREFIX=c:\devel\libtom install #The following can be overridden from command line e.g. make -f makefile.mingw CC=gcc ARFLAGS=rcs PREFIX = c:\mingw CC = gcc AR = ar ARFLAGS = r RANLIB = ranlib STRIP = strip CFLAGS = -O2 LDFLAGS = #Compilation flags LTM_CFLAGS = -I. $(CFLAGS) LTM_LDFLAGS = $(LDFLAGS) -static-libgcc #Libraries to be created LIBMAIN_S =libtommath.a LIBMAIN_I =libtommath.dll.a LIBMAIN_D =libtommath.dll #List of objects to compile (all goes to libtommath.a) OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \ bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \ bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \ bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \ bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \ bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \ bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \ bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \ bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \ bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \ bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \ bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \ bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \ bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \ bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \ bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \ bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \ bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \ bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \ bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o HEADERS_PUB=tommath.h HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB) #The default rule for make builds the libtommath.a library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) |
︙ | ︙ | |||
76 77 78 79 80 81 82 | #Create DLL + import library libtommath.dll.a $(LIBMAIN_D) $(LIBMAIN_I): $(OBJECTS) $(CC) -s -shared -o $(LIBMAIN_D) $^ -Wl,--enable-auto-import,--export-all -Wl,--out-implib=$(LIBMAIN_I) $(LTM_LDFLAGS) $(STRIP) -S $(LIBMAIN_D) #Build test_standalone suite | | | > > > > < < < < | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | #Create DLL + import library libtommath.dll.a $(LIBMAIN_D) $(LIBMAIN_I): $(OBJECTS) $(CC) -s -shared -o $(LIBMAIN_D) $^ -Wl,--enable-auto-import,--export-all -Wl,--out-implib=$(LIBMAIN_I) $(LTM_LDFLAGS) $(STRIP) -S $(LIBMAIN_D) #Build test_standalone suite test.exe: demo/main.c demo/opponent.c demo/test.c $(LIBMAIN_S) $(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) $^ -DLTM_DEMO_TEST_VS_MTEST=0 -o $@ @echo NOTICE: start the tests by launching test.exe test_standalone: test.exe all: $(LIBMAIN_S) test_standalone tune: $(LIBNAME_S) $(MAKE) -C etc tune $(MAKE) clean: @-cmd /c del /Q /S *.o *.a *.exe *.dll 2>nul #Install the library + headers install: $(LIBMAIN_S) $(LIBMAIN_I) $(LIBMAIN_D) cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin" cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib" cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include" copy /Y $(LIBMAIN_S) "$(PREFIX)\lib" copy /Y $(LIBMAIN_I) "$(PREFIX)\lib" copy /Y $(LIBMAIN_D) "$(PREFIX)\bin" copy /Y tommath*.h "$(PREFIX)\include" |
Changes to libtommath/makefile.msvc.
1 2 | # MAKEFILE for MS Windows (nmake + Windows SDK) # | | | < | | | | | | | | | | | | | | | | | | | | | | | > > > | | < | | | | > > > > < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | # MAKEFILE for MS Windows (nmake + Windows SDK) # # BEWARE: variable OBJECTS is updated via helper.pl ### USAGE: # Open a command prompt with WinSDK variables set and start: # # nmake -f makefile.msvc all # test.exe # nmake -f makefile.msvc PREFIX=c:\devel\libtom install #The following can be overridden from command line e.g. make -f makefile.msvc CC=gcc ARFLAGS=rcs PREFIX = c:\devel CFLAGS = /Ox #Compilation flags LTM_CFLAGS = /nologo /I./ /D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE /D__STDC_WANT_SECURE_LIB__=1 /D_CRT_HAS_CXX17=0 /Wall /wd4146 /wd4127 /wd4710 /wd4711 /wd4820 /WX $(CFLAGS) LTM_LDFLAGS = advapi32.lib #Libraries to be created (this makefile builds only static libraries) LIBMAIN_S =tommath.lib #List of objects to compile (all goes to tommath.lib) OBJECTS=bn_cutoffs.obj bn_deprecated.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj bn_mp_addmod.obj \ bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj bn_mp_cmp_mag.obj \ bn_mp_cnt_lsb.obj bn_mp_complement.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_decr.obj bn_mp_div.obj bn_mp_div_2.obj \ bn_mp_div_2d.obj bn_mp_div_3.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj \ bn_mp_error_to_string.obj bn_mp_exch.obj bn_mp_export.obj bn_mp_expt_d.obj bn_mp_exptmod.obj bn_mp_exteuclid.obj \ bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_double.obj bn_mp_get_i32.obj bn_mp_get_i64.obj \ bn_mp_get_mag32.obj bn_mp_get_mag64.obj bn_mp_grow.obj bn_mp_ilogb.obj bn_mp_import.obj bn_mp_incr.obj bn_mp_init.obj \ bn_mp_init_copy.obj bn_mp_init_i32.obj bn_mp_init_i64.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_size.obj \ bn_mp_init_u32.obj bn_mp_init_u64.obj bn_mp_invmod.obj bn_mp_is_square.obj bn_mp_iseven.obj bn_mp_isodd.obj \ bn_mp_kronecker.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \ bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj bn_mp_montgomery_setup.obj bn_mp_mul.obj \ bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_n_root.obj bn_mp_neg.obj bn_mp_or.obj \ bn_mp_prime_fermat.obj bn_mp_prime_frobenius_underwood.obj bn_mp_prime_is_prime.obj \ bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj bn_mp_prime_rabin_miller_trials.obj \ bn_mp_prime_rand.obj bn_mp_prime_strong_lucas_selfridge.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \ bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj \ bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj \ bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj \ bn_mp_set_double.obj bn_mp_set_i32.obj bn_mp_set_i64.obj bn_mp_set_u32.obj bn_mp_set_u64.obj bn_mp_shrink.obj \ bn_mp_signed_bin_size.obj bn_mp_signed_rsh.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj \ bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \ bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_toradix.obj bn_mp_toradix_n.obj \ bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj bn_prime_tab.obj bn_s_mp_add.obj bn_s_mp_balance_mul.obj \ bn_s_mp_exptmod.obj bn_s_mp_exptmod_fast.obj bn_s_mp_get_bit.obj bn_s_mp_invmod_fast.obj bn_s_mp_invmod_slow.obj \ bn_s_mp_karatsuba_mul.obj bn_s_mp_karatsuba_sqr.obj bn_s_mp_montgomery_reduce_fast.obj bn_s_mp_mul_digs.obj \ bn_s_mp_mul_digs_fast.obj bn_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs_fast.obj \ bn_s_mp_prime_is_divisible.obj bn_s_mp_rand_jenkins.obj bn_s_mp_rand_platform.obj bn_s_mp_reverse.obj \ bn_s_mp_sqr.obj bn_s_mp_sqr_fast.obj bn_s_mp_sub.obj bn_s_mp_toom_mul.obj bn_s_mp_toom_sqr.obj HEADERS_PUB=tommath.h HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB) #The default rule for make builds the tommath.lib library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) .c.obj: $(CC) $(LTM_CFLAGS) /c $< /Fo$@ #Create tommath.lib $(LIBMAIN_S): $(OBJECTS) lib /out:$(LIBMAIN_S) $(OBJECTS) #Build test_standalone suite test.exe: $(LIBMAIN_S) demo/main.c demo/opponent.c demo/test.c cl $(LTM_CFLAGS) $(TOBJECTS) $(LIBMAIN_S) $(LTM_LDFLAGS) demo/main.c demo/opponent.c demo/test.c /DLTM_DEMO_TEST_VS_MTEST=0 /Fe$@ @echo NOTICE: start the tests by launching test.exe test_standalone: test.exe all: $(LIBMAIN_S) test_standalone tune: $(LIBMAIN_S) $(MAKE) -C etc tune $(MAKE) clean: @-cmd /c del /Q /S *.OBJ *.LIB *.EXE *.DLL 2>nul #Install the library + headers install: $(LIBMAIN_S) cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin" cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib" cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include" copy /Y $(LIBMAIN_S) "$(PREFIX)\lib" copy /Y tommath*.h "$(PREFIX)\include" |
Changes to libtommath/makefile.shared.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 | ifeq ($(PLATFORM), Darwin) LIBTOOL:=glibtool else LIBTOOL:=libtool endif endif LTCOMPILE = $(LIBTOOL) --mode=compile --tag=CC $(CC) LCOV_ARGS=--directory .libs --directory . #START_INS | > < | | | | | | | | | | | | | | | | | | | | | | | > | > > | | | > > | | | > > | | | > > > > > > | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | ifeq ($(PLATFORM), Darwin) LIBTOOL:=glibtool else LIBTOOL:=libtool endif endif LTCOMPILE = $(LIBTOOL) --mode=compile --tag=CC $(CC) LTLINK = $(LIBTOOL) --mode=link --tag=CC $(CC) LCOV_ARGS=--directory .libs --directory . #START_INS OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \ bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \ bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \ bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \ bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \ bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \ bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \ bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \ bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \ bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \ bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \ bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \ bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \ bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \ bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \ bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \ bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \ bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \ bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \ bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o #END_INS objs: $(OBJECTS) .c.o: $(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $< LOBJECTS = $(OBJECTS:.o=.lo) $(LIBNAME): $(OBJECTS) $(LTLINK) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO) $(LIBTOOLFLAGS) install: $(LIBNAME) install -d $(DESTDIR)$(LIBPATH) install -d $(DESTDIR)$(INCPATH) $(LIBTOOL) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME) install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc install -d $(DESTDIR)$(LIBPATH)/pkgconfig install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/ uninstall: $(LIBTOOL) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME) rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%) rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc test: $(LIBNAME) $(LTCOMPILE) $(CFLAGS) -c demo/main.c -o demo/main.o $(LTCOMPILE) $(CFLAGS) -c demo/opponent.c -o demo/opponent.o $(LTCOMPILE) $(CFLAGS) -c demo/test.c -o demo/test.o $(LTLINK) $(LDFLAGS) -o test demo/main.o demo/opponent.o demo/test.o $(LIBNAME) test_standalone: $(LIBNAME) $(LTCOMPILE) $(CFLAGS) -c demo/main.c -o demo/main.o $(LTCOMPILE) $(CFLAGS) -c demo/opponent.c -o demo/opponent.o $(LTCOMPILE) $(CFLAGS) -c demo/test.c -o demo/test.o $(LTLINK) $(LDFLAGS) -o test demo/main.o demo/opponent.o demo/test.o $(LIBNAME) .PHONY: mtest mtest: cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LDFLAGS) -o mtest timing: $(LIBNAME) demo/timing.c $(LTLINK) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o timing tune: $(LIBNAME) $(LTCOMPILE) $(CFLAGS) -c etc/tune.c -o etc/tune.o $(LTLINK) $(LDFLAGS) -o etc/tune etc/tune.o $(LIBNAME) cd etc/; /bin/sh tune_it.sh; cd .. $(MAKE) -f makefile.shared |
Changes to libtommath/makefile.unix.
︙ | ︙ | |||
26 27 28 29 30 31 32 | #Compilation flags LTM_CFLAGS = -I. $(CFLAGS) LTM_LDFLAGS = $(LDFLAGS) #Library to be created (this makefile builds only static library) LIBMAIN_S = libtommath.a | < | | | | | | | | | | | | | | | | | | | | | | | > | > > | < | | | > > > > | < < < < | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #Compilation flags LTM_CFLAGS = -I. $(CFLAGS) LTM_LDFLAGS = $(LDFLAGS) #Library to be created (this makefile builds only static library) LIBMAIN_S = libtommath.a OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \ bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \ bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \ bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \ bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \ bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \ bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \ bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \ bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \ bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \ bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \ bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \ bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \ bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \ bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \ bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \ bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \ bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \ bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \ bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \ bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \ bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \ bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \ bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \ bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o HEADERS_PUB=tommath.h HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB) #The default rule for make builds the libtommath.a library (static) default: $(LIBMAIN_S) #Dependencies on *.h $(OBJECTS): $(HEADERS) #This is necessary for compatibility with BSD make (namely on OpenBSD) .SUFFIXES: .o .c .c.o: $(CC) $(LTM_CFLAGS) -c $< -o $@ #Create libtommath.a $(LIBMAIN_S): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) $(RANLIB) $@ #Build test_standalone suite test: demo/main.c demo/opponent.c demo/test.c $(LIBMAIN_S) $(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) $^ -DLTM_DEMO_TEST_VS_MTEST=0 -o $@ @echo "NOTICE: start the tests by: ./test" test_standalone: test all: $(LIBMAIN_S) test_standalone tune: $(LIBMAIN_S) $(MAKE) -C etc tune $(MAKE) #NOTE: this makefile works also on cygwin, thus we need to delete *.exe clean: -@rm -f $(OBJECTS) $(LIBMAIN_S) -@rm -f demo/main.o demo/opponent.o demo/test.o test test.exe #Install the library + headers install: $(LIBMAIN_S) @mkdir -p $(DESTDIR)$(INCPATH) $(DESTDIR)$(LIBPATH)/pkgconfig @cp $(LIBMAIN_S) $(DESTDIR)$(LIBPATH)/ @cp $(HEADERS_PUB) $(DESTDIR)$(INCPATH)/ @sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION),' libtommath.pc.in > $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc |
Changes to libtommath/makefile_include.mk.
1 2 3 4 5 | # # Include makefile for libtommath # #version of library | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 | # # Include makefile for libtommath # #version of library VERSION=1.1.0-develop VERSION_PC=1.1.0 VERSION_SO=2:0:1 PLATFORM := $(shell uname | sed -e 's/_.*//') # default make target default: ${LIBNAME} |
︙ | ︙ | |||
44 45 46 47 48 49 50 51 52 53 | MAKE=gmake else MAKE=make endif endif CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow ifndef NO_ADDTL_WARNINGS # additional warnings | > > > > | > > > > > > > > > | < | | | | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | MAKE=gmake else MAKE=make endif endif CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow ifdef SANITIZER CFLAGS += -fsanitize=undefined -fno-sanitize-recover=all -fno-sanitize=float-divide-by-zero endif ifndef NO_ADDTL_WARNINGS # additional warnings CFLAGS += -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align CFLAGS += -Wstrict-prototypes -Wpointer-arith endif ifdef CONV_WARNINGS CFLAGS += -std=c89 -Wconversion -Wsign-conversion ifeq ($(CONV_WARNINGS), strict) CFLAGS += -DMP_USE_ENUMS -Wc++-compat endif else CFLAGS += -Wsystem-headers endif ifdef COMPILE_DEBUG #debug CFLAGS += -g3 endif ifdef COMPILE_SIZE #for size CFLAGS += -Os else ifndef IGNORE_SPEED #for speed CFLAGS += -O3 -funroll-loops #x86 optimizations [should be valid for any GCC install though] CFLAGS += -fomit-frame-pointer endif endif # COMPILE_SIZE ifneq ($(findstring clang,$(CC)),) CFLAGS += -Wno-typedef-redefinition -Wno-tautological-compare -Wno-builtin-requires-header endif ifneq ($(findstring mingw,$(CC)),) CFLAGS += -Wno-shadow endif ifeq ($(PLATFORM), Darwin) CFLAGS += -Wno-nullability-completeness endif ifeq ($(PLATFORM), CYGWIN) LIBTOOLFLAGS += -no-undefined endif ifeq ($(PLATFORM),FreeBSD) _ARCH := $(shell sysctl -b hw.machine_arch) else _ARCH := $(shell uname -m) endif # adjust coverage set ifneq ($(filter $(_ARCH), i386 i686 x86_64 amd64 ia64),) COVERAGE = test_standalone timing COVERAGE_APP = ./test && ./timing else COVERAGE = test_standalone COVERAGE_APP = ./test endif HEADERS_PUB=tommath.h HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB) test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0 #LIBPATH The directory for libtommath to be installed to. #INCPATH The directory to install the header files for libtommath. #DATAPATH The directory to install the pdf docs. DESTDIR ?= |
︙ | ︙ | |||
137 138 139 140 141 142 143 | rm -f `find . -type f -name "*.info" | xargs` rm -rf coverage/ # cleans everything - coverage output and standard 'clean' cleancov: cleancov-clean clean clean: | | | 149 150 151 152 153 154 155 156 157 158 159 160 | rm -f `find . -type f -name "*.info" | xargs` rm -rf coverage/ # cleans everything - coverage output and standard 'clean' cleancov: cleancov-clean clean clean: rm -f *.gcda *.gcno *.gcov *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/test.o demo/main.o demo/opponent.o test timing mpitest mtest/mtest mtest/mtest.exe tuning_list\ *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la rm -rf .libs/ ${MAKE} -C etc/ clean MAKE=${MAKE} ${MAKE} -C doc/ clean MAKE=${MAKE} |
Added libtommath/tommath.def.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | ; libtommath ; ; Use this command to produce a 32-bit .lib file, for use in any MSVC version ; lib -machine:X86 -name:libtommath.dll -def:tommath.def -out:tommath.lib ; Use this command to produce a 64-bit .lib file, for use in any MSVC version ; lib -machine:X64 -name:libtommath.dll -def:tommath.def -out:tommath.lib ; EXPORTS mp_2expt mp_abs mp_add mp_add_d mp_addmod mp_and mp_clamp mp_clear mp_clear_multi mp_cmp mp_cmp_d mp_cmp_mag mp_cnt_lsb mp_complement mp_copy mp_count_bits mp_decr mp_div mp_div_2 mp_div_2d mp_div_3 mp_div_d mp_dr_is_modulus mp_dr_reduce mp_dr_setup mp_error_to_string mp_exch mp_export mp_expt_d mp_exptmod mp_exteuclid mp_fread mp_fwrite mp_gcd mp_get_double mp_get_i32 mp_get_i64 mp_get_int mp_get_long mp_get_long_long mp_get_mag32 mp_get_mag64 mp_grow mp_ilogb mp_import mp_incr mp_init mp_init_copy mp_init_i32 mp_init_i64 mp_init_multi mp_init_set mp_init_set_int mp_init_size mp_init_u32 mp_init_u64 mp_invmod mp_is_square mp_iseven mp_isodd mp_kronecker mp_lcm mp_lshd mp_mod mp_mod_2d mp_mod_d mp_montgomery_calc_normalization mp_montgomery_reduce mp_montgomery_setup mp_mul mp_mul_2 mp_mul_2d mp_mul_d mp_mulmod mp_n_root mp_neg mp_or mp_prime_fermat mp_prime_frobenius_underwood mp_prime_is_prime mp_prime_miller_rabin mp_prime_next_prime mp_prime_rabin_miller_trials mp_prime_rand mp_prime_strong_lucas_selfridge mp_radix_size mp_rand mp_read_radix mp_read_signed_bin mp_read_unsigned_bin mp_reduce mp_reduce_2k mp_reduce_2k_l mp_reduce_2k_setup mp_reduce_2k_setup_l mp_reduce_is_2k mp_reduce_is_2k_l mp_reduce_setup mp_rshd mp_set mp_set_double mp_set_i32 mp_set_i64 mp_set_int mp_set_long mp_set_long_long mp_set_u32 mp_set_u64 mp_shrink mp_signed_bin_size mp_signed_rsh mp_sqr mp_sqrmod mp_sqrt mp_sqrtmod_prime mp_sub mp_sub_d mp_submod mp_to_signed_bin mp_to_signed_bin_n mp_to_unsigned_bin mp_to_unsigned_bin_n mp_toradix mp_toradix_n mp_unsigned_bin_size mp_xor mp_zero |
Changes to libtommath/tommath.h.
|
| | < < < < < < < < | | | | | > > > > | > | | | > > > > | | > | | < < < | | < < < > | > | < < < | < > | > > > > | | | > | | < < < < < | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > | | < < | < < < | | < | | | | > | > > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | < < < < | | | | | | | | | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < | < < < < < < < < < < | < < | < < | | < | | < | | | | | | | | | | | | | | | > > > < < < < < < < < | | > | > | > | > | > > > | | > < < < | | | | | | | | | | | | > > > | > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | > > > > > | | | | | | | | | | | | | | | | | | | | | | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef BN_H_ #define BN_H_ #include <limits.h> #ifdef LTM_NO_FILE # warning LTM_NO_FILE has been deprecated, use MP_NO_FILE. # define MP_NO_FILE #endif #ifndef MP_NO_FILE # include <stdio.h> #endif #ifdef __cplusplus extern "C" { #endif /* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */ #if (defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)) && !defined(MP_64BIT) # define MP_32BIT #endif /* detect 64-bit mode if possible */ #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \ defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \ defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \ defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \ defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \ defined(__LP64__) || defined(_LP64) || defined(__64BIT__) # if !(defined(MP_64BIT) || defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) # if defined(__GNUC__) && !defined(__hppa) /* we support 128bit integers only via: __attribute__((mode(TI))) */ # define MP_64BIT # else /* otherwise we fall back to MP_32BIT even on 64bit platforms */ # define MP_32BIT # endif # endif #endif #ifdef MP_DIGIT_BIT # error Defining MP_DIGIT_BIT is disallowed, use MP_8/16/31/32/64BIT #endif /* some default configurations. * * A "mp_digit" must be able to hold MP_DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*MP_DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT typedef unsigned char mp_digit; typedef unsigned short private_mp_word; # define MP_DIGIT_BIT 7 #elif defined(MP_16BIT) typedef unsigned short mp_digit; typedef unsigned int private_mp_word; # define MP_DIGIT_BIT 15 #elif defined(MP_64BIT) /* for GCC only on supported platforms */ typedef unsigned long long mp_digit; #if defined(__GNUC__) typedef unsigned long private_mp_word __attribute__((mode(TI))); #endif # define MP_DIGIT_BIT 60 #else typedef unsigned int mp_digit; typedef unsigned long long private_mp_word; # ifdef MP_31BIT /* * This is an extension that uses 31-bit digits. * Please be aware that not all functions support this size, especially s_mp_mul_digs_fast * will be reduced to work on small numbers only: * Up to 8 limbs, 248 bits instead of up to 512 limbs, 15872 bits with MP_28BIT. */ # define MP_DIGIT_BIT 31 # else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ # define MP_DIGIT_BIT 28 # define MP_28BIT # endif #endif /* mp_word is a private type */ #define mp_word MP_DEPRECATED_PRAGMA("mp_word has been made private") private_mp_word #define MP_SIZEOF_MP_DIGIT (MP_DEPRECATED_PRAGMA("MP_SIZEOF_MP_DIGIT has been deprecated, use sizeof (mp_digit)") sizeof (mp_digit)) #define MP_MASK ((((mp_digit)1)<<((mp_digit)MP_DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* Primality generation flags */ #define MP_PRIME_BBS 0x0001 /* BBS style prime */ #define MP_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define MP_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ #define LTM_PRIME_BBS (MP_DEPRECATED_PRAGMA("LTM_PRIME_BBS has been deprecated, use MP_PRIME_BBS") MP_PRIME_BBS) #define LTM_PRIME_SAFE (MP_DEPRECATED_PRAGMA("LTM_PRIME_SAFE has been deprecated, use MP_PRIME_SAFE") MP_PRIME_SAFE) #define LTM_PRIME_2MSB_ON (MP_DEPRECATED_PRAGMA("LTM_PRIME_2MSB_ON has been deprecated, use MP_PRIME_2MSB_ON") MP_PRIME_2MSB_ON) #ifdef MP_USE_ENUMS typedef enum { MP_ZPOS = 0, MP_NEG = 1 } mp_sign; typedef enum { MP_LT = -1, MP_EQ = 0, MP_GT = 1 } mp_ord; typedef enum { MP_NO = 0, MP_YES = 1 } mp_bool; typedef enum { MP_OKAY = 0, MP_ERR = -1, MP_MEM = -2, MP_VAL = -3, MP_ITER = -4 } mp_err; #else typedef int mp_sign; #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ typedef int mp_ord; #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ typedef int mp_bool; #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ typedef int mp_err; #define MP_OKAY 0 /* ok result */ #define MP_ERR -1 /* unknown error */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE (MP_DEPRECATED_PRAGMA("MP_RANGE has been deprecated in favor of MP_VAL") MP_VAL) #define MP_ITER -4 /* Max. iterations reached */ #endif /* tunable cutoffs */ #ifndef MP_FIXED_CUTOFFS extern int KARATSUBA_MUL_CUTOFF, KARATSUBA_SQR_CUTOFF, TOOM_MUL_CUTOFF, TOOM_SQR_CUTOFF; #endif /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC # ifndef MP_LOW_MEM # define PRIVATE_MP_PREC 32 /* default digits of precision */ # elif defined(MP_8BIT) # define PRIVATE_MP_PREC 16 /* default digits of precision */ # else # define PRIVATE_MP_PREC 8 /* default digits of precision */ # endif # define MP_PREC (MP_DEPRECATED_PRAGMA("MP_PREC is an internal macro") PRIVATE_MP_PREC) #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define PRIVATE_MP_WARRAY (int)(1uLL << (((CHAR_BIT * sizeof(private_mp_word)) - (2 * MP_DIGIT_BIT)) + 1)) #define MP_WARRAY (MP_DEPRECATED_PRAGMA("MP_WARRAY is an internal macro") PRIVATE_MP_WARRAY) #if defined(__GNUC__) && __GNUC__ >= 4 # define MP_NULL_TERMINATED __attribute__((sentinel)) #else # define MP_NULL_TERMINATED #endif /* * MP_WUR - warn unused result * --------------------------- * * The result of functions annotated with MP_WUR must be * checked and cannot be ignored. * * Most functions in libtommath return an error code. * This error code must be checked in order to prevent crashes or invalid * results. * * If you still want to avoid the error checks for quick and dirty programs * without robustness guarantees, you can `#define MP_WUR` before including * tommath.h, disabling the warnings. */ #ifndef MP_WUR # if defined(__GNUC__) && __GNUC__ >= 4 # define MP_WUR __attribute__((warn_unused_result)) # else # define MP_WUR # endif #endif #if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301) # define MP_DEPRECATED(x) __attribute__((deprecated("replaced by " #x))) # define PRIVATE_MP_DEPRECATED_PRAGMA(s) _Pragma(#s) # define MP_DEPRECATED_PRAGMA(s) PRIVATE_MP_DEPRECATED_PRAGMA(GCC warning s) #elif defined(_MSC_VER) && _MSC_VER >= 1500 # define MP_DEPRECATED(x) __declspec(deprecated("replaced by " #x)) # define MP_DEPRECATED_PRAGMA(s) __pragma(message(s)) #else # define MP_DEPRECATED(s) # define MP_DEPRECATED_PRAGMA(s) #endif #define DIGIT_BIT (MP_DEPRECATED_PRAGMA("DIGIT_BIT macro is deprecated, MP_DIGIT_BIT instead") MP_DIGIT_BIT) #define USED(m) (MP_DEPRECATED_PRAGMA("USED macro is deprecated, use z->used instead") (m)->used) #define DIGIT(m, k) (MP_DEPRECATED_PRAGMA("DIGIT macro is deprecated, use z->dp instead") (m)->dp[(k)]) #define SIGN(m) (MP_DEPRECATED_PRAGMA("SIGN macro is deprecated, use z->sign instead") (m)->sign) /* the infamous mp_int structure */ typedef struct { int used, alloc; mp_sign sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int private_mp_prime_callback(unsigned char *dst, int len, void *dat); typedef private_mp_prime_callback MP_DEPRECATED(mp_rand_source) ltm_prime_callback; /* error code to char* string */ const char *mp_error_to_string(mp_err code) MP_WUR; /* ---> init and deinit bignum functions <--- */ /* init a bignum */ mp_err mp_init(mp_int *a) MP_WUR; /* free a bignum */ void mp_clear(mp_int *a); /* init a null terminated series of arguments */ mp_err mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED MP_WUR; /* clear a null terminated series of arguments */ void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED; /* exchange two ints */ void mp_exch(mp_int *a, mp_int *b); /* shrink ram required for a bignum */ mp_err mp_shrink(mp_int *a) MP_WUR; /* grow an int to a given size */ mp_err mp_grow(mp_int *a, int size) MP_WUR; /* init to a given number of digits */ mp_err mp_init_size(mp_int *a, int size) MP_WUR; /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) mp_bool mp_iseven(const mp_int *a) MP_WUR; mp_bool mp_isodd(const mp_int *a) MP_WUR; #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ void mp_zero(mp_int *a); /* get and set doubles */ double mp_get_double(const mp_int *a) MP_WUR; mp_err mp_set_double(mp_int *a, double b) MP_WUR; /* get integer, set integer and init with integer () */ int mp_get_i32(const mp_int *a) MP_WUR; void mp_set_i32(mp_int *a, int b); mp_err mp_init_i32(mp_int *a, int b) MP_WUR; /* get integer, set integer and init with integer, behaves like two complement for negative numbers (unsigned int) */ #define mp_get_u32(a) ((unsigned int)mp_get_i32(a)) void mp_set_u32(mp_int *a, unsigned int b); mp_err mp_init_u32(mp_int *a, unsigned int b) MP_WUR; /* get integer, set integer and init with integer (long long) */ long long mp_get_i64(const mp_int *a) MP_WUR; void mp_set_i64(mp_int *a, long long b); mp_err mp_init_i64(mp_int *a, long long b) MP_WUR; /* get integer, set integer and init with integer, behaves like two complement for negative numbers (unsigned long long) */ #define mp_get_u64(a) ((unsigned long long)mp_get_i64(a)) void mp_set_u64(mp_int *a, unsigned long long b); mp_err mp_init_u64(mp_int *a, unsigned long long b) MP_WUR; /* get magnitude */ unsigned int mp_get_mag32(const mp_int *a) MP_WUR; unsigned long long mp_get_mag64(const mp_int *a) MP_WUR; /* get integer, set integer (long) */ #define mp_get_l(a) (sizeof (long) == 8 ? (long)mp_get_i64(a) : (long)mp_get_i32(a)) #define mp_set_l(a, b) (sizeof (long) == 8 ? mp_set_i64((a), (b)) : mp_set_i32((a), (int)(b))) /* get integer, set integer (unsigned long) */ #define mp_get_ul(a) (sizeof (long) == 8 ? (unsigned long)mp_get_u64(a) : (unsigned long)mp_get_u32(a)) #define mp_set_ul(a, b) (sizeof (long) == 8 ? mp_set_u64((a), (b)) : mp_set_u32((a), (unsigned int)(b))) #define mp_get_magl(a) (sizeof (long) == 8 ? (unsigned long)mp_get_mag64(a) : (unsigned long)mp_get_mag32(a)) /* set to single unsigned digit, up to MP_DIGIT_MAX */ void mp_set(mp_int *a, mp_digit b); mp_err mp_init_set(mp_int *a, mp_digit b) MP_WUR; /* get integer, set integer and init with integer (deprecated) */ MP_DEPRECATED(mp_get_mag32/mp_get_u32) unsigned long mp_get_int(const mp_int *a) MP_WUR; MP_DEPRECATED(mp_get_magl/mp_get_ul) unsigned long mp_get_long(const mp_int *a) MP_WUR; MP_DEPRECATED(mp_get_mag64/mp_get_u64) unsigned long long mp_get_long_long(const mp_int *a) MP_WUR; MP_DEPRECATED(mp_set_u32) mp_err mp_set_int(mp_int *a, unsigned long b); MP_DEPRECATED(mp_set_ul) mp_err mp_set_long(mp_int *a, unsigned long b); MP_DEPRECATED(mp_set_u64) mp_err mp_set_long_long(mp_int *a, unsigned long long b); MP_DEPRECATED(mp_init_u32) mp_err mp_init_set_int(mp_int *a, unsigned long b) MP_WUR; /* copy, b = a */ mp_err mp_copy(const mp_int *a, mp_int *b) MP_WUR; /* inits and copies, a = b */ mp_err mp_init_copy(mp_int *a, const mp_int *b) MP_WUR; /* trim unused digits */ void mp_clamp(mp_int *a); /* import binary data */ mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op) MP_WUR; /* export binary data */ mp_err mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op) MP_WUR; /* ---> digit manipulation <--- */ /* right shift by "b" digits */ void mp_rshd(mp_int *a, int b); /* left shift by "b" digits */ mp_err mp_lshd(mp_int *a, int b) MP_WUR; /* c = a / 2**b, implemented as c = a >> b */ mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) MP_WUR; /* b = a/2 */ mp_err mp_div_2(const mp_int *a, mp_int *b) MP_WUR; /* c = a * 2**b, implemented as c = a << b */ mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c) MP_WUR; /* b = a*2 */ mp_err mp_mul_2(const mp_int *a, mp_int *b) MP_WUR; /* c = a mod 2**b */ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c) MP_WUR; /* computes a = 2**b */ mp_err mp_2expt(mp_int *a, int b) MP_WUR; /* Counts the number of lsbs which are zero before the first zero bit */ int mp_cnt_lsb(const mp_int *a) MP_WUR; /* I Love Earth! */ /* makes a pseudo-random mp_int of a given size */ mp_err mp_rand(mp_int *a, int digits) MP_WUR; /* makes a pseudo-random small int of a given size */ MP_DEPRECATED(mp_rand) mp_err mp_rand_digit(mp_digit *r) MP_WUR; /* use custom random data source instead of source provided the platform */ void mp_rand_source(mp_err(*source)(void *out, size_t size)); #ifdef MP_PRNG_ENABLE_LTM_RNG # warning MP_PRNG_ENABLE_LTM_RNG has been deprecated, use mp_rand_source instead. /* A last resort to provide random data on systems without any of the other * implemented ways to gather entropy. * It is compatible with `rng_get_bytes()` from libtomcrypt so you could * provide that one and then set `ltm_rng = rng_get_bytes;` */ extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); extern void (*ltm_rng_callback)(void); #endif /* ---> binary operations <--- */ /* Checks the bit at position b and returns MP_YES * if the bit is 1, MP_NO if it is 0 and MP_VAL * in case of error */ MP_DEPRECATED(s_mp_get_bit) int mp_get_bit(const mp_int *a, int b) MP_WUR; /* c = a XOR b (two complement) */ MP_DEPRECATED(mp_xor) mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = a OR b (two complement) */ MP_DEPRECATED(mp_or) mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = a AND b (two complement) */ MP_DEPRECATED(mp_and) mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* b = ~a (bitwise not, two complement) */ mp_err mp_complement(const mp_int *a, mp_int *b) MP_WUR; /* right shift with sign extension */ MP_DEPRECATED(mp_signed_rsh) mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c) MP_WUR; mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c) MP_WUR; /* ---> Basic arithmetic <--- */ /* b = -a */ mp_err mp_neg(const mp_int *a, mp_int *b) MP_WUR; /* b = |a| */ mp_err mp_abs(const mp_int *a, mp_int *b) MP_WUR; /* compare a to b */ mp_ord mp_cmp(const mp_int *a, const mp_int *b) MP_WUR; /* compare |a| to |b| */ mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) MP_WUR; /* c = a + b */ mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = a - b */ mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = a * b */ mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* b = a*a */ mp_err mp_sqr(const mp_int *a, mp_int *b) MP_WUR; /* a/b => cb + d == a */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR; /* c = a mod b, 0 <= c < b */ mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* ---> single digit functions <--- */ /* compare against a single digit */ mp_ord mp_cmp_d(const mp_int *a, mp_digit b) MP_WUR; /* c = a + b */ mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR; /* Increment "a" by one like "a++". Changes input! */ mp_err mp_incr(mp_int *a) MP_WUR; /* c = a - b */ mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR; /* Decrement "a" by one like "a--". Changes input! */ mp_err mp_decr(mp_int *a) MP_WUR; /* c = a * b */ mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR; /* a/b => cb + d == a */ mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) MP_WUR; /* a/3 => 3c + d == a */ mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR; /* c = a**b */ mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR; MP_DEPRECATED(mp_expt_d) mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) MP_WUR; /* c = a mod b, 0 <= c < b */ mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) MP_WUR; /* ---> number theory <--- */ /* d = a + b (mod c) */ mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR; /* d = a - b (mod c) */ mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR; /* d = a * b (mod c) */ mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR; /* c = a * a (mod b) */ mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = 1/a (mod b) */ mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* c = (a, b) */ mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* produces value such that U1*a + U2*b = U3 */ mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) MP_WUR; /* c = [a, b] or (a*b)/(a, b) */ mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c) MP_WUR; MP_DEPRECATED(mp_n_root_ex) mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) MP_WUR; /* special sqrt algo */ mp_err mp_sqrt(const mp_int *arg, mp_int *ret) MP_WUR; /* special sqrt (mod prime) */ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) MP_WUR; /* is number a square? */ mp_err mp_is_square(const mp_int *arg, mp_bool *ret) MP_WUR; /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ MP_DEPRECATED(mp_kronecker) mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c) MP_WUR; /* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */ mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) MP_WUR; /* used to setup the Barrett reduction for a given modulus b */ mp_err mp_reduce_setup(mp_int *a, const mp_int *b) MP_WUR; /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code]. */ mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) MP_WUR; /* setups the montgomery reduction */ mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho) MP_WUR; /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) MP_WUR; /* computes x/R == x (mod N) via Montgomery Reduction */ mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR; /* returns 1 if a is a valid DR modulus */ mp_bool mp_dr_is_modulus(const mp_int *a) MP_WUR; /* sets the value of "d" required for mp_dr_reduce */ void mp_dr_setup(const mp_int *a, mp_digit *d); /* reduces a modulo n using the Diminished Radix method */ mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) MP_WUR; /* returns true if a can be reduced with mp_reduce_2k */ mp_bool mp_reduce_is_2k(const mp_int *a) MP_WUR; /* determines k value for 2k reduction */ mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) MP_WUR; /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) MP_WUR; /* returns true if a can be reduced with mp_reduce_2k_l */ mp_bool mp_reduce_is_2k_l(const mp_int *a) MP_WUR; /* determines k value for 2k reduction */ mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) MP_WUR; /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) MP_WUR; /* Y = G**X (mod P) */ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) MP_WUR; /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT # define PRIVATE_MP_PRIME_TAB_SIZE 31 #else # define PRIVATE_MP_PRIME_TAB_SIZE 256 #endif #define PRIME_SIZE (MP_DEPRECATED_PRAGMA("PRIME_SIZE has been made internal") PRIVATE_MP_PRIME_TAB_SIZE) /* table of first PRIME_SIZE primes */ MP_DEPRECATED(internal) extern const mp_digit ltm_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ MP_DEPRECATED(mp_prime_is_prime) mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result) MP_WUR; /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR; /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR; /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size) MP_WUR; /* performs one strong Lucas-Selfridge test of "a". * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result) MP_WUR; /* performs one Frobenius test of "a" as described by Paul Underwood. * Sets result to 0 if composite or 1 if probable prime */ mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) MP_WUR; /* performs t random rounds of Miller-Rabin on "a" additional to * bases 2 and 3. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. * Both a strong Lucas-Selfridge to complete the BPSW test * and a separate Frobenius test are available at compile time. * With t<0 a deterministic test is run for primes up to * 318665857834031151167461. With t<13 (abs(t)-13) additional * tests with sequential small primes are run starting at 43. * Is Fips 186.4 compliant if called with t as computed by * mp_prime_rabin_miller_trials(); * * Sets result to 1 if probably prime, 0 otherwise */ mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) MP_WUR; /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style) MP_WUR; /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */ #define mp_prime_random(a, t, size, bbs, cb, dat) (MP_DEPRECATED_PRAGMA("mp_prime_random has been deprecated, use mp_prime_rand instead") mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?MP_PRIME_BBS:0, cb, dat)) /* makes a truly random prime of a given size (bits), * * Flags are as follows: * * MP_PRIME_BBS - make prime congruent to 3 mod 4 * MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS) * MP_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself * so it can be NULL * */ MP_DEPRECATED(mp_prime_rand) mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat) MP_WUR; mp_err mp_prime_rand(mp_int *a, int t, int size, int flags) MP_WUR; /* Integer logarithm to integer base */ mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c) MP_WUR; /* ---> radix conversion <--- */ int mp_count_bits(const mp_int *a) MP_WUR; int mp_unsigned_bin_size(const mp_int *a) MP_WUR; mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) MP_WUR; mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b) MP_WUR; mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) MP_WUR; int mp_signed_bin_size(const mp_int *a) MP_WUR; mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) MP_WUR; mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b) MP_WUR; mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) MP_WUR; mp_err mp_read_radix(mp_int *a, const char *str, int radix) MP_WUR; mp_err mp_toradix(const mp_int *a, char *str, int radix) MP_WUR; mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) MP_WUR; mp_err mp_radix_size(const mp_int *a, int radix, int *size) MP_WUR; #ifndef MP_NO_FILE mp_err mp_fread(mp_int *a, int radix, FILE *stream) MP_WUR; mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream) MP_WUR; #endif #define mp_read_raw(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_signed_bin") mp_read_signed_bin((mp), (str), (len))) #define mp_raw_size(mp) (MP_DEPRECATED_PRAGMA("replaced by mp_signed_bin_size") mp_signed_bin_size(mp)) #define mp_toraw(mp, str) (MP_DEPRECATED_PRAGMA("replaced by mp_to_signed_bin") mp_to_signed_bin((mp), (str))) #define mp_read_mag(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_unsigned_bin") mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) (MP_DEPRECATED_PRAGMA("replaced by mp_unsigned_bin_size") mp_unsigned_bin_size(mp)) #define mp_tomag(mp, str) (MP_DEPRECATED_PRAGMA("replaced by mp_to_unsigned_bin") mp_to_unsigned_bin((mp), (str))) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) #ifdef __cplusplus } #endif #endif |
Changes to libtommath/tommath_class.h.
|
| | < < < < < < < < | < > | < < < < | > > < < | | | | | > > | > | | | | | | | | < < | | | | > > < < < < < < | | > > > > > > > > > > > > > > | > > | < | < < | | < | | | | | | | | | | | > > > > > > | | | | | > | < | > > | > > > | | | | | | | | | > > > > > > > > > > > > > > | | | | | | | | | | | | | < | < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #if !(defined(LTM1) && defined(LTM2) && defined(LTM3)) #define LTM_INSIDE #if defined(LTM2) # define LTM3 #endif #if defined(LTM1) # define LTM2 #endif #define LTM1 #if defined(LTM_ALL) # define BN_CUTOFFS_C # define BN_DEPRECATED_C # define BN_MP_2EXPT_C # define BN_MP_ABS_C # define BN_MP_ADD_C # define BN_MP_ADD_D_C # define BN_MP_ADDMOD_C # define BN_MP_AND_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CMP_MAG_C # define BN_MP_CNT_LSB_C # define BN_MP_COMPLEMENT_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DECR_C # define BN_MP_DIV_C # define BN_MP_DIV_2_C # define BN_MP_DIV_2D_C # define BN_MP_DIV_3_C # define BN_MP_DIV_D_C # define BN_MP_DR_IS_MODULUS_C # define BN_MP_DR_REDUCE_C # define BN_MP_DR_SETUP_C # define BN_MP_ERROR_TO_STRING_C # define BN_MP_EXCH_C # define BN_MP_EXPORT_C # define BN_MP_EXPT_D_C # define BN_MP_EXPTMOD_C # define BN_MP_EXTEUCLID_C # define BN_MP_FREAD_C # define BN_MP_FWRITE_C # define BN_MP_GCD_C # define BN_MP_GET_DOUBLE_C # define BN_MP_GET_I32_C # define BN_MP_GET_I64_C # define BN_MP_GET_MAG32_C # define BN_MP_GET_MAG64_C # define BN_MP_GROW_C # define BN_MP_ILOGB_C # define BN_MP_IMPORT_C # define BN_MP_INCR_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_INIT_I32_C # define BN_MP_INIT_I64_C # define BN_MP_INIT_MULTI_C # define BN_MP_INIT_SET_C # define BN_MP_INIT_SIZE_C # define BN_MP_INIT_U32_C # define BN_MP_INIT_U64_C # define BN_MP_INVMOD_C # define BN_MP_IS_SQUARE_C # define BN_MP_ISEVEN_C # define BN_MP_ISODD_C # define BN_MP_KRONECKER_C # define BN_MP_LCM_C # define BN_MP_LSHD_C # define BN_MP_MOD_C # define BN_MP_MOD_2D_C # define BN_MP_MOD_D_C # define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C # define BN_MP_MONTGOMERY_REDUCE_C # define BN_MP_MONTGOMERY_SETUP_C # define BN_MP_MUL_C # define BN_MP_MUL_2_C # define BN_MP_MUL_2D_C # define BN_MP_MUL_D_C # define BN_MP_MULMOD_C # define BN_MP_N_ROOT_C # define BN_MP_NEG_C # define BN_MP_OR_C # define BN_MP_PRIME_FERMAT_C # define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_PRIME_MILLER_RABIN_C # define BN_MP_PRIME_NEXT_PRIME_C # define BN_MP_PRIME_RABIN_MILLER_TRIALS_C # define BN_MP_PRIME_RAND_C # define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C # define BN_MP_RADIX_SIZE_C # define BN_MP_RADIX_SMAP_C # define BN_MP_RAND_C # define BN_MP_READ_RADIX_C # define BN_MP_READ_SIGNED_BIN_C # define BN_MP_READ_UNSIGNED_BIN_C # define BN_MP_REDUCE_C # define BN_MP_REDUCE_2K_C # define BN_MP_REDUCE_2K_L_C # define BN_MP_REDUCE_2K_SETUP_C # define BN_MP_REDUCE_2K_SETUP_L_C # define BN_MP_REDUCE_IS_2K_C # define BN_MP_REDUCE_IS_2K_L_C # define BN_MP_REDUCE_SETUP_C # define BN_MP_RSHD_C # define BN_MP_SET_C # define BN_MP_SET_DOUBLE_C # define BN_MP_SET_I32_C # define BN_MP_SET_I64_C # define BN_MP_SET_U32_C # define BN_MP_SET_U64_C # define BN_MP_SHRINK_C # define BN_MP_SIGNED_BIN_SIZE_C # define BN_MP_SIGNED_RSH_C # define BN_MP_SQR_C # define BN_MP_SQRMOD_C # define BN_MP_SQRT_C # define BN_MP_SQRTMOD_PRIME_C # define BN_MP_SUB_C # define BN_MP_SUB_D_C # define BN_MP_SUBMOD_C # define BN_MP_TO_SIGNED_BIN_C # define BN_MP_TO_SIGNED_BIN_N_C # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_TO_UNSIGNED_BIN_N_C # define BN_MP_TORADIX_C # define BN_MP_TORADIX_N_C # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_XOR_C # define BN_MP_ZERO_C # define BN_PRIME_TAB_C # define BN_S_MP_ADD_C # define BN_S_MP_BALANCE_MUL_C # define BN_S_MP_EXPTMOD_C # define BN_S_MP_EXPTMOD_FAST_C # define BN_S_MP_GET_BIT_C # define BN_S_MP_INVMOD_FAST_C # define BN_S_MP_INVMOD_SLOW_C # define BN_S_MP_KARATSUBA_MUL_C # define BN_S_MP_KARATSUBA_SQR_C # define BN_S_MP_MONTGOMERY_REDUCE_FAST_C # define BN_S_MP_MUL_DIGS_C # define BN_S_MP_MUL_DIGS_FAST_C # define BN_S_MP_MUL_HIGH_DIGS_C # define BN_S_MP_MUL_HIGH_DIGS_FAST_C # define BN_S_MP_PRIME_IS_DIVISIBLE_C # define BN_S_MP_RAND_JENKINS_C # define BN_S_MP_RAND_PLATFORM_C # define BN_S_MP_REVERSE_C # define BN_S_MP_SQR_C # define BN_S_MP_SQR_FAST_C # define BN_S_MP_SUB_C # define BN_S_MP_TOOM_MUL_C # define BN_S_MP_TOOM_SQR_C #endif #endif #if defined(BN_CUTOFFS_C) #endif #if defined(BN_DEPRECATED_C) # define BN_FAST_MP_INVMOD_C # define BN_FAST_MP_MONTGOMERY_REDUCE_C # define BN_FAST_S_MP_MUL_DIGS_C # define BN_FAST_S_MP_MUL_HIGH_DIGS_C # define BN_FAST_S_MP_SQR_C # define BN_MP_AND_C # define BN_MP_BALANCE_MUL_C # define BN_MP_CMP_D_C # define BN_MP_EXPTMOD_FAST_C # define BN_MP_EXPT_D_C # define BN_MP_EXPT_D_EX_C # define BN_MP_GET_BIT_C # define BN_MP_GET_INT_C # define BN_MP_GET_LONG_C # define BN_MP_GET_LONG_LONG_C # define BN_MP_GET_MAG32_C # define BN_MP_GET_MAG64_C # define BN_MP_INIT_SET_INT_C # define BN_MP_INIT_U32_C # define BN_MP_INVMOD_SLOW_C # define BN_MP_JACOBI_C # define BN_MP_KARATSUBA_MUL_C # define BN_MP_KARATSUBA_SQR_C # define BN_MP_KRONECKER_C # define BN_MP_N_ROOT_C # define BN_MP_N_ROOT_EX_C # define BN_MP_OR_C # define BN_MP_PRIME_IS_DIVISIBLE_C # define BN_MP_PRIME_RANDOM_EX_C # define BN_MP_RAND_DIGIT_C # define BN_MP_SET_INT_C # define BN_MP_SET_LONG_C # define BN_MP_SET_LONG_LONG_C # define BN_MP_SET_U32_C # define BN_MP_SET_U64_C # define BN_MP_SIGNED_RSH_C # define BN_MP_TC_AND_C # define BN_MP_TC_DIV_2D_C # define BN_MP_TC_OR_C # define BN_MP_TC_XOR_C # define BN_MP_TOOM_MUL_C # define BN_MP_TOOM_SQR_C # define BN_MP_XOR_C # define BN_S_MP_BALANCE_MUL_C # define BN_S_MP_EXPTMOD_FAST_C # define BN_S_MP_GET_BIT_C # define BN_S_MP_INVMOD_FAST_C # define BN_S_MP_INVMOD_SLOW_C # define BN_S_MP_KARATSUBA_MUL_C # define BN_S_MP_KARATSUBA_SQR_C # define BN_S_MP_MONTGOMERY_REDUCE_FAST_C # define BN_S_MP_MUL_DIGS_FAST_C # define BN_S_MP_MUL_HIGH_DIGS_FAST_C # define BN_S_MP_PRIME_IS_DIVISIBLE_C # define BN_S_MP_PRIME_RANDOM_EX_C # define BN_S_MP_RAND_SOURCE_C # define BN_S_MP_REVERSE_C # define BN_S_MP_SQR_FAST_C # define BN_S_MP_TOOM_MUL_C # define BN_S_MP_TOOM_SQR_C #endif #if defined(BN_MP_2EXPT_C) # define BN_MP_GROW_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_ABS_C) # define BN_MP_COPY_C #endif #if defined(BN_MP_ADD_C) # define BN_MP_CMP_MAG_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_ADD_D_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_ADDMOD_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_INIT_C # define BN_MP_MOD_C #endif #if defined(BN_MP_AND_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_CLAMP_C) #endif #if defined(BN_MP_CLEAR_C) #endif |
︙ | ︙ | |||
256 257 258 259 260 261 262 | #if defined(BN_MP_CMP_D_C) #endif #if defined(BN_MP_CMP_MAG_C) #endif #if defined(BN_MP_CNT_LSB_C) | < | | | | > | > | | | | | | | | | | | | | | | | | | | | | | | | | > < < | | | | > > > | | | < < < < | | < < < < | | < < < < < < < < < < < < | | < < | | < < < < < | | | | | | | | < < | < | | | < | | < < < < > > > | | > | | | > > > > > > > > > > > > > > > > > > > > | > > | | > > > > > > > > > > | < | > > > | | > | < | | | < < < < < < < < < < < | < < < < < | | < < | < < < | < < < < < < < < < < < < < < < < < < < | | | | | | < | | | | | | < < | < | | | | | | | | | | | | | | | | | > < | | | | | | | < | | | | | | | | | | | | | | < < | < | | | | | | | | | | | | | | < < | < | | | | | < < < | | | | | | < < | | | | | | | | | | > | | | | | | | < | | | | | | | | | > > > | | < | | | | | | | | | | | | | | | | | | | < < | | | < | < < < | | | | | < < < | | | | | | | | < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < | | | > | > | | | | | | | > > > > > > | | | | | | | | < | | | | | | | | | | | | | | | | | | < | | | < < < < < < < < < < < < | < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < | < < | | | | < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < | | | < | | < | < | > > | > > | > | > > > > > > | > > > > > > > | | > > | > > > | > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > > > > | > | > > > > > > | > > > | > > > > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | | < < < < | 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | #if defined(BN_MP_CMP_D_C) #endif #if defined(BN_MP_CMP_MAG_C) #endif #if defined(BN_MP_CNT_LSB_C) #endif #if defined(BN_MP_COMPLEMENT_C) # define BN_MP_NEG_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_COPY_C) # define BN_MP_GROW_C #endif #if defined(BN_MP_COUNT_BITS_C) #endif #if defined(BN_MP_DECR_C) # define BN_MP_INCR_C # define BN_MP_SET_C # define BN_MP_SUB_D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_DIV_C) # define BN_MP_ADD_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_CMP_C # define BN_MP_CMP_MAG_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_EXCH_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_MUL_2D_C # define BN_MP_MUL_D_C # define BN_MP_RSHD_C # define BN_MP_SUB_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_DIV_2_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_DIV_2D_C) # define BN_MP_CLAMP_C # define BN_MP_COPY_C # define BN_MP_MOD_2D_C # define BN_MP_RSHD_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_DIV_3_C) # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C #endif #if defined(BN_MP_DIV_D_C) # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_COPY_C # define BN_MP_DIV_2D_C # define BN_MP_DIV_3_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C #endif #if defined(BN_MP_DR_IS_MODULUS_C) #endif #if defined(BN_MP_DR_REDUCE_C) # define BN_MP_CLAMP_C # define BN_MP_CMP_MAG_C # define BN_MP_GROW_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_DR_SETUP_C) #endif #if defined(BN_MP_ERROR_TO_STRING_C) #endif #if defined(BN_MP_EXCH_C) #endif #if defined(BN_MP_EXPORT_C) # define BN_MP_CLEAR_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_COPY_C #endif #if defined(BN_MP_EXPT_D_C) # define BN_MP_CLEAR_C # define BN_MP_INIT_COPY_C # define BN_MP_MUL_C # define BN_MP_SET_C # define BN_MP_SQR_C #endif #if defined(BN_MP_EXPTMOD_C) # define BN_MP_ABS_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_DR_IS_MODULUS_C # define BN_MP_INIT_C # define BN_MP_INVMOD_C # define BN_MP_REDUCE_IS_2K_C # define BN_MP_REDUCE_IS_2K_L_C # define BN_S_MP_EXPTMOD_C # define BN_S_MP_EXPTMOD_FAST_C #endif #if defined(BN_MP_EXTEUCLID_C) # define BN_MP_CLEAR_MULTI_C # define BN_MP_COPY_C # define BN_MP_DIV_C # define BN_MP_EXCH_C # define BN_MP_INIT_MULTI_C # define BN_MP_MUL_C # define BN_MP_NEG_C # define BN_MP_SET_C # define BN_MP_SUB_C #endif #if defined(BN_MP_FREAD_C) # define BN_MP_ADD_D_C # define BN_MP_MUL_D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_FWRITE_C) # define BN_MP_RADIX_SIZE_C # define BN_MP_TORADIX_C #endif #if defined(BN_MP_GCD_C) # define BN_MP_ABS_C # define BN_MP_CLEAR_C # define BN_MP_CMP_MAG_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_EXCH_C # define BN_MP_INIT_COPY_C # define BN_MP_MUL_2D_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_GET_DOUBLE_C) #endif #if defined(BN_MP_GET_I32_C) # define BN_MP_GET_MAG32_C #endif #if defined(BN_MP_GET_I64_C) # define BN_MP_GET_MAG64_C #endif #if defined(BN_MP_GET_MAG32_C) #endif #if defined(BN_MP_GET_MAG64_C) #endif #if defined(BN_MP_GROW_C) #endif #if defined(BN_MP_ILOGB_C) # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_EXCH_C # define BN_MP_EXPT_D_C # define BN_MP_INIT_MULTI_C # define BN_MP_MUL_C # define BN_MP_SET_C # define BN_MP_SET_U32_C # define BN_MP_SQR_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_IMPORT_C) # define BN_MP_CLAMP_C # define BN_MP_MUL_2D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_INCR_C) # define BN_MP_ADD_D_C # define BN_MP_DECR_C # define BN_MP_SET_C #endif #if defined(BN_MP_INIT_C) #endif #if defined(BN_MP_INIT_COPY_C) # define BN_MP_CLEAR_C # define BN_MP_COPY_C # define BN_MP_INIT_SIZE_C #endif #if defined(BN_MP_INIT_I32_C) # define BN_MP_INIT_C # define BN_MP_SET_I32_C #endif #if defined(BN_MP_INIT_I64_C) # define BN_MP_INIT_C # define BN_MP_SET_I64_C #endif #if defined(BN_MP_INIT_MULTI_C) # define BN_MP_CLEAR_C # define BN_MP_INIT_C #endif #if defined(BN_MP_INIT_SET_C) # define BN_MP_INIT_C # define BN_MP_SET_C #endif #if defined(BN_MP_INIT_SIZE_C) #endif #if defined(BN_MP_INIT_U32_C) # define BN_MP_INIT_C # define BN_MP_SET_U32_C #endif #if defined(BN_MP_INIT_U64_C) # define BN_MP_INIT_C # define BN_MP_SET_U64_C #endif #if defined(BN_MP_INVMOD_C) # define BN_MP_CMP_D_C # define BN_S_MP_INVMOD_FAST_C # define BN_S_MP_INVMOD_SLOW_C #endif #if defined(BN_MP_IS_SQUARE_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_MAG_C # define BN_MP_GET_I32_C # define BN_MP_INIT_U32_C # define BN_MP_MOD_C # define BN_MP_MOD_D_C # define BN_MP_SQRT_C # define BN_MP_SQR_C #endif #if defined(BN_MP_ISEVEN_C) #endif #if defined(BN_MP_ISODD_C) #endif #if defined(BN_MP_KRONECKER_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_D_C # define BN_MP_CNT_LSB_C # define BN_MP_COPY_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_MOD_C #endif #if defined(BN_MP_LCM_C) # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_MAG_C # define BN_MP_DIV_C # define BN_MP_GCD_C # define BN_MP_INIT_MULTI_C # define BN_MP_MUL_C #endif #if defined(BN_MP_LSHD_C) # define BN_MP_GROW_C #endif #if defined(BN_MP_MOD_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_DIV_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C #endif #if defined(BN_MP_MOD_2D_C) # define BN_MP_CLAMP_C # define BN_MP_COPY_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_MOD_D_C) # define BN_MP_DIV_D_C #endif #if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C) # define BN_MP_2EXPT_C # define BN_MP_CMP_MAG_C # define BN_MP_COUNT_BITS_C # define BN_MP_MUL_2_C # define BN_MP_SET_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_REDUCE_C) # define BN_MP_CLAMP_C # define BN_MP_CMP_MAG_C # define BN_MP_GROW_C # define BN_MP_RSHD_C # define BN_S_MP_MONTGOMERY_REDUCE_FAST_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_MONTGOMERY_SETUP_C) #endif #if defined(BN_MP_MUL_C) # define BN_S_MP_BALANCE_MUL_C # define BN_S_MP_KARATSUBA_MUL_C # define BN_S_MP_MUL_DIGS_C # define BN_S_MP_MUL_DIGS_FAST_C # define BN_S_MP_TOOM_MUL_C #endif #if defined(BN_MP_MUL_2_C) # define BN_MP_GROW_C #endif #if defined(BN_MP_MUL_2D_C) # define BN_MP_CLAMP_C # define BN_MP_COPY_C # define BN_MP_GROW_C # define BN_MP_LSHD_C #endif #if defined(BN_MP_MUL_D_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_MULMOD_C) # define BN_MP_CLEAR_C # define BN_MP_INIT_SIZE_C # define BN_MP_MOD_C # define BN_MP_MUL_C #endif #if defined(BN_MP_N_ROOT_C) # define BN_MP_2EXPT_C # define BN_MP_ADD_D_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_C # define BN_MP_EXCH_C # define BN_MP_EXPT_D_C # define BN_MP_INIT_MULTI_C # define BN_MP_MUL_C # define BN_MP_MUL_D_C # define BN_MP_SET_C # define BN_MP_SUB_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_NEG_C) # define BN_MP_COPY_C #endif #if defined(BN_MP_OR_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_PRIME_FERMAT_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_EXPTMOD_C # define BN_MP_INIT_C #endif #if defined(BN_MP_PRIME_FROBENIUS_UNDERWOOD_C) # define BN_MP_ADD_C # define BN_MP_ADD_D_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_COUNT_BITS_C # define BN_MP_EXCH_C # define BN_MP_GCD_C # define BN_MP_INIT_MULTI_C # define BN_MP_KRONECKER_C # define BN_MP_MOD_C # define BN_MP_MUL_2_C # define BN_MP_MUL_C # define BN_MP_MUL_D_C # define BN_MP_SET_C # define BN_MP_SET_U32_C # define BN_MP_SQR_C # define BN_MP_SUB_C # define BN_MP_SUB_D_C # define BN_S_MP_GET_BIT_C #endif #if defined(BN_MP_PRIME_IS_PRIME_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_SET_C # define BN_MP_IS_SQUARE_C # define BN_MP_PRIME_MILLER_RABIN_C # define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C # define BN_MP_RAND_C # define BN_MP_READ_RADIX_C # define BN_MP_SET_C # define BN_S_MP_PRIME_IS_DIVISIBLE_C #endif #if defined(BN_MP_PRIME_MILLER_RABIN_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CNT_LSB_C # define BN_MP_DIV_2D_C # define BN_MP_EXPTMOD_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_SQRMOD_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_PRIME_NEXT_PRIME_C) # define BN_MP_ADD_D_C # define BN_MP_CLEAR_C # define BN_MP_CMP_D_C # define BN_MP_INIT_C # define BN_MP_MOD_D_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_SET_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C) #endif #if defined(BN_MP_PRIME_RAND_C) # define BN_MP_ADD_D_C # define BN_MP_DIV_2_C # define BN_MP_MUL_2_C # define BN_MP_PRIME_IS_PRIME_C # define BN_MP_READ_UNSIGNED_BIN_C # define BN_MP_SUB_D_C # define BN_S_MP_PRIME_RANDOM_EX_C # define BN_S_MP_RAND_CB_C # define BN_S_MP_RAND_SOURCE_C #endif #if defined(BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C) # define BN_MP_ADD_C # define BN_MP_ADD_D_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CNT_LSB_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_DIV_2_C # define BN_MP_GCD_C # define BN_MP_INIT_C # define BN_MP_INIT_MULTI_C # define BN_MP_KRONECKER_C # define BN_MP_MOD_C # define BN_MP_MUL_2_C # define BN_MP_MUL_C # define BN_MP_SET_C # define BN_MP_SET_I32_C # define BN_MP_SET_U32_C # define BN_MP_SQR_C # define BN_MP_SUB_C # define BN_MP_SUB_D_C # define BN_S_MP_GET_BIT_C # define BN_S_MP_MUL_SI_C #endif #if defined(BN_MP_RADIX_SIZE_C) # define BN_MP_CLEAR_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_D_C # define BN_MP_INIT_COPY_C #endif #if defined(BN_MP_RADIX_SMAP_C) #endif #if defined(BN_MP_RAND_C) # define BN_MP_GROW_C # define BN_MP_RAND_SOURCE_C # define BN_MP_ZERO_C # define BN_S_MP_RAND_SOURCE_C #endif #if defined(BN_MP_READ_RADIX_C) # define BN_MP_ADD_D_C # define BN_MP_MUL_D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_READ_SIGNED_BIN_C) # define BN_MP_READ_UNSIGNED_BIN_C #endif #if defined(BN_MP_READ_UNSIGNED_BIN_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C # define BN_MP_MUL_2D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_REDUCE_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_INIT_COPY_C # define BN_MP_LSHD_C # define BN_MP_MOD_2D_C # define BN_MP_MUL_C # define BN_MP_RSHD_C # define BN_MP_SET_C # define BN_MP_SUB_C # define BN_S_MP_MUL_DIGS_C # define BN_S_MP_MUL_HIGH_DIGS_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_MAG_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_C # define BN_MP_MUL_D_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_L_C) # define BN_MP_CLEAR_C # define BN_MP_CMP_MAG_C # define BN_MP_COUNT_BITS_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_C # define BN_MP_MUL_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_C) # define BN_MP_2EXPT_C # define BN_MP_CLEAR_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_2K_SETUP_L_C) # define BN_MP_2EXPT_C # define BN_MP_CLEAR_C # define BN_MP_COUNT_BITS_C # define BN_MP_INIT_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_REDUCE_IS_2K_C) # define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_REDUCE_IS_2K_L_C) #endif #if defined(BN_MP_REDUCE_SETUP_C) # define BN_MP_2EXPT_C # define BN_MP_DIV_C #endif #if defined(BN_MP_RSHD_C) # define BN_MP_ZERO_C #endif #if defined(BN_MP_SET_C) #endif #if defined(BN_MP_SET_DOUBLE_C) # define BN_MP_DIV_2D_C # define BN_MP_MUL_2D_C # define BN_MP_SET_U64_C #endif #if defined(BN_MP_SET_I32_C) # define BN_MP_SET_U32_C #endif #if defined(BN_MP_SET_I64_C) # define BN_MP_SET_U64_C #endif #if defined(BN_MP_SET_U32_C) #endif #if defined(BN_MP_SET_U64_C) #endif #if defined(BN_MP_SHRINK_C) #endif #if defined(BN_MP_SIGNED_BIN_SIZE_C) # define BN_MP_UNSIGNED_BIN_SIZE_C #endif #if defined(BN_MP_SIGNED_RSH_C) # define BN_MP_ADD_D_C # define BN_MP_DIV_2D_C # define BN_MP_SUB_D_C #endif #if defined(BN_MP_SQR_C) # define BN_S_MP_KARATSUBA_SQR_C # define BN_S_MP_SQR_C # define BN_S_MP_SQR_FAST_C # define BN_S_MP_TOOM_SQR_C #endif #if defined(BN_MP_SQRMOD_C) # define BN_MP_CLEAR_C # define BN_MP_INIT_C # define BN_MP_MOD_C # define BN_MP_SQR_C #endif #if defined(BN_MP_SQRT_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_CMP_MAG_C # define BN_MP_DIV_2_C # define BN_MP_DIV_C # define BN_MP_EXCH_C # define BN_MP_INIT_C # define BN_MP_INIT_COPY_C # define BN_MP_RSHD_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_SQRTMOD_PRIME_C) # define BN_MP_ADD_D_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_D_C # define BN_MP_COPY_C # define BN_MP_DIV_2_C # define BN_MP_EXPTMOD_C # define BN_MP_INIT_MULTI_C # define BN_MP_KRONECKER_C # define BN_MP_MOD_D_C # define BN_MP_MULMOD_C # define BN_MP_SET_C # define BN_MP_SET_U32_C # define BN_MP_SQRMOD_C # define BN_MP_SUB_D_C # define BN_MP_ZERO_C #endif #if defined(BN_MP_SUB_C) # define BN_MP_CMP_MAG_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_MP_SUB_D_C) # define BN_MP_ADD_D_C # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_SUBMOD_C) # define BN_MP_CLEAR_C # define BN_MP_INIT_C # define BN_MP_MOD_C # define BN_MP_SUB_C #endif #if defined(BN_MP_TO_SIGNED_BIN_C) # define BN_MP_TO_UNSIGNED_BIN_C #endif #if defined(BN_MP_TO_SIGNED_BIN_N_C) # define BN_MP_SIGNED_BIN_SIZE_C # define BN_MP_TO_SIGNED_BIN_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_C) # define BN_MP_CLEAR_C # define BN_MP_DIV_2D_C # define BN_MP_INIT_COPY_C # define BN_S_MP_REVERSE_C #endif #if defined(BN_MP_TO_UNSIGNED_BIN_N_C) # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_UNSIGNED_BIN_SIZE_C #endif #if defined(BN_MP_TORADIX_C) # define BN_MP_CLEAR_C # define BN_MP_DIV_D_C # define BN_MP_INIT_COPY_C # define BN_S_MP_REVERSE_C #endif #if defined(BN_MP_TORADIX_N_C) # define BN_MP_CLEAR_C # define BN_MP_DIV_D_C # define BN_MP_INIT_COPY_C # define BN_S_MP_REVERSE_C #endif #if defined(BN_MP_UNSIGNED_BIN_SIZE_C) # define BN_MP_COUNT_BITS_C #endif #if defined(BN_MP_XOR_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_MP_ZERO_C) #endif #if defined(BN_PRIME_TAB_C) #endif #if defined(BN_S_MP_ADD_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_S_MP_BALANCE_MUL_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_EXCH_C # define BN_MP_INIT_MULTI_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_MUL_C #endif #if defined(BN_S_MP_EXPTMOD_C) # define BN_MP_CLEAR_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_EXCH_C # define BN_MP_INIT_C # define BN_MP_MOD_C # define BN_MP_MUL_C # define BN_MP_REDUCE_2K_SETUP_L_C # define BN_MP_REDUCE_SETUP_C # define BN_MP_SET_C # define BN_MP_SQR_C #endif #if defined(BN_S_MP_EXPTMOD_FAST_C) # define BN_MP_CLEAR_C # define BN_MP_COPY_C # define BN_MP_COUNT_BITS_C # define BN_MP_DR_SETUP_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C # define BN_MP_MOD_C # define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C # define BN_MP_MONTGOMERY_SETUP_C # define BN_MP_MULMOD_C # define BN_MP_MUL_C # define BN_MP_REDUCE_2K_SETUP_C # define BN_MP_SET_C # define BN_MP_SQR_C #endif #if defined(BN_S_MP_GET_BIT_C) #endif #if defined(BN_S_MP_INVMOD_FAST_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CMP_MAG_C # define BN_MP_COPY_C # define BN_MP_DIV_2_C # define BN_MP_EXCH_C # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_C # define BN_MP_SET_C # define BN_MP_SUB_C #endif #if defined(BN_S_MP_INVMOD_SLOW_C) # define BN_MP_ADD_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_CMP_C # define BN_MP_CMP_D_C # define BN_MP_CMP_MAG_C # define BN_MP_COPY_C # define BN_MP_DIV_2_C # define BN_MP_EXCH_C # define BN_MP_INIT_MULTI_C # define BN_MP_MOD_C # define BN_MP_SET_C # define BN_MP_SUB_C #endif #if defined(BN_S_MP_KARATSUBA_MUL_C) # define BN_MP_ADD_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_MUL_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_S_MP_KARATSUBA_SQR_C) # define BN_MP_ADD_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_SQR_C # define BN_S_MP_ADD_C # define BN_S_MP_SUB_C #endif #if defined(BN_S_MP_MONTGOMERY_REDUCE_FAST_C) # define BN_MP_CLAMP_C # define BN_MP_CMP_MAG_C # define BN_MP_GROW_C # define BN_S_MP_SUB_C #endif #if defined(BN_S_MP_MUL_DIGS_C) # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C # define BN_S_MP_MUL_DIGS_FAST_C #endif #if defined(BN_S_MP_MUL_DIGS_FAST_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_S_MP_MUL_HIGH_DIGS_C) # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C # define BN_S_MP_MUL_HIGH_DIGS_FAST_C #endif #if defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_S_MP_PRIME_IS_DIVISIBLE_C) # define BN_MP_MOD_D_C #endif #if defined(BN_S_MP_RAND_JENKINS_C) # define BN_S_MP_RAND_JENKINS_INIT_C #endif #if defined(BN_S_MP_RAND_PLATFORM_C) #endif #if defined(BN_S_MP_REVERSE_C) #endif #if defined(BN_S_MP_SQR_C) # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_EXCH_C # define BN_MP_INIT_SIZE_C #endif #if defined(BN_S_MP_SQR_FAST_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_S_MP_SUB_C) # define BN_MP_CLAMP_C # define BN_MP_GROW_C #endif #if defined(BN_S_MP_TOOM_MUL_C) # define BN_MP_ADD_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_DIV_2_C # define BN_MP_DIV_3_C # define BN_MP_INIT_MULTI_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_MUL_2_C # define BN_MP_MUL_C # define BN_MP_SUB_C #endif #if defined(BN_S_MP_TOOM_SQR_C) # define BN_MP_ADD_C # define BN_MP_CLAMP_C # define BN_MP_CLEAR_C # define BN_MP_DIV_2_C # define BN_MP_INIT_C # define BN_MP_INIT_SIZE_C # define BN_MP_LSHD_C # define BN_MP_MUL_2_C # define BN_MP_MUL_C # define BN_MP_SQR_C # define BN_MP_SUB_C #endif #ifdef LTM_INSIDE #undef LTM_INSIDE #ifdef LTM3 # define LTM_LAST #endif #include "tommath_superclass.h" #include "tommath_class.h" #else # define LTM_LAST #endif |
Added libtommath/tommath_cutoffs.h.
> > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Current values evaluated on an AMD A8-6600K (64-bit). Type "make tune" to optimize them for your machine but be aware that it may take a long time. It took 2:30 minutes on the aforementioned machine for example. */ #define MP_DEFAULT_KARATSUBA_MUL_CUTOFF 80 #define MP_DEFAULT_KARATSUBA_SQR_CUTOFF 120 #define MP_DEFAULT_TOOM_MUL_CUTOFF 350 #define MP_DEFAULT_TOOM_SQR_CUTOFF 400 |
Changes to libtommath/tommath_private.h.
|
| | < < < < < < < < | | > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > | > > > > | > | > > | < | | > | > > > > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > | | < | | | | | | > | | | | | | | | | > > | > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | < < < < < | | | > > > > > > | < | | > | | | > | > > > | | > > | > | | | < > > > > > | < < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef TOMMATH_PRIV_H_ #define TOMMATH_PRIV_H_ #include "tommath.h" #include "tommath_class.h" /* * Private symbols * --------------- * * On Unix symbols can be marked as hidden if libtommath is compiled * as a shared object. By default, symbols are visible. * As of now, this feature is opt-in via the MP_PRIVATE_SYMBOLS define. * * On Win32 a .def file must be used to specify the exported symbols. */ #if defined (MP_PRIVATE_SYMBOLS) && __GNUC__ >= 4 # define MP_PRIVATE __attribute__ ((visibility ("hidden"))) #else # define MP_PRIVATE #endif /* Hardening libtommath * -------------------- * * By default memory is zeroed before calling * MP_FREE to avoid leaking data. This is good * practice in cryptographical applications. * * Note however that memory allocators used * in cryptographical applications can often * be configured by itself to clear memory, * rendering the clearing in tommath unnecessary. * See for example https://github.com/GrapheneOS/hardened_malloc * and the option CONFIG_ZERO_ON_FREE. * * Furthermore there are applications which * value performance more and want this * feature to be disabled. For such applications * define MP_NO_ZERO_ON_FREE during compilation. */ #ifdef MP_NO_ZERO_ON_FREE # define MP_FREE_BUFFER(mem, size) MP_FREE((mem), (size)) # define MP_FREE_DIGITS(mem, digits) MP_FREE((mem), sizeof (mp_digit) * (size_t)(digits)) #else # define MP_FREE_BUFFER(mem, size) \ do { \ size_t fs_ = (size); \ void* fm_ = (mem); \ if (fm_ != NULL) { \ MP_ZERO_BUFFER(fm_, fs_); \ MP_FREE(fm_, fs_); \ } \ } while (0) # define MP_FREE_DIGITS(mem, digits) \ do { \ int fd_ = (digits); \ void* fm_ = (mem); \ if (fm_ != NULL) { \ size_t fs_ = sizeof (mp_digit) * (size_t)fd_; \ MP_ZERO_BUFFER(fm_, fs_); \ MP_FREE(fm_, fs_); \ } \ } while (0) #endif #ifdef MP_USE_MEMSET # include <string.h> # define MP_ZERO_BUFFER(mem, size) memset((mem), 0, (size)) # define MP_ZERO_DIGITS(mem, digits) \ do { \ int zd_ = (digits); \ if (zd_ > 0) { \ memset((mem), 0, sizeof(mp_digit) * (size_t)zd_); \ } \ } while (0) #else # define MP_ZERO_BUFFER(mem, size) \ do { \ size_t zs_ = (size); \ char* zm_ = (char*)(mem); \ while (zs_-- > 0u) { \ *zm_++ = '\0'; \ } \ } while (0) # define MP_ZERO_DIGITS(mem, digits) \ do { \ int zd_ = (digits); \ mp_digit* zm_ = (mem); \ while (zd_-- > 0) { \ *zm_++ = 0; \ } \ } while (0) #endif /* Tunable cutoffs * --------------- * * - In the default settings, a cutoff X can be modified at runtime * by adjusting the corresponding X_CUTOFF variable. * * - Tunability of the library can be disabled at compile time * by defining the MP_FIXED_CUTOFFS macro. * * - There is an additional file tommath_cutoffs.h, which defines * the default cutoffs. These can be adjusted manually or by the * autotuner. * */ #ifdef MP_FIXED_CUTOFFS # include "tommath_cutoffs.h" # define MP_KARATSUBA_MUL_CUTOFF MP_DEFAULT_KARATSUBA_MUL_CUTOFF # define MP_KARATSUBA_SQR_CUTOFF MP_DEFAULT_KARATSUBA_SQR_CUTOFF # define MP_TOOM_MUL_CUTOFF MP_DEFAULT_TOOM_MUL_CUTOFF # define MP_TOOM_SQR_CUTOFF MP_DEFAULT_TOOM_SQR_CUTOFF #else # define MP_KARATSUBA_MUL_CUTOFF KARATSUBA_MUL_CUTOFF # define MP_KARATSUBA_SQR_CUTOFF KARATSUBA_SQR_CUTOFF # define MP_TOOM_MUL_CUTOFF TOOM_MUL_CUTOFF # define MP_TOOM_SQR_CUTOFF TOOM_SQR_CUTOFF #endif /* define heap macros */ #ifndef MP_MALLOC /* default to libc stuff */ # include <stdlib.h> # define MP_MALLOC(size) malloc(size) # define MP_REALLOC(mem, oldsize, newsize) realloc((mem), (newsize)) # define MP_CALLOC(nmemb, size) calloc((nmemb), (size)) # define MP_FREE(mem, size) free(mem) #else /* prototypes for our heap functions */ extern void *MP_MALLOC(size_t size); extern void *MP_REALLOC(void *mem, size_t oldsize, size_t newsize); extern void *MP_CALLOC(size_t nmemb, size_t size); extern void MP_FREE(void *mem, size_t size); #endif /* TODO: Remove private_mp_word as soon as deprecated mp_word is removed from tommath. */ #undef mp_word typedef private_mp_word mp_word; #define MP_MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MP_MAX(x, y) (((x) > (y)) ? (x) : (y)) /* Static assertion */ #define MP_STATIC_ASSERT(msg, cond) typedef char mp_static_assert_##msg[(cond) ? 1 : -1]; /* ---> Basic Manipulations <--- */ #define MP_IS_ZERO(a) ((a)->used == 0) #define MP_IS_EVEN(a) (((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) #define MP_IS_ODD(a) (((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) #define MP_SIZEOF_BITS(type) ((size_t)CHAR_BIT * sizeof(type)) #define MP_MAXFAST (int)(1uL << (MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT))) /* TODO: Remove PRIVATE_MP_WARRAY as soon as deprecated MP_WARRAY is removed from tommath.h */ #undef MP_WARRAY #define MP_WARRAY PRIVATE_MP_WARRAY /* TODO: Remove PRIVATE_MP_PREC as soon as deprecated MP_PREC is removed from tommath.h */ #ifdef PRIVATE_MP_PREC # undef MP_PREC # define MP_PREC PRIVATE_MP_PREC #endif /* Minimum number of available digits in mp_int, MP_PREC >= MP_MIN_PREC */ #define MP_MIN_PREC ((((int)MP_SIZEOF_BITS(long long) + MP_DIGIT_BIT) - 1) / MP_DIGIT_BIT) MP_STATIC_ASSERT(prec_geq_min_prec, MP_PREC >= MP_MIN_PREC) /* random number source */ extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size); /* lowlevel functions, do not call! */ MP_PRIVATE mp_bool s_mp_get_bit(const mp_int *a, unsigned int b); MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_sqr_fast(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_sqr(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_karatsuba_sqr(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_toom_sqr(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR; MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR; MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR; MP_PRIVATE mp_err s_mp_rand_platform(void *p, size_t n) MP_WUR; MP_PRIVATE mp_err s_mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat); MP_PRIVATE void s_mp_reverse(unsigned char *s, int len); MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result); /* TODO: jenkins prng is not thread safe as of now */ MP_PRIVATE mp_err s_mp_rand_jenkins(void *p, size_t n) MP_WUR; MP_PRIVATE void s_mp_rand_jenkins_init(uint64_t seed); extern MP_PRIVATE const char *const mp_s_rmap; extern MP_PRIVATE const unsigned char mp_s_rmap_reverse[]; extern MP_PRIVATE const size_t mp_s_rmap_reverse_sz; extern MP_PRIVATE const mp_digit *s_mp_prime_tab; /* deprecated functions */ MP_DEPRECATED(s_mp_invmod_fast) mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); MP_DEPRECATED(s_mp_montgomery_reduce_fast) mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); MP_DEPRECATED(s_mp_mul_digs_fast) mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); MP_DEPRECATED(s_mp_mul_high_digs_fast) mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs); MP_DEPRECATED(s_mp_sqr_fast) mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b); MP_DEPRECATED(s_mp_balance_mul) mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c); MP_DEPRECATED(s_mp_exptmod_fast) mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode); MP_DEPRECATED(s_mp_invmod_slow) mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c); MP_DEPRECATED(s_mp_karatsuba_mul) mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c); MP_DEPRECATED(s_mp_karatsuba_sqr) mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b); MP_DEPRECATED(s_mp_toom_mul) mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c); MP_DEPRECATED(s_mp_toom_sqr) mp_err mp_toom_sqr(const mp_int *a, mp_int *b); MP_DEPRECATED(s_mp_reverse) void bn_reverse(unsigned char *s, int len); /* code-generating macros */ #define MP_SET_UNSIGNED(name, type) \ void name(mp_int * a, type b) \ { \ int i = 0; \ while (b != 0u) { \ a->dp[i++] = ((mp_digit)b & MP_MASK); \ if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \ b >>= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \ } \ a->used = i; \ a->sign = MP_ZPOS; \ MP_ZERO_DIGITS(a->dp + a->used, a->alloc - a->used); \ } #define MP_SET_SIGNED(name, uname, type, utype) \ void name(mp_int * a, type b) \ { \ uname(a, (b < 0) ? -(utype)b : (utype)b); \ if (b < 0) { a->sign = MP_NEG; } \ } #define MP_INIT_INT(name , set, type) \ mp_err name(mp_int * a, type b) \ { \ mp_err err; \ if ((err = mp_init(a)) != MP_OKAY) { \ return err; \ } \ set(a, b); \ return MP_OKAY; \ } #define MP_GET_MAG(type, name) \ type name(const mp_int* a) \ { \ unsigned i = MP_MIN((unsigned)a->used, (unsigned)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \ type res = 0u; \ while (i --> 0u) { \ res <<= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \ res |= (type)a->dp[i]; \ if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \ } \ return res; \ } #define MP_GET_SIGNED(type, name, mag) \ type name(const mp_int* a) \ { \ uint64_t res = mag(a); \ return (a->sign == MP_NEG) ? (type)-res : (type)res; \ } #endif |
Changes to libtommath/tommath_superclass.h.
|
| | < < < < < < < < | < | 1 2 3 4 5 6 7 8 9 | /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* super class file for PK algos */ /* default ... include all MPI */ #define LTM_ALL /* RSA only (does not support DH/DSA/ECC) */ |
︙ | ︙ | |||
38 39 40 41 42 43 44 | # define BN_MP_SET_INT_C # define BN_MP_INIT_MULTI_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_MOD_D_C # define BN_MP_PRIME_RABIN_MILLER_TRIALS_C | | | | | | | | < < < < | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | # define BN_MP_SET_INT_C # define BN_MP_INIT_MULTI_C # define BN_MP_CLEAR_MULTI_C # define BN_MP_UNSIGNED_BIN_SIZE_C # define BN_MP_TO_UNSIGNED_BIN_C # define BN_MP_MOD_D_C # define BN_MP_PRIME_RABIN_MILLER_TRIALS_C # define BN_S_MP_REVERSE_C # define BN_PRIME_TAB_C /* other modifiers */ # define BN_MP_DIV_SMALL /* Slower division, not critical */ /* here we are on the last pass so we turn things off. The functions classes are still there * but we remove them specifically from the build. This also invokes tweaks in functions * like removing support for even moduli, etc... */ # ifdef LTM_LAST # undef BN_S_MP_TOOM_MUL_C # undef BN_S_MP_TOOM_SQR_C # undef BN_S_MP_KARATSUBA_MUL_C # undef BN_S_MP_KARATSUBA_SQR_C # undef BN_MP_REDUCE_C # undef BN_MP_REDUCE_SETUP_C # undef BN_MP_DR_IS_MODULUS_C # undef BN_MP_DR_SETUP_C # undef BN_MP_DR_REDUCE_C # undef BN_MP_REDUCE_IS_2K_C # undef BN_MP_REDUCE_2K_SETUP_C # undef BN_MP_REDUCE_2K_C # undef BN_S_MP_EXPTMOD_C # undef BN_MP_DIV_3_C # undef BN_S_MP_MUL_HIGH_DIGS_C # undef BN_S_MP_MUL_HIGH_DIGS_FAST_C # undef BN_S_MP_INVMOD_FAST_C /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without * trouble. */ # undef BN_S_MP_MUL_DIGS_C # undef BN_S_MP_SQR_C # undef BN_MP_MONTGOMERY_REDUCE_C # endif #endif |
Deleted libtommath/updatemakes.sh.
|
| < < < < < < < < < < < < < < < < |