Tcl Source Code

Check-in [042fb1427b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge libtommath
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | libtommath-no-stdint.h
Files: files | file ages | folders
SHA3-256: 042fb1427b99b5d1469d3f30c93cf380af67fdf6f9633a397a9dc7571f0bc2d3
User & Date: jan.nijtmans 2019-06-13 21:28:11.680
Context
2019-07-05
14:54
Merge libtommath check-in: 81d9516c89 user: jan.nijtmans tags: libtommath-no-stdint.h
2019-06-14
21:48
Latest libtommath's "develop" branch adapted for Tcl 8.6. And Tcl 8.6 adapted for changes in libtom... check-in: 125328a27d user: jan.nijtmans tags: libtommath-no-stdint.h-for-8.6
2019-06-13
21:28
Merge libtommath check-in: 042fb1427b user: jan.nijtmans tags: libtommath-no-stdint.h
19:07
Update to latest libtommath's "develop" branch. On the way to 1.2.0 check-in: 94cf70186e user: jan.nijtmans tags: libtommath
2019-04-10
20:07
Eliminate use of int32_t (doesn't work on MSVC++ 6.0) check-in: a0a32b3e13 user: jan.nijtmans tags: libtommath-no-stdint.h
Changes
Unified Diff Ignore Whitespace Patch
Changes to .fossil-settings/ignore-glob.
1
2
3
4
5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20



21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

*.a
*.dll
*.dylib
*.exe
*.exp

*.lib

*.o
*.obj
*.pdb
*.res
*.sl
*.so
*/Makefile
*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc



html
libtommath/bn.ilg
libtommath/bn.ind
libtommath/doc
libtommath/pretty.build
libtommath/tommath.src

libtommath/*.pdf
libtommath/*.pl
libtommath/*.sh

libtommath/tombc/*
libtommath/pre_gen/*
libtommath/pics/*
libtommath/mtest/*
libtommath/logs/*
libtommath/etc/*
libtommath/demo/*
libtommath/*.out
libtommath/*.tex
unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/Debug_VC*
win/Release_VC*
win/pkgs/*

win/tcl.hpj






>

>














>
>
>






>

|

>














|
|

>

>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
*.a
*.dll
*.dylib
*.exe
*.exp
*.la
*.lib
*.lo
*.o
*.obj
*.pdb
*.res
*.sl
*.so
*/Makefile
*/config.cache
*/config.log
*/config.status
*/tclConfig.sh
*/tclsh*
*/tcltest*
*/versions.vc
*/version.vc
*/libtcl.vfs
*/libtcl_*.zip
html
libtommath/bn.ilg
libtommath/bn.ind
libtommath/doc
libtommath/pretty.build
libtommath/tommath.src
libtommath/*.log
libtommath/*.pdf
libtommath/gen.pl
libtommath/*.sh
libtommath/doc/*
libtommath/tombc/*
libtommath/pre_gen/*
libtommath/pics/*
libtommath/mtest/*
libtommath/logs/*
libtommath/etc/*
libtommath/demo/*
libtommath/*.out
libtommath/*.tex
unix/autoMkindex.tcl
unix/dltest.marker
unix/tcl.pc
unix/tclIndex
unix/pkgs/*
win/Debug*
win/Release*
win/pkgs/*
win/coffbase.txt
win/tcl.hpj
win/nmhlp-out.txt
Changes to libtommath/README.md.
19
20
21
22
23
24
25




The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms.

## Testing

Tests are located in `demo/` and can be built in two flavors.
* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
* `make test_standalone` creates a stand-alone test binary that executes several test routines.











>
>
>
>
19
20
21
22
23
24
25
26
27
28
29
The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms.

## Testing

Tests are located in `demo/` and can be built in two flavors.
* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
* `make test_standalone` creates a stand-alone test binary that executes several test routines.

## Building and Installing

Building is straightforward for GNU Linux only, the section "Building LibTomMath" in the documentation in `doc/bn.pdf` has the details.
Changes to libtommath/astylerc.
1
2
3
4
5



6
7
8
9
10
11
12
# Artistic Style, see http://astyle.sourceforge.net/
# full documentation, see: http://astyle.sourceforge.net/astyle.html
#
# usage:
#       astyle --options=astylerc *.[ch]




## Bracket Style Options
style=kr

## Tab Options
indent=spaces=3






>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Artistic Style, see http://astyle.sourceforge.net/
# full documentation, see: http://astyle.sourceforge.net/astyle.html
#
# usage:
#       astyle --options=astylerc *.[ch]

# Do not create backup, annonying in the times of git
suffix=none

## Bracket Style Options
style=kr

## Tab Options
indent=spaces=3

Name change from libtommath/bncore.c to libtommath/bn_cutoffs.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include "tommath_private.h"
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Known optimal configurations

 CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
 Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
 AMD Athlon64           /GCC v3.4.4   /        80/       120/LTM 0.35

*/

int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */

        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
        TOOM_SQR_CUTOFF      = 400;
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
|
<
<
<
<
<
<
<
<
|
<

<
|
<
<
<
<
|
<
|
<
|
|
<
|


<
<
<
>
1
2
3








4

5

6




7

8

9
10

11
12
13



14
#include "tommath_private.h"
#ifdef BN_CUTOFFS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */



#ifndef MP_FIXED_CUTOFFS




#include "tommath_cutoffs.h"

int KARATSUBA_MUL_CUTOFF = MP_DEFAULT_KARATSUBA_MUL_CUTOFF,

    KARATSUBA_SQR_CUTOFF = MP_DEFAULT_KARATSUBA_SQR_CUTOFF,
    TOOM_MUL_CUTOFF = MP_DEFAULT_TOOM_MUL_CUTOFF,

    TOOM_SQR_CUTOFF = MP_DEFAULT_TOOM_SQR_CUTOFF;
#endif




#endif
Added libtommath/bn_deprecated.c.
































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include "tommath_private.h"
#ifdef BN_DEPRECATED_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

#ifdef BN_MP_GET_BIT_C
int mp_get_bit(const mp_int *a, int b)
{
   if (b < 0) {
      return MP_VAL;
   }
   return (s_mp_get_bit(a, (unsigned int)b) == MP_YES) ? MP_YES : MP_NO;
}
#endif
#ifdef BN_MP_JACOBI_C
mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
   if (a->sign == MP_NEG) {
      return MP_VAL;
   }
   if (mp_cmp_d(n, 0uL) != MP_GT) {
      return MP_VAL;
   }
   return mp_kronecker(a, n, c);
}
#endif
#ifdef BN_MP_PRIME_RANDOM_EX_C
mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat)
{
   return s_mp_prime_random_ex(a, t, size, flags, cb, dat);
}
#endif
#ifdef BN_MP_RAND_DIGIT_C
mp_err mp_rand_digit(mp_digit *r)
{
   mp_err err = s_mp_rand_source(r, sizeof(mp_digit));
   *r &= MP_MASK;
   return err;
}
#endif
#ifdef BN_FAST_MP_INVMOD_C
mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   return s_mp_invmod_fast(a, b, c);
}
#endif
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   return s_mp_montgomery_reduce_fast(x, n, rho);
}
#endif
#ifdef BN_FAST_S_MP_MUL_DIGS_C
mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   return s_mp_mul_digs_fast(a, b, c, digs);
}
#endif
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   return s_mp_mul_high_digs_fast(a, b, c, digs);
}
#endif
#ifdef BN_FAST_S_MP_SQR_C
mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
   return s_mp_sqr_fast(a, b);
}
#endif
#ifdef BN_MP_BALANCE_MUL_C
mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   return s_mp_balance_mul(a, b, c);
}
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   return s_mp_exptmod_fast(G, X, P, Y, redmode);
}
#endif
#ifdef BN_MP_INVMOD_SLOW_C
mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
   return s_mp_invmod_slow(a, b, c);
}
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   return s_mp_karatsuba_mul(a, b, c);
}
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   return s_mp_karatsuba_sqr(a, b);
}
#endif
#ifdef BN_MP_TOOM_MUL_C
mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   return s_mp_toom_mul(a, b, c);
}
#endif
#ifdef BN_MP_TOOM_SQR_C
mp_err mp_toom_sqr(const mp_int *a, mp_int *b)
{
   return s_mp_toom_sqr(a, b);
}
#endif
#ifdef S_MP_REVERSE_C
void bn_reverse(unsigned char *s, int len)
{
   s_mp_reverse(s, len);
}
#endif
#ifdef BN_MP_TC_AND_C
mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c)
{
   return mp_and(a, b, c);
}
#endif
#ifdef BN_MP_TC_OR_C
mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   return mp_or(a, b, c);
}
#endif
#ifdef BN_MP_TC_XOR_C
mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
   return mp_xor(a, b, c);
}
#endif
#ifdef BN_MP_TC_DIV_2D_C
mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c)
{
   return mp_signed_rsh(a, b, c);
}
#endif
#ifdef BN_MP_INIT_SET_INT_C
mp_err mp_init_set_int(mp_int *a, unsigned long b)
{
   return mp_init_u32(a, (unsigned int)b);
}
#endif
#ifdef BN_MP_SET_INT_C
mp_err mp_set_int(mp_int *a, unsigned long b)
{
   mp_set_ul(a, (unsigned int)b);
   return MP_OKAY;
}
#endif
#ifdef BN_MP_SET_LONG_C
mp_err mp_set_long(mp_int *a, unsigned long b)
{
   mp_set_u64(a, b);
   return MP_OKAY;
}
#endif
#ifdef BN_MP_SET_LONG_LONG_C
mp_err mp_set_long_long(mp_int *a, unsigned long long b)
{
   mp_set_u64(a, b);
   return MP_OKAY;
}
#endif
#ifdef BN_MP_GET_INT_C
unsigned long mp_get_int(const mp_int *a)
{
   return mp_get_mag32(a);
}
#endif
#ifdef BN_MP_GET_LONG_C
unsigned long mp_get_long(const mp_int *a)
{
   return (sizeof(long) > sizeof(int32_t)) ? (unsigned long)mp_get_mag64(a) : (unsigned long)mp_get_mag32(a);
}
#endif
#ifdef BN_MP_GET_LONG_LONG_C
unsigned long long mp_get_long_long(const mp_int *a)
{
   return (unsigned long long)mp_get_mag64(a);
}
#endif
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result)
{
   return s_mp_prime_is_divisible(a, result);
}
#endif
#ifdef BN_MP_EXPT_D_EX_C
mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   (void)fast;
   return mp_expt_d(a, b, c);
}
#endif
#ifdef BN_MP_N_ROOT_EX_C
mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   (void)fast;
   return mp_n_root(a, b, c);
}
#endif
#endif
Changes to libtommath/bn_mp_2expt.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes a = 2**b
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
int mp_2expt(mp_int *a, int b)
{
   int     res;

   /* zero a as per default */
   mp_zero(a);

   /* grow a to accomodate the single bit */
   if ((res = mp_grow(a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
      return res;
   }

   /* set the used count of where the bit will go */
   a->used = (b / DIGIT_BIT) + 1;

   /* put the single bit in its place */
   a->dp[b / DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % DIGIT_BIT);

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<






|

|





|
|



|


|




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31




#include "tommath_private.h"
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes a = 2**b
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
mp_err mp_2expt(mp_int *a, int b)
{
   mp_err    err;

   /* zero a as per default */
   mp_zero(a);

   /* grow a to accomodate the single bit */
   if ((err = mp_grow(a, (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) {
      return err;
   }

   /* set the used count of where the bit will go */
   a->used = (b / MP_DIGIT_BIT) + 1;

   /* put the single bit in its place */
   a->dp[b / MP_DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT);

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_abs.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "tommath_private.h"
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = |a|
 *
 * Simple function copies the input and fixes the sign to positive
 */
int mp_abs(const mp_int *a, mp_int *b)
{
   int     res;

   /* copy a to b */
   if (a != b) {
      if ((res = mp_copy(a, b)) != MP_OKAY) {
         return res;
      }
   }

   /* force the sign of b to positive */
   b->sign = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





|

|



|
|









<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26




#include "tommath_private.h"
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* b = |a|
 *
 * Simple function copies the input and fixes the sign to positive
 */
mp_err mp_abs(const mp_int *a, mp_int *b)
{
   mp_err     err;

   /* copy a to b */
   if (a != b) {
      if ((err = mp_copy(a, b)) != MP_OKAY) {
         return err;
      }
   }

   /* force the sign of b to positive */
   b->sign = MP_ZPOS;

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_add.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include "tommath_private.h"
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* high level addition (handles signs) */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     sa, sb, res;


   /* get sign of both inputs */
   sa = a->sign;
   sb = b->sign;

   /* handle two cases, not four */
   if (sa == sb) {
      /* both positive or both negative */
      /* add their magnitudes, copy the sign */
      c->sign = sa;
      res = s_mp_add(a, b, c);
   } else {
      /* one positive, the other negative */
      /* subtract the one with the greater magnitude from */
      /* the one of the lesser magnitude.  The result gets */
      /* the sign of the one with the greater magnitude. */
      if (mp_cmp_mag(a, b) == MP_LT) {
         c->sign = sb;
         res = s_mp_sub(b, a, c);
      } else {
         c->sign = sa;
         res = s_mp_sub(a, b, c);
      }
   }
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
>










|







|


|


|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38




#include "tommath_private.h"
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* high level addition (handles signs) */
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_sign sa, sb;
   mp_err err;

   /* get sign of both inputs */
   sa = a->sign;
   sb = b->sign;

   /* handle two cases, not four */
   if (sa == sb) {
      /* both positive or both negative */
      /* add their magnitudes, copy the sign */
      c->sign = sa;
      err = s_mp_add(a, b, c);
   } else {
      /* one positive, the other negative */
      /* subtract the one with the greater magnitude from */
      /* the one of the lesser magnitude.  The result gets */
      /* the sign of the one with the greater magnitude. */
      if (mp_cmp_mag(a, b) == MP_LT) {
         c->sign = sb;
         err = s_mp_sub(b, a, c);
      } else {
         c->sign = sa;
         err = s_mp_sub(a, b, c);
      }
   }
   return err;
}

#endif




Changes to libtommath/bn_mp_add_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include "tommath_private.h"
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* single digit addition */
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{

   int     res, ix, oldused;
   mp_digit *tmpa, *tmpc, mu;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* if a is negative and |a| >= b, call c = |a| - b */
   if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
      mp_int a_ = *a;
      /* temporarily fix sign of a */
      a_.sign = MP_ZPOS;

      /* c = |a| - b */
      res = mp_sub_d(&a_, b, c);

      /* fix sign  */
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return res;
   }

   /* old number of used digits in c */
   oldused = c->used;

   /* source alias */
   tmpa    = a->dp;

   /* destination alias */
   tmpc    = c->dp;

   /* if a is positive */
   if (a->sign == MP_ZPOS) {
      /* add digit, after this we're propagating
       * the carry.
       */
      *tmpc   = *tmpa++ + b;
      mu      = *tmpc >> DIGIT_BIT;
      *tmpc++ &= MP_MASK;

      /* now handle rest of the digits */
      for (ix = 1; ix < a->used; ix++) {
         *tmpc   = *tmpa++ + mu;
         mu      = *tmpc >> DIGIT_BIT;
         *tmpc++ &= MP_MASK;
      }
      /* set final carry */
      ix++;
      *tmpc++  = mu;

      /* setup size */


|
<
<
<
<
<
<
<
<
|
<


|

>
|
|



|
|










|







|













|
<
<
<
<
<
|
<
|

|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49





50

51
52
53
54
55
56
57
58
59
60
#include "tommath_private.h"
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* single digit addition */
mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_err     err;
   int ix, oldused;
   mp_digit *tmpa, *tmpc;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* if a is negative and |a| >= b, call c = |a| - b */
   if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
      mp_int a_ = *a;
      /* temporarily fix sign of a */
      a_.sign = MP_ZPOS;

      /* c = |a| - b */
      err = mp_sub_d(&a_, b, c);

      /* fix sign  */
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return err;
   }

   /* old number of used digits in c */
   oldused = c->used;

   /* source alias */
   tmpa    = a->dp;

   /* destination alias */
   tmpc    = c->dp;

   /* if a is positive */
   if (a->sign == MP_ZPOS) {
      /* add digits, mu is carry */





      mp_digit mu = b;

      for (ix = 0; ix < a->used; ix++) {
         *tmpc   = *tmpa++ + mu;
         mu      = *tmpc >> MP_DIGIT_BIT;
         *tmpc++ &= MP_MASK;
      }
      /* set final carry */
      ix++;
      *tmpc++  = mu;

      /* setup size */
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
      ix       = 1;
   }

   /* sign always positive */
   c->sign = MP_ZPOS;

   /* now zero to oldused */
   while (ix++ < oldused) {
      *tmpc++ = 0;
   }
   mp_clamp(c);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|
<
<






<
<
<
<
76
77
78
79
80
81
82
83


84
85
86
87
88
89




      ix       = 1;
   }

   /* sign always positive */
   c->sign = MP_ZPOS;

   /* now zero to oldused */
   MP_ZERO_DIGITS(tmpc, oldused - ix);


   mp_clamp(c);

   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_addmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_add(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|


|
|


|

|

|

|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24




#include "tommath_private.h"
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* d = a + b (mod c) */
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
   mp_err  err;
   mp_int  t;

   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_add(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return err;
   }
   err = mp_mod(&t, c, d);
   mp_clear(&t);
   return err;
}
#endif




Changes to libtommath/bn_mp_and.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

26






27

28
29
30
31
32



33



34
35
36
37
38





39
40
41
42
43
44


45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* AND two ints together */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;


   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }

      px = b->used;






      x = b;

   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;



      x = a;



   }

   for (ix = 0; ix < px; ix++) {
      t.dp[ix] &= x->dp[ix];
   }






   /* zero digits above the last from the smallest mp_int */
   for (; ix < t.used; ix++) {
      t.dp[ix] = 0;
   }



   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|
|

|
|
|
>

|
|
|

>
|
>
>
>
>
>
>
|
>
|
|
<

|
>
>
>
|
>
>
>
|

<
|
|
>
>
>
>
>
|
<
<
<


>
>
|
<
<



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48



49
50
51
52
53


54
55
56




#include "tommath_private.h"
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* two complement and */
mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
   int used = MP_MAX(a->used, b->used) + 1, i;
   mp_err err;
   mp_digit ac = 1, bc = 1, cc = 1;
   mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS;

   if (c->alloc < used) {
      if ((err = mp_grow(c, used)) != MP_OKAY) {
         return err;
      }
   }

   for (i = 0; i < used; i++) {
      mp_digit x, y;

      /* convert to two complement if negative */
      if (a->sign == MP_NEG) {
         ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
         x = ac & MP_MASK;
         ac >>= MP_DIGIT_BIT;
      } else {
         x = (i >= a->used) ? 0uL : a->dp[i];

      }

      /* convert to two complement if negative */
      if (b->sign == MP_NEG) {
         bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
         y = bc & MP_MASK;
         bc >>= MP_DIGIT_BIT;
      } else {
         y = (i >= b->used) ? 0uL : b->dp[i];
      }


      c->dp[i] = x & y;

      /* convert to to sign-magnitude if negative */
      if (csign == MP_NEG) {
         cc += ~c->dp[i] & MP_MASK;
         c->dp[i] = cc & MP_MASK;
         cc >>= MP_DIGIT_BIT;
      }



   }

   c->used = used;
   c->sign = csign;
   mp_clamp(c);


   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_clamp.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include "tommath_private.h"
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* trim unused digits
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits


|
<
<
<
<
<
<
<
<
|
<







1
2
3








4

5
6
7
8
9
10
11
#include "tommath_private.h"
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* trim unused digits
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
30
31
32
33
34
35
36
37
38
39
40

   /* reset the sign flag if used == 0 */
   if (a->used == 0) {
      a->sign = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
21
22
23
24
25
26
27





   /* reset the sign flag if used == 0 */
   if (a->used == 0) {
      a->sign = MP_ZPOS;
   }
}
#endif




Changes to libtommath/bn_mp_clear.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* clear one (frees)  */
void mp_clear(mp_int *a)
{
   int i;

   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {
      /* first zero the digits */
      for (i = 0; i < a->used; i++) {
         a->dp[i] = 0;
      }

      /* free ram */
      XFREE(a->dp, sizeof (mp_digit) * (size_t)a->alloc);

      /* reset members to make debugging easier */
      a->dp    = NULL;
      a->alloc = a->used = 0;
      a->sign  = MP_ZPOS;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<




<
<


<
<
<
<
<

|








<
<
<
<
1
2
3








4

5
6
7
8


9
10





11
12
13
14
15
16
17
18
19
20




#include "tommath_private.h"
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* clear one (frees)  */
void mp_clear(mp_int *a)
{


   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {





      /* free ram */
      MP_FREE_DIGITS(a->dp, a->alloc);

      /* reset members to make debugging easier */
      a->dp    = NULL;
      a->alloc = a->used = 0;
      a->sign  = MP_ZPOS;
   }
}
#endif




Changes to libtommath/bn_mp_clear_multi.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...)
{
   mp_int *next_mp = mp;
   va_list args;
   va_start(args, mp);
   while (next_mp != NULL) {
      mp_clear(next_mp);
      next_mp = va_arg(args, mp_int *);
   }
   va_end(args);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<















<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19




#include "tommath_private.h"
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#include <stdarg.h>

void mp_clear_multi(mp_int *mp, ...)
{
   mp_int *next_mp = mp;
   va_list args;
   va_start(args, mp);
   while (next_mp != NULL) {
      mp_clear(next_mp);
      next_mp = va_arg(args, mp_int *);
   }
   va_end(args);
}
#endif




Changes to libtommath/bn_mp_cmp.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include "tommath_private.h"
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* compare two ints (signed)*/
int mp_cmp(const mp_int *a, const mp_int *b)
{
   /* compare based on sign */
   if (a->sign != b->sign) {
      if (a->sign == MP_NEG) {
         return MP_LT;
      } else {
         return MP_GT;
      }
   }

   /* compare digits */
   if (a->sign == MP_NEG) {
      /* if negative compare opposite direction */
      return mp_cmp_mag(b, a);
   } else {
      return mp_cmp_mag(a, b);
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|



















<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26




#include "tommath_private.h"
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* compare two ints (signed)*/
mp_ord mp_cmp(const mp_int *a, const mp_int *b)
{
   /* compare based on sign */
   if (a->sign != b->sign) {
      if (a->sign == MP_NEG) {
         return MP_LT;
      } else {
         return MP_GT;
      }
   }

   /* compare digits */
   if (a->sign == MP_NEG) {
      /* if negative compare opposite direction */
      return mp_cmp_mag(b, a);
   } else {
      return mp_cmp_mag(a, b);
   }
}
#endif




Changes to libtommath/bn_mp_cmp_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "tommath_private.h"
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* compare a digit */
int mp_cmp_d(const mp_int *a, mp_digit b)
{
   /* compare based on sign */
   if (a->sign == MP_NEG) {
      return MP_LT;
   }

   /* compare based on magnitude */


|
<
<
<
<
<
<
<
<
|
<


|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
#include "tommath_private.h"
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* compare a digit */
mp_ord mp_cmp_d(const mp_int *a, mp_digit b)
{
   /* compare based on sign */
   if (a->sign == MP_NEG) {
      return MP_LT;
   }

   /* compare based on magnitude */
31
32
33
34
35
36
37
38
39
40
41
   } else if (a->dp[0] < b) {
      return MP_LT;
   } else {
      return MP_EQ;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
22
23
24
25
26
27
28




   } else if (a->dp[0] < b) {
      return MP_LT;
   } else {
      return MP_EQ;
   }
}
#endif




Changes to libtommath/bn_mp_cmp_mag.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include "tommath_private.h"
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag(const mp_int *a, const mp_int *b)
{
   int     n;
   mp_digit *tmpa, *tmpb;

   /* compare based on # of non-zero digits */
   if (a->used > b->used) {
      return MP_GT;
   }

   if (a->used < b->used) {


|
<
<
<
<
<
<
<
<
|
<


|


|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
#include "tommath_private.h"
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* compare maginitude of two ints (unsigned) */
mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b)
{
   int     n;
   const mp_digit *tmpa, *tmpb;

   /* compare based on # of non-zero digits */
   if (a->used > b->used) {
      return MP_GT;
   }

   if (a->used < b->used) {
42
43
44
45
46
47
48
49
50
51
52
      if (*tmpa < *tmpb) {
         return MP_LT;
      }
   }
   return MP_EQ;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
33
34
35
36
37
38
39




      if (*tmpa < *tmpb) {
         return MP_LT;
      }
   }
   return MP_EQ;
}
#endif




Changes to libtommath/bn_mp_cnt_lsb.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include "tommath_private.h"
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

static const int lnz[16] = {
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (mp_iszero(a) == MP_YES) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
   q = a->dp[x];
   x *= DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1u) == 0u) {
      do {
         qq  = q & 15u;
         x  += lnz[qq];
         q >>= 4;
      } while (qq == 0u);
   }
   return x;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<












|






|













<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37




#include "tommath_private.h"
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


static const int lnz[16] = {
   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
   int x;
   mp_digit q, qq;

   /* easy out */
   if (MP_IS_ZERO(a)) {
      return 0;
   }

   /* scan lower digits until non-zero */
   for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
   q = a->dp[x];
   x *= MP_DIGIT_BIT;

   /* now scan this digit until a 1 is found */
   if ((q & 1u) == 0u) {
      do {
         qq  = q & 15u;
         x  += lnz[qq];
         q >>= 4;
      } while (qq == 0u);
   }
   return x;
}

#endif




Changes to libtommath/bn_mp_complement.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_COMPLEMENT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = ~a */
int mp_complement(const mp_int *a, mp_int *b)
{
   int res = mp_neg(a, b);
   return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12




#include "tommath_private.h"
#ifdef BN_MP_COMPLEMENT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* b = ~a */
mp_err mp_complement(const mp_int *a, mp_int *b)
{
   mp_err err = mp_neg(a, b);
   return (err == MP_OKAY) ? mp_sub_d(b, 1uL, b) : err;
}
#endif




Changes to libtommath/bn_mp_copy.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "tommath_private.h"
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* copy, b = a */
int mp_copy(const mp_int *a, mp_int *b)
{
   int     res, n;


   /* if dst == src do nothing */
   if (a == b) {
      return MP_OKAY;
   }

   /* grow dest */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   /* zero b and copy the parameters over */
   {
      mp_digit *tmpa, *tmpb;



|
<
<
<
<
<
<
<
<
|
<


|

|
>








|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include "tommath_private.h"
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* copy, b = a */
mp_err mp_copy(const mp_int *a, mp_int *b)
{
   int n;
   mp_err err;

   /* if dst == src do nothing */
   if (a == b) {
      return MP_OKAY;
   }

   /* grow dest */
   if (b->alloc < a->used) {
      if ((err = mp_grow(b, a->used)) != MP_OKAY) {
         return err;
      }
   }

   /* zero b and copy the parameters over */
   {
      mp_digit *tmpa, *tmpb;

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

      /* copy all the digits */
      for (n = 0; n < a->used; n++) {
         *tmpb++ = *tmpa++;
      }

      /* clear high digits */
      for (; n < b->used; n++) {
         *tmpb++ = 0;
      }
   }

   /* copy used count and sign */
   b->used = a->used;
   b->sign = a->sign;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|
<
<








<
<
<
<
35
36
37
38
39
40
41
42


43
44
45
46
47
48
49
50





      /* copy all the digits */
      for (n = 0; n < a->used; n++) {
         *tmpb++ = *tmpa++;
      }

      /* clear high digits */
      MP_ZERO_DIGITS(tmpb, b->used - n);


   }

   /* copy used count and sign */
   b->used = a->used;
   b->sign = a->sign;
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_count_bits.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* returns the number of bits in an int */
int mp_count_bits(const mp_int *a)
{
   int     r;
   mp_digit q;

   /* shortcut */
   if (a->used == 0) {
      return 0;
   }

   /* get number of digits and add that */
   r = (a->used - 1) * DIGIT_BIT;

   /* take the last digit and count the bits in it */
   q = a->dp[a->used - 1];
   while (q > (mp_digit)0) {
      ++r;
      q >>= (mp_digit)1;
   }
   return r;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<








|




|



|

|




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include "tommath_private.h"
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* returns the number of bits in an int */
int mp_count_bits(const mp_int *a)
{
   int     r;
   mp_digit q;

   /* shortcut */
   if (MP_IS_ZERO(a)) {
      return 0;
   }

   /* get number of digits and add that */
   r = (a->used - 1) * MP_DIGIT_BIT;

   /* take the last digit and count the bits in it */
   q = a->dp[a->used - 1];
   while (q > 0u) {
      ++r;
      q >>= 1u;
   }
   return r;
}
#endif




Added libtommath/bn_mp_decr.c.




































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_MP_DECR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* Decrement "a" by one like "a--". Changes input! */
mp_err mp_decr(mp_int *a)
{
   if (MP_IS_ZERO(a)) {
      mp_set(a,1uL);
      a->sign = MP_NEG;
      return MP_OKAY;
   } else if (a->sign == MP_NEG) {
      mp_err err;
      a->sign = MP_ZPOS;
      if ((err = mp_incr(a)) != MP_OKAY) {
         return err;
      }
      /* There is no -0 in LTM */
      if (!MP_IS_ZERO(a)) {
         a->sign = MP_NEG;
      }
      return MP_OKAY;
   } else if (a->dp[0] > 1uL) {
      a->dp[0]--;
      if (a->dp[0] == 0u) {
         mp_zero(a);
      }
      return MP_OKAY;
   } else {
      return mp_sub_d(a, 1uL,a);
   }
}
#endif
Changes to libtommath/bn_mp_div.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;


   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   /* init our temps */
   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return res;
   }


   mp_set(&tq, 1uL);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
   }

   while (n-- >= 0) {
      if (mp_cmp(&tb, &ta) != MP_GT) {
         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
         }
      }
      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
         goto LBL_ERR;
      }
   }

   /* now q == quotient and ta == remainder */
   n  = a->sign;
   n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   if (c != NULL) {
      mp_exch(c, &q);
      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
   }
   if (d != NULL) {
      mp_exch(d, &ta);
      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
   }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}

#else

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;



   /* is divisor zero ? */
   if (mp_iszero(b) == MP_YES) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         res = mp_copy(a, d);
      } else {
         res = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return res;
   }

   if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return res;
   }
   q.used = a->used + 2;

   if ((res = mp_init(&t1)) != MP_OKAY) {
      goto LBL_Q;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
      goto LBL_T2;
   }

   if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
      goto LBL_X;
   }

   /* fix the sign */
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
   norm = mp_count_bits(&y) % DIGIT_BIT;
   if (norm < (DIGIT_BIT - 1)) {
      norm = (DIGIT_BIT - 1) - norm;
      if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
      if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
         goto LBL_Y;
      }
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
      goto LBL_Y;
   }

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1;
      } else {
         mp_word tmp;
         tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT;
         tmp |= (mp_word)x.dp[i - 1];
         tmp /= (mp_word)y.dp[t];
         if (tmp > (mp_word)MP_MASK) {
            tmp = MP_MASK;
         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
      }


|
<
<
<
<
<
<
<
<
|
<




|


|
>


|






|

|




|



|
|





|
|
|
|





|
|



|
|









|



|



|

















|


|
>
>


|






|

|




|


|
|



|



|



|



|







|
|
|
|
|


|











|





|
















|


|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#ifdef BN_MP_DIV_SMALL

/* slower bit-bang division... also smaller */
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int ta, tb, tq, q;
   int     n, n2;
   mp_err err;

   /* is divisor zero ? */
   if (MP_IS_ZERO(b)) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         err = mp_copy(a, d);
      } else {
         err = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return err;
   }

   /* init our temps */
   if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return err;
   }


   mp_set(&tq, 1uL);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((err = mp_abs(a, &ta)) != MP_OKAY) ||
       ((err = mp_abs(b, &tb)) != MP_OKAY) ||
       ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
   }

   while (n-- >= 0) {
      if (mp_cmp(&tb, &ta) != MP_GT) {
         if (((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
             ((err = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
         }
      }
      if (((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
          ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
         goto LBL_ERR;
      }
   }

   /* now q == quotient and ta == remainder */
   n  = a->sign;
   n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   if (c != NULL) {
      mp_exch(c, &q);
      c->sign  = MP_IS_ZERO(c) ? MP_ZPOS : n2;
   }
   if (d != NULL) {
      mp_exch(d, &ta);
      d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n;
   }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return err;
}

#else

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int  q, x, y, t1, t2;
   int     n, t, i, norm;
   mp_sign neg;
   mp_err  err;

   /* is divisor zero ? */
   if (MP_IS_ZERO(b)) {
      return MP_VAL;
   }

   /* if a < b then q=0, r = a */
   if (mp_cmp_mag(a, b) == MP_LT) {
      if (d != NULL) {
         err = mp_copy(a, d);
      } else {
         err = MP_OKAY;
      }
      if (c != NULL) {
         mp_zero(c);
      }
      return err;
   }

   if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return err;
   }
   q.used = a->used + 2;

   if ((err = mp_init(&t1)) != MP_OKAY) {
      goto LBL_Q;
   }

   if ((err = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((err = mp_init_copy(&x, a)) != MP_OKAY) {
      goto LBL_T2;
   }

   if ((err = mp_init_copy(&y, b)) != MP_OKAY) {
      goto LBL_X;
   }

   /* fix the sign */
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
   norm = mp_count_bits(&y) % MP_DIGIT_BIT;
   if (norm < (MP_DIGIT_BIT - 1)) {
      norm = (MP_DIGIT_BIT - 1) - norm;
      if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
      if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
         goto LBL_Y;
      }
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   if ((err = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
      goto LBL_Y;
   }

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) {
         goto LBL_Y;
      }
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
      } else {
         mp_word tmp;
         tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
         tmp |= (mp_word)x.dp[i - 1];
         tmp /= (mp_word)y.dp[t];
         if (tmp > (mp_word)MP_MASK) {
            tmp = MP_MASK;
         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
      }
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;

         /* find left hand */
         mp_zero(&t1);
         t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;
         if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* find right hand */
         t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
         t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (x.sign == MP_NEG) {
         if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
            goto LBL_Y;
         }

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
      }
   }








|





|





|



|



|





|


|


|







203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;

         /* find left hand */
         mp_zero(&t1);
         t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;
         if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* find right hand */
         t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
         t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
         goto LBL_Y;
      }

      if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) {
         goto LBL_Y;
      }

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (x.sign == MP_NEG) {
         if ((err = mp_copy(&y, &t1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
            goto LBL_Y;
         }
         if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) {
            goto LBL_Y;
         }

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
      }
   }

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = neg;
   }

   if (d != NULL) {
      if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
         goto LBL_Y;
      }
      mp_exch(&x, d);
   }

   res = MP_OKAY;

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return res;
}

#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|





|











|





<
<
<
<
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287




   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = neg;
   }

   if (d != NULL) {
      if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
         goto LBL_Y;
      }
      mp_exch(&x, d);
   }

   err = MP_OKAY;

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return err;
}

#endif

#endif




Changes to libtommath/bn_mp_div_2.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b)
{
   int     x, res, oldused;


   /* copy */
   if (b->alloc < a->used) {
      if ((res = mp_grow(b, a->used)) != MP_OKAY) {
         return res;
      }
   }

   oldused = b->used;
   b->used = a->used;
   {
      mp_digit r, rr, *tmpa, *tmpb;


|
<
<
<
<
<
<
<
<
|
<


|

|
>



|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "tommath_private.h"
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* b = a/2 */
mp_err mp_div_2(const mp_int *a, mp_int *b)
{
   int     x, oldused;
   mp_err err;

   /* copy */
   if (b->alloc < a->used) {
      if ((err = mp_grow(b, a->used)) != MP_OKAY) {
         return err;
      }
   }

   oldused = b->used;
   b->used = a->used;
   {
      mp_digit r, rr, *tmpa, *tmpb;
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
      /* carry */
      r = 0;
      for (x = b->used - 1; x >= 0; x--) {
         /* get the carry for the next iteration */
         rr = *tmpa & 1u;

         /* shift the current digit, add in carry and store */
         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

         /* forward carry to next iteration */
         r = rr;
      }

      /* zero excess digits */
      tmpb = b->dp + b->used;
      for (x = b->used; x < oldused; x++) {
         *tmpb++ = 0;
      }
   }
   b->sign = a->sign;
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|






|
<
<
<






<
<
<
<
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44



45
46
47
48
49
50




      /* carry */
      r = 0;
      for (x = b->used - 1; x >= 0; x--) {
         /* get the carry for the next iteration */
         rr = *tmpa & 1u;

         /* shift the current digit, add in carry and store */
         *tmpb-- = (*tmpa-- >> 1) | (r << (MP_DIGIT_BIT - 1));

         /* forward carry to next iteration */
         r = rr;
      }

      /* zero excess digits */
      MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used);



   }
   b->sign = a->sign;
   mp_clamp(b);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_div_2d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include "tommath_private.h"
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
{
   mp_digit D, r, rr;
   int     x, res;


   /* if the shift count is <= 0 then we do no work */
   if (b <= 0) {
      res = mp_copy(a, c);
      if (d != NULL) {
         mp_zero(d);
      }
      return res;
   }

   /* copy */
   if ((res = mp_copy(a, c)) != MP_OKAY) {
      return res;
   }
   /* 'a' should not be used after here - it might be the same as d */

   /* get the remainder */
   if (d != NULL) {
      if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) {
         return res;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= DIGIT_BIT) {
      mp_rshd(c, b / DIGIT_BIT);
   }

   /* shift any bit count < DIGIT_BIT */
   D = (mp_digit)(b % DIGIT_BIT);
   if (D != 0u) {
      mp_digit *tmpc, mask, shift;

      /* mask */
      mask = ((mp_digit)1 << D) - 1uL;

      /* shift for lsb */
      shift = (mp_digit)DIGIT_BIT - D;

      /* alias */
      tmpc = c->dp + (c->used - 1);

      /* carry */
      r = 0;
      for (x = c->used - 1; x >= 0; x--) {


|
<
<
<
<
<
<
<
<
|
<


|


|
>



|



|



|
|





|
|




|
|


|
|







|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "tommath_private.h"
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
{
   mp_digit D, r, rr;
   int     x;
   mp_err err;

   /* if the shift count is <= 0 then we do no work */
   if (b <= 0) {
      err = mp_copy(a, c);
      if (d != NULL) {
         mp_zero(d);
      }
      return err;
   }

   /* copy */
   if ((err = mp_copy(a, c)) != MP_OKAY) {
      return err;
   }
   /* 'a' should not be used after here - it might be the same as d */

   /* get the remainder */
   if (d != NULL) {
      if ((err = mp_mod_2d(a, b, d)) != MP_OKAY) {
         return err;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= MP_DIGIT_BIT) {
      mp_rshd(c, b / MP_DIGIT_BIT);
   }

   /* shift any bit count < MP_DIGIT_BIT */
   D = (mp_digit)(b % MP_DIGIT_BIT);
   if (D != 0u) {
      mp_digit *tmpc, mask, shift;

      /* mask */
      mask = ((mp_digit)1 << D) - 1uL;

      /* shift for lsb */
      shift = (mp_digit)MP_DIGIT_BIT - D;

      /* alias */
      tmpc = c->dp + (c->used - 1);

      /* carry */
      r = 0;
      for (x = c->used - 1; x >= 0; x--) {
73
74
75
76
77
78
79
80
81
82
83
         r = rr;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
65
66
67
68
69
70
71




         r = rr;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_div_3.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* divide by three (based on routine from MPI and the GMP manual) */
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
   mp_int   q;
   mp_word  w, t;
   mp_digit b;

   int      res, ix;

   /* b = 2**DIGIT_BIT / 3 */
   b = ((mp_word)1 << (mp_word)DIGIT_BIT) / (mp_word)3;

   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= 3u) {
         /* multiply w by [1/3] */
         t = (w * (mp_word)b) >> (mp_word)DIGIT_BIT;

         /* now subtract 3 * [w/3] from w, to get the remainder */
         w -= t+t+t;

         /* fixup the remainder as required since
          * the optimization is not exact.
          */


|
<
<
<
<
<
<
<
<
|
<


|




>
|

|
|

|
|






|



|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* divide by three (based on routine from MPI and the GMP manual) */
mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
   mp_int   q;
   mp_word  w, t;
   mp_digit b;
   mp_err   err;
   int      ix;

   /* b = 2**MP_DIGIT_BIT / 3 */
   b = ((mp_word)1 << (mp_word)MP_DIGIT_BIT) / (mp_word)3;

   if ((err = mp_init_size(&q, a->used)) != MP_OKAY) {
      return err;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= 3u) {
         /* multiply w by [1/3] */
         t = (w * (mp_word)b) >> (mp_word)MP_DIGIT_BIT;

         /* now subtract 3 * [w/3] from w, to get the remainder */
         w -= t+t+t;

         /* fixup the remainder as required since
          * the optimization is not exact.
          */
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
   /* [optional] store the quotient */
   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|



<
<
<
<
53
54
55
56
57
58
59
60
61
62
63




   /* [optional] store the quotient */
   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return err;
}

#endif




Changes to libtommath/bn_mp_div_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58




59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include "tommath_private.h"
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

static int s_is_power_of_two(mp_digit b, int *p)
{
   int x;

   /* fast return if no power of two */
   if ((b == 0u) || ((b & (b-1u)) != 0u)) {
      return 0;
   }

   for (x = 0; x < DIGIT_BIT; x++) {
      if (b == ((mp_digit)1<<(mp_digit)x)) {
         *p = x;
         return 1;
      }
   }
   return 0;
}

/* single digit division (based on routine from MPI) */
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
   mp_int  q;
   mp_word w;
   mp_digit t;

   int     res, ix;

   /* cannot divide by zero */
   if (b == 0u) {
      return MP_VAL;
   }

   /* quick outs */
   if ((b == 1u) || (mp_iszero(a) == MP_YES)) {
      if (d != NULL) {
         *d = 0;
      }
      if (c != NULL) {
         return mp_copy(a, c);
      }
      return MP_OKAY;
   }

   /* power of two ? */
   if (s_is_power_of_two(b, &ix) == 1) {




      if (d != NULL) {
         *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
      }
      if (c != NULL) {
         return mp_div_2d(a, ix, c, NULL);
      }
      return MP_OKAY;
   }

#ifdef BN_MP_DIV_3_C
   /* three? */
   if (b == 3u) {
      return mp_div_3(a, c, d);
   }
#endif

   /* no easy answer [c'est la vie].  Just division */
   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= b) {
         t = (mp_digit)(w / b);
         w -= (mp_word)t * (mp_word)b;
      } else {
         t = 0;
      }
      q.dp[ix] = t;
   }

   if (d != NULL) {
      *d = (mp_digit)w;
   }

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|




>
|







|










|
>
>
>
>

















|
|






|




















|



<
<
<
<
1
2
3








4

5


















6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86




#include "tommath_private.h"
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */




















/* single digit division (based on routine from MPI) */
mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
   mp_int  q;
   mp_word w;
   mp_digit t;
   mp_err err;
   int ix;

   /* cannot divide by zero */
   if (b == 0u) {
      return MP_VAL;
   }

   /* quick outs */
   if ((b == 1u) || MP_IS_ZERO(a)) {
      if (d != NULL) {
         *d = 0;
      }
      if (c != NULL) {
         return mp_copy(a, c);
      }
      return MP_OKAY;
   }

   /* power of two ? */
   if ((b & (b-1)) == 0u) {
      ix = 1;
      while ((ix < MP_DIGIT_BIT) && (b != (((mp_digit)1)<<ix))) {
         ix++;
      }
      if (d != NULL) {
         *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
      }
      if (c != NULL) {
         return mp_div_2d(a, ix, c, NULL);
      }
      return MP_OKAY;
   }

#ifdef BN_MP_DIV_3_C
   /* three? */
   if (b == 3u) {
      return mp_div_3(a, c, d);
   }
#endif

   /* no easy answer [c'est la vie].  Just division */
   if ((err = mp_init_size(&q, a->used)) != MP_OKAY) {
      return err;
   }

   q.used = a->used;
   q.sign = a->sign;
   w = 0;
   for (ix = a->used - 1; ix >= 0; ix--) {
      w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];

      if (w >= b) {
         t = (mp_digit)(w / b);
         w -= (mp_word)t * (mp_word)b;
      } else {
         t = 0;
      }
      q.dp[ix] = t;
   }

   if (d != NULL) {
      *d = (mp_digit)w;
   }

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
   }
   mp_clear(&q);

   return err;
}

#endif




Changes to libtommath/bn_mp_dr_is_modulus.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return 0;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
      if (a->dp[ix] != MP_MASK) {
         return 0;
      }
   }
   return 1;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|





|







|


|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include "tommath_private.h"
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines if a number is a valid DR modulus */
mp_bool mp_dr_is_modulus(const mp_int *a)
{
   int ix;

   /* must be at least two digits */
   if (a->used < 2) {
      return MP_NO;
   }

   /* must be of the form b**k - a [a <= b] so all
    * but the first digit must be equal to -1 (mod b).
    */
   for (ix = 1; ix < a->used; ix++) {
      if (a->dp[ix] != MP_MASK) {
         return MP_NO;
      }
   }
   return MP_YES;
}

#endif




Changes to libtommath/bn_mp_dr_reduce.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
#include "tommath_private.h"
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Joong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
   int      err, i, m;

   mp_word  r;
   mp_digit mu, *tmpx1, *tmpx2;

   /* m = digits in modulus */
   m = n->used;

   /* ensure that "x" has at least 2m digits */


|
<
<
<
<
<
<
<
<
|
<















|

|
>







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Joong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
   mp_err      err;
   int i, m;
   mp_word  r;
   mp_digit mu, *tmpx1, *tmpx2;

   /* m = digits in modulus */
   m = n->used;

   /* ensure that "x" has at least 2m digits */
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
   /* set carry to zero */
   mu = 0;

   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
   for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
   }

   /* set final carry */
   *tmpx1++ = mu;

   /* zero words above m */
   for (i = m + 1; i < x->used; i++) {
      *tmpx1++ = 0;
   }

   /* clamp, sub and return */
   mp_clamp(x);

   /* if x >= n then subtract and reduce again
    * Each successive "recursion" makes the input smaller and smaller.
    */
   if (mp_cmp_mag(x, n) != MP_LT) {
      if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
         return err;
      }
      goto top;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|






<
|
<
















<
<
<
<
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78




   /* set carry to zero */
   mu = 0;

   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
   for (i = 0; i < m; i++) {
      r         = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
      *tmpx1++  = (mp_digit)(r & MP_MASK);
      mu        = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT));
   }

   /* set final carry */
   *tmpx1++ = mu;

   /* zero words above m */

   MP_ZERO_DIGITS(tmpx1, (x->used - m) - 1);


   /* clamp, sub and return */
   mp_clamp(x);

   /* if x >= n then subtract and reduce again
    * Each successive "recursion" makes the input smaller and smaller.
    */
   if (mp_cmp_mag(x, n) != MP_LT) {
      if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
         return err;
      }
      goto top;
   }
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_dr_setup.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines the setup value */
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
   /* the casts are required if DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
    */
   *d = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - (mp_word)a->dp[0]);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<




|
|

|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15




#include "tommath_private.h"
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines the setup value */
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
   /* the casts are required if MP_DIGIT_BIT is one less than
    * the number of bits in a mp_digit [e.g. MP_DIGIT_BIT==31]
    */
   *d = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - (mp_word)a->dp[0]);
}

#endif




Name change from libtommath/bn_error.c to libtommath/bn_mp_error_to_string.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26



27
28
29
30
31
32
33
34
35
36




37
38
39
40
41
42
43
44

#include "tommath_private.h"
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

static const struct {
   int code;
   const char *msg;
} msgs[] = {
   { MP_OKAY, "Successful" },
   { MP_MEM,  "Out of heap" },
   { MP_VAL,  "Value out of range" }
};

/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{



   size_t x;

   /* scan the lookup table for the given message */
   for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) {
      if (msgs[x].code == code) {
         return msgs[x].msg;
      }
   }

   /* generic reply for invalid code */




   return "Invalid error code";
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
|
<
<
<
<
<
<
<
<
|
<

<
<
<
<
<
<
<
<
<

|

>
>
>
|
|
<
<
|
|
<
<
|
<
>
>
>
>
|
|
|
<

<
<
<
>
1
2
3








4

5









6
7
8
9
10
11
12
13


14
15


16

17
18
19
20
21
22
23

24



25
#include "tommath_private.h"
#ifdef BN_MP_ERROR_TO_STRING_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */











/* return a char * string for a given code */
const char *mp_error_to_string(mp_err code)
{
   switch (code) {
   case MP_OKAY:
      return "Successful";
   case MP_ERR:
      return "Unknown error";


   case MP_MEM:
      return "Out of heap";


   case MP_VAL:

      return "Value out of range";
   case MP_ITER:
      return "Max. iterations reached";
   default:
      return "Invalid error code";
   }
}





#endif
Changes to libtommath/bn_mp_exch.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* swap the elements of two integers, for cases where you can't simply swap the
 * mp_int pointers around
 */
void mp_exch(mp_int *a, mp_int *b)
{
   mp_int  t;

   t  = *a;
   *a = *b;
   *b = t;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<













<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17




#include "tommath_private.h"
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* swap the elements of two integers, for cases where you can't simply swap the
 * mp_int pointers around
 */
void mp_exch(mp_int *a, mp_int *b)
{
   mp_int  t;

   t  = *a;
   *a = *b;
   *b = t;
}
#endif




Changes to libtommath/bn_mp_export.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "tommath_private.h"
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_export(void *rop, size_t *countp, int order, size_t size,
              int endian, size_t nails, const mp_int *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j, bits, count;
   unsigned char odd_nail_mask;

   mp_int t;

   if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
      return result;
   }

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;


|
<
<
<
<
<
<
<
<
|
<




|
|

|





|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include "tommath_private.h"
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* based on gmp's mpz_export.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
mp_err mp_export(void *rop, size_t *countp, int order, size_t size,
                 int endian, size_t nails, const mp_int *op)
{
   mp_err err;
   size_t odd_nails, nail_bytes, i, j, bits, count;
   unsigned char odd_nail_mask;

   mp_int t;

   if ((err = mp_init_copy(&t, op)) != MP_OKAY) {
      return err;
   }

   if (endian == 0) {
      union {
         unsigned int i;
         char c[4];
      } lint;
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
         if (j >= (size - nail_bytes)) {
            *byte = 0;
            continue;
         }

         *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL));

         if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) {
            mp_clear(&t);
            return result;
         }
      }
   }

   mp_clear(&t);

   if (countp != NULL) {
      *countp = count;
   }

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|

|














<
<
<
<
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71




         if (j >= (size - nail_bytes)) {
            *byte = 0;
            continue;
         }

         *byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL));

         if ((err = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) {
            mp_clear(&t);
            return err;
         }
      }
   }

   mp_clear(&t);

   if (countp != NULL) {
      *countp = count;
   }

   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_expt_d.c.
1
2
3

4
5



6

7



8
9
10

11
12
13






14
15
16

17




18
19
20
21


22
23



24
25

#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis

 *
 * LibTomMath is a library that provides multiple-precision



 * integer arithmetic as well as number theoretic functionality.

 *



 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.

 *
 * SPDX-License-Identifier: Unlicense
 */







/* wrapper function for mp_expt_d_ex() */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)

{




   return mp_expt_d_ex(a, b, c, 0);
}

#endif



/* ref:         $Format:%D$ */



/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */



|
>
|
|
>
>
>
|
>
|
>
>
>
|
<
|
>
|
<
<
>
>
>
>
>
>
|
<
<
>
|
>
>
>
>
|
|
|
|
>
>
|
|
>
>
>
|
<
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19


20
21
22
23
24
25
26


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* calculate c = a**b  using a square-multiply algorithm */
mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_err err;

   mp_int  g;

   if ((err = mp_init_copy(&g, a)) != MP_OKAY) {
      return err;
   }


   /* set initial result */
   mp_set(c, 1uL);



   while (b > 0u) {
      /* if the bit is set multiply */
      if ((b & 1u) != 0u) {
         if ((err = mp_mul(c, &g, c)) != MP_OKAY) {
            mp_clear(&g);
            return err;
         }


      }

      /* square */
      if (b > 1u) {
         if ((err = mp_sqr(&g, &g)) != MP_OKAY) {
            mp_clear(&g);
            return err;
         }
      }

      /* shift to next bit */
      b >>= 1;
   }

   mp_clear(&g);
   return MP_OKAY;
}


#endif
Deleted libtommath/bn_mp_expt_d_ex.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* calculate c = a**b  using a square-multiply algorithm */
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   int     res;
   unsigned int x;

   mp_int  g;

   if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
      return res;
   }

   /* set initial result */
   mp_set(c, 1uL);

   if (fast != 0) {
      while (b > 0u) {
         /* if the bit is set multiply */
         if ((b & 1u) != 0u) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* square */
         if (b > 1u) {
            if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b >>= 1;
      }
   } else {
      for (x = 0; x < (unsigned)DIGIT_BIT; x++) {
         /* square */
         if ((res = mp_sqr(c, c)) != MP_OKAY) {
            mp_clear(&g);
            return res;
         }

         /* if the bit is set multiply */
         if ((b & ((mp_digit)1 << (DIGIT_BIT - 1))) != 0u) {
            if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
               mp_clear(&g);
               return res;
            }
         }

         /* shift to next bit */
         b <<= 1;
      }
   } /* if ... else */

   mp_clear(&g);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































Changes to libtommath/bn_mp_exptmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */


/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      int err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);


|
<
<
<
<
<
<
<
<
|
<
<






|












|







1
2
3








4


5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */



/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      mp_err err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = mp_dr_is_modulus(P);
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = mp_reduce_is_2k(P) << 1;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
   if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
      return mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|








|




|
|
|









|





<
<
<
<
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95




   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = (mp_dr_is_modulus(P) == MP_YES) ? 1 : 0;
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_S_MP_EXPTMOD_FAST_C
   if (MP_IS_ODD(P) || (dr !=  0)) {
      return s_mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_S_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif




Changes to libtommath/bn_mp_exteuclid.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include "tommath_private.h"
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
   int err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1uL);
   if ((err = mp_copy(a, &u3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1uL);
   if ((err = mp_copy(b, &v3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* loop while v3 != 0 */
   while (mp_iszero(&v3) == MP_NO) {
      /* q = u3/v3 */
      if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
      if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) {


|
<
<
<
<
<
<
<
<
|
<




|


|


















|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include "tommath_private.h"
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Extended euclidean algorithm of (a, b) produces
   a*u1 + b*u2 = u3
 */
mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
   mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
   mp_err err;

   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
      return err;
   }

   /* initialize, (u1,u2,u3) = (1,0,a) */
   mp_set(&u1, 1uL);
   if ((err = mp_copy(a, &u3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* initialize, (v1,v2,v3) = (0,1,b) */
   mp_set(&v2, 1uL);
   if ((err = mp_copy(b, &v3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* loop while v3 != 0 */
   while (!MP_IS_ZERO(&v3)) {
      /* q = u3/v3 */
      if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
      if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) {
112
113
114
115
116
117
118
119
120
121
122

   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
103
104
105
106
107
108
109





   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
   return err;
}
#endif




Changes to libtommath/bn_mp_fread.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33




34





35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "tommath_private.h"
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
   int err, ch, neg, y;
   unsigned pos;

   /* clear a */
   mp_zero(a);

   /* if first digit is - then set negative */
   ch = fgetc(stream);
   if (ch == (int)'-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }





   for (;;) {





      pos = (unsigned)(ch - (int)'(');
      if (mp_s_rmap_reverse_sz < pos) {
         break;
      }

      y = (int)mp_s_rmap_reverse[pos];

      if ((y == 0xff) || (y >= radix)) {
         break;
      }

      /* shift up and add */
      if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
         return err;
      }

      ch = fgetc(stream);
   }
   if (mp_cmp_d(a, 0uL) != MP_EQ) {
      a->sign = neg;
   }

   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|

|

|
|

<
<
<

|







>
>
>
>
|
>
>
>
>
>
|

















<
|
|
|








<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60




#include "tommath_private.h"
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#ifndef MP_NO_FILE
/* read a bigint from a file stream in ASCII */
mp_err mp_fread(mp_int *a, int radix, FILE *stream)
{
   mp_err err;
   mp_sign neg;




   /* if first digit is - then set negative */
   int ch = fgetc(stream);
   if (ch == (int)'-') {
      neg = MP_NEG;
      ch = fgetc(stream);
   } else {
      neg = MP_ZPOS;
   }

   /* no digits, return error */
   if (ch == EOF) {
      return MP_ERR;
   }

   /* clear a */
   mp_zero(a);

   do {
      int y;
      unsigned pos = (unsigned)(ch - (int)'(');
      if (mp_s_rmap_reverse_sz < pos) {
         break;
      }

      y = (int)mp_s_rmap_reverse[pos];

      if ((y == 0xff) || (y >= radix)) {
         break;
      }

      /* shift up and add */
      if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
         return err;
      }

   } while ((ch = fgetc(stream)) != EOF);

   if (a->used != 0) {
      a->sign = neg;
   }

   return MP_OKAY;
}
#endif

#endif




Changes to libtommath/bn_mp_fwrite.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "tommath_private.h"
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifndef LTM_NO_FILE
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
   char *buf;

   int err, len, x;

   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = (char *) XMALLOC((size_t)len);
   if (buf == NULL) {
      return MP_MEM;
   }

   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      XFREE(buf, len);
      return err;
   }

   for (x = 0; x < len; x++) {
      if (fputc((int)buf[x], stream) == EOF) {
         XFREE(buf, len);
         return MP_VAL;
      }
   }

   XFREE(buf, len);
   return MP_OKAY;
}
#endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|
|


>
|





|





|



<
|
|
|
|
|
|
<





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35
36
37




#include "tommath_private.h"
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#ifndef MP_NO_FILE
mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
   char *buf;
   mp_err err;
   int len;

   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
      return err;
   }

   buf = (char *) MP_MALLOC((size_t)len);
   if (buf == NULL) {
      return MP_MEM;
   }

   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
      MP_FREE_BUFFER(buf, (size_t)len);
      return err;
   }


   if (fwrite(buf, (size_t)len, 1uL, stream) != 1uL) {
      MP_FREE_BUFFER(buf, (size_t)len);
      return MP_ERR;
   }

   MP_FREE_BUFFER(buf, (size_t)len);

   return MP_OKAY;
}
#endif

#endif




Changes to libtommath/bn_mp_gcd.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include "tommath_private.h"
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Greatest Common Divisor using the binary method */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;


   /* either zero than gcd is the largest */
   if (mp_iszero(a) == MP_YES) {
      return mp_abs(b, c);
   }
   if (mp_iszero(b) == MP_YES) {
      return mp_abs(a, c);
   }

   /* get copies of a and b we can modify */
   if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
      goto LBL_U;
   }

   /* must be positive for the remainder of the algorithm */
   u.sign = v.sign = MP_ZPOS;

   /* B1.  Find the common power of two for u and v */
   u_lsb = mp_cnt_lsb(&u);
   v_lsb = mp_cnt_lsb(&v);
   k     = MIN(u_lsb, v_lsb);

   if (k > 0) {
      /* divide the power of two out */
      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }

      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* divide any remaining factors of two out */
   if (u_lsb != k) {
      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   if (v_lsb != k) {
      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   while (mp_iszero(&v) == MP_NO) {
      /* make sure v is the largest */
      if (mp_cmp_mag(&u, &v) == MP_GT) {
         /* swap u and v to make sure v is >= u */
         mp_exch(&u, &v);
      }

      /* subtract smallest from largest */
      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_V;
      }

      /* Divide out all factors of two */
      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* multiply by 2**k which we divided out at the beginning */
   if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
      goto LBL_V;
   }
   c->sign = MP_ZPOS;
   res = MP_OKAY;
LBL_V:
   mp_clear(&u);
LBL_U:
   mp_clear(&v);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|


|
>


|


|




|
|


|









|



|



|






|





|




|







|




|





|



|




|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92




#include "tommath_private.h"
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Greatest Common Divisor using the binary method */
mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  u, v;
   int     k, u_lsb, v_lsb;
   mp_err err;

   /* either zero than gcd is the largest */
   if (MP_IS_ZERO(a)) {
      return mp_abs(b, c);
   }
   if (MP_IS_ZERO(b)) {
      return mp_abs(a, c);
   }

   /* get copies of a and b we can modify */
   if ((err = mp_init_copy(&u, a)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_init_copy(&v, b)) != MP_OKAY) {
      goto LBL_U;
   }

   /* must be positive for the remainder of the algorithm */
   u.sign = v.sign = MP_ZPOS;

   /* B1.  Find the common power of two for u and v */
   u_lsb = mp_cnt_lsb(&u);
   v_lsb = mp_cnt_lsb(&v);
   k     = MP_MIN(u_lsb, v_lsb);

   if (k > 0) {
      /* divide the power of two out */
      if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }

      if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* divide any remaining factors of two out */
   if (u_lsb != k) {
      if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   if (v_lsb != k) {
      if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   while (!MP_IS_ZERO(&v)) {
      /* make sure v is the largest */
      if (mp_cmp_mag(&u, &v) == MP_GT) {
         /* swap u and v to make sure v is >= u */
         mp_exch(&u, &v);
      }

      /* subtract smallest from largest */
      if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_V;
      }

      /* Divide out all factors of two */
      if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
         goto LBL_V;
      }
   }

   /* multiply by 2**k which we divided out at the beginning */
   if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) {
      goto LBL_V;
   }
   c->sign = MP_ZPOS;
   err = MP_OKAY;
LBL_V:
   mp_clear(&u);
LBL_U:
   mp_clear(&v);
   return err;
}
#endif




Changes to libtommath/bn_mp_get_double.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "tommath_private.h"
#ifdef BN_MP_GET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

double mp_get_double(const mp_int *a)
{
   int i;
   double d = 0.0, fac = 1.0;
   for (i = 0; i < DIGIT_BIT; ++i) {
      fac *= 2.0;
   }
   for (i = a->used; i --> 0;) {
      d = (d * fac) + (double)a->dp[i];
   }
   return (a->sign == MP_NEG) ? -d : d;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





|








<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18




#include "tommath_private.h"
#ifdef BN_MP_GET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


double mp_get_double(const mp_int *a)
{
   int i;
   double d = 0.0, fac = 1.0;
   for (i = 0; i < MP_DIGIT_BIT; ++i) {
      fac *= 2.0;
   }
   for (i = a->used; i --> 0;) {
      d = (d * fac) + (double)a->dp[i];
   }
   return (a->sign == MP_NEG) ? -d : d;
}
#endif




Added libtommath/bn_mp_get_i32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_GET_I32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_GET_SIGNED(int32_t, mp_get_i32, mp_get_mag32)
#endif
Added libtommath/bn_mp_get_i64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_GET_I64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_GET_SIGNED(long long, mp_get_i64, mp_get_mag64)
#endif
Deleted libtommath/bn_mp_get_int.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int *a)
{
   /* force result to 32-bits always so it is consistent on non 32-bit platforms */
   return mp_get_long(a) & 0xFFFFFFFFUL;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


















































Deleted libtommath/bn_mp_get_long.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(const mp_int *a)
{
   int i;
   unsigned long res;

   if (IS_ZERO(a)) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, (((CHAR_BIT * (int)sizeof(unsigned long)) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = (unsigned long)a->dp[i];

#if (ULONG_MAX != 0xFFFFFFFFUL) || (DIGIT_BIT < 32)
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | (unsigned long)a->dp[i];
   }
#endif
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































Deleted libtommath/bn_mp_get_long_long.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long(const mp_int *a)
{
   int i;
   unsigned long long res;

   if (IS_ZERO(a)) {
      return 0;
   }

   /* get number of digits of the lsb we have to read */
   i = MIN(a->used, (((CHAR_BIT * (int)sizeof(unsigned long long)) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;

   /* get most significant digit of result */
   res = (unsigned long long)a->dp[i];

#if DIGIT_BIT < 64
   while (--i >= 0) {
      res = (res << DIGIT_BIT) | (unsigned long long)a->dp[i];
   }
#endif
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































Added libtommath/bn_mp_get_mag32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_GET_MAG32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_GET_MAG(uint32_t, mp_get_mag32)
#endif
Added libtommath/bn_mp_get_mag64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_GET_MAG64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_GET_MAG(unsigned long long, mp_get_mag64)
#endif
Changes to libtommath/bn_mp_grow.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "tommath_private.h"
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* grow as required */
int mp_grow(mp_int *a, int size)
{
   int     i;
   mp_digit *tmp;

   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {
      /* ensure there are always at least MP_PREC digits extra on top */
      size += (MP_PREC * 2) - (size % MP_PREC);

      /* reallocate the array a->dp
       *
       * We store the return in a temporary variable
       * in case the operation failed we don't want
       * to overwrite the dp member of a.
       */
      tmp = (mp_digit *) XREALLOC(a->dp,
                                  (size_t)a->alloc * sizeof (mp_digit),
                                  (size_t)size * sizeof(mp_digit));
      if (tmp == NULL) {
         /* reallocation failed but "a" is still valid [can be freed] */
         return MP_MEM;
      }

      /* reallocation succeeded so set a->dp */
      a->dp = tmp;

      /* zero excess digits */
      i        = a->alloc;
      a->alloc = size;
      for (; i < a->alloc; i++) {
         a->dp[i] = 0;
      }
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|






<
<
<






|
|
|











|
<
<




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


35
36
37
38




#include "tommath_private.h"
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* grow as required */
mp_err mp_grow(mp_int *a, int size)
{
   int     i;
   mp_digit *tmp;

   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {



      /* reallocate the array a->dp
       *
       * We store the return in a temporary variable
       * in case the operation failed we don't want
       * to overwrite the dp member of a.
       */
      tmp = (mp_digit *) MP_REALLOC(a->dp,
                                    (size_t)a->alloc * sizeof(mp_digit),
                                    (size_t)size * sizeof(mp_digit));
      if (tmp == NULL) {
         /* reallocation failed but "a" is still valid [can be freed] */
         return MP_MEM;
      }

      /* reallocation succeeded so set a->dp */
      a->dp = tmp;

      /* zero excess digits */
      i        = a->alloc;
      a->alloc = size;
      MP_ZERO_DIGITS(a->dp + i, a->alloc - i);


   }
   return MP_OKAY;
}
#endif




Added libtommath/bn_mp_ilogb.c.














































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include "tommath_private.h"
#ifdef BN_MP_ILOGB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* Compute log_{base}(a) */
static mp_word s_pow(mp_word base, mp_word exponent)
{
   mp_word result = 1uLL;
   while (exponent != 0u) {
      if ((exponent & 1u) == 1u) {
         result *= base;
      }
      exponent >>= 1;
      base *= base;
   }

   return result;
}

static mp_digit s_digit_ilogb(mp_digit base, mp_digit n)
{
   mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N;
   mp_digit ret, high = 1uL, low = 0uL, mid;

   if (n < base) {
      return 0uL;
   }
   if (n == base) {
      return 1uL;
   }

   bracket_high = (mp_word) base ;
   N = (mp_word) n;

   while (bracket_high < N) {
      low = high;
      bracket_low = bracket_high;
      high <<= 1;
      bracket_high *= bracket_high;
   }

   while (((mp_digit)(high - low)) > 1uL) {
      mid = (low + high) >> 1;
      bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low));

      if (N < bracket_mid) {
         high = mid ;
         bracket_high = bracket_mid ;
      }
      if (N > bracket_mid) {
         low = mid ;
         bracket_low = bracket_mid ;
      }
      if (N == bracket_mid) {
         return (mp_digit) mid;
      }
   }

   if (bracket_high == N) {
      ret = high;
   } else {
      ret = low;
   }

   return ret;
}

/* TODO: output could be "int" because the output of mp_radix_size is int, too,
         as is the output of mp_bitcount.
         With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only!
*/
mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c)
{
   mp_err err;
   mp_ord cmp;
   unsigned int high, low, mid;
   mp_int bracket_low, bracket_high, bracket_mid, t, bi_base;

   err = MP_OKAY;
   if (a->sign == MP_NEG) {
      return MP_VAL;
   }
   if (MP_IS_ZERO(a)) {
      return MP_VAL;
   }

   if (base < 2u) {
      return MP_VAL;
   }
   if (base == 2u) {
      mp_set_u32(c, (uint32_t)(mp_count_bits(a) - 1));
      return err;
   }
   if (a->used == 1) {
      mp_set(c, s_digit_ilogb(base, a->dp[0]));
      return err;
   }

   cmp = mp_cmp_d(a, base);

   if (cmp == MP_LT) {
      mp_zero(c);
      return err;
   }
   if (cmp == MP_EQ) {
      mp_set(c, 1uL);
      return err;
   }

   if ((err =
           mp_init_multi(&bracket_low, &bracket_high,
                         &bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) {
      return err;
   }

   low = 0u;
   mp_set(&bracket_low, 1uL);
   high = 1u;

   mp_set(&bracket_high, base);

   /*
       A kind of Giant-step/baby-step algorithm.
       Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
       The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
       for small n.
    */
   while (mp_cmp(&bracket_high, a) == MP_LT) {
      low = high;
      if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) {
         goto LBL_ERR;
      }
      high <<= 1;
      if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }
   mp_set(&bi_base, base);

   while ((high - low) > 1u) {
      mid = (high + low) >> 1;
      /* Difference can be larger then the type behind mp_digit can hold */
      if ((mid - low) > (unsigned int)(MP_MASK)) {
         err = MP_VAL;
         goto LBL_ERR;
      }
      if ((err = mp_expt_d(&bi_base, (mp_digit)(mid - low), &t)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) {
         goto LBL_ERR;
      }
      cmp = mp_cmp(a, &bracket_mid);
      if (cmp == MP_LT) {
         high = mid;
         mp_exch(&bracket_mid, &bracket_high);
      }
      if (cmp == MP_GT) {
         low = mid;
         mp_exch(&bracket_mid, &bracket_low);
      }
      if (cmp == MP_EQ) {
         mp_set_u32(c, mid);
         goto LBL_END;
      }
   }

   if (mp_cmp(&bracket_high, a) == MP_EQ) {
      mp_set_u32(c, high);
   } else {
      mp_set_u32(c, low);
   }

LBL_END:
LBL_ERR:
   mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid,
                  &t, &bi_base, NULL);
   return err;
}


#endif
Changes to libtommath/bn_mp_import.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
int mp_import(mp_int *rop, size_t count, int order, size_t size,
              int endian, size_t nails, const void *op)
{
   int result;
   size_t odd_nails, nail_bytes, i, j;
   unsigned char odd_nail_mask;

   mp_zero(rop);

   if (endian == 0) {
      union {


|
<
<
<
<
<
<
<
<
|
<




|
|

|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include "tommath_private.h"
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* based on gmp's mpz_import.
 * see http://gmplib.org/manual/Integer-Import-and-Export.html
 */
mp_err mp_import(mp_int *rop, size_t count, int order, size_t size,
                 int endian, size_t nails, const void *op)
{
   mp_err err;
   size_t odd_nails, nail_bytes, i, j;
   unsigned char odd_nail_mask;

   mp_zero(rop);

   if (endian == 0) {
      union {
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (unsigned char)(1u << (7u - i));
   }
   nail_bytes = nails / 8u;

   for (i = 0; i < count; ++i) {
      for (j = 0; j < (size - nail_bytes); ++j) {
         unsigned char byte = *((unsigned char *)op +
                                (((order == 1) ? i : ((count - 1u) - i)) * size) +
                                ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes)));

         if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) {
            return result;
         }

         rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte;
         rop->used  += 1;
      }
   }

   mp_clamp(rop);

   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|



|
|













<
<
<
<
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55




   for (i = 0; i < odd_nails; ++i) {
      odd_nail_mask ^= (unsigned char)(1u << (7u - i));
   }
   nail_bytes = nails / 8u;

   for (i = 0; i < count; ++i) {
      for (j = 0; j < (size - nail_bytes); ++j) {
         unsigned char byte = *((const unsigned char *)op +
                                (((order == 1) ? i : ((count - 1u) - i)) * size) +
                                ((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes)));

         if ((err = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) {
            return err;
         }

         rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte;
         rop->used  += 1;
      }
   }

   mp_clamp(rop);

   return MP_OKAY;
}

#endif




Added libtommath/bn_mp_incr.c.




























































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_INCR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* Increment "a" by one like "a++". Changes input! */
mp_err mp_incr(mp_int *a)
{
   if (MP_IS_ZERO(a)) {
      mp_set(a,1uL);
      return MP_OKAY;
   } else if (a->sign == MP_NEG) {
      mp_err err;
      a->sign = MP_ZPOS;
      if ((err = mp_decr(a)) != MP_OKAY) {
         return err;
      }
      /* There is no -0 in LTM */
      if (!MP_IS_ZERO(a)) {
         a->sign = MP_NEG;
      }
      return MP_OKAY;
   } else if (a->dp[0] < MP_MASK) {
      a->dp[0]++;
      return MP_OKAY;
   } else {
      return mp_add_d(a, 1uL,a);
   }
}
#endif
Changes to libtommath/bn_mp_init.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "tommath_private.h"
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* init a new mp_int */
int mp_init(mp_int *a)
{
   int i;

   /* allocate memory required and clear it */
   a->dp = (mp_digit *) XMALLOC(MP_PREC * sizeof(mp_digit));
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the digits to zero */
   for (i = 0; i < MP_PREC; i++) {
      a->dp[i] = 0;
   }

   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
   a->alloc = MP_PREC;
   a->sign  = MP_ZPOS;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
<

|




<
<
<
<
<









<
<
<
<
1
2
3








4

5
6
7
8


9
10
11
12
13
14





15
16
17
18
19
20
21
22
23




#include "tommath_private.h"
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* init a new mp_int */
mp_err mp_init(mp_int *a)
{


   /* allocate memory required and clear it */
   a->dp = (mp_digit *) MP_CALLOC((size_t)MP_PREC, sizeof(mp_digit));
   if (a->dp == NULL) {
      return MP_MEM;
   }






   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
   a->alloc = MP_PREC;
   a->sign  = MP_ZPOS;

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_init_copy.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* creates "a" then copies b into it */
int mp_init_copy(mp_int *a, const mp_int *b)
{
   int     res;

   if ((res = mp_init_size(a, b->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_copy(b, a)) != MP_OKAY) {
      mp_clear(a);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|

|
|


|



|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21




#include "tommath_private.h"
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* creates "a" then copies b into it */
mp_err mp_init_copy(mp_int *a, const mp_int *b)
{
   mp_err     err;

   if ((err = mp_init_size(a, b->used)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_copy(b, a)) != MP_OKAY) {
      mp_clear(a);
   }

   return err;
}
#endif




Added libtommath/bn_mp_init_i32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_INIT_I32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_INIT_INT(mp_init_i32, mp_set_i32, int32_t)
#endif
Added libtommath/bn_mp_init_i64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_INIT_I64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_INIT_INT(mp_init_i64, mp_set_i64, long long)
#endif
Changes to libtommath/bn_mp_init_multi.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...)
{
   mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
   int n = 0;                 /* Number of ok inits */
   mp_int *cur_arg = mp;
   va_list args;

   va_start(args, mp);        /* init args to next argument from caller */
   while (cur_arg != NULL) {
      if (mp_init(cur_arg) != MP_OKAY) {
         /* Oops - error! Back-track and mp_clear what we already
            succeeded in init-ing, then return error.
         */
         va_list clean_args;

         /* now start cleaning up */
         cur_arg = mp;
         va_start(clean_args, mp);
         while (n-- != 0) {
            mp_clear(cur_arg);
            cur_arg = va_arg(clean_args, mp_int *);
         }
         va_end(clean_args);
         res = MP_MEM;
         break;
      }
      n++;
      cur_arg = va_arg(args, mp_int *);
   }
   va_end(args);
   return res;                /* Assumed ok, if error flagged above. */
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<



|

|




















|






|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41




#include "tommath_private.h"
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#include <stdarg.h>

mp_err mp_init_multi(mp_int *mp, ...)
{
   mp_err err = MP_OKAY;      /* Assume ok until proven otherwise */
   int n = 0;                 /* Number of ok inits */
   mp_int *cur_arg = mp;
   va_list args;

   va_start(args, mp);        /* init args to next argument from caller */
   while (cur_arg != NULL) {
      if (mp_init(cur_arg) != MP_OKAY) {
         /* Oops - error! Back-track and mp_clear what we already
            succeeded in init-ing, then return error.
         */
         va_list clean_args;

         /* now start cleaning up */
         cur_arg = mp;
         va_start(clean_args, mp);
         while (n-- != 0) {
            mp_clear(cur_arg);
            cur_arg = va_arg(clean_args, mp_int *);
         }
         va_end(clean_args);
         err = MP_MEM;
         break;
      }
      n++;
      cur_arg = va_arg(args, mp_int *);
   }
   va_end(args);
   return err;                /* Assumed ok, if error flagged above. */
}

#endif




Changes to libtommath/bn_mp_init_set.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   mp_set(a, b);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|







<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16




#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* initialize and set a digit */
mp_err mp_init_set(mp_int *a, mp_digit b)
{
   mp_err err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   mp_set(a, b);
   return err;
}
#endif




Deleted libtommath/bn_mp_init_set_int.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* initialize and set a digit */
int mp_init_set_int(mp_int *a, unsigned long b)
{
   int err;
   if ((err = mp_init(a)) != MP_OKAY) {
      return err;
   }
   return mp_set_int(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































Changes to libtommath/bn_mp_init_size.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* init an mp_init for a given size */
int mp_init_size(mp_int *a, int size)
{
   int x;

   /* pad size so there are always extra digits */
   size += (MP_PREC * 2) - (size % MP_PREC);

   /* alloc mem */
   a->dp = (mp_digit *) XMALLOC((size_t)size * sizeof(mp_digit));
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the members */
   a->used  = 0;
   a->alloc = size;
   a->sign  = MP_ZPOS;

   /* zero the digits */
   for (x = 0; x < size; x++) {
      a->dp[x] = 0;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
|
<
<


|









<
<
<
<
<



<
<
<
<
1
2
3








4

5
6
7
8

9


10
11
12
13
14
15
16
17
18
19
20
21





22
23
24




#include "tommath_private.h"
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* init an mp_init for a given size */
mp_err mp_init_size(mp_int *a, int size)
{

   size = MP_MAX(MP_MIN_PREC, size);



   /* alloc mem */
   a->dp = (mp_digit *) MP_CALLOC((size_t)size, sizeof(mp_digit));
   if (a->dp == NULL) {
      return MP_MEM;
   }

   /* set the members */
   a->used  = 0;
   a->alloc = size;
   a->sign  = MP_ZPOS;






   return MP_OKAY;
}
#endif




Added libtommath/bn_mp_init_u32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_INIT_U32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_INIT_INT(mp_init_u32, mp_set_u32, uint32_t)
#endif
Added libtommath/bn_mp_init_u64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_INIT_U64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_INIT_INT(mp_init_u64, mp_set_u64, unsigned long long)
#endif
Changes to libtommath/bn_mp_invmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* hac 14.61, pp608 */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   /* b cannot be negative and has to be >1 */
   if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
      return MP_VAL;
   }

#ifdef BN_FAST_MP_INVMOD_C
   /* if the modulus is odd we can use a faster routine instead */
   if ((mp_isodd(b) == MP_YES)) {
      return fast_mp_invmod(a, b, c);
   }
#endif

#ifdef BN_MP_INVMOD_SLOW_C
   return mp_invmod_slow(a, b, c);
#else
   return MP_VAL;
#endif
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|






|

|
|



|
|





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27




#include "tommath_private.h"
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* hac 14.61, pp608 */
mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   /* b cannot be negative and has to be >1 */
   if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
      return MP_VAL;
   }

#ifdef BN_S_MP_INVMOD_FAST_C
   /* if the modulus is odd we can use a faster routine instead */
   if (MP_IS_ODD(b)) {
      return s_mp_invmod_fast(a, b, c);
   }
#endif

#ifdef BN_S_MP_INVMOD_SLOW_C
   return s_mp_invmod_slow(a, b, c);
#else
   return MP_VAL;
#endif
}
#endif




Changes to libtommath/bn_mp_is_square.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include "tommath_private.h"
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,


|
<
<
<
<
<
<
<
<
|
<







1
2
3








4

5
6
7
8
9
10
11
#include "tommath_private.h"
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
   0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
   1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
   1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(const mp_int *arg, int *ret)
{
   int           res;
   mp_digit      c;
   mp_int        t;
   unsigned long r;

   /* Default to Non-square :) */
   *ret = MP_NO;

   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   if (IS_ZERO(arg)) {
      return MP_OKAY;
   }

   /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
   if (rem_128[127u & arg->dp[0]] == (char)1) {
      return MP_OKAY;
   }

   /* Next check mod 105 (3*5*7) */
   if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
      return res;
   }
   if (rem_105[c] == (char)1) {
      return MP_OKAY;
   }


   if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
      return res;
   }
   if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   r = mp_get_int(&t);
   /* Check for other prime modules, note it's not an ERROR but we must
    * free "t" so the easiest way is to goto LBL_ERR.  We know that res
    * is already equal to MP_OKAY from the mp_mod call
    */
   if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL)        goto LBL_ERR;
   if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL)       goto LBL_ERR;
   if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL)      goto LBL_ERR;
   if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL)     goto LBL_ERR;
   if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL)    goto LBL_ERR;

   /* Final check - is sqr(sqrt(arg)) == arg ? */
   if ((res = mp_sqrt(arg, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sqr(&t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }

   *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
LBL_ERR:
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|

|











|



|





|
|






|
|

|


|

|











|


|






|


<
<
<
<
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93




   1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
   1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};

/* Store non-zero to ret if arg is square, and zero if not */
mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
{
   mp_err        err;
   mp_digit      c;
   mp_int        t;
   unsigned long r;

   /* Default to Non-square :) */
   *ret = MP_NO;

   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   if (MP_IS_ZERO(arg)) {
      return MP_OKAY;
   }

   /* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */
   if (rem_128[127u & arg->dp[0]] == (char)1) {
      return MP_OKAY;
   }

   /* Next check mod 105 (3*5*7) */
   if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
      return err;
   }
   if (rem_105[c] == (char)1) {
      return MP_OKAY;
   }


   if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   r = mp_get_u32(&t);
   /* Check for other prime modules, note it's not an ERROR but we must
    * free "t" so the easiest way is to goto LBL_ERR.  We know that err
    * is already equal to MP_OKAY from the mp_mod call
    */
   if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL)         goto LBL_ERR;
   if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL)        goto LBL_ERR;
   if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL)       goto LBL_ERR;
   if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL)      goto LBL_ERR;
   if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL)     goto LBL_ERR;
   if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL)    goto LBL_ERR;

   /* Final check - is sqr(sqrt(arg)) == arg ? */
   if ((err = mp_sqrt(arg, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((err = mp_sqr(&t, &t)) != MP_OKAY) {
      goto LBL_ERR;
   }

   *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
LBL_ERR:
   mp_clear(&t);
   return err;
}
#endif




Added libtommath/bn_mp_iseven.c.




















>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
#include "tommath_private.h"
#ifdef BN_MP_ISEVEN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

mp_bool mp_iseven(const mp_int *a)
{
   return MP_IS_EVEN(a) ? MP_YES : MP_NO;
}
#endif
Added libtommath/bn_mp_isodd.c.




















>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
#include "tommath_private.h"
#ifdef BN_MP_ISODD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

mp_bool mp_isodd(const mp_int *a)
{
   return MP_IS_ODD(a) ? MP_YES : MP_NO;
}
#endif
Deleted libtommath/bn_mp_jacobi.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "tommath_private.h"
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes the jacobi c = (a | n) (or Legendre if n is prime)
 * Kept for legacy reasons, please use mp_kronecker() instead
 */
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
   /* if a < 0 return MP_VAL */
   if (mp_isneg(a) == MP_YES) {
      return MP_VAL;
   }

   /* if n <= 0 return MP_VAL */
   if (mp_cmp_d(n, 0uL) != MP_GT) {
      return MP_VAL;
   }

   return mp_kronecker(a, n, c);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








































































Changes to libtommath/bn_mp_kronecker.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/*
   Kronecker symbol (a|p)
   Straightforward implementation of algorithm 1.4.10 in
   Henri Cohen: "A Course in Computational Algebraic Number Theory"

   @book{cohen2013course,
     title={A course in computational algebraic number theory},
     author={Cohen, Henri},
     volume={138},
     year={2013},
     publisher={Springer Science \& Business Media}
    }
 */
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
   mp_int a1, p1, r;

   int e = MP_OKAY;
   int v, k;

   static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};

   if (mp_iszero(p) != MP_NO) {
      if ((a->used == 1) && (a->dp[0] == 1u)) {
         *c = 1;
         return e;
      } else {
         *c = 0;

         return e;
      }
   }

   if ((mp_iseven(a) != MP_NO) && (mp_iseven(p) != MP_NO)) {
      *c = 0;
      return e;
   }

   if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
      return e;
   }
   if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
      goto LBL_KRON_0;
   }

   v = mp_cnt_lsb(&p1);
   if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   if ((v & 0x1) == 0) {
      k = 1;
   } else {
      k = table[a->dp[0] & 7u];
   }

   if (p1.sign == MP_NEG) {
      p1.sign = MP_ZPOS;
      if (a1.sign == MP_NEG) {
         k = -k;
      }
   }

   if ((e = mp_init(&r)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   for (;;) {
      if (mp_iszero(&a1) != MP_NO) {
         if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
            *c = k;
            goto LBL_KRON;
         } else {
            *c = 0;
            goto LBL_KRON;
         }
      }

      v = mp_cnt_lsb(&a1);
      if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
         goto LBL_KRON;
      }

      if ((v & 0x1) == 1) {
         k = k * table[p1.dp[0] & 7u];
      }

      if (a1.sign == MP_NEG) {
         /*
          * Compute k = (-1)^((a1)*(p1-1)/4) * k
          * a1.dp[0] + 1 cannot overflow because the MSB
          * of the type mp_digit is not set by definition
          */
         if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      } else {
         /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
         if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      }

      if ((e = mp_copy(&a1, &r)) != MP_OKAY) {
         goto LBL_KRON;
      }
      r.sign = MP_ZPOS;
      if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
         goto LBL_KRON;
      }
      if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
         goto LBL_KRON;
      }
   }

LBL_KRON:
   mp_clear(&r);
LBL_KRON_1:
   mp_clear(&p1);
LBL_KRON_0:
   mp_clear(&a1);

   return e;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */



|
<
<
<
<
<
<
<
<
|
<














|


|
<




|


<


>
|
|
|
|
<

|


|
|

|




|



|












|




|










|



|



















|



|


|











|



<
<
<
<
1
2
3
4








5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129




#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/*
   Kronecker symbol (a|p)
   Straightforward implementation of algorithm 1.4.10 in
   Henri Cohen: "A Course in Computational Algebraic Number Theory"

   @book{cohen2013course,
     title={A course in computational algebraic number theory},
     author={Cohen, Henri},
     volume={138},
     year={2013},
     publisher={Springer Science \& Business Media}
    }
 */
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
   mp_int a1, p1, r;
   mp_err err;

   int v, k;

   static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};

   if (MP_IS_ZERO(p)) {
      if ((a->used == 1) && (a->dp[0] == 1u)) {
         *c = 1;

      } else {
         *c = 0;
      }
      return MP_OKAY;
   }

   if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) {

      *c = 0;
      return MP_OKAY;
   }

   if ((err = mp_init_copy(&a1, a)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_init_copy(&p1, p)) != MP_OKAY) {
      goto LBL_KRON_0;
   }

   v = mp_cnt_lsb(&p1);
   if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   if ((v & 1) == 0) {
      k = 1;
   } else {
      k = table[a->dp[0] & 7u];
   }

   if (p1.sign == MP_NEG) {
      p1.sign = MP_ZPOS;
      if (a1.sign == MP_NEG) {
         k = -k;
      }
   }

   if ((err = mp_init(&r)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   for (;;) {
      if (MP_IS_ZERO(&a1)) {
         if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
            *c = k;
            goto LBL_KRON;
         } else {
            *c = 0;
            goto LBL_KRON;
         }
      }

      v = mp_cnt_lsb(&a1);
      if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
         goto LBL_KRON;
      }

      if ((v & 1) == 1) {
         k = k * table[p1.dp[0] & 7u];
      }

      if (a1.sign == MP_NEG) {
         /*
          * Compute k = (-1)^((a1)*(p1-1)/4) * k
          * a1.dp[0] + 1 cannot overflow because the MSB
          * of the type mp_digit is not set by definition
          */
         if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      } else {
         /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
         if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      }

      if ((err = mp_copy(&a1, &r)) != MP_OKAY) {
         goto LBL_KRON;
      }
      r.sign = MP_ZPOS;
      if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
         goto LBL_KRON;
      }
      if ((err = mp_copy(&r, &p1)) != MP_OKAY) {
         goto LBL_KRON;
      }
   }

LBL_KRON:
   mp_clear(&r);
LBL_KRON_1:
   mp_clear(&p1);
LBL_KRON_0:
   mp_clear(&a1);

   return err;
}

#endif




Changes to libtommath/bn_mp_lcm.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include "tommath_private.h"
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res;
   mp_int  t1, t2;


   if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
      return res;
   }

   /* t1 = get the GCD of the two inputs */
   if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) {
      goto LBL_T;
   }

   /* divide the smallest by the GCD */
   if (mp_cmp_mag(a, b) == MP_LT) {
      /* store quotient in t2 such that t2 * b is the LCM */
      if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      res = mp_mul(b, &t2, c);
   } else {
      /* store quotient in t2 such that t2 * a is the LCM */
      if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      res = mp_mul(a, &t2, c);
   }

   /* fix the sign to positive */
   c->sign = MP_ZPOS;

LBL_T:
   mp_clear_multi(&t1, &t2, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|



|
|



|






|


|


|


|







|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44




#include "tommath_private.h"
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes least common multiple as |a*b|/(a, b) */
mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_err  err;
   mp_int  t1, t2;


   if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
      return err;
   }

   /* t1 = get the GCD of the two inputs */
   if ((err = mp_gcd(a, b, &t1)) != MP_OKAY) {
      goto LBL_T;
   }

   /* divide the smallest by the GCD */
   if (mp_cmp_mag(a, b) == MP_LT) {
      /* store quotient in t2 such that t2 * b is the LCM */
      if ((err = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      err = mp_mul(b, &t2, c);
   } else {
      /* store quotient in t2 such that t2 * a is the LCM */
      if ((err = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
         goto LBL_T;
      }
      err = mp_mul(a, &t2, c);
   }

   /* fix the sign to positive */
   c->sign = MP_ZPOS;

LBL_T:
   mp_clear_multi(&t1, &t2, NULL);
   return err;
}
#endif




Changes to libtommath/bn_mp_lshd.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "tommath_private.h"
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* shift left a certain amount of digits */
int mp_lshd(mp_int *a, int b)
{
   int     x, res;



   /* if its less than zero return */
   if (b <= 0) {
      return MP_OKAY;
   }
   /* no need to shift 0 around */
   if (mp_iszero(a) == MP_YES) {
      return MP_OKAY;
   }

   /* grow to fit the new digits */
   if (a->alloc < (a->used + b)) {
      if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
         return res;
      }
   }

   {
      mp_digit *top, *bottom;

      /* increment the used by the shift amount then copy upwards */
      a->used += b;

      /* top */
      top = a->dp + a->used - 1;

      /* base */
      bottom = (a->dp + a->used - 1) - b;

      /* much like mp_rshd this is implemented using a sliding window
       * except the window goes the otherway around.  Copying from
       * the bottom to the top.  see bn_mp_rshd.c for more info.
       */
      for (x = a->used - 1; x >= b; x--) {
         *top-- = *bottom--;
      }

      /* zero the lower digits */
      top = a->dp;
      for (x = 0; x < b; x++) {
         *top++ = 0;
      }
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
>
>






|





|
|



<
<
<
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
<
<
|
<



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


48

49
50
51




#include "tommath_private.h"
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shift left a certain amount of digits */
mp_err mp_lshd(mp_int *a, int b)
{
   int x;
   mp_err err;
   mp_digit *top, *bottom;

   /* if its less than zero return */
   if (b <= 0) {
      return MP_OKAY;
   }
   /* no need to shift 0 around */
   if (MP_IS_ZERO(a)) {
      return MP_OKAY;
   }

   /* grow to fit the new digits */
   if (a->alloc < (a->used + b)) {
      if ((err = mp_grow(a, a->used + b)) != MP_OKAY) {
         return err;
      }
   }




   /* increment the used by the shift amount then copy upwards */
   a->used += b;

   /* top */
   top = a->dp + a->used - 1;

   /* base */
   bottom = (a->dp + a->used - 1) - b;

   /* much like mp_rshd this is implemented using a sliding window
    * except the window goes the otherway around.  Copying from
    * the bottom to the top.  see bn_mp_rshd.c for more info.
    */
   for (x = a->used - 1; x >= b; x--) {
      *top-- = *bottom--;
   }

   /* zero the lower digits */
   MP_ZERO_DIGITS(a->dp, b);




   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  t;
   int     res;

   if ((res = mp_init_size(&t, b->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }

   if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
      res = MP_OKAY;
      mp_exch(&t, c);
   } else {
      res = mp_add(b, &t, c);
   }

   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|


|

|
|


|

|


|
|


|



|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31




#include "tommath_private.h"
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  t;
   mp_err  err;

   if ((err = mp_init_size(&t, b->used)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_div(a, b, NULL, &t)) != MP_OKAY) {
      mp_clear(&t);
      return err;
   }

   if (MP_IS_ZERO(&t) || (t.sign == b->sign)) {
      err = MP_OKAY;
      mp_exch(&t, c);
   } else {
      err = mp_add(b, &t, c);
   }

   mp_clear(&t);
   return err;
}
#endif




Changes to libtommath/bn_mp_mod_2d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "tommath_private.h"
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* calc a value mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c)
{
   int     x, res;


   /* if b is <= 0 then zero the int */
   if (b <= 0) {
      mp_zero(c);
      return MP_OKAY;
   }

   /* if the modulus is larger than the value than return */
   if (b >= (a->used * DIGIT_BIT)) {
      res = mp_copy(a, c);
      return res;
   }

   /* copy */
   if ((res = mp_copy(a, c)) != MP_OKAY) {
      return res;
   }

   /* zero digits above the last digit of the modulus */
   for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
      c->dp[x] = 0;
   }
   /* clear the digit that is not completely outside/inside the modulus */
   c->dp[b / DIGIT_BIT] &=
      ((mp_digit)1 << (mp_digit)(b % DIGIT_BIT)) - (mp_digit)1;
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
>








|
|
<



|
|



|
|
|

|
|




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38




#include "tommath_private.h"
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* calc a value mod 2**b */
mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c)
{
   int x;
   mp_err err;

   /* if b is <= 0 then zero the int */
   if (b <= 0) {
      mp_zero(c);
      return MP_OKAY;
   }

   /* if the modulus is larger than the value than return */
   if (b >= (a->used * MP_DIGIT_BIT)) {
      return mp_copy(a, c);

   }

   /* copy */
   if ((err = mp_copy(a, c)) != MP_OKAY) {
      return err;
   }

   /* zero digits above the last digit of the modulus */
   x = (b / MP_DIGIT_BIT) + (((b % MP_DIGIT_BIT) == 0) ? 0 : 1);
   MP_ZERO_DIGITS(c->dp + x, c->used - x);

   /* clear the digit that is not completely outside/inside the modulus */
   c->dp[b / MP_DIGIT_BIT] &=
      ((mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT)) - (mp_digit)1;
   mp_clamp(c);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mod_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "tommath_private.h"
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
   return mp_div_d(a, b, NULL, c);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|




<
<
<
<
1
2
3








4

5
6
7
8
9
10




#include "tommath_private.h"
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
   return mp_div_d(a, b, NULL, c);
}
#endif




Changes to libtommath/bn_mp_montgomery_calc_normalization.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
 */
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
   int     x, bits, res;


   /* how many bits of last digit does b use */
   bits = mp_count_bits(b) % DIGIT_BIT;

   if (b->used > 1) {
      if ((res = mp_2expt(a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
         return res;
      }
   } else {
      mp_set(a, 1uL);
      bits = 1;
   }


   /* now compute C = A * B mod b */
   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
      if ((res = mp_mul_2(a, a)) != MP_OKAY) {
         return res;
      }
      if (mp_cmp_mag(a, b) != MP_LT) {
         if ((res = s_mp_sub(a, b, a)) != MP_OKAY) {
            return res;
         }
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<







|

|
>


|


|
|








|
|
|


|
|







<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44




#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
 */
mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
   int    x, bits;
   mp_err err;

   /* how many bits of last digit does b use */
   bits = mp_count_bits(b) % MP_DIGIT_BIT;

   if (b->used > 1) {
      if ((err = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) {
         return err;
      }
   } else {
      mp_set(a, 1uL);
      bits = 1;
   }


   /* now compute C = A * B mod b */
   for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) {
      if ((err = mp_mul_2(a, a)) != MP_OKAY) {
         return err;
      }
      if (mp_cmp_mag(a, b) != MP_LT) {
         if ((err = s_mp_sub(a, b, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_montgomery_reduce.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int     ix, res, digs;

   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < (int)MP_WARRAY) &&
       (x->used <= (int)MP_WARRAY) &&
       (n->used <
        (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
      return fast_mp_montgomery_reduce(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((res = mp_grow(x, digs)) != MP_OKAY) {
         return res;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *


|
<
<
<
<
<
<
<
<
|
<


|

|
>









|
|
|
<
|




|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes xR**-1 == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int      ix, digs;
   mp_err   err;
   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < MP_WARRAY) &&
       (x->used <= MP_WARRAY) &&
       (n->used < MP_MAXFAST)) {

      return s_mp_montgomery_reduce_fast(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((err = mp_grow(x, digs)) != MP_OKAY) {
         return err;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word)u + (mp_word)*tmpx;

            /* get carry */
            u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);

            /* fix digit */
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0u) {
            *tmpx   += u;
            u        = *tmpx >> DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero







|










|







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word)u + (mp_word)*tmpx;

            /* get carry */
            u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

            /* fix digit */
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0u) {
            *tmpx   += u;
            u        = *tmpx >> MP_DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero
105
106
107
108
109
110
111
112
113
114
115
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
96
97
98
99
100
101
102




   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_montgomery_setup.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* setups the montgomery reduction stuff */
int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
   mp_digit x, b;

   /* fast inversion mod 2**k
    *
    * Based on the fact that
    *


|
<
<
<
<
<
<
<
<
|
<


|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* setups the montgomery reduction stuff */
mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
   mp_digit x, b;

   /* fast inversion mod 2**k
    *
    * Based on the fact that
    *
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
   x *= 2u - (b * x);              /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
   x *= 2u - (b * x);              /* here x*a==1 mod 2**64 */
#endif

   /* rho = -1/m mod b */
   *rho = (mp_digit)(((mp_word)1 << (mp_word)DIGIT_BIT) - x) & MP_MASK;

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|




<
<
<
<
31
32
33
34
35
36
37
38
39
40
41
42




   x *= 2u - (b * x);              /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
   x *= 2u - (b * x);              /* here x*a==1 mod 2**64 */
#endif

   /* rho = -1/m mod b */
   *rho = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - x) & MP_MASK;

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mul.c.
1
2
3

4
5
6











7
8
9
10










11
12






13


14
15
16


17
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
#include "tommath_private.h"
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis

 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.











 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.










 *
 * SPDX-License-Identifier: Unlicense






 */



/* high level multiplication (handles sign) */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)


{
   int     res, neg;
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;



   /* use Toom-Cook? */
#ifdef BN_MP_TOOM_MUL_C
   if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
      res = mp_toom_mul(a, b, c);
   } else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
      /* use Karatsuba? */
      if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
         res = mp_karatsuba_mul(a, b, c);
      } else
#endif
      {
         /* can we use the fast multiplier?
          *
          * The fast multiplier can be used if the output will
          * have less than MP_WARRAY digits and the number of
          * digits won't affect carry propagation
          */
         int     digs = a->used + b->used + 1;

#ifdef BN_FAST_S_MP_MUL_DIGS_C
         if ((digs < (int)MP_WARRAY) &&
             (MIN(a->used, b->used) <=
              (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
            res = fast_s_mp_mul_digs(a, b, c, digs);
         } else
#endif
         {
#ifdef BN_S_MP_MUL_DIGS_C
            res = s_mp_mul(a, b, c); /* uses s_mp_mul_digs */
#else
            res = MP_VAL;
#endif
         }
      }

   c->sign = (c->used > 0) ? neg : MP_ZPOS;
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
>
|
|
<
>
>
>
>
>
>
>
>
>
>
>
|
<
<
<
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
|
>
>
|
|
<
>
>
|
<
<
>
>


|
|
|


|

|
|











|
|
|
<
|




|

|



>

|


<
<
<
<
1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18



19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

41
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86




#include "tommath_private.h"
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* high level multiplication (handles sign) */

mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_err  err;
   mp_sign neg;
#ifdef BN_S_MP_BALANCE_MUL_C
   int len_b, len_a;
#endif
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
#ifdef BN_S_MP_BALANCE_MUL_C
   len_a = a->used;
   len_b = b->used;




   if (len_a == len_b) {
      goto GO_ON;
   }
   /*
    * Check sizes. The smaller one needs to be larger than the Karatsuba cut-off.
    * The bigger one needs to be at least about one KARATSUBA_MUL_CUTOFF bigger
    * to make some sense, but it depends on architecture, OS, position of the
    * stars... so YMMV.
    * Using it to cut the input into slices small enough for fast_s_mp_mul_digs
    * was actually slower on the author's machine, but YMMV.
    */

   if ((MP_MIN(len_a, len_b) < MP_KARATSUBA_MUL_CUTOFF)
       || ((MP_MAX(len_a, len_b) / 2) < MP_KARATSUBA_MUL_CUTOFF)) {
      goto GO_ON;
   }
   /*
    * Not much effect was observed below a ratio of 1:2, but again: YMMV.
    */
   if ((MP_MAX(len_a, len_b) /  MP_MIN(len_a, len_b)) < 2) {
      goto GO_ON;
   }


   err = s_mp_balance_mul(a,b,c);
   goto END;



GO_ON:
#endif

   /* use Toom-Cook? */
#ifdef BN_S_MP_TOOM_MUL_C
   if (MP_MIN(a->used, b->used) >= MP_TOOM_MUL_CUTOFF) {
      err = s_mp_toom_mul(a, b, c);
   } else
#endif
#ifdef BN_S_MP_KARATSUBA_MUL_C
      /* use Karatsuba? */
      if (MP_MIN(a->used, b->used) >= MP_KARATSUBA_MUL_CUTOFF) {
         err = s_mp_karatsuba_mul(a, b, c);
      } else
#endif
      {
         /* can we use the fast multiplier?
          *
          * The fast multiplier can be used if the output will
          * have less than MP_WARRAY digits and the number of
          * digits won't affect carry propagation
          */
         int     digs = a->used + b->used + 1;

#ifdef BN_S_MP_MUL_DIGS_FAST_C
         if ((digs < MP_WARRAY) &&
             (MP_MIN(a->used, b->used) <= MP_MAXFAST)) {

            err = s_mp_mul_digs_fast(a, b, c, digs);
         } else
#endif
         {
#ifdef BN_S_MP_MUL_DIGS_C
            err = s_mp_mul_digs(a, b, c, a->used + b->used + 1);
#else
            err = MP_VAL;
#endif
         }
      }
END:
   c->sign = (c->used > 0) ? neg : MP_ZPOS;
   return err;
}
#endif




Changes to libtommath/bn_mp_mul_2.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b)
{
   int     x, res, oldused;


   /* grow to accomodate result */
   if (b->alloc < (a->used + 1)) {
      if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   oldused = b->used;
   b->used = a->used;

   {


|
<
<
<
<
<
<
<
<
|
<


|

|
>



|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "tommath_private.h"
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* b = a*2 */
mp_err mp_mul_2(const mp_int *a, mp_int *b)
{
   int     x, oldused;
   mp_err err;

   /* grow to accomodate result */
   if (b->alloc < (a->used + 1)) {
      if ((err = mp_grow(b, a->used + 1)) != MP_OKAY) {
         return err;
      }
   }

   oldused = b->used;
   b->used = a->used;

   {
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
      /* carry */
      r = 0;
      for (x = 0; x < a->used; x++) {

         /* get what will be the *next* carry bit from the
          * MSB of the current digit
          */
         rr = *tmpa >> (mp_digit)(DIGIT_BIT - 1);

         /* now shift up this digit, add in the carry [from the previous] */
         *tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK;

         /* copy the carry that would be from the source
          * digit into the next iteration
          */
         r = rr;
      }

      /* new leading digit? */
      if (r != 0u) {
         /* add a MSB which is always 1 at this point */
         *tmpb = 1;
         ++(b->used);
      }

      /* now zero any excess digits on the destination
       * that we didn't write to
       */
      tmpb = b->dp + b->used;
      for (x = b->used; x < oldused; x++) {
         *tmpb++ = 0;
      }
   }
   b->sign = a->sign;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|




















|
<
<
<





<
<
<
<
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



60
61
62
63
64




      /* carry */
      r = 0;
      for (x = 0; x < a->used; x++) {

         /* get what will be the *next* carry bit from the
          * MSB of the current digit
          */
         rr = *tmpa >> (mp_digit)(MP_DIGIT_BIT - 1);

         /* now shift up this digit, add in the carry [from the previous] */
         *tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK;

         /* copy the carry that would be from the source
          * digit into the next iteration
          */
         r = rr;
      }

      /* new leading digit? */
      if (r != 0u) {
         /* add a MSB which is always 1 at this point */
         *tmpb = 1;
         ++(b->used);
      }

      /* now zero any excess digits on the destination
       * that we didn't write to
       */
      MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used);



   }
   b->sign = a->sign;
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mul_2d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include "tommath_private.h"
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* shift left by a certain bit count */
int mp_mul_2d(const mp_int *a, int b, mp_int *c)
{
   mp_digit d;
   int      res;

   /* copy */
   if (a != c) {
      if ((res = mp_copy(a, c)) != MP_OKAY) {
         return res;
      }
   }

   if (c->alloc < (c->used + (b / DIGIT_BIT) + 1)) {
      if ((res = mp_grow(c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= DIGIT_BIT) {
      if ((res = mp_lshd(c, b / DIGIT_BIT)) != MP_OKAY) {
         return res;
      }
   }

   /* shift any bit count < DIGIT_BIT */
   d = (mp_digit)(b % DIGIT_BIT);
   if (d != 0u) {
      mp_digit *tmpc, shift, mask, r, rr;
      int x;

      /* bitmask for carries */
      mask = ((mp_digit)1 << d) - (mp_digit)1;

      /* shift for msbs */
      shift = (mp_digit)DIGIT_BIT - d;

      /* alias */
      tmpc = c->dp;

      /* carry */
      r    = 0;
      for (x = 0; x < c->used; x++) {


|
<
<
<
<
<
<
<
<
|
<


|


|



|
|



|
|
|




|
|
|



|
|








|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include "tommath_private.h"
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shift left by a certain bit count */
mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c)
{
   mp_digit d;
   mp_err   err;

   /* copy */
   if (a != c) {
      if ((err = mp_copy(a, c)) != MP_OKAY) {
         return err;
      }
   }

   if (c->alloc < (c->used + (b / MP_DIGIT_BIT) + 1)) {
      if ((err = mp_grow(c, c->used + (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* shift by as many digits in the bit count */
   if (b >= MP_DIGIT_BIT) {
      if ((err = mp_lshd(c, b / MP_DIGIT_BIT)) != MP_OKAY) {
         return err;
      }
   }

   /* shift any bit count < MP_DIGIT_BIT */
   d = (mp_digit)(b % MP_DIGIT_BIT);
   if (d != 0u) {
      mp_digit *tmpc, shift, mask, r, rr;
      int x;

      /* bitmask for carries */
      mask = ((mp_digit)1 << d) - (mp_digit)1;

      /* shift for msbs */
      shift = (mp_digit)MP_DIGIT_BIT - d;

      /* alias */
      tmpc = c->dp;

      /* carry */
      r    = 0;
      for (x = 0; x < c->used; x++) {
72
73
74
75
76
77
78
79
80
81
82
         c->dp[(c->used)++] = r;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
63
64
65
66
67
68
69




         c->dp[(c->used)++] = r;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mul_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
#include "tommath_private.h"
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* multiply by a digit */
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit u, *tmpa, *tmpc;
   mp_word  r;

   int      ix, res, olduse;

   /* make sure c is big enough to hold a*b */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* get the original destinations used count */
   olduse = c->used;

   /* set the sign */


|
<
<
<
<
<
<
<
<
|
<


|



>
|



|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "tommath_private.h"
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* multiply by a digit */
mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit u, *tmpa, *tmpc;
   mp_word  r;
   mp_err   err;
   int      ix, olduse;

   /* make sure c is big enough to hold a*b */
   if (c->alloc < (a->used + 1)) {
      if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* get the original destinations used count */
   olduse = c->used;

   /* set the sign */
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
      /* compute product and carry sum for this term */
      r       = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);

      /* mask off higher bits to get a single digit */
      *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK);

      /* send carry into next iteration */
      u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
   }

   /* store final carry [if any] and increment ix offset  */
   *tmpc++ = u;
   ++ix;

   /* now zero digits above the top */
   while (ix++ < olduse) {
      *tmpc++ = 0;
   }

   /* set used count */
   c->used = a->used + 1;
   mp_clamp(c);

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|







|
<
<








<
<
<
<
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


54
55
56
57
58
59
60
61




      /* compute product and carry sum for this term */
      r       = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);

      /* mask off higher bits to get a single digit */
      *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK);

      /* send carry into next iteration */
      u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
   }

   /* store final carry [if any] and increment ix offset  */
   *tmpc++ = u;
   ++ix;

   /* now zero digits above the top */
   MP_ZERO_DIGITS(tmpc, olduse - ix);



   /* set used count */
   c->used = a->used + 1;
   mp_clamp(c);

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_mulmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
   int     res;

   mp_int  t;

   if ((res = mp_init_size(&t, c->used)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_mul(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>
|

|
|


|

|

|

|


<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24




#include "tommath_private.h"
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* d = a * b (mod c) */
mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{

   mp_err err;
   mp_int t;

   if ((err = mp_init_size(&t, c->used)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_mul(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return err;
   }
   err = mp_mod(&t, c, d);
   mp_clear(&t);
   return err;
}
#endif




Changes to libtommath/bn_mp_n_root.c.
1
2
3

4















5




6



7



8


9













































10

11









12




13




14
15




16






17




18
































19










20
21
22
23
24
25
26
27
#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis

 *















 * LibTomMath is a library that provides multiple-precision




 * integer arithmetic as well as number theoretic functionality.



 *



 * The library was designed directly after the MPI library by


 * Michael Fromberger but has been written from scratch with













































 * additional optimizations in place.

 *









 * SPDX-License-Identifier: Unlicense




 */





/* wrapper function for mp_n_root_ex()




 * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a






 */




int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
































{










   return mp_n_root_ex(a, b, c, 0);
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
|
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
|
|
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|



<
<
<
<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170




#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* find the n'th root of an integer
 *
 * Result found such that (c)**b <= a and (c+1)**b > a
 *
 * This algorithm uses Newton's approximation
 * x[i+1] = x[i] - f(x[i])/f'(x[i])
 * which will find the root in log(N) time where
 * each step involves a fair bit.
 */
mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_int t1, t2, t3, a_;
   mp_ord cmp;
   int    ilog2;
   mp_err err;

   /* input must be positive if b is even */
   if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
      return MP_VAL;
   }

   if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
      return err;
   }

   /* if a is negative fudge the sign but keep track */
   a_ = *a;
   a_.sign = MP_ZPOS;

   /* Compute seed: 2^(log_2(n)/b + 2)*/
   ilog2 = mp_count_bits(a);

   /*
      GCC and clang do not understand the sizeof tests and complain,
      icc (the Intel compiler) seems to understand, at least it doesn't complain.
      2 of 3 say these macros are necessary, so there they are.
   */
#if ( !(defined MP_8BIT) && !(defined MP_16BIT) )
   /*
       The type of mp_digit might be larger than an int.
       If "b" is larger than INT_MAX it is also larger than
       log_2(n) because the bit-length of the "n" is measured
       with an int and hence the root is always < 2 (two).
    */
   if (sizeof(mp_digit) >= sizeof(int)) {
      if (b > (mp_digit)(INT_MAX/2)) {
         mp_set(c, 1uL);
         c->sign = a->sign;
         err = MP_OKAY;
         goto LBL_ERR;
      }
   }
#endif
   /* "b" is smaller than INT_MAX, we can cast safely */
   if (ilog2 < (int)b) {
      mp_set(c, 1uL);
      c->sign = a->sign;
      err = MP_OKAY;
      goto LBL_ERR;
   }
   ilog2 =  ilog2 / ((int)b);
   if (ilog2 == 0) {
      mp_set(c, 1uL);
      c->sign = a->sign;
      err = MP_OKAY;
      goto LBL_ERR;
   }
   /* Start value must be larger than root */
   ilog2 += 2;
   if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   do {
      /* t1 = t2 */
      if ((err = mp_copy(&t2, &t1)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

      /* t3 = t1**(b-1) */
      if ((err = mp_expt_d(&t1, b - 1u, &t3)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* numerator */
      /* t2 = t1**b */
      if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* t2 = t1**b - a */
      if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* denominator */
      /* t3 = t1**(b-1) * b  */
      if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* t3 = (t1**b - a)/(b * t1**(b-1)) */
      if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /*
          Number of rounds is at most log_2(root). If it is more it
          got stuck, so break out of the loop and do the rest manually.
       */
      if (ilog2-- == 0) {
         break;
      }
   }  while (mp_cmp(&t1, &t2) != MP_EQ);

   /* result can be off by a few so check */
   /* Loop beneath can overshoot by one if found root is smaller than actual root */
   for (;;) {
      if ((err = mp_expt_d(&t1, b, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      cmp = mp_cmp(&t2, &a_);
      if (cmp == MP_EQ) {
         err = MP_OKAY;
         goto LBL_ERR;
      }
      if (cmp == MP_LT) {
         if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) {
            goto LBL_ERR;
         }
      } else {
         break;
      }
   }
   /* correct overshoot from above or from recurrence */
   for (;;) {
      if ((err = mp_expt_d(&t1, b, &t2)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if (mp_cmp(&t2, &a_) == MP_GT) {
         if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
            goto LBL_ERR;
         }
      } else {
         break;
      }
   }

   /* set the result */
   mp_exch(&t1, c);

   /* set the sign of the result */
   c->sign = a->sign;

   err = MP_OKAY;

LBL_ERR:
   mp_clear_multi(&t1, &t2, &t3, NULL);
   return err;
}

#endif




Deleted libtommath/bn_mp_n_root_ex.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* find the n'th root of an integer
 *
 * Result found such that (c)**b <= a and (c+1)**b > a
 *
 * This algorithm uses Newton's approximation
 * x[i+1] = x[i] - f(x[i])/f'(x[i])
 * which will find the root in log(N) time where
 * each step involves a fair bit.  This is not meant to
 * find huge roots [square and cube, etc].
 */
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
   mp_int  t1, t2, t3, a_;
   int     res;

   /* input must be positive if b is even */
   if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
      return MP_VAL;
   }

   if ((res = mp_init(&t1)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto LBL_T1;
   }

   if ((res = mp_init(&t3)) != MP_OKAY) {
      goto LBL_T2;
   }

   /* if a is negative fudge the sign but keep track */
   a_ = *a;
   a_.sign = MP_ZPOS;

   /* t2 = 2 */
   mp_set(&t2, 2uL);

   do {
      /* t1 = t2 */
      if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */

      /* t3 = t1**(b-1) */
      if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* numerator */
      /* t2 = t1**b */
      if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t2 = t1**b - a */
      if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* denominator */
      /* t3 = t1**(b-1) * b  */
      if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
         goto LBL_T3;
      }

      /* t3 = (t1**b - a)/(b * t1**(b-1)) */
      if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
         goto LBL_T3;
      }

      if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
         goto LBL_T3;
      }
   }  while (mp_cmp(&t1, &t2) != MP_EQ);

   /* result can be off by a few so check */
   for (;;) {
      if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
         goto LBL_T3;
      }

      if (mp_cmp(&t2, &a_) == MP_GT) {
         if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
            goto LBL_T3;
         }
      } else {
         break;
      }
   }

   /* set the result */
   mp_exch(&t1, c);

   /* set the sign of the result */
   c->sign = a->sign;

   res = MP_OKAY;

LBL_T3:
   mp_clear(&t3);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


































































































































































































































































Changes to libtommath/bn_mp_neg.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* b = -a */
int mp_neg(const mp_int *a, mp_int *b)
{
   int     res;

   if (a != b) {
      if ((res = mp_copy(a, b)) != MP_OKAY) {
         return res;
      }
   }

   if (mp_iszero(b) != MP_YES) {
      b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
   } else {
      b->sign = MP_ZPOS;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>

|
|



|








<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24




#include "tommath_private.h"
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* b = -a */
mp_err mp_neg(const mp_int *a, mp_int *b)
{

   mp_err err;
   if (a != b) {
      if ((err = mp_copy(a, b)) != MP_OKAY) {
         return err;
      }
   }

   if (!MP_IS_ZERO(b)) {
      b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
   } else {
      b->sign = MP_ZPOS;
   }

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_or.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

26






27

28
29
30
31
32



33



34
35

36



37

38




39
40
41
42
43
44
45
46
47
48
#include "tommath_private.h"
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* OR two ints together */
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;


   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }

      px = b->used;






      x = b;

   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;



      x = a;



   }


   for (ix = 0; ix < px; ix++) {



      t.dp[ix] |= x->dp[ix];

   }




   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|
|

|
|
|
>

|
|
|

>
|
>
>
>
>
>
>
|
>
|
|
<

|
>
>
>
|
>
>
>
|

>
|
>
>
>
|
>
|
>
>
>
>
|
<
<



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


54
55
56




#include "tommath_private.h"
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* two complement or */
mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   int used = MP_MAX(a->used, b->used) + 1, i;
   mp_err err;
   mp_digit ac = 1, bc = 1, cc = 1;
   mp_sign csign = ((a->sign == MP_NEG) || (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS;

   if (c->alloc < used) {
      if ((err = mp_grow(c, used)) != MP_OKAY) {
         return err;
      }
   }

   for (i = 0; i < used; i++) {
      mp_digit x, y;

      /* convert to two complement if negative */
      if (a->sign == MP_NEG) {
         ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
         x = ac & MP_MASK;
         ac >>= MP_DIGIT_BIT;
      } else {
         x = (i >= a->used) ? 0uL : a->dp[i];

      }

      /* convert to two complement if negative */
      if (b->sign == MP_NEG) {
         bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
         y = bc & MP_MASK;
         bc >>= MP_DIGIT_BIT;
      } else {
         y = (i >= b->used) ? 0uL : b->dp[i];
      }

      c->dp[i] = x | y;

      /* convert to to sign-magnitude if negative */
      if (csign == MP_NEG) {
         cc += ~c->dp[i] & MP_MASK;
         c->dp[i] = cc & MP_MASK;
         cc >>= MP_DIGIT_BIT;
      }
   }

   c->used = used;
   c->sign = csign;
   mp_clamp(c);


   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_prime_fermat.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* performs one Fermat test.
 *
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 *
 * Sets result to 1 if the congruence holds, or zero otherwise.
 */
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  t;
   int     err;

   /* default to composite  */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;


|
<
<
<
<
<
<
<
<
|
<









|


|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* performs one Fermat test.
 *
 * If "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1.  That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 *
 * Sets result to 1 if the congruence holds, or zero otherwise.
 */
mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result)
{
   mp_int  t;
   mp_err  err;

   /* default to composite  */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;
50
51
52
53
54
55
56
57
58
59
60

   err = MP_OKAY;
LBL_T:
   mp_clear(&t);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
41
42
43
44
45
46
47





   err = MP_OKAY;
LBL_T:
   mp_clear(&t);
   return err;
}
#endif




Changes to libtommath/bn_mp_prime_frobenius_underwood.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_FIPS_ONLY

#ifdef MP_8BIT
/*
 * floor of positive solution of
 * (2^16)-1 = (a+4)*(2*a+5)
 * TODO: Both values are smaller than N^(1/4), would have to use a bigint
 *       for a instead but any a biger than about 120 are already so rare that
 *       it is possible to ignore them and still get enough pseudoprimes.
 *       But it is still a restriction of the set of available pseudoprimes
 *       which makes this implementation less secure if used stand-alone.
 */
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
{
   mp_int T1z, T2z, Np1z, sz, tz;

   int a, ap2, length, i, j, isset;
   int e;

   *result = MP_NO;

   if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
      return e;
   }

   for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
      /* TODO: That's ugly! No, really, it is! */
      if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
          (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
         continue;
      }
      /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */

      if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) {

         goto LBL_FU_ERR;
      }

      if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      if (j == -1) {
         break;
      }

      if (j == 0) {
         /* composite */
         goto LBL_FU_ERR;
      }
   }
   /* Tell it a composite and set return value accordingly */
   if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
      e = MP_ITER;
      goto LBL_FU_ERR;
   }
   /* Composite if N and (a+4)*(2*a+5) are not coprime */
   if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) {
      goto LBL_FU_ERR;
   }

   if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }

   if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
      goto LBL_FU_ERR;
   }

   ap2 = a + 2;
   if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }

   mp_set(&sz, 1uL);
   mp_set(&tz, 2uL);
   length = mp_count_bits(&Np1z);

   for (i = length - 2; i >= 0; i--) {
      /*
       * temp = (sz*(a*sz+2*tz))%N;
       * tz   = ((tz-sz)*(tz+sz))%N;
       * sz   = temp;
       */
      if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      /* a = 0 at about 50% of the cases (non-square and odd input) */
      if (a != 0) {
         if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
      }

      if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) {
         e = isset;
         goto LBL_FU_ERR;
      }
      if (isset == MP_YES) {
         /*
          *  temp = (a+2) * sz + tz
          *  tz   = 2 * tz - sz
          *  sz   = temp
          */
         if (a == 0) {
            if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
               goto LBL_FU_ERR;
            }
         } else {
            if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
               goto LBL_FU_ERR;
            }
         }
         if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         mp_exch(&sz, &T1z);
      }
   }

   if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) {
      goto LBL_FU_ERR;
   }
   if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }
   if ((mp_iszero(&sz) != MP_NO) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
      *result = MP_YES;
      goto LBL_FU_ERR;
   }

LBL_FU_ERR:
   mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
   return e;
}

#endif
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */



|
<
<
<
<
<
<
<
<
|
<




















|



|
|



|
|









>
|
>



|



<
<
<
<
|














|



|
<
|
<
|








|













|





|


|




|


|


|


|


|


|


|
<
<
<
<






|



|



|


|


|






|
<
<
|


|






|




<
<
<
<
1
2
3
4








5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55




56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132




133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175




#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_FIPS_ONLY

#ifdef MP_8BIT
/*
 * floor of positive solution of
 * (2^16)-1 = (a+4)*(2*a+5)
 * TODO: Both values are smaller than N^(1/4), would have to use a bigint
 *       for a instead but any a biger than about 120 are already so rare that
 *       it is possible to ignore them and still get enough pseudoprimes.
 *       But it is still a restriction of the set of available pseudoprimes
 *       which makes this implementation less secure if used stand-alone.
 */
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
{
   mp_int T1z, T2z, Np1z, sz, tz;

   int a, ap2, length, i, j;
   mp_err err;

   *result = MP_NO;

   if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
      return err;
   }

   for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
      /* TODO: That's ugly! No, really, it is! */
      if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
          (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
         continue;
      }
      /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
      mp_set_u32(&T1z, (uint32_t)a);

      if ((err = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      if ((err = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }





      if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      if (j == -1) {
         break;
      }

      if (j == 0) {
         /* composite */
         goto LBL_FU_ERR;
      }
   }
   /* Tell it a composite and set return value accordingly */
   if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
      err = MP_ITER;
      goto LBL_FU_ERR;
   }
   /* Composite if N and (a+4)*(2*a+5) are not coprime */
   mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5)));



   if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }

   if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
      goto LBL_FU_ERR;
   }

   ap2 = a + 2;
   if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }

   mp_set(&sz, 1uL);
   mp_set(&tz, 2uL);
   length = mp_count_bits(&Np1z);

   for (i = length - 2; i >= 0; i--) {
      /*
       * temp = (sz*(a*sz+2*tz))%N;
       * tz   = ((tz-sz)*(tz+sz))%N;
       * sz   = temp;
       */
      if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }

      /* a = 0 at about 50% of the cases (non-square and odd input) */
      if (a != 0) {
         if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
      }

      if ((err = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((err = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((err = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((err = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((err = mp_mod(&tz, N, &tz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if ((err = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
         goto LBL_FU_ERR;
      }
      if (s_mp_get_bit(&Np1z, (unsigned int)i) == MP_YES) {




         /*
          *  temp = (a+2) * sz + tz
          *  tz   = 2 * tz - sz
          *  sz   = temp
          */
         if (a == 0) {
            if ((err = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
               goto LBL_FU_ERR;
            }
         } else {
            if ((err = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
               goto LBL_FU_ERR;
            }
         }
         if ((err = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         if ((err = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
            goto LBL_FU_ERR;
         }
         mp_exch(&sz, &T1z);
      }
   }

   mp_set_u32(&T1z, (uint32_t)((2 * a) + 5));


   if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
      goto LBL_FU_ERR;
   }
   if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
      *result = MP_YES;
      goto LBL_FU_ERR;
   }

LBL_FU_ERR:
   mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
   return err;
}

#endif
#endif




Changes to libtommath/bn_mp_prime_is_prime.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* portable integer log of two with small footprint */
static unsigned int s_floor_ilog2(int value)
{
   unsigned int r = 0;
   while ((value >>= 1) != 0) {
      r++;
   }
   return r;
}


int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
   mp_int  b;
   int     ix, err, res, p_max = 0, size_a, len;


   unsigned int fips_rand, mask;

   /* default to no */
   *result = MP_NO;

   /* valid value of t? */
   if (t > PRIME_SIZE) {
      return MP_VAL;
   }

   /* Some shortcuts */
   /* N > 3 */
   if (a->used == 1) {
      if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
         *result = 0;
         return MP_OKAY;
      }
      if (a->dp[0] == 2u) {
         *result = 1;
         return MP_OKAY;
      }
   }

   /* N must be odd */
   if (mp_iseven(a) == MP_YES) {
      return MP_OKAY;
   }
   /* N is not a perfect square: floor(sqrt(N))^2 != N */
   if ((err = mp_is_square(a, &res)) != MP_OKAY) {
      return err;
   }
   if (res != 0) {
      return MP_OKAY;
   }

   /* is the input equal to one of the primes in the table? */
   for (ix = 0; ix < PRIME_SIZE; ix++) {
      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }
#ifdef MP_8BIT
   /* The search in the loop above was exhaustive in this case */
   if ((a->used == 1) && (PRIME_SIZE >= 31)) {
      return MP_OKAY;
   }
#endif

   /* first perform trial division */
   if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
      return err;
   }

   /* return if it was trivially divisible */
   if (res == MP_YES) {
      return MP_OKAY;
   }


|
<
<
<
<
<
<
<
<
|
<












|


|
>
>





<
<
<
<
<




|



|





|






|




|
|






|





|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27





28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* portable integer log of two with small footprint */
static unsigned int s_floor_ilog2(int value)
{
   unsigned int r = 0;
   while ((value >>= 1) != 0) {
      r++;
   }
   return r;
}


mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
{
   mp_int  b;
   int     ix, p_max = 0, size_a, len;
   mp_bool res;
   mp_err  err;
   unsigned int fips_rand, mask;

   /* default to no */
   *result = MP_NO;






   /* Some shortcuts */
   /* N > 3 */
   if (a->used == 1) {
      if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
         *result = MP_NO;
         return MP_OKAY;
      }
      if (a->dp[0] == 2u) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }

   /* N must be odd */
   if (MP_IS_EVEN(a)) {
      return MP_OKAY;
   }
   /* N is not a perfect square: floor(sqrt(N))^2 != N */
   if ((err = mp_is_square(a, &res)) != MP_OKAY) {
      return err;
   }
   if (res != MP_NO) {
      return MP_OKAY;
   }

   /* is the input equal to one of the primes in the table? */
   for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) {
      if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }
#ifdef MP_8BIT
   /* The search in the loop above was exhaustive in this case */
   if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) {
      return MP_OKAY;
   }
#endif

   /* first perform trial division */
   if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) {
      return err;
   }

   /* return if it was trivially divisible */
   if (res == MP_YES) {
      return MP_OKAY;
   }
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

   /* run at least one Miller-Rabin test with a random base */
   if (t == 0) {
      t = 1;
   }

   /*
      abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0.
      Only recommended if the input range is known to be < 3317044064679887385961981

      It uses the bases for a deterministic M-R test if input < 3317044064679887385961981

      The caller has to check the size.

      Not for cryptographic use because with known bases strong M-R pseudoprimes can
      be constructed. Use at least one M-R test with a random base (t >= 1).

      The 1119 bit large number

      80383745745363949125707961434194210813883768828755814583748891752229742737653\
      33652186502336163960045457915042023603208766569966760987284043965408232928738\
      79185086916685732826776177102938969773947016708230428687109997439976544144845\
      34115587245063340927902227529622941498423068816854043264575340183297861112989\
      60644845216191652872597534901

      has been constructed by F. Arnault (F. Arnault, "Rabin-Miller primality test:
      composite numbers which pass it.",  Mathematics of Computation, 1995, 64. Jg.,
      Nr. 209, S. 355-361), is a semiprime with the two factors

      40095821663949960541830645208454685300518816604113250877450620473800321707011\
      96242716223191597219733582163165085358166969145233813917169287527980445796800\
      452592031836601

      20047910831974980270915322604227342650259408302056625438725310236900160853505\
      98121358111595798609866791081582542679083484572616906958584643763990222898400\
      226296015918301

      and it is a strong pseudoprime to all forty-six prime M-R bases up to 200

      It does not fail the strong Bailley-PSP test as implemented here, it is just
      given as an example, if not the reason to use the BPSW-test instead of M-R-tests
      with a sequence of primes 2...n.

   */
   if (t < 0) {
      t = -t;
      /*
          Sorenson, Jonathan; Webster, Jonathan (2015).
           "Strong Pseudoprimes to Twelve Prime Bases".
       */







<


|
>

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







133
134
135
136
137
138
139

140
141
142
143
144
145





























146
147
148
149
150
151
152

   /* run at least one Miller-Rabin test with a random base */
   if (t == 0) {
      t = 1;
   }

   /*

      Only recommended if the input range is known to be < 3317044064679887385961981

      It uses the bases necessary for a deterministic M-R test if the input is
      smaller than  3317044064679887385961981
      The caller has to check the size.
      TODO: can be made a bit finer grained but comparing is not free.





























   */
   if (t < 0) {
      t = -t;
      /*
          Sorenson, Jonathan; Webster, Jonathan (2015).
           "Strong Pseudoprimes to Twelve Prime Bases".
       */
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
            p_max = 13;
         } else {
            err = MP_VAL;
            goto LBL_B;
         }
      }

      /* for compatibility with the current API (well, compatible within a sign's width) */
      if (p_max < t) {
         p_max = t;
      }

      if (p_max > PRIME_SIZE) {
         err = MP_VAL;
         goto LBL_B;
      }
      /* we did bases 2 and 3  already, skip them */
      for (ix = 2; ix < p_max; ix++) {
         mp_set(&b, ltm_prime_tab[ix]);
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;
         }
         if (res == MP_NO) {
            goto LBL_B;
         }
      }







<
<
<
<
<
<
<
<
<


|







167
168
169
170
171
172
173









174
175
176
177
178
179
180
181
182
183
            p_max = 13;
         } else {
            err = MP_VAL;
            goto LBL_B;
         }
      }










      /* we did bases 2 and 3  already, skip them */
      for (ix = 2; ix < p_max; ix++) {
         mp_set(&b, s_mp_prime_tab[ix]);
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;
         }
         if (res == MP_NO) {
            goto LBL_B;
         }
      }
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
          */
         fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
#ifdef MP_8BIT
         /*
          * One 8-bit digit is too small, so concatenate two if the size of
          * unsigned int allows for it.
          */
         if (((sizeof(unsigned int) * CHAR_BIT)/2) >= (sizeof(mp_digit) * CHAR_BIT)) {
            if ((err = mp_rand(&b, 1)) != MP_OKAY) {
               goto LBL_B;
            }
            fips_rand <<= sizeof(mp_digit) * CHAR_BIT;
            fips_rand |= (unsigned int) b.dp[0];
            fips_rand &= mask;
         }
#endif
         if (fips_rand > (unsigned int)(INT_MAX - DIGIT_BIT)) {
            len = INT_MAX / DIGIT_BIT;
         } else {
            len = (((int)fips_rand + DIGIT_BIT) / DIGIT_BIT);
         }
         /*  Unlikely. */
         if (len < 0) {
            ix--;
            continue;
         }
         /*







|



|




|
|

|







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
          */
         fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
#ifdef MP_8BIT
         /*
          * One 8-bit digit is too small, so concatenate two if the size of
          * unsigned int allows for it.
          */
         if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) {
            if ((err = mp_rand(&b, 1)) != MP_OKAY) {
               goto LBL_B;
            }
            fips_rand <<= MP_SIZEOF_BITS(mp_digit);
            fips_rand |= (unsigned int) b.dp[0];
            fips_rand &= mask;
         }
#endif
         if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) {
            len = INT_MAX / MP_DIGIT_BIT;
         } else {
            len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT);
         }
         /*  Unlikely. */
         if (len < 0) {
            ix--;
            continue;
         }
         /*
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
         }
#endif
         if ((err = mp_rand(&b, len)) != MP_OKAY) {
            goto LBL_B;
         }
         /*
          * That number might got too big and the witness has to be
          * smaller than or equal to "a"
          */
         len = mp_count_bits(&b);
         if (len > size_a) {
            len = len - size_a;
            if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
               goto LBL_B;
            }
         }

         /* Although the chance for b <= 3 is miniscule, try again. */
         if (mp_cmp_d(&b, 3uL) != MP_GT) {
            ix--;
            continue;
         }
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;







|


|
|




<







278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
         }
#endif
         if ((err = mp_rand(&b, len)) != MP_OKAY) {
            goto LBL_B;
         }
         /*
          * That number might got too big and the witness has to be
          * smaller than "a"
          */
         len = mp_count_bits(&b);
         if (len >= size_a) {
            len = (len - size_a) + 1;
            if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
               goto LBL_B;
            }
         }

         /* Although the chance for b <= 3 is miniscule, try again. */
         if (mp_cmp_d(&b, 3uL) != MP_GT) {
            ix--;
            continue;
         }
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;
360
361
362
363
364
365
366
367
368
369
370
   *result = MP_YES;
LBL_B:
   mp_clear(&b);
   return err;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
309
310
311
312
313
314
315




   *result = MP_YES;
LBL_B:
   mp_clear(&b);
   return err;
}

#endif




Changes to libtommath/bn_mp_prime_miller_rabin.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
#include "tommath_private.h"
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Miller-Rabin test of "a" to the base of "b" as described in
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often
 * very much lower.
 */
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  n1, y, r;

   int     s, j, err;

   /* default */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;


|
<
<
<
<
<
<
<
<
|
<








|


>
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "tommath_private.h"
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Miller-Rabin test of "a" to the base of "b" as described in
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often
 * very much lower.
 */
mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result)
{
   mp_int  n1, y, r;
   mp_err  err;
   int     s, j;

   /* default */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;
93
94
95
96
97
98
99
100
101
102
103
LBL_R:
   mp_clear(&r);
LBL_N1:
   mp_clear(&n1);
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
85
86
87
88
89
90
91




LBL_R:
   mp_clear(&r);
LBL_N1:
   mp_clear(&n1);
   return err;
}
#endif




Changes to libtommath/bn_mp_prime_next_prime.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22


23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      err, res = MP_NO, x, y;


   mp_digit res_tab[PRIME_SIZE], step, kstep;
   mp_int   b;

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIME_SIZE - 2; x >= 0; x--) {
         if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
            if (bbs_style == 1) {
               /* ok we found a prime smaller or
                * equal [so the next is larger]
                *
                * however, the prime must be
                * congruent to 3 mod 4
                */
               if ((ltm_prime_tab[x + 1] & 3u) != 3u) {
                  /* scan upwards for a prime congruent to 3 mod 4 */
                  for (y = x + 1; y < PRIME_SIZE; y++) {
                     if ((ltm_prime_tab[y] & 3u) == 3u) {
                        mp_set(a, ltm_prime_tab[y]);
                        return MP_OKAY;
                     }
                  }
               }
            } else {
               mp_set(a, ltm_prime_tab[x + 1]);
               return MP_OKAY;
            }
         }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1uL) == MP_EQ) {
         mp_set(a, 2uL);


|
<
<
<
<
<
<
<
<
|
<






|

|
>
>
|






|

|
|







|

|
|
|





|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      x, y;
   mp_err  err;
   mp_bool res = MP_NO;
   mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep;
   mp_int   b;

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than */
      for (x = PRIVATE_MP_PRIME_TAB_SIZE - 2; x >= 0; x--) {
         if (mp_cmp_d(a, s_mp_prime_tab[x]) != MP_LT) {
            if (bbs_style == 1) {
               /* ok we found a prime smaller or
                * equal [so the next is larger]
                *
                * however, the prime must be
                * congruent to 3 mod 4
                */
               if ((s_mp_prime_tab[x + 1] & 3u) != 3u) {
                  /* scan upwards for a prime congruent to 3 mod 4 */
                  for (y = x + 1; y < PRIVATE_MP_PRIME_TAB_SIZE; y++) {
                     if ((s_mp_prime_tab[y] & 3u) == 3u) {
                        mp_set(a, s_mp_prime_tab[y]);
                        return MP_OKAY;
                     }
                  }
               }
            } else {
               mp_set(a, s_mp_prime_tab[x + 1]);
               return MP_OKAY;
            }
         }
      }
      /* at this point a maybe 1 */
      if (mp_cmp_d(a, 1uL) == MP_EQ) {
         mp_set(a, 2uL);
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3u) != 3u) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
            return err;
         };
      }

   } else {
      if (mp_iseven(a) == MP_YES) {
         /* force odd */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIME_SIZE; x++) {
      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIME_SIZE; x++) {
            /* add the step to each residue */
            res_tab[x] += kstep;

            /* subtract the modulus [instead of using division] */
            if (res_tab[x] >= ltm_prime_tab[x]) {
               res_tab[x]  -= ltm_prime_tab[x];
            }

            /* set flag if zero */
            if (res_tab[x] == 0u) {
               y = 1;
            }
         }
      } while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MAX then skip test */
      if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) {
         continue;
      }

      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
|
>

|








|
|




















|




|
|







|






|
|


















<
<
<
<
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145




   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3u) != 3u) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
            return err;

         }
      }
   } else {
      if (MP_IS_EVEN(a)) {
         /* force odd */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
      if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
            /* add the step to each residue */
            res_tab[x] += kstep;

            /* subtract the modulus [instead of using division] */
            if (res_tab[x] >= s_mp_prime_tab[x]) {
               res_tab[x]  -= s_mp_prime_tab[x];
            }

            /* set flag if zero */
            if (res_tab[x] == 0u) {
               y = 1;
            }
         }
      } while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MP_MAX then skip test */
      if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
         continue;
      }

      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif




Changes to libtommath/bn_mp_prime_rabin_miller_trials.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "tommath_private.h"
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */


static const struct {
   int k, t;
} sizes[] = {
   {    80,    -1 }, /* Use deterministic algorithm for size <= 80 bits */
   {    81,    39 },
   {    96,    37 },
   {   128,    32 },
   {   160,    27 },
   {   192,    21 },
   {   256,    16 },
   {   384,    10 },
   {   512,     7 },
   {   640,     6 },
   {   768,     5 },
   {   896,     4 },
   {  1024,     4 },
   {  2048,     2 },
   {  4096,     1 },
};

/* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/
int mp_prime_rabin_miller_trials(int size)
{
   int x;

   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
      if (sizes[x].k == size) {
         return sizes[x].t;
      } else if (sizes[x].k > size) {
         return (x == 0) ? sizes[0].t : sizes[x - 1].t;
      }
   }
   return sizes[x-1].t + 1;
}


#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<
<

















|
<














|




<
<
<
<
1
2
3








4


5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41




#include "tommath_private.h"
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */



static const struct {
   int k, t;
} sizes[] = {
   {    80,    -1 }, /* Use deterministic algorithm for size <= 80 bits */
   {    81,    39 },
   {    96,    37 },
   {   128,    32 },
   {   160,    27 },
   {   192,    21 },
   {   256,    16 },
   {   384,    10 },
   {   512,     7 },
   {   640,     6 },
   {   768,     5 },
   {   896,     4 },
   {  1024,     4 },
   {  2048,     2 }  /* For bigger keysizes use always at least 2 Rounds */

};

/* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/
int mp_prime_rabin_miller_trials(int size)
{
   int x;

   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
      if (sizes[x].k == size) {
         return sizes[x].t;
      } else if (sizes[x].k > size) {
         return (x == 0) ? sizes[0].t : sizes[x - 1].t;
      }
   }
   return sizes[x-1].t;
}


#endif




Name change from libtommath/bn_mp_prime_random_ex.c to libtommath/bn_mp_prime_rand.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include "tommath_private.h"
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */

/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
   int res, err, bsize, maskOR_msb_offset;



   /* sanity check the input */
   if ((size <= 1) || (t <= 0)) {
      return MP_VAL;
   }

   /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
   if ((flags & LTM_PRIME_SAFE) != 0) {
      flags |= LTM_PRIME_BBS;
   }

   /* calc the byte size */
   bsize = (size>>3) + ((size&7)?1:0);

   /* we need a buffer of bsize bytes */
   tmp = (unsigned char *) XMALLOC((size_t)bsize);
   if (tmp == NULL) {
      return MP_MEM;
   }

   /* calc the maskAND value for the MSbyte*/
   maskAND = ((size&7) == 0) ? 0xFF : (unsigned char)(0xFF >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if ((flags & LTM_PRIME_2MSB_ON) != 0) {
      maskOR_msb       |= (unsigned char)(0x80 >> ((9 - size) & 7));
   }

   /* get the maskOR_lsb */
   maskOR_lsb         = 1;
   if ((flags & LTM_PRIME_BBS) != 0) {
      maskOR_lsb     |= 3;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
         goto error;

|
|
<
<
<
<
<
<
<
<
|
<





|
|
|








|


|
>
>






|
|
|






|





|




|




|
|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include "tommath_private.h"
#ifdef BN_MP_PRIME_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   MP_PRIME_BBS      - make prime congruent to 3 mod 4
 *   MP_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS)
 *   MP_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */

/* This is possibly the mother of all prime generation functions, muahahahahaha! */
mp_err s_mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat)
{
   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
   int bsize, maskOR_msb_offset;
   mp_bool res;
   mp_err err;

   /* sanity check the input */
   if ((size <= 1) || (t <= 0)) {
      return MP_VAL;
   }

   /* MP_PRIME_SAFE implies MP_PRIME_BBS */
   if ((flags & MP_PRIME_SAFE) != 0) {
      flags |= MP_PRIME_BBS;
   }

   /* calc the byte size */
   bsize = (size>>3) + ((size&7)?1:0);

   /* we need a buffer of bsize bytes */
   tmp = (unsigned char *) MP_MALLOC((size_t)bsize);
   if (tmp == NULL) {
      return MP_MEM;
   }

   /* calc the maskAND value for the MSbyte*/
   maskAND = ((size&7) == 0) ? 0xFFu : (unsigned char)(0xFFu >> (8 - (size & 7)));

   /* calc the maskOR_msb */
   maskOR_msb        = 0;
   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
   if ((flags & MP_PRIME_2MSB_ON) != 0) {
      maskOR_msb       |= (unsigned char)(0x80 >> ((9 - size) & 7));
   }

   /* get the maskOR_lsb */
   maskOR_lsb         = 1u;
   if ((flags & MP_PRIME_BBS) != 0) {
      maskOR_lsb     |= 3u;
   }

   do {
      /* read the bytes */
      if (cb(tmp, bsize, dat) != bsize) {
         err = MP_VAL;
         goto error;
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130


131
132

133



134




135

      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto error;
      }
      if (res == MP_NO) {
         continue;
      }

      if ((flags & LTM_PRIME_SAFE) != 0) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            goto error;
         }
         if ((err = mp_div_2(a, a)) != MP_OKAY) {
            goto error;
         }

         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
            goto error;
         }
      }
   } while (res == MP_NO);

   if ((flags & LTM_PRIME_SAFE) != 0) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY) {
         goto error;
      }
      if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) {
         goto error;
      }
   }

   err = MP_OKAY;
error:
   XFREE(tmp, bsize);
   return err;
}





#endif


/* ref:         $Format:%D$ */



/* git commit:  $Format:%H$ */




/* commit time: $Format:%ai$ */








|















|











|



>
|
>
>
|
|
>
|
>
>
>
|
>
>
>
>
|
>
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto error;
      }
      if (res == MP_NO) {
         continue;
      }

      if ((flags & MP_PRIME_SAFE) != 0) {
         /* see if (a-1)/2 is prime */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            goto error;
         }
         if ((err = mp_div_2(a, a)) != MP_OKAY) {
            goto error;
         }

         /* is it prime? */
         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
            goto error;
         }
      }
   } while (res == MP_NO);

   if ((flags & MP_PRIME_SAFE) != 0) {
      /* restore a to the original value */
      if ((err = mp_mul_2(a, a)) != MP_OKAY) {
         goto error;
      }
      if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) {
         goto error;
      }
   }

   err = MP_OKAY;
error:
   MP_FREE_BUFFER(tmp, (size_t)bsize);
   return err;
}

static int s_mp_rand_cb(unsigned char *dst, int len, void *dat)
{
   (void)dat;
   if (len <= 0) {
      return len;
   }
   if (s_mp_rand_source(dst, (size_t)len) != MP_OKAY) {
      return 0;
   }
   return len;
}

mp_err mp_prime_rand(mp_int *a, int t, int size, int flags)
{
   return s_mp_prime_random_ex(a, t, size, flags, s_mp_rand_cb, NULL);
}

#endif
Changes to libtommath/bn_mp_prime_strong_lucas_selfridge.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_FIPS_ONLY

/*
 *  8-bit is just too small. You can try the Frobenius test
 *  but that frobenius test can fail, too, for the same reason.
 */
#ifndef MP_8BIT

/*
 * multiply bigint a with int d and put the result in c
 * Like mp_mul_d() but with a signed long as the small input
 */
static int s_mp_mul_si(const mp_int *a, long d, mp_int *c)
{
   mp_int t;
   int err, neg = 0;

   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }
   if (d < 0) {
      neg = 1;
      d = -d;
   }

   /*
    * mp_digit might be smaller than a long, which excludes
    * the use of mp_mul_d() here.
    */
   if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) {
      goto LBL_MPMULSI_ERR;
   }
   if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
      goto LBL_MPMULSI_ERR;
   }
   if (neg ==  1) {
      c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
   }
LBL_MPMULSI_ERR:
   mp_clear(&t);
   return err;
}
/*
    Strong Lucas-Selfridge test.
    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite

    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
    at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
    Released into the public domain by the author, who disclaims any legal
    liability arising from its use

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
    Additional comments marked "CZ" (without the quotes) are by the code-portist.

    (If that name sounds familiar, he is the guy who found the fdiv bug in the
     Pentium (P5x, I think) Intel processor)
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
{
   /* CZ TODO: choose better variable names! */
   mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
   /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
   int D, Ds, J, sign, P, Q, r, s, u, Nbits;
   int e;
   int isset, oddness;

   *result = MP_NO;
   /*
   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
   indicates that, if N is not a perfect square, D will "nearly
   always" be "small." Just in case, an overflow trap for D is
   included.
   */

   if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
                          NULL)) != MP_OKAY) {
      return e;
   }

   D = 5;
   sign = 1;

   for (;;) {
      Ds   = sign * D;
      sign = -sign;
      if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* if 1 < GCD < N then N is composite with factor "D", and
         Jacobi(D,N) is technically undefined (but often returned
         as zero). */
      if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
         goto LBL_LS_ERR;
      }
      if (Ds < 0) {
         Dz.sign = MP_NEG;
      }
      if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if (J == -1) {
         break;
      }
      D += 2;

      if (D > (INT_MAX - 2)) {
         e = MP_VAL;
         goto LBL_LS_ERR;
      }
   }



   P = 1;              /* Selfridge's choice */



|
<
<
<
<
<
<
<
<
|
<
















|


|




<
<
<
<





|
<
<
|
<
<
<
<
<
<




















|





|
|










|
|
|








|
<
<
|











|









|







1
2
3
4








5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29




30
31
32
33
34
35


36






37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86


87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_FIPS_ONLY

/*
 *  8-bit is just too small. You can try the Frobenius test
 *  but that frobenius test can fail, too, for the same reason.
 */
#ifndef MP_8BIT

/*
 * multiply bigint a with int d and put the result in c
 * Like mp_mul_d() but with a signed long as the small input
 */
static mp_err s_mp_mul_si(const mp_int *a, int32_t d, mp_int *c)
{
   mp_int t;
   mp_err err;

   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }





   /*
    * mp_digit might be smaller than a long, which excludes
    * the use of mp_mul_d() here.
    */
   mp_set_i32(&t, d);


   err = mp_mul(a, &t, c);






   mp_clear(&t);
   return err;
}
/*
    Strong Lucas-Selfridge test.
    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite

    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
    at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
    Released into the public domain by the author, who disclaims any legal
    liability arising from its use

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
    Additional comments marked "CZ" (without the quotes) are by the code-portist.

    (If that name sounds familiar, he is the guy who found the fdiv bug in the
     Pentium (P5x, I think) Intel processor)
*/
mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
{
   /* CZ TODO: choose better variable names! */
   mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
   /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
   int D, Ds, J, sign, P, Q, r, s, u, Nbits;
   mp_err err;
   mp_bool oddness;

   *result = MP_NO;
   /*
   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
   indicates that, if N is not a perfect square, D will "nearly
   always" be "small." Just in case, an overflow trap for D is
   included.
   */

   if ((err = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
                            NULL)) != MP_OKAY) {
      return err;
   }

   D = 5;
   sign = 1;

   for (;;) {
      Ds   = sign * D;
      sign = -sign;
      mp_set_u32(&Dz, (uint32_t)D);


      if ((err = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* if 1 < GCD < N then N is composite with factor "D", and
         Jacobi(D,N) is technically undefined (but often returned
         as zero). */
      if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
         goto LBL_LS_ERR;
      }
      if (Ds < 0) {
         Dz.sign = MP_NEG;
      }
      if ((err = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }

      if (J == -1) {
         break;
      }
      D += 2;

      if (D > (INT_MAX - 2)) {
         err = MP_VAL;
         goto LBL_LS_ERR;
      }
   }



   P = 1;              /* Selfridge's choice */
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
      only (roughly) 30 % as many pseudoprimes (and every strong
      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
      the evidence indicates that the strong Lucas-Selfridge test is
      more effective than the standard Lucas-Selfridge test, and a
      Baillie-PSW test based on the strong Lucas-Selfridge test
      should be more reliable. */

   if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   s = mp_cnt_lsb(&Np1);

   /* CZ
    * This should round towards zero because
    * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
    * and mp_div_2d() is equivalent. Additionally:
    * dividing an even number by two does not produce
    * any leftovers.
    */
   if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   /* We must now compute U_d and V_d. Since d is odd, the accumulated
      values U and V are initialized to U_1 and V_1 (if the target
      index were even, U and V would be initialized instead to U_0=0
      and V_0=2). The values of U_2m and V_2m are also initialized to
      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
      (1, 2, 3, ...) of t are on (the zero bit having been accounted
      for in the initialization of U and V), these values are then
      combined with the previous totals for U and V, using the
      composition formulas for addition of indices. */

   mp_set(&Uz, 1uL);    /* U=U_1 */
   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
   mp_set(&U2mz, 1uL);  /* U_1 */
   mp_set(&V2mz, (mp_digit)P);  /* V_1 */

   if (Q < 0) {
      Q = -Q;
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      Qmz.sign = MP_NEG;
      Q2mz.sign = MP_NEG;
      Qkdz.sign = MP_NEG;
      Q = -Q;
   } else {
      if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
   }

   Nbits = mp_count_bits(&Dz);

   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
      /* Formulas for doubling of indices (carried out mod N). Note that
       * the indices denoted as "2m" are actually powers of 2, specifically
       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
       *
       * U_2m = U_m*V_m
       * V_2m = V_m*V_m - 2*Q^m
       */

      if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
      if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* prevents overflow */ /* CZ  still necessary without a fixed prealloc'd mem.? */
      if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) {
         e = isset;
         goto LBL_LS_ERR;
      }
      if (isset == MP_YES) {
         /* Formulas for addition of indices (carried out mod N);
          *
          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
          *
          * Be careful with division by 2 (mod N)!
          */
         if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Uz) != MP_NO) {
            if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         /* CZ
          * This should round towards negative infinity because
          * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
          * But mp_div_2() does not do so, it is truncating instead.
          */
         oddness = mp_isodd(&Uz);
         if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (mp_isodd(&Vz) != MP_NO) {
            if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         oddness = mp_isodd(&Vz);
         if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         /* Calculating Q^d for later use */
         if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }

   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
      strong Lucas pseudoprime. */
   if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) {
      *result = MP_YES;
      goto LBL_LS_ERR;
   }

   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
      1995/6) omits the condition V0 on p.142, but includes it on
      p. 130. The condition is NECESSARY; otherwise the test will
      return false negatives---e.g., the primes 29 and 2000029 will be
      returned as composite. */

   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
      these are congruent to 0 mod N, then N is a prime or a strong
      Lucas pseudoprime. */

   /* Initialize 2*Q^(d*2^r) for V_2m */
   if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }

   for (r = 1; r < s; r++) {
      if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if (mp_iszero(&Vz) != MP_NO) {
         *result = MP_YES;
         goto LBL_LS_ERR;
      }
      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
      if (r < (s - 1)) {
         if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }
LBL_LS_ERR:
   mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
   return e;
}
#endif
#endif
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|











|




















|
<
<
|



|
<
<





|
<
<
|



|
<
<













|


|


|


|


|



|



|


|


|
<
<
<
<







|


|


|


|


|


|


|
|








|
|



|



|


|
|



|
|



|



|


|



|


|







|
















|




|


|


|


|





|


|


|






|




<
<
<
<
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182


183
184
185
186
187


188
189
190
191
192
193


194
195
196
197
198


199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238




239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372




      only (roughly) 30 % as many pseudoprimes (and every strong
      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
      the evidence indicates that the strong Lucas-Selfridge test is
      more effective than the standard Lucas-Selfridge test, and a
      Baillie-PSW test based on the strong Lucas-Selfridge test
      should be more reliable. */

   if ((err = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   s = mp_cnt_lsb(&Np1);

   /* CZ
    * This should round towards zero because
    * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
    * and mp_div_2d() is equivalent. Additionally:
    * dividing an even number by two does not produce
    * any leftovers.
    */
   if ((err = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }
   /* We must now compute U_d and V_d. Since d is odd, the accumulated
      values U and V are initialized to U_1 and V_1 (if the target
      index were even, U and V would be initialized instead to U_0=0
      and V_0=2). The values of U_2m and V_2m are also initialized to
      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
      (1, 2, 3, ...) of t are on (the zero bit having been accounted
      for in the initialization of U and V), these values are then
      combined with the previous totals for U and V, using the
      composition formulas for addition of indices. */

   mp_set(&Uz, 1uL);    /* U=U_1 */
   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
   mp_set(&U2mz, 1uL);  /* U_1 */
   mp_set(&V2mz, (mp_digit)P);  /* V_1 */

   if (Q < 0) {
      Q = -Q;
      mp_set_u32(&Qmz, (uint32_t)Q);


      if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      mp_set_u32(&Qkdz, (uint32_t)Q);


      Qmz.sign = MP_NEG;
      Q2mz.sign = MP_NEG;
      Qkdz.sign = MP_NEG;
      Q = -Q;
   } else {
      mp_set_u32(&Qmz, (uint32_t)Q);


      if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Initializes calculation of Q^d */
      mp_set_u32(&Qkdz, (uint32_t)Q);


   }

   Nbits = mp_count_bits(&Dz);

   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
      /* Formulas for doubling of indices (carried out mod N). Note that
       * the indices denoted as "2m" are actually powers of 2, specifically
       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
       *
       * U_2m = U_m*V_m
       * V_2m = V_m*V_m - 2*Q^m
       */

      if ((err = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
      if ((err = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      /* prevents overflow */ /* CZ  still necessary without a fixed prealloc'd mem.? */
      if ((err = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if (s_mp_get_bit(&Dz, (unsigned int)u) == MP_YES) {




         /* Formulas for addition of indices (carried out mod N);
          *
          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
          *
          * Be careful with division by 2 (mod N)!
          */
         if ((err = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = s_mp_mul_si(&T4z, Ds, &T4z)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (MP_IS_ODD(&Uz)) {
            if ((err = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         /* CZ
          * This should round towards negative infinity because
          * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
          * But mp_div_2() does not do so, it is truncating instead.
          */
         oddness = MP_IS_ODD(&Uz) ? MP_YES : MP_NO;
         if ((err = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((err = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((err = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if (MP_IS_ODD(&Vz)) {
            if ((err = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         oddness = MP_IS_ODD(&Vz) ? MP_YES : MP_NO;
         if ((err = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((err = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
               goto LBL_LS_ERR;
            }
         }
         if ((err = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         /* Calculating Q^d for later use */
         if ((err = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }

   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
      strong Lucas pseudoprime. */
   if (MP_IS_ZERO(&Uz) || MP_IS_ZERO(&Vz)) {
      *result = MP_YES;
      goto LBL_LS_ERR;
   }

   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
      1995/6) omits the condition V0 on p.142, but includes it on
      p. 130. The condition is NECESSARY; otherwise the test will
      return false negatives---e.g., the primes 29 and 2000029 will be
      returned as composite. */

   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
      these are congruent to 0 mod N, then N is a prime or a strong
      Lucas pseudoprime. */

   /* Initialize 2*Q^(d*2^r) for V_2m */
   if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
      goto LBL_LS_ERR;
   }

   for (r = 1; r < s; r++) {
      if ((err = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
         goto LBL_LS_ERR;
      }
      if (MP_IS_ZERO(&Vz)) {
         *result = MP_YES;
         goto LBL_LS_ERR;
      }
      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
      if (r < (s - 1)) {
         if ((err = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
         if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
            goto LBL_LS_ERR;
         }
      }
   }
LBL_LS_ERR:
   mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
   return err;
}
#endif
#endif
#endif




Changes to libtommath/bn_mp_radix_size.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "tommath_private.h"
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* returns size of ASCII reprensentation */
int mp_radix_size(const mp_int *a, int radix, int *size)
{

   int     res, digs;
   mp_int  t;
   mp_digit d;

   *size = 0;

   /* make sure the radix is in range */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   if (mp_iszero(a) == MP_YES) {
      *size = 2;
      return MP_OKAY;
   }

   /* special case for binary */
   if (radix == 2) {
      *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
      return MP_OKAY;
   }

   /* digs is the digit count */
   digs = 0;

   /* if it's negative add one for the sign */
   if (a->sign == MP_NEG) {
      ++digs;
   }

   /* init a copy of the input */
   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* force temp to positive */
   t.sign = MP_ZPOS;

   /* fetch out all of the digits */
   while (mp_iszero(&t) == MP_NO) {
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      ++digs;
   }
   mp_clear(&t);

   /* return digs + 1, the 1 is for the NULL byte that would be required. */
   *size = digs + 1;
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

>
|
|









|



















|
|






|
|

|











<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63




#include "tommath_private.h"
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* returns size of ASCII reprensentation */
mp_err mp_radix_size(const mp_int *a, int radix, int *size)
{
   mp_err  err;
   int     digs;
   mp_int   t;
   mp_digit d;

   *size = 0;

   /* make sure the radix is in range */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   if (MP_IS_ZERO(a)) {
      *size = 2;
      return MP_OKAY;
   }

   /* special case for binary */
   if (radix == 2) {
      *size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
      return MP_OKAY;
   }

   /* digs is the digit count */
   digs = 0;

   /* if it's negative add one for the sign */
   if (a->sign == MP_NEG) {
      ++digs;
   }

   /* init a copy of the input */
   if ((err = mp_init_copy(&t, a)) != MP_OKAY) {
      return err;
   }

   /* force temp to positive */
   t.sign = MP_ZPOS;

   /* fetch out all of the digits */
   while (!MP_IS_ZERO(&t)) {
      if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return err;
      }
      ++digs;
   }
   mp_clear(&t);

   /* return digs + 1, the 1 is for the NULL byte that would be required. */
   *size = digs + 1;
   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_radix_smap.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "tommath_private.h"
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* chars used in radix conversions */
const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
const unsigned char mp_s_rmap_reverse[] = {
   0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */
   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */
   0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */
   0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */
   0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */
   0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */
   0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */
   0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */
   0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */
   0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */
   0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */
};
const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse);
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


















<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22




#include "tommath_private.h"
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* chars used in radix conversions */
const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
const unsigned char mp_s_rmap_reverse[] = {
   0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */
   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */
   0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */
   0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */
   0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */
   0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */
   0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */
   0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */
   0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */
   0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */
   0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */
};
const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse);
#endif




Changes to libtommath/bn_mp_rand.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include "tommath_private.h"
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* First the OS-specific special cases
 * - *BSD
 * - Windows
 */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#define MP_ARC4RANDOM
#define MP_GEN_RANDOM_MAX     0xffffffffu
#define MP_GEN_RANDOM_SHIFT   32

static int s_read_arc4random(mp_digit *p)
{
   mp_digit d = 0, msk = 0;
   do {
      d <<= MP_GEN_RANDOM_SHIFT;
      d |= ((mp_digit) arc4random());
      msk <<= MP_GEN_RANDOM_SHIFT;
      msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
   } while ((MP_MASK & msk) != MP_MASK);
   *p = d;
   return MP_OKAY;
}
#endif

#if defined(_WIN32) || defined(_WIN32_WCE)
#define MP_WIN_CSP

#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#ifdef _WIN32_WCE
#define UNDER_CE
#define ARM
#endif

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <wincrypt.h>

static HCRYPTPROV hProv = 0;

static void s_cleanup_win_csp(void)
{
   CryptReleaseContext(hProv, 0);
   hProv = 0;
}

static int s_read_win_csp(mp_digit *p)
{
   int ret = -1;
   if (hProv == 0) {
      if (!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
                               (CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) &&
          !CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
                               CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) {
         hProv = 0;
         return ret;
      }
      atexit(s_cleanup_win_csp);
   }
   if (CryptGenRandom(hProv, sizeof(*p), (void *)p) == TRUE) {
      ret = MP_OKAY;
   }
   return ret;
}
#endif /* WIN32 */

#if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 25)
#define MP_GETRANDOM
#include <sys/random.h>
#include <errno.h>

static int s_read_getrandom(mp_digit *p)
{
   int ret;
   do {
      ret = getrandom(p, sizeof(*p), 0);
   } while ((ret == -1) && (errno == EINTR));
   if (ret == sizeof(*p)) return MP_OKAY;
   return -1;
}
#endif
#endif

/* We assume all platforms besides windows provide "/dev/urandom".
 * In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time.
 */
#if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM)
#ifndef MP_DEV_URANDOM
#define MP_DEV_URANDOM "/dev/urandom"
#endif
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

static int s_read_dev_urandom(mp_digit *p)
{
   ssize_t r;
   int fd;
   do {
      fd = open(MP_DEV_URANDOM, O_RDONLY);
   } while ((fd == -1) && (errno == EINTR));
   if (fd == -1) return -1;
   do {
      r = read(fd, p, sizeof(*p));
   } while ((r == -1) && (errno == EINTR));
   close(fd);
   if (r != sizeof(*p)) return -1;
   return MP_OKAY;
}
#endif

#if defined(MP_PRNG_ENABLE_LTM_RNG)
unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
void (*ltm_rng_callback)(void);

static int s_read_ltm_rng(mp_digit *p)
{
   unsigned long ret;
   if (ltm_rng == NULL) return -1;
   ret = ltm_rng((void *)p, sizeof(*p), ltm_rng_callback);
   if (ret != sizeof(*p)) return -1;
   return MP_OKAY;
}
#endif

static int s_rand_digit(mp_digit *p)
{
   int ret = -1;

#if defined(MP_ARC4RANDOM)
   ret = s_read_arc4random(p);
   if (ret == MP_OKAY) return ret;
#endif

#if defined(MP_WIN_CSP)
   ret = s_read_win_csp(p);
   if (ret == MP_OKAY) return ret;
#else

#if defined(MP_GETRANDOM)
   ret = s_read_getrandom(p);
   if (ret == MP_OKAY) return ret;
#endif
#if defined(MP_DEV_URANDOM)
   ret = s_read_dev_urandom(p);
   if (ret == MP_OKAY) return ret;
#endif

#endif /* MP_WIN_CSP */

#if defined(MP_PRNG_ENABLE_LTM_RNG)
   ret = s_read_ltm_rng(p);
   if (ret == MP_OKAY) return ret;
#endif

   return ret;
}

/* makes a pseudo-random int of a given size */
int mp_rand_digit(mp_digit *r)
{
   int ret = s_rand_digit(r);
   *r &= MP_MASK;
   return ret;
}

int mp_rand(mp_int *a, int digits)
{
   int     res;
   mp_digit d;

   mp_zero(a);
   if (digits <= 0) {
      return MP_OKAY;
   }

   /* first place a random non-zero digit */
   do {
      if (mp_rand_digit(&d) != MP_OKAY) {
         return MP_VAL;
      }
   } while (d == 0u);

   if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
      return res;
   }

   while (--digits > 0) {
      if ((res = mp_lshd(a, 1)) != MP_OKAY) {
         return res;
      }

      if (mp_rand_digit(&d) != MP_OKAY) {
         return MP_VAL;
      }
      if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
         return res;
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
|
<
<
<
|
<

|
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
|
<
<
<
<
<

|
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<

|
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<

<
<
<
|
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
|
<
<
<
<
|
<
<
|
<
<
<
<
<
|
|
|
<
|
<
|
|
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





<
<
<
<
1
2
3








4

5








6

7











8


9







10



11



12



13

14
15








16
17






18





19
20






21
22













23
24












25
26

27



28






29
30
























31

32




33


34





35
36
37

38

39
40




41






















42
43
44
45
46




#include "tommath_private.h"
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */










mp_err(*s_mp_rand_source)(void *out, size_t size) = s_mp_rand_platform;













void mp_rand_source(mp_err(*source)(void *out, size_t size))


{







   s_mp_rand_source = (source == NULL) ? s_mp_rand_platform : source;



}







mp_err mp_rand(mp_int *a, int digits)

{
   int i;








   mp_err err;







   mp_zero(a);






   if (digits <= 0) {






      return MP_OKAY;
   }














   if ((err = mp_grow(a, digits)) != MP_OKAY) {












      return err;
   }





   if ((err = s_mp_rand_source(a->dp, (size_t)digits * sizeof(mp_digit))) != MP_OKAY) {






      return err;
   }


























   /* TODO: We ensure that the highest digit is nonzero. Should this be removed? */




   while ((a->dp[digits - 1] & MP_MASK) == 0u) {


      if ((err = s_mp_rand_source(a->dp + digits - 1, sizeof(mp_digit))) != MP_OKAY) {





         return err;
      }
   }



   a->used = digits;
   for (i = 0; i < digits; ++i) {




      a->dp[i] &= MP_MASK;






















   }

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_read_radix.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
#include "tommath_private.h"
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c))

/* read a string [ASCII] in a given radix */
int mp_read_radix(mp_int *a, const char *str, int radix)
{

   int     y, res, neg;

   unsigned pos;
   char    ch;

   /* zero the digit bignum */
   mp_zero(a);

   /* make sure the radix is ok */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;


|
<
<
<
<
<
<
<
<
|
<




|

>
|
>

|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "tommath_private.h"
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c))

/* read a string [ASCII] in a given radix */
mp_err mp_read_radix(mp_int *a, const char *str, int radix)
{
   mp_err   err;
   int      y;
   mp_sign  neg;
   unsigned pos;
   char     ch;

   /* zero the digit bignum */
   mp_zero(a);

   /* make sure the radix is ok */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
      /* if the char was found in the map
       * and is less than the given radix add it
       * to the number, otherwise exit the loop.
       */
      if ((y == 0xff) || (y >= radix)) {
         break;
      }
      if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
         return res;
      }
      if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
         return res;
      }
      ++str;
   }

   /* if an illegal character was found, fail. */
   if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) {
      mp_zero(a);
      return MP_VAL;
   }

   /* set the sign only if a != 0 */
   if (mp_iszero(a) != MP_YES) {
      a->sign = neg;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|
|

|
|











|





<
<
<
<
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79




      /* if the char was found in the map
       * and is less than the given radix add it
       * to the number, otherwise exit the loop.
       */
      if ((y == 0xff) || (y >= radix)) {
         break;
      }
      if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
         return err;
      }
      ++str;
   }

   /* if an illegal character was found, fail. */
   if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) {
      mp_zero(a);
      return MP_VAL;
   }

   /* set the sign only if a != 0 */
   if (!MP_IS_ZERO(a)) {
      a->sign = neg;
   }
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_read_signed_bin.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include "tommath_private.h"
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
{
   int     res;


   /* read magnitude */
   if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) {
      return res;
   }

   /* first byte is 0 for positive, non-zero for negative */
   if (b[0] == (unsigned char)0) {
      a->sign = MP_ZPOS;
   } else {
      a->sign = MP_NEG;
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>


|
|












<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25




#include "tommath_private.h"
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* read signed bin, big endian, first byte is 0==positive or 1==negative */
mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
{

   mp_err err;

   /* read magnitude */
   if ((err = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) {
      return err;
   }

   /* first byte is 0 for positive, non-zero for negative */
   if (b[0] == (unsigned char)0) {
      a->sign = MP_ZPOS;
   } else {
      a->sign = MP_NEG;
   }

   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_read_unsigned_bin.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "tommath_private.h"
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
{
   int     res;


   /* make sure there are at least two digits */
   if (a->alloc < 2) {
      if ((res = mp_grow(a, 2)) != MP_OKAY) {
         return res;
      }
   }

   /* zero the int */
   mp_zero(a);

   /* read the bytes in */
   while (c-- > 0) {
      if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) {
         return res;
      }

#ifndef MP_8BIT
      a->dp[0] |= *b++;
      a->used += 1;
#else
      a->dp[0] = (*b & MP_MASK);
      a->dp[1] |= ((*b++ >> 7) & 1u);
      a->used += 2;
#endif
   }
   mp_clamp(a);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>



|
|








|
|















<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39




#include "tommath_private.h"
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reads a unsigned char array, assumes the msb is stored first [big endian] */
mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
{

   mp_err err;

   /* make sure there are at least two digits */
   if (a->alloc < 2) {
      if ((err = mp_grow(a, 2)) != MP_OKAY) {
         return err;
      }
   }

   /* zero the int */
   mp_zero(a);

   /* read the bytes in */
   while (c-- > 0) {
      if ((err = mp_mul_2d(a, 8, a)) != MP_OKAY) {
         return err;
      }

#ifndef MP_8BIT
      a->dp[0] |= *b++;
      a->used += 1;
#else
      a->dp[0] = (*b & MP_MASK);
      a->dp[1] |= ((*b++ >> 7) & 1u);
      a->used += 2;
#endif
   }
   mp_clamp(a);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_reduce.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
{
   mp_int  q;

   int     res, um = m->used;

   /* q = x */
   if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
      return res;
   }

   /* q1 = x / b**(k-1)  */
   mp_rshd(&q, um - 1);

   /* according to HAC this optimization is ok */
   if ((mp_digit)um > ((mp_digit)1 << (DIGIT_BIT - 1))) {
      if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) {
         goto CLEANUP;
      }
   } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
      if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
      if ((res = fast_s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#else
      {
         res = MP_VAL;
         goto CLEANUP;
      }
#endif
   }

   /* q3 = q2 / b**(k+1) */
   mp_rshd(&q, um + 1);

   /* x = x mod b**(k+1), quick (no division) */
   if ((res = mp_mod_2d(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* q = q * m mod b**(k+1), quick (no division) */
   if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* x = x - q */
   if ((res = mp_sub(x, &q, x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* If x < 0, add b**(k+1) to it */
   if (mp_cmp_d(x, 0uL) == MP_LT) {
      mp_set(&q, 1uL);
      if ((res = mp_lshd(&q, um + 1)) != MP_OKAY)
         goto CLEANUP;
      if ((res = mp_add(x, &q, x)) != MP_OKAY)
         goto CLEANUP;
   }

   /* Back off if it's too big */
   while (mp_cmp(x, m) != MP_LT) {
      if ((res = s_mp_sub(x, m, x)) != MP_OKAY) {
         goto CLEANUP;
      }
   }

CLEANUP:
   mp_clear(&q);

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





|


>
|


|
|






|
|




|


|
|




|









|




|




|






|

|





|







|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reduces x mod m, assumes 0 < x < m**2, mu is
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
{
   mp_int  q;
   mp_err  err;
   int     um = m->used;

   /* q = x */
   if ((err = mp_init_copy(&q, x)) != MP_OKAY) {
      return err;
   }

   /* q1 = x / b**(k-1)  */
   mp_rshd(&q, um - 1);

   /* according to HAC this optimization is ok */
   if ((mp_digit)um > ((mp_digit)1 << (MP_DIGIT_BIT - 1))) {
      if ((err = mp_mul(&q, mu, &q)) != MP_OKAY) {
         goto CLEANUP;
      }
   } else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
      if ((err = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#elif defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C)
      if ((err = s_mp_mul_high_digs_fast(&q, mu, &q, um)) != MP_OKAY) {
         goto CLEANUP;
      }
#else
      {
         err = MP_VAL;
         goto CLEANUP;
      }
#endif
   }

   /* q3 = q2 / b**(k+1) */
   mp_rshd(&q, um + 1);

   /* x = x mod b**(k+1), quick (no division) */
   if ((err = mp_mod_2d(x, MP_DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* q = q * m mod b**(k+1), quick (no division) */
   if ((err = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* x = x - q */
   if ((err = mp_sub(x, &q, x)) != MP_OKAY) {
      goto CLEANUP;
   }

   /* If x < 0, add b**(k+1) to it */
   if (mp_cmp_d(x, 0uL) == MP_LT) {
      mp_set(&q, 1uL);
      if ((err = mp_lshd(&q, um + 1)) != MP_OKAY)
         goto CLEANUP;
      if ((err = mp_add(x, &q, x)) != MP_OKAY)
         goto CLEANUP;
   }

   /* Back off if it's too big */
   while (mp_cmp(x, m) != MP_LT) {
      if ((err = s_mp_sub(x, m, x)) != MP_OKAY) {
         goto CLEANUP;
      }
   }

CLEANUP:
   mp_clear(&q);

   return err;
}
#endif




Changes to libtommath/bn_mp_reduce_2k.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
   mp_int q;

   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (d != 1u) {
      /* q = q * d */
      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
      goto top;
   }

LBL_ERR:
   mp_clear(&q);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|


>
|

|
|





|





|





|




|







|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reduces a modulo n where n is of the form 2**p - d */
mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
   mp_int q;
   mp_err err;
   int    p;

   if ((err = mp_init(&q)) != MP_OKAY) {
      return err;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((err = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (d != 1u) {
      /* q = q * d */
      if ((err = mp_mul_d(&q, d, &q)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* a = a + q */
   if ((err = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((err = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
      goto top;
   }

LBL_ERR:
   mp_clear(&q);
   return err;
}

#endif




Changes to libtommath/bn_mp_reduce_2k_l.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
{
   mp_int q;

   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* q = q * d */
   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
      goto top;
   }

LBL_ERR:
   mp_clear(&q);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





|


>
|

|
|





|




|




|




|







|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
{
   mp_int q;
   mp_err err;
   int    p;

   if ((err = mp_init(&q)) != MP_OKAY) {
      return err;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((err = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* q = q * d */
   if ((err = mp_mul(&q, d, &q)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* a = a + q */
   if ((err = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((err = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
      goto top;
   }

LBL_ERR:
   mp_clear(&q);
   return err;
}

#endif




Changes to libtommath/bn_mp_reduce_2k_setup.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines the setup value */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
   int res, p;

   mp_int tmp;


   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(a);
   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }

   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }

   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>

>

|
|



|

|


|

|







<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines the setup value */
mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{

   mp_err err;
   mp_int tmp;
   int    p;

   if ((err = mp_init(&tmp)) != MP_OKAY) {
      return err;
   }

   p = mp_count_bits(a);
   if ((err = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return err;
   }

   if ((err = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return err;
   }

   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_reduce_2k_setup_l.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines the setup value */
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{
   int    res;

   mp_int tmp;

   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
      goto LBL_ERR;
   }

LBL_ERR:
   mp_clear(&tmp);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>


|
|


|



|





|


<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines the setup value */
mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{

   mp_err err;
   mp_int tmp;

   if ((err = mp_init(&tmp)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((err = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
      goto LBL_ERR;
   }

LBL_ERR:
   mp_clear(&tmp);
   return err;
}
#endif




Changes to libtommath/bn_mp_reduce_is_2k.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42

43
44
45
46
47
48
49
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(const mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      iy = mp_count_bits(a);
      iz = 1;
      iw = 1;

      /* Test every bit from the second digit up, must be 1 */
      for (ix = DIGIT_BIT; ix < iy; ix++) {
         if ((a->dp[iw] & iz) == 0u) {
            return MP_NO;
         }
         iz <<= 1;
         if (iz > (mp_digit)MP_MASK) {
            ++iw;
            iz = 1;
         }
      }

   }
   return MP_YES;

}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|














|




|




>
|
|
>



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines if mp_reduce_2k can be used */
mp_bool mp_reduce_is_2k(const mp_int *a)
{
   int ix, iy, iw;
   mp_digit iz;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      iy = mp_count_bits(a);
      iz = 1;
      iw = 1;

      /* Test every bit from the second digit up, must be 1 */
      for (ix = MP_DIGIT_BIT; ix < iy; ix++) {
         if ((a->dp[iw] & iz) == 0u) {
            return MP_NO;
         }
         iz <<= 1;
         if (iz > MP_MASK) {
            ++iw;
            iz = 1;
         }
      }
      return MP_YES;
   } else {
      return MP_YES;
   }
}

#endif




Changes to libtommath/bn_mp_reduce_is_2k_l.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(const mp_int *a)
{
   int ix, iy;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      /* if more than half of the digits are -1 we're sold */
      for (iy = ix = 0; ix < a->used; ix++) {
         if (a->dp[ix] == MP_MASK) {
            ++iy;
         }
      }
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;

   }
   return MP_NO;

}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|















|
<
|
>



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines if reduce_2k_l can be used */
mp_bool mp_reduce_is_2k_l(const mp_int *a)
{
   int ix, iy;

   if (a->used == 0) {
      return MP_NO;
   } else if (a->used == 1) {
      return MP_YES;
   } else if (a->used > 1) {
      /* if more than half of the digits are -1 we're sold */
      for (iy = ix = 0; ix < a->used; ix++) {
         if (a->dp[ix] == MP_MASK) {
            ++iy;
         }
      }
      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
   } else {

      return MP_NO;
   }
}

#endif




Changes to libtommath/bn_mp_reduce_setup.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
int mp_reduce_setup(mp_int *a, const mp_int *b)
{
   int     res;

   if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
      return res;
   }
   return mp_div(a, b, a, NULL);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<




|

<
|
|
|




<
<
<
<
1
2
3








4

5
6
7
8
9
10

11
12
13
14
15
16
17




#include "tommath_private.h"
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
mp_err mp_reduce_setup(mp_int *a, const mp_int *b)
{

   mp_err err;
   if ((err = mp_2expt(a, b->used * 2 * MP_DIGIT_BIT)) != MP_OKAY) {
      return err;
   }
   return mp_div(a, b, a, NULL);
}
#endif




Changes to libtommath/bn_mp_rshd.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include "tommath_private.h"
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* shift right a certain amount of digits */
void mp_rshd(mp_int *a, int b)
{
   int     x;


   /* if b <= 0 then ignore it */
   if (b <= 0) {
      return;
   }

   /* if b > used then simply zero it and return */
   if (a->used <= b) {
      mp_zero(a);
      return;
   }

   {
      mp_digit *bottom, *top;

      /* shift the digits down */

      /* bottom */
      bottom = a->dp;

      /* top [offset into digits] */
      top = a->dp + b;

      /* this is implemented as a sliding window where
       * the window is b-digits long and digits from
       * the top of the window are copied to the bottom
       *
       * e.g.

       b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
                   /\                   |      ---->
                    \-------------------/      ---->
       */
      for (x = 0; x < (a->used - b); x++) {
         *bottom++ = *top++;
      }

      /* zero the top digits */
      for (; x < a->used; x++) {
         *bottom++ = 0;
      }
   }

   /* remove excess digits */
   a->used -= b;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





>












<
<
<
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
<
|
<
<




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47


48
49
50
51




#include "tommath_private.h"
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shift right a certain amount of digits */
void mp_rshd(mp_int *a, int b)
{
   int     x;
   mp_digit *bottom, *top;

   /* if b <= 0 then ignore it */
   if (b <= 0) {
      return;
   }

   /* if b > used then simply zero it and return */
   if (a->used <= b) {
      mp_zero(a);
      return;
   }




   /* shift the digits down */

   /* bottom */
   bottom = a->dp;

   /* top [offset into digits] */
   top = a->dp + b;

   /* this is implemented as a sliding window where
    * the window is b-digits long and digits from
    * the top of the window are copied to the bottom
    *
    * e.g.

    b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
                /\                   |      ---->
                 \-------------------/      ---->
    */
   for (x = 0; x < (a->used - b); x++) {
      *bottom++ = *top++;
   }

   /* zero the top digits */
   MP_ZERO_DIGITS(bottom, a->used - x);




   /* remove excess digits */
   a->used -= b;
}
#endif




Changes to libtommath/bn_mp_set.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
#include "tommath_private.h"
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* set to a digit */
void mp_set(mp_int *a, mp_digit b)
{
   mp_zero(a);
   a->dp[0] = b & MP_MASK;

   a->used  = (a->dp[0] != 0u) ? 1 : 0;

}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<




<

>

>


<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14




#include "tommath_private.h"
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* set to a digit */
void mp_set(mp_int *a, mp_digit b)
{

   a->dp[0] = b & MP_MASK;
   a->sign  = MP_ZPOS;
   a->used  = (a->dp[0] != 0u) ? 1 : 0;
   MP_ZERO_DIGITS(a->dp + a->used, a->alloc - a->used);
}
#endif




Changes to libtommath/bn_mp_set_double.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include "tommath_private.h"
#ifdef BN_MP_SET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559)
int mp_set_double(mp_int *a, double b)
{
   uint64_t frac;
   int exp, res;

   union {
      double   dbl;
      uint64_t bits;
   } cast;
   cast.dbl = b;

   exp = (int)((unsigned)(cast.bits >> 52) & 0x7FFU);
   frac = (cast.bits & ((1ULL << 52) - 1ULL)) | (1ULL << 52);

   if (exp == 0x7FF) { /* +-inf, NaN */
      return MP_VAL;
   }
   exp -= 1023 + 52;

   res = mp_set_long_long(a, frac);
   if (res != MP_OKAY) {
      return res;
   }

   res = (exp < 0) ? mp_div_2d(a, -exp, a, NULL) : mp_mul_2d(a, exp, a);
   if (res != MP_OKAY) {
      return res;
   }

   if (((cast.bits >> 63) != 0ULL) && !IS_ZERO(a)) {
      a->sign = MP_NEG;
   }

   return MP_OKAY;
}
#else
/* pragma message() not supported by several compilers (in mostly older but still used versions) */
#  ifdef _MSC_VER
#    pragma message("mp_set_double implementation is only available on platforms with IEEE754 floating point format")
#  else
#    warning "mp_set_double implementation is only available on platforms with IEEE754 floating point format"
#  endif
#endif
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|


|
>






|
|






|
<
<
|
<
|
|
|


|














<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47




#include "tommath_private.h"
#ifdef BN_MP_SET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559)
mp_err mp_set_double(mp_int *a, double b)
{
   uint64_t frac;
   int exp;
   mp_err err;
   union {
      double   dbl;
      uint64_t bits;
   } cast;
   cast.dbl = b;

   exp = (int)((unsigned)(cast.bits >> 52) & 0x7FFu);
   frac = (cast.bits & ((1uLL << 52) - 1uLL)) | (1uLL << 52);

   if (exp == 0x7FF) { /* +-inf, NaN */
      return MP_VAL;
   }
   exp -= 1023 + 52;

   mp_set_u64(a, frac);




   err = (exp < 0) ? mp_div_2d(a, -exp, a, NULL) : mp_mul_2d(a, exp, a);
   if (err != MP_OKAY) {
      return err;
   }

   if (((cast.bits >> 63) != 0uLL) && !MP_IS_ZERO(a)) {
      a->sign = MP_NEG;
   }

   return MP_OKAY;
}
#else
/* pragma message() not supported by several compilers (in mostly older but still used versions) */
#  ifdef _MSC_VER
#    pragma message("mp_set_double implementation is only available on platforms with IEEE754 floating point format")
#  else
#    warning "mp_set_double implementation is only available on platforms with IEEE754 floating point format"
#  endif
#endif
#endif




Added libtommath/bn_mp_set_i32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_SET_I32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_SET_SIGNED(mp_set_i32, mp_set_u32, int32_t, uint32_t)
#endif
Added libtommath/bn_mp_set_i64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_SET_I64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_SET_SIGNED(mp_set_i64, mp_set_u64, long long, unsigned long long)
#endif
Deleted libtommath/bn_mp_set_int.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b)
{
   int     x, res;

   mp_zero(a);

   /* set four bits at a time */
   for (x = 0; x < 8; x++) {
      /* shift the number up four bits */
      if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) {
         return res;
      }

      /* OR in the top four bits of the source */
      a->dp[0] |= (mp_digit)(b >> 28) & 15uL;

      /* shift the source up to the next four bits */
      b <<= 4;

      /* ensure that digits are not clamped off */
      a->used += 1;
   }
   mp_clamp(a);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


























































































Deleted libtommath/bn_mp_set_long.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include "tommath_private.h"
#ifdef BN_MP_SET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* set a platform dependent unsigned long int */
MP_SET_XLONG(mp_set_long, unsigned long)
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<










































Deleted libtommath/bn_mp_set_long_long.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include "tommath_private.h"
#ifdef BN_MP_SET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* set a platform dependent unsigned long long int */
MP_SET_XLONG(mp_set_long_long, unsigned long long)
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<










































Added libtommath/bn_mp_set_u32.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_SET_U32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_SET_UNSIGNED(mp_set_u32, uint32_t)
#endif
Added libtommath/bn_mp_set_u64.c.














>
>
>
>
>
>
>
1
2
3
4
5
6
7
#include "tommath_private.h"
#ifdef BN_MP_SET_U64_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

MP_SET_UNSIGNED(mp_set_u64, unsigned long long)
#endif
Changes to libtommath/bn_mp_shrink.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "tommath_private.h"
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* shrink a bignum */
int mp_shrink(mp_int *a)
{
   mp_digit *tmp;
   int used = 1;

   if (a->used > 0) {
      used = a->used;
   }

   if (a->alloc != used) {
      if ((tmp = (mp_digit *) XREALLOC(a->dp,
                                       (size_t)a->alloc * sizeof (mp_digit),
                                       (size_t)used * sizeof(mp_digit))) == NULL) {
         return MP_MEM;
      }
      a->dp    = tmp;
      a->alloc = used;
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|


<
|
<
<
<
<
|
|
|
|



|




<
<
<
<
1
2
3








4

5
6
7
8
9

10




11
12
13
14
15
16
17
18
19
20
21
22




#include "tommath_private.h"
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shrink a bignum */
mp_err mp_shrink(mp_int *a)
{
   mp_digit *tmp;

   int alloc = MP_MAX(MP_MIN_PREC, a->used);




   if (a->alloc != alloc) {
      if ((tmp = (mp_digit *) MP_REALLOC(a->dp,
                                         (size_t)a->alloc * sizeof(mp_digit),
                                         (size_t)alloc * sizeof(mp_digit))) == NULL) {
         return MP_MEM;
      }
      a->dp    = tmp;
      a->alloc = alloc;
   }
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_signed_bin_size.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "tommath_private.h"
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the size for an signed equivalent */
int mp_signed_bin_size(const mp_int *a)
{
   return 1 + mp_unsigned_bin_size(a);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<







<
<
<
<
1
2
3








4

5
6
7
8
9
10
11




#include "tommath_private.h"
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* get the size for an signed equivalent */
int mp_signed_bin_size(const mp_int *a)
{
   return 1 + mp_unsigned_bin_size(a);
}
#endif




Name change from libtommath/bn_mp_tc_div_2d.c to libtommath/bn_mp_signed_rsh.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "tommath_private.h"
#ifdef BN_MP_TC_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* two complement right shift */
int mp_tc_div_2d(const mp_int *a, int b, mp_int *c)
{
   int res;
   if (mp_isneg(a) == MP_NO) {
      return mp_div_2d(a, b, c, NULL);
   }

   res = mp_add_d(a, 1uL, c);
   if (res != MP_OKAY) {
      return res;
   }

   res = mp_div_2d(c, b, c, NULL);
   return (res == MP_OKAY) ? mp_sub_d(c, 1uL, c) : res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<

|
|

|
|












<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22




#include "tommath_private.h"
#ifdef BN_MP_SIGNED_RSH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* shift right by a certain bit count with sign extension */
mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c)
{
   mp_err res;
   if (a->sign == MP_ZPOS) {
      return mp_div_2d(a, b, c, NULL);
   }

   res = mp_add_d(a, 1uL, c);
   if (res != MP_OKAY) {
      return res;
   }

   res = mp_div_2d(c, b, c, NULL);
   return (res == MP_OKAY) ? mp_sub_d(c, 1uL, c) : res;
}
#endif




Changes to libtommath/bn_mp_sqr.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "tommath_private.h"
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes b = a*a */
int mp_sqr(const mp_int *a, mp_int *b)
{
   int     res;


#ifdef BN_MP_TOOM_SQR_C
   /* use Toom-Cook? */
   if (a->used >= TOOM_SQR_CUTOFF) {
      res = mp_toom_sqr(a, b);
      /* Karatsuba? */
   } else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
      if (a->used >= KARATSUBA_SQR_CUTOFF) {
         res = mp_karatsuba_sqr(a, b);
      } else
#endif
      {
#ifdef BN_FAST_S_MP_SQR_C
         /* can we use the fast comba multiplier? */
         if ((((a->used * 2) + 1) < (int)MP_WARRAY) &&
             (a->used <
              (int)(1u << (((sizeof(mp_word) * (size_t)CHAR_BIT) - (2u * (size_t)DIGIT_BIT)) - 1u)))) {
            res = fast_s_mp_sqr(a, b);
         } else
#endif
         {
#ifdef BN_S_MP_SQR_C
            res = s_mp_sqr(a, b);
#else
            res = MP_VAL;
#endif
         }
      }
   b->sign = MP_ZPOS;
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>

|

|
|



|
|
|



|

|
|
<
|




|

|




|


<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42




#include "tommath_private.h"
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes b = a*a */
mp_err mp_sqr(const mp_int *a, mp_int *b)
{

   mp_err err;

#ifdef BN_S_MP_TOOM_SQR_C
   /* use Toom-Cook? */
   if (a->used >= MP_TOOM_SQR_CUTOFF) {
      err = s_mp_toom_sqr(a, b);
      /* Karatsuba? */
   } else
#endif
#ifdef BN_S_MP_KARATSUBA_SQR_C
      if (a->used >= MP_KARATSUBA_SQR_CUTOFF) {
         err = s_mp_karatsuba_sqr(a, b);
      } else
#endif
      {
#ifdef BN_S_MP_SQR_FAST_C
         /* can we use the fast comba multiplier? */
         if ((((a->used * 2) + 1) < MP_WARRAY) &&
             (a->used < (MP_MAXFAST / 2))) {

            err = s_mp_sqr_fast(a, b);
         } else
#endif
         {
#ifdef BN_S_MP_SQR_C
            err = s_mp_sqr(a, b);
#else
            err = MP_VAL;
#endif
         }
      }
   b->sign = MP_ZPOS;
   return err;
}
#endif




Changes to libtommath/bn_mp_sqrmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_MP_SQRMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res;
   mp_int  t;

   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_sqr(a, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, b, c);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|


|
|


|

|

|

|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24




#include "tommath_private.h"
#ifdef BN_MP_SQRMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* c = a * a (mod b) */
mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_err  err;
   mp_int  t;

   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_sqr(a, &t)) != MP_OKAY) {
      mp_clear(&t);
      return err;
   }
   err = mp_mod(&t, b, c);
   mp_clear(&t);
   return err;
}
#endif




Changes to libtommath/bn_mp_sqrt.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include "tommath_private.h"
#ifndef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(const mp_int *arg, mp_int *ret)
{
   int res;
   mp_int t1, t2;

   /* must be positive */
   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* easy out */
   if (mp_iszero(arg) == MP_YES) {
      mp_zero(ret);
      return MP_OKAY;
   }

   if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_init(&t2)) != MP_OKAY) {
      goto E2;
   }

   /* First approx. (not very bad for large arg) */
   mp_rshd(&t1, t1.used/2);

   /* t1 > 0  */
   if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
      goto E1;
   }
   if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
      goto E1;
   }
   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) {
      goto E1;
   }
   /* And now t1 > sqrt(arg) */
   do {
      if ((res = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
         goto E1;
      }
      if ((res = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
         goto E1;
      }
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) {
         goto E1;
      }
      /* t1 >= sqrt(arg) >= t2 at this point */
   } while (mp_cmp_mag(&t1, &t2) == MP_GT);

   mp_exch(&t1, ret);

E1:
   mp_clear(&t2);
E2:
   mp_clear(&t1);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<


|

|








|




|
|


|







|


|


|




|


|


|











|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67




#include "tommath_private.h"
#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* this function is less generic than mp_n_root, simpler and faster */
mp_err mp_sqrt(const mp_int *arg, mp_int *ret)
{
   mp_err err;
   mp_int t1, t2;

   /* must be positive */
   if (arg->sign == MP_NEG) {
      return MP_VAL;
   }

   /* easy out */
   if (MP_IS_ZERO(arg)) {
      mp_zero(ret);
      return MP_OKAY;
   }

   if ((err = mp_init_copy(&t1, arg)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_init(&t2)) != MP_OKAY) {
      goto E2;
   }

   /* First approx. (not very bad for large arg) */
   mp_rshd(&t1, t1.used/2);

   /* t1 > 0  */
   if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
      goto E1;
   }
   if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
      goto E1;
   }
   if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
      goto E1;
   }
   /* And now t1 > sqrt(arg) */
   do {
      if ((err = mp_div(arg, &t1, &t2, NULL)) != MP_OKAY) {
         goto E1;
      }
      if ((err = mp_add(&t1, &t2, &t1)) != MP_OKAY) {
         goto E1;
      }
      if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) {
         goto E1;
      }
      /* t1 >= sqrt(arg) >= t2 at this point */
   } while (mp_cmp_mag(&t1, &t2) == MP_GT);

   mp_exch(&t1, ret);

E1:
   mp_clear(&t2);
E2:
   mp_clear(&t1);
   return err;
}

#endif




Changes to libtommath/bn_mp_sqrtmod_prime.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include "tommath_private.h"
#ifdef BN_MP_SQRTMOD_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{

   int res, legendre;
   mp_int t1, C, Q, S, Z, M, T, R, two;
   mp_digit i;

   /* first handle the simple cases */
   if (mp_cmp_d(n, 0uL) == MP_EQ) {
      mp_zero(ret);
      return MP_OKAY;
   }
   if (mp_cmp_d(prime, 2uL) == MP_EQ)                            return MP_VAL; /* prime must be odd */
   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
      return res;
   }

   /* SPECIAL CASE: if prime mod 4 == 3
    * compute directly: res = n^(prime+1)/4 mod prime
    * Handbook of Applied Cryptography algorithm 3.36
    */
   if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY)               goto cleanup;
   if (i == 3u) {
      if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY)           goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
      res = MP_OKAY;
      goto cleanup;
   }

   /* NOW: Tonelli-Shanks algorithm */

   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
   if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY)                 goto cleanup;
   /* Q = prime - 1 */
   mp_zero(&S);
   /* S = 0 */
   while (mp_iseven(&Q) != MP_NO) {
      if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
      /* Q = Q / 2 */
      if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY)               goto cleanup;
      /* S = S + 1 */
   }

   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
   if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY)                    goto cleanup;
   /* Z = 2 */
   while (1) {
      if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
      if (legendre == -1) break;
      if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY)               goto cleanup;
      /* Z = Z + 1 */
   }

   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
   /* C = Z ^ Q mod prime */
   if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY)                goto cleanup;
   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
   /* t1 = (Q + 1) / 2 */
   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
   /* R = n ^ ((Q + 1) / 2) mod prime */
   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
   /* T = n ^ Q mod prime */
   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
   /* M = S */
   if ((res = mp_set_int(&two, 2uL)) != MP_OKAY)                 goto cleanup;

   res = MP_VAL;
   while (1) {
      if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
      i = 0;
      while (1) {
         if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
         if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
         i++;
      }
      if (i == 0u) {
         if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
         res = MP_OKAY;
         goto cleanup;
      }
      if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
      if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY)             goto cleanup;
      if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
      /* t1 = 2 ^ (M - i - 1) */
      if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
      if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
      /* C = (t1 * t1) mod prime */
      if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
      /* R = (R * t1) mod prime */
      if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
      /* T = (T * C) mod prime */
      mp_set(&M, i);
      /* M = i */
   }

cleanup:
   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<







|

>
|









|


|
|



|


|

|
|
|
|
|






|
|



|
|

|




|


|

|



|

|
|

|

|

|

|

<

|



|



|
|


|
|
|

|

|

|

|







|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118




#include "tommath_private.h"
#ifdef BN_MP_SQRTMOD_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
   mp_err err;
   int legendre;
   mp_int t1, C, Q, S, Z, M, T, R, two;
   mp_digit i;

   /* first handle the simple cases */
   if (mp_cmp_d(n, 0uL) == MP_EQ) {
      mp_zero(ret);
      return MP_OKAY;
   }
   if (mp_cmp_d(prime, 2uL) == MP_EQ)                            return MP_VAL; /* prime must be odd */
   if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY)        return err;
   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

   if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
      return err;
   }

   /* SPECIAL CASE: if prime mod 4 == 3
    * compute directly: err = n^(prime+1)/4 mod prime
    * Handbook of Applied Cryptography algorithm 3.36
    */
   if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY)               goto cleanup;
   if (i == 3u) {
      if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY)           goto cleanup;
      if ((err = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((err = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
      err = MP_OKAY;
      goto cleanup;
   }

   /* NOW: Tonelli-Shanks algorithm */

   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
   if ((err = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
   if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY)                 goto cleanup;
   /* Q = prime - 1 */
   mp_zero(&S);
   /* S = 0 */
   while (MP_IS_EVEN(&Q)) {
      if ((err = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
      /* Q = Q / 2 */
      if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY)               goto cleanup;
      /* S = S + 1 */
   }

   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
   mp_set_u32(&Z, 2u);
   /* Z = 2 */
   while (1) {
      if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
      if (legendre == -1) break;
      if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY)               goto cleanup;
      /* Z = Z + 1 */
   }

   if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
   /* C = Z ^ Q mod prime */
   if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY)                goto cleanup;
   if ((err = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
   /* t1 = (Q + 1) / 2 */
   if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
   /* R = n ^ ((Q + 1) / 2) mod prime */
   if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
   /* T = n ^ Q mod prime */
   if ((err = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
   /* M = S */
   mp_set_u32(&two, 2u);


   while (1) {
      if ((err = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
      i = 0;
      while (1) {
         if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
         if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
         i++;
      }
      if (i == 0u) {
         if ((err = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
         err = MP_OKAY;
         goto cleanup;
      }
      if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
      if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY)             goto cleanup;
      if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
      /* t1 = 2 ^ (M - i - 1) */
      if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
      if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
      /* C = (t1 * t1) mod prime */
      if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
      /* R = (R * t1) mod prime */
      if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
      /* T = (T * C) mod prime */
      mp_set(&M, i);
      /* M = i */
   }

cleanup:
   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
   return err;
}

#endif




Changes to libtommath/bn_mp_sub.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include "tommath_private.h"
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* high level subtraction (handles signs) */
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     sa, sb, res;

   sa = a->sign;
   sb = b->sign;


   if (sa != sb) {
      /* subtract a negative from a positive, OR */
      /* subtract a positive from a negative. */
      /* In either case, ADD their magnitudes, */
      /* and use the sign of the first number. */
      c->sign = sa;
      res = s_mp_add(a, b, c);
   } else {
      /* subtract a positive from a positive, OR */
      /* subtract a negative from a negative. */
      /* First, take the difference between their */
      /* magnitudes, then... */
      if (mp_cmp_mag(a, b) != MP_LT) {
         /* Copy the sign from the first */
         c->sign = sa;
         /* The first has a larger or equal magnitude */
         res = s_mp_sub(a, b, c);
      } else {
         /* The result has the *opposite* sign from */
         /* the first number. */
         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
         /* The second has a larger magnitude */
         res = s_mp_sub(b, a, c);
      }
   }
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
<
<
|
>







|









|





|


|



<
<
<
<
1
2
3








4

5
6
7
8



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40




#include "tommath_private.h"
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* high level subtraction (handles signs) */
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{



   mp_sign sa = a->sign, sb = b->sign;
   mp_err err;

   if (sa != sb) {
      /* subtract a negative from a positive, OR */
      /* subtract a positive from a negative. */
      /* In either case, ADD their magnitudes, */
      /* and use the sign of the first number. */
      c->sign = sa;
      err = s_mp_add(a, b, c);
   } else {
      /* subtract a positive from a positive, OR */
      /* subtract a negative from a negative. */
      /* First, take the difference between their */
      /* magnitudes, then... */
      if (mp_cmp_mag(a, b) != MP_LT) {
         /* Copy the sign from the first */
         c->sign = sa;
         /* The first has a larger or equal magnitude */
         err = s_mp_sub(a, b, c);
      } else {
         /* The result has the *opposite* sign from */
         /* the first number. */
         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
         /* The second has a larger magnitude */
         err = s_mp_sub(b, a, c);
      }
   }
   return err;
}

#endif




Changes to libtommath/bn_mp_sub_d.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "tommath_private.h"
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* single digit subtraction */
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit *tmpa, *tmpc, mu;

   int       res, ix, oldused;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* if a is negative just do an unsigned
    * addition [with fudged signs]
    */
   if (a->sign == MP_NEG) {
      mp_int a_ = *a;
      a_.sign = MP_ZPOS;
      res     = mp_add_d(&a_, b, c);
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return res;
   }

   /* setup regs */
   oldused = c->used;
   tmpa    = a->dp;
   tmpc    = c->dp;

   /* if a <= b simply fix the single digit */
   if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
      if (a->used == 1) {
         *tmpc++ = b - *tmpa;
      } else {
         *tmpc++ = b;
      }
      ix      = 1;

      /* negative/1digit */
      c->sign = MP_NEG;
      c->used = 1;
   } else {


      /* positive/size */
      c->sign = MP_ZPOS;
      c->used = a->used;

      /* subtract first digit */
      *tmpc    = *tmpa++ - b;
      mu       = *tmpc >> ((sizeof(mp_digit) * (size_t)CHAR_BIT) - 1u);
      *tmpc++ &= MP_MASK;

      /* handle rest of the digits */
      for (ix = 1; ix < a->used; ix++) {
         *tmpc    = *tmpa++ - mu;
         mu       = *tmpc >> ((sizeof(mp_digit) * (size_t)CHAR_BIT) - 1u);
         *tmpc++ &= MP_MASK;
      }
   }

   /* zero excess digits */
   while (ix++ < oldused) {
      *tmpc++ = 0;
   }
   mp_clamp(c);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
>
|



|
|









|





|




















>
>




|
<
<
<
<
<
|

|





|
<
|





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59





60
61
62
63
64
65
66
67
68

69
70
71
72
73
74




#include "tommath_private.h"
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* single digit subtraction */
mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
{
   mp_digit *tmpa, *tmpc;
   mp_err    err;
   int       ix, oldused;

   /* grow c as required */
   if (c->alloc < (a->used + 1)) {
      if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* if a is negative just do an unsigned
    * addition [with fudged signs]
    */
   if (a->sign == MP_NEG) {
      mp_int a_ = *a;
      a_.sign = MP_ZPOS;
      err     = mp_add_d(&a_, b, c);
      c->sign = MP_NEG;

      /* clamp */
      mp_clamp(c);

      return err;
   }

   /* setup regs */
   oldused = c->used;
   tmpa    = a->dp;
   tmpc    = c->dp;

   /* if a <= b simply fix the single digit */
   if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
      if (a->used == 1) {
         *tmpc++ = b - *tmpa;
      } else {
         *tmpc++ = b;
      }
      ix      = 1;

      /* negative/1digit */
      c->sign = MP_NEG;
      c->used = 1;
   } else {
      mp_digit mu = b;

      /* positive/size */
      c->sign = MP_ZPOS;
      c->used = a->used;

      /* subtract digits, mu is carry */





      for (ix = 0; ix < a->used; ix++) {
         *tmpc    = *tmpa++ - mu;
         mu       = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u);
         *tmpc++ &= MP_MASK;
      }
   }

   /* zero excess digits */
   MP_ZERO_DIGITS(tmpc, oldused - ix);


   mp_clamp(c);
   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_submod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include "tommath_private.h"
#ifdef BN_MP_SUBMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* d = a - b (mod c) */
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
   int     res;

   mp_int  t;


   if ((res = mp_init(&t)) != MP_OKAY) {
      return res;
   }

   if ((res = mp_sub(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return res;
   }
   res = mp_mod(&t, c, d);
   mp_clear(&t);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
>
|

<
|
|


|

|

|

|


<
<
<
<
1
2
3








4

5
6
7
8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24




#include "tommath_private.h"
#ifdef BN_MP_SUBMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* d = a - b (mod c) */
mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{

   mp_err err;
   mp_int t;


   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_sub(a, b, &t)) != MP_OKAY) {
      mp_clear(&t);
      return err;
   }
   err = mp_mod(&t, c, d);
   mp_clear(&t);
   return err;
}
#endif




Deleted libtommath/bn_mp_tc_and.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "tommath_private.h"
#ifdef BN_MP_TC_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* two complement and */
int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c)
{
   int res = MP_OKAY, bits, abits, bbits;
   int as = mp_isneg(a), bs = mp_isneg(b);
   mp_int *mx = NULL, _mx, acpy, bcpy;

   if ((as != MP_NO) || (bs != MP_NO)) {
      abits = mp_count_bits(a);
      bbits = mp_count_bits(b);
      bits = MAX(abits, bbits);
      res = mp_init_set_int(&_mx, 1uL);
      if (res != MP_OKAY) {
         goto end;
      }

      mx = &_mx;
      res = mp_mul_2d(mx, bits + 1, mx);
      if (res != MP_OKAY) {
         goto end;
      }

      if (as != MP_NO) {
         res = mp_init(&acpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, a, &acpy);
         if (res != MP_OKAY) {
            mp_clear(&acpy);
            goto end;
         }
         a = &acpy;
      }
      if (bs != MP_NO) {
         res = mp_init(&bcpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, b, &bcpy);
         if (res != MP_OKAY) {
            mp_clear(&bcpy);
            goto end;
         }
         b = &bcpy;
      }
   }

   res = mp_and(a, b, c);

   if ((as != MP_NO) && (bs != MP_NO) && (res == MP_OKAY)) {
      res = mp_sub(c, mx, c);
   }

end:
   if (a == &acpy) {
      mp_clear(&acpy);
   }

   if (b == &bcpy) {
      mp_clear(&bcpy);
   }

   if (mx == &_mx) {
      mp_clear(mx);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































Deleted libtommath/bn_mp_tc_or.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "tommath_private.h"
#ifdef BN_MP_TC_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* two complement or */
int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   int res = MP_OKAY, bits, abits, bbits;
   int as = mp_isneg(a), bs = mp_isneg(b);
   mp_int *mx = NULL, _mx, acpy, bcpy;

   if ((as != MP_NO) || (bs != MP_NO)) {
      abits = mp_count_bits(a);
      bbits = mp_count_bits(b);
      bits = MAX(abits, bbits);
      res = mp_init_set_int(&_mx, 1uL);
      if (res != MP_OKAY) {
         goto end;
      }

      mx = &_mx;
      res = mp_mul_2d(mx, bits + 1, mx);
      if (res != MP_OKAY) {
         goto end;
      }

      if (as != MP_NO) {
         res = mp_init(&acpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, a, &acpy);
         if (res != MP_OKAY) {
            mp_clear(&acpy);
            goto end;
         }
         a = &acpy;
      }
      if (bs != MP_NO) {
         res = mp_init(&bcpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, b, &bcpy);
         if (res != MP_OKAY) {
            mp_clear(&bcpy);
            goto end;
         }
         b = &bcpy;
      }
   }

   res = mp_or(a, b, c);

   if (((as != MP_NO) || (bs != MP_NO)) && (res == MP_OKAY)) {
      res = mp_sub(c, mx, c);
   }

end:
   if (a == &acpy) {
      mp_clear(&acpy);
   }

   if (b == &bcpy) {
      mp_clear(&bcpy);
   }

   if (mx == &_mx) {
      mp_clear(mx);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































Deleted libtommath/bn_mp_tc_xor.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "tommath_private.h"
#ifdef BN_MP_TC_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* two complement xor */
int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
   int res = MP_OKAY, bits, abits, bbits;
   int as = mp_isneg(a), bs = mp_isneg(b);
   mp_int *mx = NULL, _mx, acpy, bcpy;

   if ((as != MP_NO) || (bs != MP_NO)) {
      abits = mp_count_bits(a);
      bbits = mp_count_bits(b);
      bits = MAX(abits, bbits);
      res = mp_init_set_int(&_mx, 1uL);
      if (res != MP_OKAY) {
         goto end;
      }

      mx = &_mx;
      res = mp_mul_2d(mx, bits + 1, mx);
      if (res != MP_OKAY) {
         goto end;
      }

      if (as != MP_NO) {
         res = mp_init(&acpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, a, &acpy);
         if (res != MP_OKAY) {
            mp_clear(&acpy);
            goto end;
         }
         a = &acpy;
      }
      if (bs != MP_NO) {
         res = mp_init(&bcpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, b, &bcpy);
         if (res != MP_OKAY) {
            mp_clear(&bcpy);
            goto end;
         }
         b = &bcpy;
      }
   }

   res = mp_xor(a, b, c);

   if ((as != bs) && (res == MP_OKAY)) {
      res = mp_sub(c, mx, c);
   }

end:
   if (a == &acpy) {
      mp_clear(&acpy);
   }

   if (b == &bcpy) {
      mp_clear(&bcpy);
   }

   if (mx == &_mx) {
      mp_clear(mx);
   }

   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































Changes to libtommath/bn_mp_to_signed_bin.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "tommath_private.h"
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* store in signed [big endian] format */
int mp_to_signed_bin(const mp_int *a, unsigned char *b)
{
   int     res;

   if ((res = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) {
      return res;
   }
   b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

<
|
|
|





<
<
<
<
1
2
3








4

5
6
7
8

9
10
11
12
13
14
15
16




#include "tommath_private.h"
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* store in signed [big endian] format */
mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b)
{

   mp_err err;
   if ((err = mp_to_unsigned_bin(a, b + 1)) != MP_OKAY) {
      return err;
   }
   b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_to_signed_bin_n.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* store in signed [big endian] format */
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = (unsigned long)mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|








<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15




#include "tommath_private.h"
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* store in signed [big endian] format */
mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = (unsigned long)mp_signed_bin_size(a);
   return mp_to_signed_bin(a, b);
}
#endif




Changes to libtommath/bn_mp_to_unsigned_bin.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
{
   int     x, res;

   mp_int  t;

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   x = 0;
   while (mp_iszero(&t) == MP_NO) {
#ifndef MP_8BIT
      b[x++] = (unsigned char)(t.dp[0] & 255u);
#else
      b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 1u) << 7));
#endif
      if ((res = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
   }
   bn_reverse(b, x);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
>


|
|



|





|

|


|




<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33




#include "tommath_private.h"
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* store in unsigned [big endian] format */
mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
{
   int     x;
   mp_err  err;
   mp_int  t;

   if ((err = mp_init_copy(&t, a)) != MP_OKAY) {
      return err;
   }

   x = 0;
   while (!MP_IS_ZERO(&t)) {
#ifndef MP_8BIT
      b[x++] = (unsigned char)(t.dp[0] & 255u);
#else
      b[x++] = (unsigned char)(t.dp[0] | ((t.dp[1] & 1u) << 7));
#endif
      if ((err = mp_div_2d(&t, 8, &t, NULL)) != MP_OKAY) {
         mp_clear(&t);
         return err;
      }
   }
   s_mp_reverse(b, x);
   mp_clear(&t);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_to_unsigned_bin_n.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "tommath_private.h"
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = (unsigned long)mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|








<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15




#include "tommath_private.h"
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* store in unsigned [big endian] format */
mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
      return MP_VAL;
   }
   *outlen = (unsigned long)mp_unsigned_bin_size(a);
   return mp_to_unsigned_bin(a, b);
}
#endif




Changes to libtommath/bn_mp_toradix.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include "tommath_private.h"
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix(const mp_int *a, char *str, int radix)
{

   int     res, digs;
   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the radix */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (mp_iszero(a) == MP_YES) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      ++_s;
      *str++ = '-';
      t.sign = MP_ZPOS;
   }

   digs = 0;
   while (mp_iszero(&t) == MP_NO) {
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number]
    */
   bn_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

>
|










|





|
|










|
|

|








|









<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




#include "tommath_private.h"
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* stores a bignum as a ASCII string in a given radix (2..64) */
mp_err mp_toradix(const mp_int *a, char *str, int radix)
{
   mp_err  err;
   int digs;
   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the radix */
   if ((radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (MP_IS_ZERO(a)) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((err = mp_init_copy(&t, a)) != MP_OKAY) {
      return err;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      ++_s;
      *str++ = '-';
      t.sign = MP_ZPOS;
   }

   digs = 0;
   while (!MP_IS_ZERO(&t)) {
      if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return err;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number]
    */
   s_mp_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_toradix_n.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include "tommath_private.h"
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* stores a bignum as a ASCII string in a given radix (2..64)
 *
 * Stores upto maxlen-1 chars and always a NULL byte
 */
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
{
   int     res, digs;

   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the maxlen, radix */
   if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (mp_iszero(a) == MP_YES) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
      return res;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      /* we have to reverse our digits later... but not the - sign!! */
      ++_s;

      /* store the flag and mark the number as positive */
      *str++ = '-';
      t.sign = MP_ZPOS;

      /* subtract a char */
      --maxlen;
   }

   digs = 0;
   while (mp_iszero(&t) == MP_NO) {
      if (--maxlen < 1) {
         /* no more room */
         break;
      }
      if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return res;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number
    */
   bn_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<





|

|
>










|





|
|
















|




|

|








|









<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73




#include "tommath_private.h"
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* stores a bignum as a ASCII string in a given radix (2..64)
 *
 * Stores upto maxlen-1 chars and always a NULL byte
 */
mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
{
   int     digs;
   mp_err  err;
   mp_int  t;
   mp_digit d;
   char   *_s = str;

   /* check range of the maxlen, radix */
   if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
      return MP_VAL;
   }

   /* quick out if its zero */
   if (MP_IS_ZERO(a)) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }

   if ((err = mp_init_copy(&t, a)) != MP_OKAY) {
      return err;
   }

   /* if it is negative output a - */
   if (t.sign == MP_NEG) {
      /* we have to reverse our digits later... but not the - sign!! */
      ++_s;

      /* store the flag and mark the number as positive */
      *str++ = '-';
      t.sign = MP_ZPOS;

      /* subtract a char */
      --maxlen;
   }

   digs = 0;
   while (!MP_IS_ZERO(&t)) {
      if (--maxlen < 1) {
         /* no more room */
         break;
      }
      if ((err = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
         mp_clear(&t);
         return err;
      }
      *str++ = mp_s_rmap[d];
      ++digs;
   }

   /* reverse the digits of the string.  In this case _s points
    * to the first digit [exluding the sign] of the number
    */
   s_mp_reverse((unsigned char *)_s, digs);

   /* append a NULL so the string is properly terminated */
   *str = '\0';

   mp_clear(&t);
   return MP_OKAY;
}

#endif




Changes to libtommath/bn_mp_unsigned_bin_size.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size(const mp_int *a)
{
   int     size = mp_count_bits(a);
   return (size / 8) + ((((unsigned)size & 7u) != 0u) ? 1 : 0);
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<








<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12




#include "tommath_private.h"
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size(const mp_int *a)
{
   int     size = mp_count_bits(a);
   return (size / 8) + ((((unsigned)size & 7u) != 0u) ? 1 : 0);
}
#endif




Changes to libtommath/bn_mp_xor.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25

26






27

28
29
30
31
32



33



34
35

36



37

38




39
40
41
42
43
44
45
46
47
48
#include "tommath_private.h"
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* XOR two ints together */
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     res, ix, px;
   mp_int  t;
   const mp_int *x;


   if (a->used > b->used) {
      if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
         return res;
      }

      px = b->used;






      x = b;

   } else {
      if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
         return res;
      }
      px = a->used;



      x = a;



   }


   for (ix = 0; ix < px; ix++) {



      t.dp[ix] ^= x->dp[ix];

   }




   mp_clamp(&t);
   mp_exch(c, &t);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<

|
|

|
|
|
>

|
|
|

>
|
>
>
>
>
>
>
|
>
|
|
<

|
>
>
>
|
>
>
>
|

>
|
>
>
>
|
>
|
>
>
>
>
|
<
<



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


54
55
56




#include "tommath_private.h"
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* two complement xor */
mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
   int used = MP_MAX(a->used, b->used) + 1, i;
   mp_err err;
   mp_digit ac = 1, bc = 1, cc = 1;
   mp_sign csign = (a->sign != b->sign) ? MP_NEG : MP_ZPOS;

   if (c->alloc < used) {
      if ((err = mp_grow(c, used)) != MP_OKAY) {
         return err;
      }
   }

   for (i = 0; i < used; i++) {
      mp_digit x, y;

      /* convert to two complement if negative */
      if (a->sign == MP_NEG) {
         ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
         x = ac & MP_MASK;
         ac >>= MP_DIGIT_BIT;
      } else {
         x = (i >= a->used) ? 0uL : a->dp[i];

      }

      /* convert to two complement if negative */
      if (b->sign == MP_NEG) {
         bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
         y = bc & MP_MASK;
         bc >>= MP_DIGIT_BIT;
      } else {
         y = (i >= b->used) ? 0uL : b->dp[i];
      }

      c->dp[i] = x ^ y;

      /* convert to to sign-magnitude if negative */
      if (csign == MP_NEG) {
         cc += ~c->dp[i] & MP_MASK;
         c->dp[i] = cc & MP_MASK;
         cc >>= MP_DIGIT_BIT;
      }
   }

   c->used = used;
   c->sign = csign;
   mp_clamp(c);


   return MP_OKAY;
}
#endif




Changes to libtommath/bn_mp_zero.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include "tommath_private.h"
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* set to zero */
void mp_zero(mp_int *a)
{
   int       n;
   mp_digit *tmp;

   a->sign = MP_ZPOS;
   a->used = 0;

   tmp = a->dp;
   for (n = 0; n < a->alloc; n++) {
      *tmp++ = 0;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<




<
<
<


|
<
<
<
|
<

<
<
<
<
1
2
3








4

5
6
7
8



9
10
11



12

13




#include "tommath_private.h"
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* set to zero */
void mp_zero(mp_int *a)
{



   a->sign = MP_ZPOS;
   a->used = 0;
   MP_ZERO_DIGITS(a->dp, a->alloc);



}

#endif




Changes to libtommath/bn_prime_tab.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include "tommath_private.h"
#ifdef BN_PRIME_TAB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

const mp_digit ltm_prime_tab[] = {
   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT


|
<
<
<
<
<
<
<
<
|
<







1
2
3








4

5
6
7
8
9
10
11
#include "tommath_private.h"
#ifdef BN_PRIME_TAB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


const mp_digit ltm_prime_tab[] = {
   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
48
49
50
51
52
53
54













55
56
57
58
59

   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};













#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */








>
>
>
>
>
>
>
>
>
>
>
>
>


<
<
<
>
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



61
   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};

#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
const mp_digit *s_mp_prime_tab = ltm_prime_tab;
#pragma GCC diagnostic pop
#elif defined(_MSC_VER) && _MSC_VER >= 1500
#pragma warning(push)
#pragma warning(disable: 4996)
const mp_digit *s_mp_prime_tab = ltm_prime_tab;
#pragma warning(pop)
#else
const mp_digit *s_mp_prime_tab = ltm_prime_tab;
#endif




#endif
Changes to libtommath/bn_s_mp_add.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   const mp_int *x;

   int     olduse, res, min, max;

   /* find sizes, we let |a| <= |b| which means we have to sort
    * them.  "x" will point to the input with the most digits
    */
   if (a->used > b->used) {
      min = b->used;
      max = a->used;
      x = a;
   } else {
      min = a->used;
      max = b->used;
      x = b;
   }

   /* init result */
   if (c->alloc < (max + 1)) {
      if ((res = mp_grow(c, max + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* get old used digit count and set new one */
   olduse = c->used;
   c->used = max + 1;



|
<
<
<
<
<
<
<
<
|
<


|


>
|
















|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "tommath_private.h"
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* low level addition, based on HAC pp.594, Algorithm 14.7 */
mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
   const mp_int *x;
   mp_err err;
   int     olduse, min, max;

   /* find sizes, we let |a| <= |b| which means we have to sort
    * them.  "x" will point to the input with the most digits
    */
   if (a->used > b->used) {
      min = b->used;
      max = a->used;
      x = a;
   } else {
      min = a->used;
      max = b->used;
      x = b;
   }

   /* init result */
   if (c->alloc < (max + 1)) {
      if ((err = mp_grow(c, max + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* get old used digit count and set new one */
   olduse = c->used;
   c->used = max + 1;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
      /* zero the carry */
      u = 0;
      for (i = 0; i < min; i++) {
         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
         *tmpc = *tmpa++ + *tmpb++ + u;

         /* U = carry bit of T[i] */
         u = *tmpc >> (mp_digit)DIGIT_BIT;

         /* take away carry bit from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, that is in A+B
       * if A or B has more digits add those in
       */
      if (min != max) {
         for (; i < max; i++) {
            /* T[i] = X[i] + U */
            *tmpc = x->dp[i] + u;

            /* U = carry bit of T[i] */
            u = *tmpc >> (mp_digit)DIGIT_BIT;

            /* take away carry bit from T[i] */
            *tmpc++ &= MP_MASK;
         }
      }

      /* add carry */
      *tmpc++ = u;

      /* clear digits above oldused */
      for (i = c->used; i < olduse; i++) {
         *tmpc++ = 0;
      }
   }

   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|














|










|
<
<






<
<
<
<
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


86
87
88
89
90
91




      /* zero the carry */
      u = 0;
      for (i = 0; i < min; i++) {
         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
         *tmpc = *tmpa++ + *tmpb++ + u;

         /* U = carry bit of T[i] */
         u = *tmpc >> (mp_digit)MP_DIGIT_BIT;

         /* take away carry bit from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, that is in A+B
       * if A or B has more digits add those in
       */
      if (min != max) {
         for (; i < max; i++) {
            /* T[i] = X[i] + U */
            *tmpc = x->dp[i] + u;

            /* U = carry bit of T[i] */
            u = *tmpc >> (mp_digit)MP_DIGIT_BIT;

            /* take away carry bit from T[i] */
            *tmpc++ &= MP_MASK;
         }
      }

      /* add carry */
      *tmpc++ = u;

      /* clear digits above oldused */
      MP_ZERO_DIGITS(tmpc, olduse - c->used);


   }

   mp_clamp(c);
   return MP_OKAY;
}
#endif




Added libtommath/bn_s_mp_balance_mul.c.






























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "tommath_private.h"
#ifdef BN_S_MP_BALANCE_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* single-digit multiplication with the smaller number as the single-digit */
mp_err s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   int count, len_a, len_b, nblocks, i, j, bsize;
   mp_int a0, tmp, A, B, r;
   mp_err err;

   len_a = a->used;
   len_b = b->used;

   nblocks = MP_MAX(a->used, b->used) / MP_MIN(a->used, b->used);
   bsize = MP_MIN(a->used, b->used) ;

   if ((err = mp_init_size(&a0, bsize + 2)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_init_multi(&tmp, &r, NULL)) != MP_OKAY) {
      mp_clear(&a0);
      return err;
   }

   /* Make sure that A is the larger one*/
   if (len_a < len_b) {
      B = *a;
      A = *b;
   } else {
      A = *a;
      B = *b;
   }

   for (i = 0, j=0; i < nblocks; i++) {
      /* Cut a slice off of a */
      a0.used = 0;
      for (count = 0; count < bsize; count++) {
         a0.dp[count] = A.dp[ j++ ];
         a0.used++;
      }
      /* Multiply with b */
      if ((err = mp_mul(&a0, &B, &tmp)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* Shift tmp to the correct position */
      if ((err = mp_lshd(&tmp, bsize * i)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* Add to output. No carry needed */
      if ((err = mp_add(&r, &tmp, &r)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }
   /* The left-overs; there are always left-overs */
   if (j < A.used) {
      a0.used = 0;
      for (count = 0; j < A.used; count++) {
         a0.dp[count] = A.dp[ j++ ];
         a0.used++;
      }
      if ((err = mp_mul(&a0, &B, &tmp)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_lshd(&tmp, bsize * i)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_add(&r, &tmp, &r)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   mp_exch(&r,c);
LBL_ERR:
   mp_clear_multi(&a0, &tmp, &r,NULL);
   return err;
}
#endif
Changes to libtommath/bn_s_mp_exptmod.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res, mu;
   mp_digit buf;

   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   int (*redux)(mp_int *x, const mp_int *m, const mp_int *mu);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;


|
<
<
<
<
<
<
<
<
|
<







|



>
|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res, mu;
   mp_digit buf;
   mp_err   err;
   int      bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset the bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */







|



|







138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset the bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)MP_DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
242
243
244
245
246
247
248
249
250
251
252
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
234
235
236
237
238
239
240




   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif




Name change from libtommath/bn_mp_exptmod_fast.c to libtommath/bn_s_mp_exptmod_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res;
   mp_digit buf, mp;
   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;


   /* use a pointer to the reduction algorithm.  This allows us to use
    * one of many reduction algorithms without modding the guts of
    * the code with if statements everywhere.
    */
   int (*redux)(mp_int *x, const mp_int *n, mp_digit rho);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;

|
|
<
<
<
<
<
<
<
<
|
<















|



|
>





|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#else
#   define TAB_SIZE 256
#endif

mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res;
   mp_digit buf, mp;
   int     bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   mp_err   err;

   /* use a pointer to the reduction algorithm.  This allows us to use
    * one of many reduction algorithms without modding the guts of
    * the code with if statements everywhere.
    */
   mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
      }
#else
      err = MP_VAL;
      goto LBL_M;
#endif

      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
      if ((((P->used * 2) + 1) < (int)MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
         redux = fast_mp_montgomery_reduce;
      } else
#endif
      {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
         /* use slower baseline Montgomery method */
         redux = mp_montgomery_reduce;
#else







|
|
|
|







80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
      }
#else
      err = MP_VAL;
      goto LBL_M;
#endif

      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C
      if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < MP_MAXFAST)) {
         redux = s_mp_montgomery_reduce_fast;
      } else
#endif
      {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
         /* use slower baseline Montgomery method */
         redux = mp_montgomery_reduce;
#else
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits so break */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */







|



|







192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits so break */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)MP_DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
308
309
310
311
312
313
314
315
316
317
318
319
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
<
300
301
302
303
304
305
306





   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif





Name change from libtommath/bn_mp_get_bit.c to libtommath/bn_s_mp_get_bit.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include "tommath_private.h"
#ifdef BN_MP_GET_BIT_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Checks the bit at position b and returns MP_YES
   if the bit is 1, MP_NO if it is 0 and MP_VAL
   in case of error */
int mp_get_bit(const mp_int *a, int b)
{
   int limb;
   mp_digit bit, isset;

   if (b < 0) {
      return MP_VAL;
   }

   limb = b / DIGIT_BIT;

   /*
    * Zero is a special value with the member "used" set to zero.
    * Needs to be tested before the check for the upper boundary
    * otherwise (limb >= a->used) would be true for a = 0
    */

   if (mp_iszero(a) != MP_NO) {
      return MP_NO;
   }

   if (limb >= a->used) {
      return MP_VAL;
   }

   bit = (mp_digit)(1) << (b % DIGIT_BIT);

   isset = a->dp[limb] & bit;
   return (isset != 0u) ? MP_YES : MP_NO;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|

|
<
<
<
<
<
<
<
<
|
<

<
|
<
|

<
|
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<

|


|
<
<
|



<
<
<
<
1
2
3
4








5

6

7

8
9

10
11


12













13
14
15
16
17


18
19
20
21




#include "tommath_private.h"
#ifdef BN_S_MP_GET_BIT_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */



/* Get bit at position b and return MP_YES if the bit is 1, MP_NO if it is 0 */

mp_bool s_mp_get_bit(const mp_int *a, unsigned int b)
{

   mp_digit bit;
   int limb = (int)(b / MP_DIGIT_BIT);
















   if (limb >= a->used) {
      return MP_NO;
   }

   bit = (mp_digit)1 << (b % MP_DIGIT_BIT);


   return ((a->dp[limb] & bit) != 0u) ? MP_YES : MP_NO;
}

#endif




Name change from libtommath/bn_fast_mp_invmod.c to libtommath/bn_s_mp_invmod_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "tommath_private.h"
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes the modular inverse via binary extended euclidean algorithm,
 * that is c = 1/a mod b
 *
 * Based on slow invmod except this is optimized for the case where b is
 * odd as per HAC Note 14.64 on pp. 610
 */
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, B, D;
   int     res, neg;


   /* 2. [modified] b must be odd   */
   if (mp_iseven(b) == MP_YES) {
      return MP_VAL;
   }

   /* init all our temps */
   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x == modulus, y == value to invert */
   if ((res = mp_copy(b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* we need y = |a| */
   if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* if one of x,y is zero return an error! */
   if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if B is odd then */
      if (mp_isodd(&B) == MP_YES) {
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* B = B/2 */
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if D is odd then */
      if (mp_isodd(&D) == MP_YES) {
         /* D = (D-x)/2 */
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* D = D/2 */
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO) {
      goto top;
   }

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* b is now the inverse */
   neg = a->sign;
   while (D.sign == MP_NEG) {
      if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&D, b) != MP_LT) {
      if ((res = mp_sub(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   mp_exch(&D, c);
   c->sign = neg;
   res = MP_OKAY;

LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<







|


|
>


|




|
|



|




|




|
|




|


|






|

|



|
|




|





|

|



|

|




|







|



|




|



|





|







|






|






|






|



|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148




#include "tommath_private.h"
#ifdef BN_S_MP_INVMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes the modular inverse via binary extended euclidean algorithm,
 * that is c = 1/a mod b
 *
 * Based on slow invmod except this is optimized for the case where b is
 * odd as per HAC Note 14.64 on pp. 610
 */
mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, B, D;
   mp_sign neg;
   mp_err  err;

   /* 2. [modified] b must be odd   */
   if (MP_IS_EVEN(b)) {
      return MP_VAL;
   }

   /* init all our temps */
   if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
      return err;
   }

   /* x == modulus, y == value to invert */
   if ((err = mp_copy(b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* we need y = |a| */
   if ((err = mp_mod(a, b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* if one of x,y is zero return an error! */
   if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) {
      err = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((err = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((err = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (MP_IS_EVEN(&u)) {
      /* 4.1 u = u/2 */
      if ((err = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if B is odd then */
      if (MP_IS_ODD(&B)) {
         if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* B = B/2 */
      if ((err = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (MP_IS_EVEN(&v)) {
      /* 5.1 v = v/2 */
      if ((err = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if D is odd then */
      if (MP_IS_ODD(&D)) {
         /* D = (D-x)/2 */
         if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* D = D/2 */
      if ((err = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, B = B - D */
      if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, D = D - B */
      if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (!MP_IS_ZERO(&u)) {
      goto top;
   }

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      err = MP_VAL;
      goto LBL_ERR;
   }

   /* b is now the inverse */
   neg = a->sign;
   while (D.sign == MP_NEG) {
      if ((err = mp_add(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&D, b) != MP_LT) {
      if ((err = mp_sub(&D, b, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   mp_exch(&D, c);
   c->sign = neg;
   err = MP_OKAY;

LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
   return err;
}
#endif




Name change from libtommath/bn_mp_invmod_slow.c to libtommath/bn_s_mp_invmod_slow.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include "tommath_private.h"
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* hac 14.61, pp608 */
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, A, B, C, D;
   int     res;

   /* b cannot be negative */
   if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
      return MP_VAL;
   }

   /* init temps */
   if ((res = mp_init_multi(&x, &y, &u, &v,
                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
      return res;
   }

   /* x = a, y = b */
   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* 2. [modified] if x,y are both even then return an error! */
   if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&A, 1uL);
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (mp_iseven(&u) == MP_YES) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if A or B is odd then */
      if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) {
         /* A = (A+y)/2, B = (B-x)/2 */
         if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* A = A/2, B = B/2 */
      if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (mp_iseven(&v) == MP_YES) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if C or D is odd then */
      if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) {
         /* C = (C+y)/2, D = (D-x)/2 */
         if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* C = C/2, D = D/2 */
      if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, A = A - C, B = B - D */
      if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, C = C - A, D = D - B */
      if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (mp_iszero(&u) == MP_NO)
      goto top;

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
   }

   /* if its too low */
   while (mp_cmp_d(&C, 0uL) == MP_LT) {
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* C is now the inverse */
   mp_exch(&C, c);
   res = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
   return res;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<


|


|


|




|

|



|


|




|
|




|


|







|

|



|

|


|




|


|





|

|



|

|


|




|


|







|



|



|




|



|



|





|






|





|






|






|


|


<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160




#include "tommath_private.h"
#ifdef BN_S_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* hac 14.61, pp608 */
mp_err s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x, y, u, v, A, B, C, D;
   mp_err  err;

   /* b cannot be negative */
   if ((b->sign == MP_NEG) || MP_IS_ZERO(b)) {
      return MP_VAL;
   }

   /* init temps */
   if ((err = mp_init_multi(&x, &y, &u, &v,
                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
      return err;
   }

   /* x = a, y = b */
   if ((err = mp_mod(a, b, &x)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((err = mp_copy(b, &y)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* 2. [modified] if x,y are both even then return an error! */
   if (MP_IS_EVEN(&x) && MP_IS_EVEN(&y)) {
      err = MP_VAL;
      goto LBL_ERR;
   }

   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
   if ((err = mp_copy(&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((err = mp_copy(&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_set(&A, 1uL);
   mp_set(&D, 1uL);

top:
   /* 4.  while u is even do */
   while (MP_IS_EVEN(&u)) {
      /* 4.1 u = u/2 */
      if ((err = mp_div_2(&u, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 4.2 if A or B is odd then */
      if (MP_IS_ODD(&A) || MP_IS_ODD(&B)) {
         /* A = (A+y)/2, B = (B-x)/2 */
         if ((err = mp_add(&A, &y, &A)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* A = A/2, B = B/2 */
      if ((err = mp_div_2(&A, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_div_2(&B, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 5.  while v is even do */
   while (MP_IS_EVEN(&v)) {
      /* 5.1 v = v/2 */
      if ((err = mp_div_2(&v, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }
      /* 5.2 if C or D is odd then */
      if (MP_IS_ODD(&C) || MP_IS_ODD(&D)) {
         /* C = (C+y)/2, D = (D-x)/2 */
         if ((err = mp_add(&C, &y, &C)) != MP_OKAY) {
            goto LBL_ERR;
         }
         if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
         }
      }
      /* C = C/2, D = D/2 */
      if ((err = mp_div_2(&C, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if ((err = mp_div_2(&D, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* 6.  if u >= v then */
   if (mp_cmp(&u, &v) != MP_LT) {
      /* u = u - v, A = A - C, B = B - D */
      if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&A, &C, &A)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) {
         goto LBL_ERR;
      }
   } else {
      /* v - v - u, C = C - A, D = D - B */
      if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&C, &A, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }

      if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* if not zero goto step 4 */
   if (!MP_IS_ZERO(&u))
      goto top;

   /* now a = C, b = D, gcd == g*v */

   /* if v != 1 then there is no inverse */
   if (mp_cmp_d(&v, 1uL) != MP_EQ) {
      err = MP_VAL;
      goto LBL_ERR;
   }

   /* if its too low */
   while (mp_cmp_d(&C, 0uL) == MP_LT) {
      if ((err = mp_add(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* too big */
   while (mp_cmp_mag(&C, b) != MP_LT) {
      if ((err = mp_sub(&C, b, &C)) != MP_OKAY) {
         goto LBL_ERR;
      }
   }

   /* C is now the inverse */
   mp_exch(&C, c);
   err = MP_OKAY;
LBL_ERR:
   mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
   return err;
}
#endif




Name change from libtommath/bn_mp_karatsuba_mul.c to libtommath/bn_s_mp_karatsuba_mul.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "tommath_private.h"
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* c = |a| * |b| using Karatsuba Multiplication using
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
 * let n represent half of the number of digits in
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b =>

|
|
<
<
<
<
<
<
<
<
|
<




|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
#include "tommath_private.h"
#ifdef BN_S_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* c = |a| * |b| using Karatsuba Multiplication using
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**MP_DIGIT_BIT] and
 * let n represent half of the number of digits in
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b =>
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
 * in this function if the a0, a1, b0, or b1 are above the threshold.
 * This is known as divide-and-conquer and leads to the famous
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 * the standard O(N**2) that the baseline/comba methods use.
 * Generally though the overhead of this method doesn't pay off
 * until a certain size (N ~ 80) is reached.
 */
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
   int     B, err;

   /* default the return code to an error */
   err = MP_MEM;

   /* min # of digits */
   B = MIN(a->used, b->used);

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto LBL_ERR;







|


|
<
|
<


|







28
29
30
31
32
33
34
35
36
37
38

39

40
41
42
43
44
45
46
47
48
49
 * in this function if the a0, a1, b0, or b1 are above the threshold.
 * This is known as divide-and-conquer and leads to the famous
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 * the standard O(N**2) that the baseline/comba methods use.
 * Generally though the overhead of this method doesn't pay off
 * until a certain size (N ~ 80) is reached.
 */
mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
   int     B;

   mp_err  err = MP_MEM; /* default the return code to an error */


   /* min # of digits */
   B = MP_MIN(a->used, b->used);

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY)
      goto LBL_ERR;
161
162
163
164
165
166
167
168
169
170
171
   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
150
151
152
153
154
155
156




   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif




Name change from libtommath/bn_mp_karatsuba_sqr.c to libtommath/bn_s_mp_karatsuba_sqr.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Karatsuba squaring, computes b = a*a using three
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It
 * is essentially the same algorithm but merely
 * tuned to perform recursive squarings.
 */
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   mp_int  x0, x1, t1, t2, x0x0, x1x1;
   int     B, err;

   err = MP_MEM;

   /* min # of digits */
   B = a->used;

   /* now divide in two */
   B = B >> 1;


|
|
<
<
<
<
<
<
<
<
|
<








|


|
<
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
#include "tommath_private.h"
#ifdef BN_S_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Karatsuba squaring, computes b = a*a using three
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It
 * is essentially the same algorithm but merely
 * tuned to perform recursive squarings.
 */
mp_err s_mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
   mp_int  x0, x1, t1, t2, x0x0, x1x1;
   int     B;

   mp_err  err = MP_MEM;

   /* min # of digits */
   B = a->used;

   /* now divide in two */
   B = B >> 1;

114
115
116
117
118
119
120
121
122
123
124
   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<
<
<
<
104
105
106
107
108
109
110




   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif




Name change from libtommath/bn_fast_mp_montgomery_reduce.c to libtommath/bn_s_mp_montgomery_reduce_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "tommath_private.h"
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int     ix, res, olduse;

   mp_word W[MP_WARRAY];

   if (x->used > (int)MP_WARRAY) {
      return MP_VAL;
   }

   /* get old used count */
   olduse = x->used;

   /* grow a as required */
   if (x->alloc < (n->used + 1)) {
      if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
         return res;
      }
   }

   /* first we have to get the digits of the input into
    * an array of double precision words W[...]
    */
   {

|
|
<
<
<
<
<
<
<
<
|
<









|

|
>


|








|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "tommath_private.h"
#ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho)
{
   int     ix, olduse;
   mp_err  err;
   mp_word W[MP_WARRAY];

   if (x->used > MP_WARRAY) {
      return MP_VAL;
   }

   /* get old used count */
   olduse = x->used;

   /* grow a as required */
   if (x->alloc < (n->used + 1)) {
      if ((err = mp_grow(x, n->used + 1)) != MP_OKAY) {
         return err;
      }
   }

   /* first we have to get the digits of the input into
    * an array of double precision words W[...]
    */
   {
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

      /* copy the digits of a into W[0..a->used-1] */
      for (ix = 0; ix < x->used; ix++) {
         *_W++ = *tmpx++;
      }

      /* zero the high words of W[a->used..m->used*2] */
      for (; ix < ((n->used * 2) + 1); ix++) {
         *_W++ = 0;
      }
   }

   /* now we proceed to zero successive digits
    * from the least significant upwards
    */
   for (ix = 0; ix < n->used; ix++) {







|
|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

      /* copy the digits of a into W[0..a->used-1] */
      for (ix = 0; ix < x->used; ix++) {
         *_W++ = *tmpx++;
      }

      /* zero the high words of W[a->used..m->used*2] */
      if (ix < ((n->used * 2) + 1)) {
         MP_ZERO_BUFFER(_W, sizeof(mp_word) * (size_t)(((n->used * 2) + 1) - ix));
      }
   }

   /* now we proceed to zero successive digits
    * from the least significant upwards
    */
   for (ix = 0; ix < n->used; ix++) {
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
         /* inner loop */
         for (iy = 0; iy < n->used; iy++) {
            *_W++ += (mp_word)mu * (mp_word)*tmpn++;
         }
      }

      /* now fix carry for next digit, W[ix+1] */
      W[ix + 1] += W[ix] >> (mp_word)DIGIT_BIT;
   }

   /* now we have to propagate the carries and
    * shift the words downward [all those least
    * significant digits we zeroed].
    */
   {
      mp_digit *tmpx;
      mp_word *_W, *_W1;

      /* nox fix rest of carries */

      /* alias for current word */
      _W1 = W + ix;

      /* alias for next word, where the carry goes */
      _W = W + ++ix;

      for (; ix <= ((n->used * 2) + 1); ix++) {
         *_W++ += *_W1++ >> (mp_word)DIGIT_BIT;
      }

      /* copy out, A = A/b**n
       *
       * The result is A/b**n but instead of converting from an
       * array of mp_word to mp_digit than calling mp_rshd
       * we just copy them in the right order







|



















|







96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
         /* inner loop */
         for (iy = 0; iy < n->used; iy++) {
            *_W++ += (mp_word)mu * (mp_word)*tmpn++;
         }
      }

      /* now fix carry for next digit, W[ix+1] */
      W[ix + 1] += W[ix] >> (mp_word)MP_DIGIT_BIT;
   }

   /* now we have to propagate the carries and
    * shift the words downward [all those least
    * significant digits we zeroed].
    */
   {
      mp_digit *tmpx;
      mp_word *_W, *_W1;

      /* nox fix rest of carries */

      /* alias for current word */
      _W1 = W + ix;

      /* alias for next word, where the carry goes */
      _W = W + ++ix;

      for (; ix <= ((n->used * 2) + 1); ix++) {
         *_W++ += *_W1++ >> (mp_word)MP_DIGIT_BIT;
      }

      /* copy out, A = A/b**n
       *
       * The result is A/b**n but instead of converting from an
       * array of mp_word to mp_digit than calling mp_rshd
       * we just copy them in the right order
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
      for (ix = 0; ix < (n->used + 1); ix++) {
         *tmpx++ = *_W++ & (mp_word)MP_MASK;
      }

      /* zero oldused digits, if the input a was larger than
       * m->used+1 we'll have to clear the digits
       */
      for (; ix < olduse; ix++) {
         *tmpx++ = 0;
      }
   }

   /* set the max used and clamp */
   x->used = n->used + 1;
   mp_clamp(x);

   /* if A >= m then A = A - m */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|
<
<













<
<
<
<
139
140
141
142
143
144
145
146


147
148
149
150
151
152
153
154
155
156
157
158
159




      for (ix = 0; ix < (n->used + 1); ix++) {
         *tmpx++ = *_W++ & (mp_word)MP_MASK;
      }

      /* zero oldused digits, if the input a was larger than
       * m->used+1 we'll have to clear the digits
       */
      MP_ZERO_DIGITS(tmpx, olduse - ix);


   }

   /* set the max used and clamp */
   x->used = n->used + 1;
   mp_clamp(x);

   /* if A >= m then A = A - m */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_s_mp_mul_digs.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include "tommath_private.h"
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how
 * many digits of output are created.
 */
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int  t;

   int     res, pa, pb, ix, iy;
   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
   if ((digs < (int)MP_WARRAY) &&
       (MIN(a->used, b->used) <
        (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
      return fast_s_mp_mul_digs(a, b, c, digs);
   }

   if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
      return res;
   }
   t.used = digs;

   /* compute the digits of the product directly */
   pa = a->used;
   for (ix = 0; ix < pa; ix++) {
      /* set the carry to zero */
      u = 0;

      /* limit ourselves to making digs digits of output */
      pb = MIN(b->used, digs - ix);

      /* setup some aliases */
      /* copy of the digit from a used within the nested loop */
      tmpx = a->dp[ix];

      /* an alias for the destination shifted ix places */
      tmpt = t.dp + ix;


|
<
<
<
<
<
<
<
<
|
<





|


>
|





|
|
<
|


|
|










|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "tommath_private.h"
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how
 * many digits of output are created.
 */
mp_err s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int  t;
   mp_err  err;
   int     pa, pb, ix, iy;
   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
   if ((digs < MP_WARRAY) &&
       (MP_MIN(a->used, b->used) < MP_MAXFAST)) {

      return s_mp_mul_digs_fast(a, b, c, digs);
   }

   if ((err = mp_init_size(&t, digs)) != MP_OKAY) {
      return err;
   }
   t.used = digs;

   /* compute the digits of the product directly */
   pa = a->used;
   for (ix = 0; ix < pa; ix++) {
      /* set the carry to zero */
      u = 0;

      /* limit ourselves to making digs digits of output */
      pb = MP_MIN(b->used, digs - ix);

      /* setup some aliases */
      /* copy of the digit from a used within the nested loop */
      tmpx = a->dp[ix];

      /* an alias for the destination shifted ix places */
      tmpt = t.dp + ix;
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* the new column is the lower part of the result */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get the carry word from the result */
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
      /* set carry if it is placed below digs */
      if ((ix + iy) < digs) {
         *tmpt = u;
      }
   }

   mp_clamp(&t);
   mp_exch(&t, c);

   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|














<
<
<
<
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74




                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* the new column is the lower part of the result */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get the carry word from the result */
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
      /* set carry if it is placed below digs */
      if ((ix + iy) < digs) {
         *tmpt = u;
      }
   }

   mp_clamp(&t);
   mp_exch(&t, c);

   mp_clear(&t);
   return MP_OKAY;
}
#endif




Name change from libtommath/bn_fast_s_mp_mul_digs.c to libtommath/bn_s_mp_mul_digs_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;

   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((res = mp_grow(c, digs)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;

      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<

















|

|
>





|
|




|









|









|











|















|
<
<





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


86
87
88
89
90




#include "tommath_private.h"
#ifdef BN_S_MP_MUL_DIGS_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is
 * designed to compute the columns of the product first
 * then handle the carries afterwards.  This has the effect
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of
 * digits of output so if say only a half-product is required
 * you don't have to compute the upper half (a feature
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int      olduse, pa, ix, iz;
   mp_err   err;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   if (c->alloc < digs) {
      if ((err = mp_grow(c, digs)) != MP_OKAY) {
         return err;
      }
   }

   /* number of output digits to produce */
   pa = MP_MIN(digs, a->used + b->used);

   /* clear the carry */
   _W = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty;
      int      iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MP_MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MP_MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; ++iz) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;

      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)MP_DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;
      tmpc = c->dp;
      for (ix = 0; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      MP_ZERO_DIGITS(tmpc, olduse - ix);


   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_s_mp_mul_high_digs.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int  t;
   int     res, pa, pb, ix, iy;

   mp_digit u;
   mp_word r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
   if (((a->used + b->used + 1) < (int)MP_WARRAY)
       && (MIN(a->used, b->used) < (int)(1u << (((size_t)CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
      return fast_s_mp_mul_high_digs(a, b, c, digs);
   }
#endif

   if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
      return res;
   }
   t.used = a->used + b->used + 1;

   pa = a->used;
   pb = b->used;
   for (ix = 0; ix < pa; ix++) {
      /* clear the carry */


|
<
<
<
<
<
<
<
<
|
<




|

|
|
>

|



|
|
|
|



|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
mp_err s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   mp_int   t;
   int      pa, pb, ix, iy;
   mp_err   err;
   mp_digit u;
   mp_word  r;
   mp_digit tmpx, *tmpt, *tmpy;

   /* can we use the fast multiplier? */
#ifdef BN_S_MP_MUL_HIGH_DIGS_FAST_C
   if (((a->used + b->used + 1) < MP_WARRAY)
       && (MP_MIN(a->used, b->used) < MP_MAXFAST)) {
      return s_mp_mul_high_digs_fast(a, b, c, digs);
   }
#endif

   if ((err = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
      return err;
   }
   t.used = a->used + b->used + 1;

   pa = a->used;
   pb = b->used;
   for (ix = 0; ix < pa; ix++) {
      /* clear the carry */
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* get the lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* carry the carry */
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
      *tmpt = u;
   }
   mp_clamp(&t);
   mp_exch(&t, c);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|









<
<
<
<
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65




                   ((mp_word)tmpx * (mp_word)*tmpy++) +
                   (mp_word)u;

         /* get the lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* carry the carry */
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
      *tmpt = u;
   }
   mp_clamp(&t);
   mp_exch(&t, c);
   mp_clear(&t);
   return MP_OKAY;
}
#endif




Name change from libtommath/bn_fast_s_mp_mul_high_digs.c to libtommath/bn_s_mp_mul_high_digs_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, res, pa, ix, iz;

   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   pa = a->used + b->used;
   if (c->alloc < pa) {
      if ((res = mp_grow(c, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   pa = a->used + b->used;
   _W = 0;
   for (ix = digs; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;

      tmpc = c->dp + digs;
      for (ix = digs; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpc++ = 0;
      }
   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<










|

|
>






|
|











|









|










|
















|
<
<





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


77
78
79
80
81




#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
mp_err s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     olduse, pa, ix, iz;
   mp_err   err;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   /* grow the destination as required */
   pa = a->used + b->used;
   if (c->alloc < pa) {
      if ((err = mp_grow(c, pa)) != MP_OKAY) {
         return err;
      }
   }

   /* number of output digits to produce */
   pa = a->used + b->used;
   _W = 0;
   for (ix = digs; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_digit *tmpx, *tmpy;

      /* get offsets into the two bignums */
      ty = MP_MIN(b->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = b->dp + ty;

      /* this is the number of times the loop will iterrate, essentially its
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MP_MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)MP_DIGIT_BIT;
   }

   /* setup dest */
   olduse  = c->used;
   c->used = pa;

   {
      mp_digit *tmpc;

      tmpc = c->dp + digs;
      for (ix = digs; ix < pa; ix++) {
         /* now extract the previous digit [below the carry] */
         *tmpc++ = W[ix];
      }

      /* clear unused digits [that existed in the old copy of c] */
      MP_ZERO_DIGITS(tmpc, olduse - ix);


   }
   mp_clamp(c);
   return MP_OKAY;
}
#endif




Name change from libtommath/bn_mp_prime_is_divisible.c to libtommath/bn_s_mp_prime_is_divisible.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* determines if an integers is divisible by one
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
int mp_prime_is_divisible(const mp_int *a, int *result)
{
   int     err, ix;

   mp_digit res;

   /* default to not */
   *result = MP_NO;

   for (ix = 0; ix < PRIME_SIZE; ix++) {
      /* what is a mod LBL_prime_tab[ix] */
      if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
         return err;
      }

      /* is the residue zero? */
      if (res == 0u) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }

   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<






|

|
>





|

|













<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35




#include "tommath_private.h"
#ifdef BN_S_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* determines if an integers is divisible by one
 * of the first PRIME_SIZE primes or not
 *
 * sets result to 0 if not, 1 if yes
 */
mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result)
{
   int      ix;
   mp_err   err;
   mp_digit res;

   /* default to not */
   *result = MP_NO;

   for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) {
      /* what is a mod LBL_prime_tab[ix] */
      if ((err = mp_mod_d(a, s_mp_prime_tab[ix], &res)) != MP_OKAY) {
         return err;
      }

      /* is the residue zero? */
      if (res == 0u) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }

   return MP_OKAY;
}
#endif




Added libtommath/bn_s_mp_rand_jenkins.c.








































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include "tommath_private.h"
#ifdef BN_S_MP_RAND_JENKINS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* Bob Jenkins' http://burtleburtle.net/bob/rand/smallprng.html */
/* Chosen for speed and a good "mix" */
typedef struct {
   uint64_t a;
   uint64_t b;
   uint64_t c;
   uint64_t d;
} ranctx;

static ranctx jenkins_x;

#define rot(x,k) (((x)<<(k))|((x)>>(64-(k))))
static uint64_t s_rand_jenkins_val(void)
{
   uint64_t e = jenkins_x.a - rot(jenkins_x.b, 7);
   jenkins_x.a = jenkins_x.b ^ rot(jenkins_x.c, 13);
   jenkins_x.b = jenkins_x.c + rot(jenkins_x.d, 37);
   jenkins_x.c = jenkins_x.d + e;
   jenkins_x.d = e + jenkins_x.a;
   return jenkins_x.d;
}

void s_mp_rand_jenkins_init(uint64_t seed)
{
   uint64_t i;
   jenkins_x.a = 0xf1ea5eedULL;
   jenkins_x.b = jenkins_x.c = jenkins_x.d = seed;
   for (i = 0uLL; i < 20uLL; ++i) {
      (void)s_rand_jenkins_val();
   }
}

mp_err s_mp_rand_jenkins(void *p, size_t n)
{
   char *q = (char *)p;
   while (n > 0u) {
      int i;
      uint64_t x = s_rand_jenkins_val();
      for (i = 0; (i < 8) && (n > 0u); ++i, --n) {
         *q++ = (char)(x & 0xFFuLL);
         x >>= 8;
      }
   }
   return MP_OKAY;
}

#endif
Added libtommath/bn_s_mp_rand_platform.c.








































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include "tommath_private.h"
#ifdef BN_S_MP_RAND_PLATFORM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* First the OS-specific special cases
 * - *BSD
 * - Windows
 */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#  define MP_ARC4RANDOM
#endif

#if defined(_WIN32) || defined(_WIN32_WCE)
#define MP_WIN_CSP

#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#ifdef _WIN32_WCE
#define UNDER_CE
#define ARM
#endif

#ifdef _MSC_VER
# pragma warning(push)
# pragma warning (disable : 4668)
#endif
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <wincrypt.h>
#ifdef _MSC_VER
# pragma warning(pop)
#endif

static mp_err s_read_win_csp(void *p, size_t n)
{
   static HCRYPTPROV hProv = 0;
   if (hProv == 0) {
      HCRYPTPROV h = 0;
      if (!CryptAcquireContext(&h, NULL, MS_DEF_PROV, PROV_RSA_FULL,
                               (CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) &&
          !CryptAcquireContext(&h, NULL, MS_DEF_PROV, PROV_RSA_FULL,
                               CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) {
         return MP_ERR;
      }
      hProv = h;
   }
   return CryptGenRandom(hProv, (DWORD)n, (BYTE *)p) == TRUE ? MP_OKAY : MP_ERR;
}
#endif /* WIN32 */

#if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 25)
#define MP_GETRANDOM
#include <sys/random.h>
#include <errno.h>

static mp_err s_read_getrandom(void *p, size_t n)
{
   char *q = (char *)p;
   while (n > 0u) {
      ssize_t ret = getrandom(q, n, 0);
      if (ret < 0) {
         if (errno == EINTR) {
            continue;
         }
         return MP_ERR;
      }
      q += ret;
      n -= (size_t)ret;
   }
   return MP_OKAY;
}
#endif
#endif

/* We assume all platforms besides windows provide "/dev/urandom".
 * In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time.
 */
#if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM)
#ifndef MP_DEV_URANDOM
#define MP_DEV_URANDOM "/dev/urandom"
#endif
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

static mp_err s_read_dev_urandom(void *p, size_t n)
{
   int fd;
   char *q = (char *)p;

   do {
      fd = open(MP_DEV_URANDOM, O_RDONLY);
   } while ((fd == -1) && (errno == EINTR));
   if (fd == -1) return MP_ERR;

   while (n > 0u) {
      ssize_t ret = read(fd, p, n);
      if (ret < 0) {
         if (errno == EINTR) {
            continue;
         }
         close(fd);
         return MP_ERR;
      }
      q += ret;
      n -= (size_t)ret;
   }

   close(fd);
   return MP_OKAY;
}
#endif

#if defined(MP_PRNG_ENABLE_LTM_RNG)
unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
void (*ltm_rng_callback)(void);

static mp_err s_read_ltm_rng(void *p, size_t n)
{
   unsigned long res;
   if (ltm_rng == NULL) return MP_ERR;
   res = ltm_rng(p, n, ltm_rng_callback);
   if (res != n) return MP_ERR;
   return MP_OKAY;
}
#endif

mp_err s_mp_rand_platform(void *p, size_t n)
{
#if defined(MP_ARC4RANDOM)
   arc4random_buf(p, n);
   return MP_OKAY;
#else

   mp_err res = MP_ERR;

#if defined(MP_WIN_CSP)
   res = s_read_win_csp(p, n);
   if (res == MP_OKAY) return res;
#endif

#if defined(MP_GETRANDOM)
   res = s_read_getrandom(p, n);
   if (res == MP_OKAY) return res;
#endif

#if defined(MP_DEV_URANDOM)
   res = s_read_dev_urandom(p, n);
   if (res == MP_OKAY) return res;
#endif

#if defined(MP_PRNG_ENABLE_LTM_RNG)
   res = s_read_ltm_rng(p, n);
   if (res == MP_OKAY) return res;
#endif

   return res;
#endif
}

#endif
Name change from libtommath/bn_reverse.c to libtommath/bn_s_mp_reverse.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "tommath_private.h"
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* reverse an array, used for radix code */
void bn_reverse(unsigned char *s, int len)
{
   int     ix, iy;
   unsigned char t;

   ix = 0;
   iy = len - 1;
   while (ix < iy) {
      t     = s[ix];
      s[ix] = s[iy];
      s[iy] = t;
      ++ix;
      --iy;
   }
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<


|















<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22




#include "tommath_private.h"
#ifdef BN_S_MP_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* reverse an array, used for radix code */
void s_mp_reverse(unsigned char *s, int len)
{
   int     ix, iy;
   unsigned char t;

   ix = 0;
   iy = len - 1;
   while (ix < iy) {
      t     = s[ix];
      s[ix] = s[iy];
      s[iy] = t;
      ++ix;
      --iy;
   }
}
#endif




Changes to libtommath/bn_s_mp_sqr.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include "tommath_private.h"
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr(const mp_int *a, mp_int *b)
{
   mp_int  t;
   int     res, ix, iy, pa;

   mp_word r;
   mp_digit u, tmpx, *tmpt;

   pa = a->used;
   if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) {
      return res;
   }

   /* default used is maximum possible size */
   t.used = (2 * pa) + 1;

   for (ix = 0; ix < pa; ix++) {
      /* first calculate the digit at 2*ix */
      /* calculate double precision result */
      r = (mp_word)t.dp[2*ix] +
          ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

      /* store lower part in result */
      t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK);

      /* get the carry */
      u           = (mp_digit)(r >> (mp_word)DIGIT_BIT);

      /* left hand side of A[ix] * A[iy] */
      tmpx        = a->dp[ix];

      /* alias for where to store the results */
      tmpt        = t.dp + ((2 * ix) + 1);

      for (iy = ix + 1; iy < pa; iy++) {
         /* first calculate the product */
         r       = (mp_word)tmpx * (mp_word)a->dp[iy];

         /* now calculate the double precision result, note we use
          * addition instead of *2 since it's easier to optimize
          */
         r       = (mp_word)*tmpt + r + r + (mp_word)u;

         /* store lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get carry */
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
      /* propagate upwards */
      while (u != 0uL) {
         r       = (mp_word)*tmpt + (mp_word)u;
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);
         u       = (mp_digit)(r >> (mp_word)DIGIT_BIT);
      }
   }

   mp_clamp(&t);
   mp_exch(&t, b);
   mp_clear(&t);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */


|
<
<
<
<
<
<
<
<
|
<


|

|
|
>
|



|
|















|




















|





|









<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69




#include "tommath_private.h"
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
mp_err s_mp_sqr(const mp_int *a, mp_int *b)
{
   mp_int   t;
   int      ix, iy, pa;
   mp_err   err;
   mp_word  r;
   mp_digit u, tmpx, *tmpt;

   pa = a->used;
   if ((err = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) {
      return err;
   }

   /* default used is maximum possible size */
   t.used = (2 * pa) + 1;

   for (ix = 0; ix < pa; ix++) {
      /* first calculate the digit at 2*ix */
      /* calculate double precision result */
      r = (mp_word)t.dp[2*ix] +
          ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);

      /* store lower part in result */
      t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK);

      /* get the carry */
      u           = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

      /* left hand side of A[ix] * A[iy] */
      tmpx        = a->dp[ix];

      /* alias for where to store the results */
      tmpt        = t.dp + ((2 * ix) + 1);

      for (iy = ix + 1; iy < pa; iy++) {
         /* first calculate the product */
         r       = (mp_word)tmpx * (mp_word)a->dp[iy];

         /* now calculate the double precision result, note we use
          * addition instead of *2 since it's easier to optimize
          */
         r       = (mp_word)*tmpt + r + r + (mp_word)u;

         /* store lower part */
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);

         /* get carry */
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
      /* propagate upwards */
      while (u != 0uL) {
         r       = (mp_word)*tmpt + (mp_word)u;
         *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);
         u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
      }
   }

   mp_clamp(&t);
   mp_exch(&t, b);
   mp_clear(&t);
   return MP_OKAY;
}
#endif




Name change from libtommath/bn_fast_s_mp_sqr.c to libtommath/bn_s_mp_sqr_fast.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "tommath_private.h"
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that
 * starts closer to zero] can't equal the offset of tmpy.
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
   int       olduse, res, pa, ix, iz;
   mp_digit   W[MP_WARRAY], *tmpx;
   mp_word   W1;


   /* grow the destination as required */
   pa = a->used + a->used;
   if (b->alloc < pa) {
      if ((res = mp_grow(b, pa)) != MP_OKAY) {
         return res;
      }
   }

   /* number of output digits to produce */
   W1 = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

      /* get offsets into the two bignums */
      ty = MIN(a->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* double the inner product and add carry */
      _W = _W + _W + W1;

      /* even columns have the square term in them */
      if (((unsigned)ix & 1u) == 0u) {
         _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1];
      }

      /* store it */
      W[ix] = _W & MP_MASK;

      /* make next carry */
      W1 = _W >> (mp_word)DIGIT_BIT;
   }

   /* setup dest */
   olduse  = b->used;
   b->used = a->used+a->used;

   {
      mp_digit *tmpb;
      tmpb = b->dp;
      for (ix = 0; ix < pa; ix++) {
         *tmpb++ = W[ix] & MP_MASK;
      }

      /* clear unused digits [that existed in the old copy of c] */
      for (; ix < olduse; ix++) {
         *tmpb++ = 0;
      }
   }
   mp_clamp(b);
   return MP_OKAY;
}
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<











|

|
|

>




|
|














|









|





|















|


|














|
<
<





<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92


93
94
95
96
97




#include "tommath_private.h"
#ifdef BN_S_MP_SQR_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that
 * starts closer to zero] can't equal the offset of tmpy.
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

mp_err s_mp_sqr_fast(const mp_int *a, mp_int *b)
{
   int       olduse, pa, ix, iz;
   mp_digit  W[MP_WARRAY], *tmpx;
   mp_word   W1;
   mp_err    err;

   /* grow the destination as required */
   pa = a->used + a->used;
   if (b->alloc < pa) {
      if ((err = mp_grow(b, pa)) != MP_OKAY) {
         return err;
      }
   }

   /* number of output digits to produce */
   W1 = 0;
   for (ix = 0; ix < pa; ix++) {
      int      tx, ty, iy;
      mp_word  _W;
      mp_digit *tmpy;

      /* clear counter */
      _W = 0;

      /* get offsets into the two bignums */
      ty = MP_MIN(a->used-1, ix);
      tx = ix - ty;

      /* setup temp aliases */
      tmpx = a->dp + tx;
      tmpy = a->dp + ty;

      /* this is the number of times the loop will iterrate, essentially
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MP_MIN(a->used-tx, ty+1);

      /* now for squaring tx can never equal ty
       * we halve the distance since they approach at a rate of 2x
       * and we have to round because odd cases need to be executed
       */
      iy = MP_MIN(iy, ((ty-tx)+1)>>1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)*tmpx++ * (mp_word)*tmpy--;
      }

      /* double the inner product and add carry */
      _W = _W + _W + W1;

      /* even columns have the square term in them */
      if (((unsigned)ix & 1u) == 0u) {
         _W += (mp_word)a->dp[ix>>1] * (mp_word)a->dp[ix>>1];
      }

      /* store it */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      W1 = _W >> (mp_word)MP_DIGIT_BIT;
   }

   /* setup dest */
   olduse  = b->used;
   b->used = a->used+a->used;

   {
      mp_digit *tmpb;
      tmpb = b->dp;
      for (ix = 0; ix < pa; ix++) {
         *tmpb++ = W[ix] & MP_MASK;
      }

      /* clear unused digits [that existed in the old copy of c] */
      MP_ZERO_DIGITS(tmpb, olduse - ix);


   }
   mp_clamp(b);
   return MP_OKAY;
}
#endif




Changes to libtommath/bn_s_mp_sub.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "tommath_private.h"
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
   int     olduse, res, min, max;


   /* find sizes */
   min = b->used;
   max = a->used;

   /* init result */
   if (c->alloc < max) {
      if ((res = mp_grow(c, max)) != MP_OKAY) {
         return res;
      }
   }
   olduse = c->used;
   c->used = max;

   {
      mp_digit u, *tmpa, *tmpb, *tmpc;


|
<
<
<
<
<
<
<
<
|
<


|

|
>







|
|







1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include "tommath_private.h"
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
   int    olduse, min, max;
   mp_err err;

   /* find sizes */
   min = b->used;
   max = a->used;

   /* init result */
   if (c->alloc < max) {
      if ((err = mp_grow(c, max)) != MP_OKAY) {
         return err;
      }
   }
   olduse = c->used;
   c->used = max;

   {
      mp_digit u, *tmpa, *tmpb, *tmpc;
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
         *tmpc = (*tmpa++ - *tmpb++) - u;

         /* U = carry bit of T[i]
          * Note this saves performing an AND operation since
          * if a carry does occur it will propagate all the way to the
          * MSB.  As a result a single shift is enough to get the carry
          */
         u = *tmpc >> (((size_t)CHAR_BIT * sizeof(mp_digit)) - 1u);

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, e.g. if A has more digits than B  */
      for (; i < max; i++) {
         /* T[i] = A[i] - U */
         *tmpc = *tmpa++ - u;

         /* U = carry bit of T[i] */
         u = *tmpc >> (((size_t)CHAR_BIT * sizeof(mp_digit)) - 1u);

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* clear digits above used (since we may not have grown result above) */
      for (i = c->used; i < olduse; i++) {
         *tmpc++ = 0;
      }
   }

   mp_clamp(c);
   return MP_OKAY;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|











|






|
<
<







<
<
<
<
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


65
66
67
68
69
70
71




         *tmpc = (*tmpa++ - *tmpb++) - u;

         /* U = carry bit of T[i]
          * Note this saves performing an AND operation since
          * if a carry does occur it will propagate all the way to the
          * MSB.  As a result a single shift is enough to get the carry
          */
         u = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u);

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* now copy higher words if any, e.g. if A has more digits than B  */
      for (; i < max; i++) {
         /* T[i] = A[i] - U */
         *tmpc = *tmpa++ - u;

         /* U = carry bit of T[i] */
         u = *tmpc >> (MP_SIZEOF_BITS(mp_digit) - 1u);

         /* Clear carry from T[i] */
         *tmpc++ &= MP_MASK;
      }

      /* clear digits above used (since we may not have grown result above) */
      MP_ZERO_DIGITS(tmpc, olduse - c->used);


   }

   mp_clamp(c);
   return MP_OKAY;
}

#endif




Name change from libtommath/bn_mp_toom_mul.c to libtommath/bn_s_mp_toom_mul.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21



















22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61


62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


84

85
86
87


88
89
90
91
92
93
94

95
96
97

98
99
100

101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128

129
130
131

132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221

222
223
224

225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243


244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261

262
263
264
265

266
267
268
269
270
271
272
273

274

275
276
277
278
279
280
281
282
283
#include "tommath_private.h"
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/



















int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
   int res, B;

   /* init temps */
   if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
                            &a0, &a1, &a2, &b0, &b1,
                            &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
      return res;
   }

   /* B */
   B = MIN(a->used, b->used) / 3;

   /* a = a2 * B**2 + a1 * B + a0 */
   if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_copy(a, &a1)) != MP_OKAY) {
      goto LBL_ERR;

   }
   mp_rshd(&a1, B);
   if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_copy(a, &a2)) != MP_OKAY) {
      goto LBL_ERR;

   }
   mp_rshd(&a2, B*2);

   /* b = b2 * B**2 + b1 * B + b0 */
   if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_copy(b, &b1)) != MP_OKAY) {
      goto LBL_ERR;


   }
   mp_rshd(&b1, B);
   (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);


   if ((res = mp_copy(b, &b2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_rshd(&b2, B*2);

   /* w0 = a0*b0 */
   if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* w4 = a2 * b2 */
   if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
   if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;


   }

   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
   if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }


   /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
   if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* now solve the matrix



      0  0  0  0  1
      1  2  4  8  16
      1  1  1  1  1
      16 8  4  2  1
      1  0  0  0  0

      using 12 subtractions, 4 shifts,
             2 small divisions and 1 small multiplication
    */

   /* r1 - r4 */
   if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* r3 - r0 */
   if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1/2 */

   if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3/2 */
   if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r2 - r0 - r4 */
   if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1 - 8r0 */
   if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - 8r4 */
   if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* 3r2 - r1 - r3 */
   if ((res = mp_mul_d(&w2, 3uL, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1 - r2 */

   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1/3 */
   if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3/3 */
   if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
      goto LBL_ERR;
   }



   /* at this point shift W[n] by B*n */
   if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {

      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
      goto LBL_ERR;
   }

LBL_ERR:
   mp_clear_multi(&w0, &w1, &w2, &w3, &w4,

                  &a0, &a1, &a2, &b0, &b1,

                  &b2, &tmp1, &tmp2, NULL);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
<
<
<
<
<
<
<
<
|
<








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

|
|


<
<
|
|



|

|
|
|

|
|
<
>

|
|
|

|
|
<
>

<
|
<
|
|

|
<
<
>
>

<
<

>
|
|

<
|
|
|
<

|
<
|
|

|
<
<
<
>
>

>
|
|

>
>
|
<

<
<
|
|
>
|
|

>
|
|

>
|
|

>
|
|

|
|
|

|
|
|
|

<
<
<
|
<
<
|
|
<
|
>
|
|

>
|
|

>
|
|

>
|
|

|
|
|

|
|
<
|
|

<
<
<
|
<
<
|
|

>
|
|

|
<
>
>
|
<
|
<
|
<
|
<
<
<
|
|
|
|

>
|
|
|

<
>
|
|

|
|
|

|
|
|

>
|
|

|
|
|

|
|
|

|
<
<
<
|
|

|
|
|

>
|
|

|
|
|

>
|
|

>
|
|

|
>
|
|

<
|
|

<
|
|

<
|
|

>
>
|
<
|
|

|
|

|
|

<
<
|
>

<
<
|
>
|
|
<
<
>
|
<
|
|
<
|
|
|
>
|
>
|
|



<
<
<
<
1
2
3








4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59
60

61

62
63
64
65


66
67
68


69
70
71
72
73

74
75
76

77
78

79
80
81
82



83
84
85
86
87
88
89
90
91
92

93


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



121


122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149



150


151
152
153
154
155
156
157
158

159
160
161

162

163

164



165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199



200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230

231
232
233

234
235
236
237
238
239

240
241
242
243
244
245
246
247
248


249
250
251


252
253
254
255


256
257

258
259

260
261
262
263
264
265
266
267
268
269
270




#include "tommath_private.h"
#ifdef BN_S_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* multiplication using the Toom-Cook 3-way algorithm
 *
 * Much more complicated than Karatsuba but has a lower
 * asymptotic running time of O(N**1.464).  This algorithm is
 * only particularly useful on VERY large inputs
 * (we're talking 1000s of digits here...).
*/

/*
   This file contains code from J. Arndt's book  "Matters Computational"
   and the accompanying FXT-library with permission of the author.
*/

/*
   Setup from

     Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae."
     18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007.

   The interpolation from above needed one temporary variable more
   than the interpolation here:

     Bodrato, Marco, and Alberto Zanoni. "What about Toom-Cook matrices optimality."
     Centro Vito Volterra Universita di Roma Tor Vergata (2006)
*/

mp_err s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int S1, S2, T1, a0, a1, a2, b0, b1, b2;
   int err, B, count;

   /* init temps */


   if ((err = mp_init_multi(&S1, &S2, &T1, NULL)) != MP_OKAY) {
      return err;
   }

   /* B */
   B = MP_MIN(a->used, b->used) / 3;

   /** a = a2 * x^2 + a1 * x + a0; */
   if ((err = mp_init_size(&a0, B)) != MP_OKAY) {
      goto LTM_ERRa0;
   }
   for (count = 0; count < B; count++) {
      a0.dp[count] = a->dp[count];

      a0.used++;
   }
   mp_clamp(&a0);
   if ((err = mp_init_size(&a1, B)) != MP_OKAY) {
      goto LTM_ERRa1;
   }
   for (; count < (2 * B); count++) {
      a1.dp[count - B] = a->dp[count];

      a1.used++;
   }

   mp_clamp(&a1);

   if ((err = mp_init_size(&a2, B + (a->used - (3 * B)))) != MP_OKAY) {
      goto LTM_ERRa2;
   }
   for (; count < a->used; count++) {


      a2.dp[count - (2 * B)] = a->dp[count];
      a2.used++;
   }



   /** b = b2 * x^2 + b1 * x + b0; */
   if ((err = mp_init_size(&b0, B)) != MP_OKAY) {
      goto LTM_ERRb0;
   }

   for (count = 0; count < B; count++) {
      b0.dp[count] = b->dp[count];
      b0.used++;

   }
   mp_clamp(&b0);

   if ((err = mp_init_size(&b1, B)) != MP_OKAY) {
      goto LTM_ERRb1;
   }
   for (; count < (2 * B); count++) {



      b1.dp[count - B] = b->dp[count];
      b1.used++;
   }
   mp_clamp(&b1);
   if ((err = mp_init_size(&b2, B + (b->used - (3 * B)))) != MP_OKAY) {
      goto LTM_ERRb2;
   }
   for (; count < b->used; count++) {
      b2.dp[count - (2 * B)] = b->dp[count];
      b2.used++;

   }



   /** \\ S1 = (a2+a1+a0) * (b2+b1+b0); */
   /** T1 = a2 + a1; */
   if ((err = mp_add(&a2, &a1, &T1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S2 = T1 + a0; */
   if ((err = mp_add(&T1, &a0, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** c = b2 + b1; */
   if ((err = mp_add(&b2, &b1, c)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S1 = c + b0; */
   if ((err = mp_add(c, &b0, &S1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S1 = S1 * S2; */
   if ((err = mp_mul(&S1, &S2, &S1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S2 = (4*a2+2*a1+a0) * (4*b2+2*b1+b0); */
   /** T1 = T1 + a2; */
   if ((err = mp_add(&T1, &a2, &T1)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** T1 = T1 << 1; */


   if ((err = mp_mul_2(&T1, &T1)) != MP_OKAY) {
      goto LTM_ERR;

   }
   /** T1 = T1 + a0; */
   if ((err = mp_add(&T1, &a0, &T1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** c = c + b2; */
   if ((err = mp_add(c, &b2, c)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** c = c << 1; */
   if ((err = mp_mul_2(c, c)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** c = c + b0; */
   if ((err = mp_add(c, &b0, c)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S2 = T1 * c; */
   if ((err = mp_mul(&T1, c, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S3 = (a2-a1+a0) * (b2-b1+b0); */
   /** a1 = a2 - a1; */

   if ((err = mp_sub(&a2, &a1, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** a1 = a1 + a0; */


   if ((err = mp_add(&a1, &a0, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** b1 = b2 - b1; */
   if ((err = mp_sub(&b2, &b1, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** b1 = b1 + b0; */

   if ((err = mp_add(&b1, &b0, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }

   /** a1 = a1 * b1; */

   if ((err = mp_mul(&a1, &b1, &a1)) != MP_OKAY) {

      goto LTM_ERR;



   }
   /** b1 = a2 * b2; */
   if ((err = mp_mul(&a2, &b2, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S2 = (S2 - S3)/3; */
   /** S2 = S2 - a1; */
   if ((err = mp_sub(&S2, &a1, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }

   /** S2 = S2 / 3; \\ this is an exact division  */
   if ((err = mp_div_3(&S2, &S2, NULL)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** a1 = S1 - a1; */
   if ((err = mp_sub(&S1, &a1, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** a1 = a1 >> 1; */
   if ((err = mp_div_2(&a1, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** a0 = a0 * b0; */
   if ((err = mp_mul(&a0, &b0, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S1 = S1 - a0; */
   if ((err = mp_sub(&S1, &a0, &S1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S2 = S2 - S1; */
   if ((err = mp_sub(&S2, &S1, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S2 = S2 >> 1; */



   if ((err = mp_div_2(&S2, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S1 = S1 - a1; */
   if ((err = mp_sub(&S1, &a1, &S1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S1 = S1 - b1; */
   if ((err = mp_sub(&S1, &b1, &S1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** T1 = b1 << 1; */
   if ((err = mp_mul_2(&b1, &T1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** S2 = S2 - T1; */
   if ((err = mp_sub(&S2, &T1, &S2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** a1 = a1 - S2; */
   if ((err = mp_sub(&a1, &S2, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }

   /** P = b1*x^4+ S2*x^3+ S1*x^2+ a1*x + a0; */
   if ((err = mp_lshd(&b1, 4 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(&S2, 3 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_add(&b1, &S2, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(&S1, 2 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(&b1, &S1, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(&a1, 1 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(&b1, &a1, &b1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(&b1, &a0, c)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** a * b - P */




LTM_ERR:
   mp_clear(&b2);
LTM_ERRb2:


   mp_clear(&b1);
LTM_ERRb1:

   mp_clear(&b0);
LTM_ERRb0:

   mp_clear(&a2);
LTM_ERRa2:
   mp_clear(&a1);
LTM_ERRa1:
   mp_clear(&a0);
LTM_ERRa0:
   mp_clear_multi(&S1, &S2, &T1, NULL);
   return err;
}

#endif




Name change from libtommath/bn_mp_toom_sqr.c to libtommath/bn_s_mp_toom_sqr.c.
1
2
3

4
5
6
7


8
9
10
11
12

13

14


15

16
17
18


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74


75
76
77
78
79
80
81
82
83
84


85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105


106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147

148
149
150
151
152
153


154
155
156
157


158
159
160
161
162
163
164
165
166
167
168
169


170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204

205
206
207
208

209
210
211
212

213
214
215
216
217
218
219
220
221
222
223
224
#include "tommath_private.h"
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis

 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *


 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense

 */




/* squaring using Toom-Cook 3-way algorithm */

int mp_toom_sqr(const mp_int *a, mp_int *b)
{
   mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;


   int res, B;

   /* init temps */
   if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
      return res;
   }

   /* B */
   B = a->used / 3;

   /* a = a2 * B**2 + a1 * B + a0 */
   if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_copy(a, &a1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   mp_rshd(&a1, B);
   if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_copy(a, &a2)) != MP_OKAY) {
      goto LBL_ERR;

   }
   mp_rshd(&a2, B*2);

   /* w0 = a0*a0 */
   if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* w4 = a2 * a2 */
   if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* w1 = (a2 + 2(a1 + 2a0))**2 */
   if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;

   }
   if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }



   /* w3 = (a0 + 2(a1 + 2a2))**2 */
   if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }


   /* w2 = (a2 + a1 + a0)**2 */
   if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }


   /* now solve the matrix



      0  0  0  0  1
      1  2  4  8  16
      1  1  1  1  1
      16 8  4  2  1
      1  0  0  0  0

      using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
    */


   /* r1 - r4 */
   if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - r0 */
   if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1/2 */
   if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3/2 */
   if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* r2 - r0 - r4 */
   if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1 - 8r0 */

   if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   /* r3 - 8r4 */
   if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* 3r2 - r1 - r3 */
   if ((res = mp_mul_d(&w2, 3uL, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
      goto LBL_ERR;


   }
   /* r1 - r2 */
   if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3 - r2 */
   if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r1/3 */
   if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
      goto LBL_ERR;
   }
   /* r3/3 */
   if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* at this point shift W[n] by B*n */
   if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
      goto LBL_ERR;
   }


   if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
      goto LBL_ERR;
   }
   if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {

      goto LBL_ERR;
   }
   if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
      goto LBL_ERR;

   }

LBL_ERR:
   mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
   return res;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */

|
|
>
|
<
|
|
>
>
|
<
<
|
|
>
|
>

>
>
|
>
|

|
>
>
|


|
|





|
|
|

|
|
|

|
|
|

|
|
|
>

|
|
|
<
<

<
|
|
<
<
|
|
<
<

<
<
<
|
<
>
|
<
<
<
|
|
|

|
>
>
|
|
|

|
|
<
|
|

>
>
|
|

|
>
|
|

|
|
<
|
<
<
<
|

<
<
|
|
>
|
>
>
|
|
|
<
|
|
|
<
<

>
|
|
|

<
<
<
|
|
|
<
<
|
|
|

>
|
|
|

<
<
|
>
|
<
<
<
|
|
|

|
>
|
|

<
<
|
>
>
|
|
|

>
>
|
|

<
<
<
|
<
<
|
<
<
>
>
|
<
|
|

<
|
|

<
|
|

<
|
|

<
<
|
|

|
|

|
|

|
|

>

<
<
|
>
|
|
<
<
>
|
<
|
|
>
|
<
<
<
|



<
<
<
<
1
2
3
4
5

6
7
8
9
10


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


56

57
58


59
60


61



62

63
64



65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93



94
95


96
97
98
99
100
101
102
103
104

105
106
107


108
109
110
111
112
113



114
115
116


117
118
119
120
121
122
123
124
125


126
127
128



129
130
131
132
133
134
135
136
137


138
139
140
141
142
143
144
145
146
147
148
149



150


151


152
153
154

155
156
157

158
159
160

161
162
163

164
165
166


167
168
169
170
171
172
173
174
175
176
177
178
179
180


181
182
183
184


185
186

187
188
189
190



191
192
193
194




#include "tommath_private.h"
#ifdef BN_S_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */


/* squaring using Toom-Cook 3-way algorithm */

/*
   This file contains code from J. Arndt's book  "Matters Computational"
   and the accompanying FXT-library with permission of the author.


*/

/* squaring using Toom-Cook 3-way algorithm */
/*
   Setup and interpolation from algorithm SQR_3 in

     Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae."
     18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007.

*/
mp_err s_mp_toom_sqr(const mp_int *a, mp_int *b)
{
   mp_int S0, a0, a1, a2;
   mp_digit *tmpa, *tmpc;
   mp_err err, B, count;


   /* init temps */
   if ((err = mp_init(&S0)) != MP_OKAY) {
      return err;
   }

   /* B */
   B = a->used / 3;

   /** a = a2 * x^2 + a1 * x + a0; */
   if ((err = mp_init_size(&a0, B)) != MP_OKAY) {
      goto LTM_ERRa0;
   }
   a0.used = B;
   if ((err = mp_init_size(&a1, B)) != MP_OKAY) {
      goto LTM_ERRa1;
   }
   a1.used = B;
   if ((err = mp_init_size(&a2, B + (a->used - (3 * B)))) != MP_OKAY) {
      goto LTM_ERRa2;
   }
   tmpa = a->dp;
   tmpc = a0.dp;
   for (count = 0; count < B; count++) {
      *tmpc++ = *tmpa++;
   }
   tmpc = a1.dp;
   for (; count < (2 * B); count++) {
      *tmpc++ = *tmpa++;


   }

   tmpc = a2.dp;
   for (; count < a->used; count++) {


      *tmpc++ = *tmpa++;
      a2.used++;


   }



   mp_clamp(&a0);

   mp_clamp(&a1);




   /** S0 = a0^2;  */
   if ((err = mp_sqr(&a0, &S0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S1 = (a2 + a1 + a0)^2 */
   /** \\S2 = (a2 - a1 + a0)^2  */
   /** \\S1 = a0 + a2; */
   /** a0 = a0 + a2; */
   if ((err = mp_add(&a0, &a2, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S2 = S1 - a1; */
   /** b = a0 - a1; */

   if ((err = mp_sub(&a0, &a1, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S1 = S1 + a1; */
   /** a0 = a0 + a1; */
   if ((err = mp_add(&a0, &a1, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S1 = S1^2;  */
   /** a0 = a0^2; */
   if ((err = mp_sqr(&a0, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S2 = S2^2;  */
   /** b = b^2; */

   if ((err = mp_sqr(b, b)) != MP_OKAY) {



      goto LTM_ERR;
   }



   /** \\ S3 = 2 * a1 * a2  */
   /** \\S3 = a1 * a2;  */
   /** a1 = a1 * a2; */
   if ((err = mp_mul(&a1, &a2, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S3 = S3 << 1;  */
   /** a1 = a1 << 1; */

   if ((err = mp_mul_2(&a1, &a1)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** \\S4 = a2^2;  */
   /** a2 = a2^2; */
   if ((err = mp_sqr(&a2, &a2)) != MP_OKAY) {
      goto LTM_ERR;
   }




   /** \\ tmp = (S1 + S2)/2  */
   /** \\tmp = S1 + S2; */


   /** b = a0 + b; */
   if ((err = mp_add(&a0, b, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\tmp = tmp >> 1; */
   /** b = b >> 1; */
   if ((err = mp_div_2(b, b)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** \\ S1 = S1 - tmp - S3  */
   /** \\S1 = S1 - tmp; */



   /** a0 = a0 - b; */
   if ((err = mp_sub(&a0, b, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S1 = S1 - S3;  */
   /** a0 = a0 - a1; */
   if ((err = mp_sub(&a0, &a1, &a0)) != MP_OKAY) {
      goto LTM_ERR;
   }



   /** \\S2 = tmp - S4 -S0  */
   /** \\S2 = tmp - S4;  */
   /** b = b - a2; */
   if ((err = mp_sub(b, &a2, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** \\S2 = S2 - S0;  */
   /** b = b - S0; */
   if ((err = mp_sub(b, &S0, b)) != MP_OKAY) {
      goto LTM_ERR;
   }









   /** \\P = S4*x^4 + S3*x^3 + S2*x^2 + S1*x + S0; */
   /** P = a2*x^4 + a1*x^3 + b*x^2 + a0*x + S0; */


   if ((err = mp_lshd(&a2, 4 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(&a1, 3 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(b, 2 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }

   if ((err = mp_lshd(&a0, 1 * B)) != MP_OKAY) {
      goto LTM_ERR;
   }


   if ((err = mp_add(&a2, &a1, &a2)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(&a2, b, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(b, &a0, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   if ((err = mp_add(b, &S0, b)) != MP_OKAY) {
      goto LTM_ERR;
   }
   /** a^2 - P  */




LTM_ERR:
   mp_clear(&a2);
LTM_ERRa2:


   mp_clear(&a1);
LTM_ERRa1:

   mp_clear(&a0);
LTM_ERRa0:
   mp_clear(&S0);




   return err;
}

#endif




Deleted libtommath/callgraph.txt.

more than 10,000 changes

Added libtommath/helper.pl.




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env perl

use strict;
use warnings;

use Getopt::Long;
use File::Find 'find';
use File::Basename 'basename';
use File::Glob 'bsd_glob';

sub read_file {
  my $f = shift;
  open my $fh, "<", $f or die "FATAL: read_rawfile() cannot open file '$f': $!";
  binmode $fh;
  return do { local $/; <$fh> };
}

sub write_file {
  my ($f, $data) = @_;
  die "FATAL: write_file() no data" unless defined $data;
  open my $fh, ">", $f or die "FATAL: write_file() cannot open file '$f': $!";
  binmode $fh;
  print $fh $data or die "FATAL: write_file() cannot write to '$f': $!";
  close $fh or die "FATAL: write_file() cannot close '$f': $!";
  return;
}

sub sanitize_comments {
  my($content) = @_;
  $content =~ s{/\*(.*?)\*/}{my $x=$1; $x =~ s/\w/x/g; "/*$x*/";}egs;
  return $content;
}

sub check_source {
  my @all_files = (
        bsd_glob("makefile*"),
        bsd_glob("*.{h,c,sh,pl}"),
        bsd_glob("*/*.{h,c,sh,pl}"),
  );

  my $fails = 0;
  for my $file (sort @all_files) {
    my $troubles = {};
    my $lineno = 1;
    my $content = read_file($file);
    $content = sanitize_comments $content;
    push @{$troubles->{crlf_line_end}}, '?' if $content =~ /\r/;
    for my $l (split /\n/, $content) {
      push @{$troubles->{merge_conflict}},     $lineno if $l =~ /^(<<<<<<<|=======|>>>>>>>)([^<=>]|$)/;
      push @{$troubles->{trailing_space}},     $lineno if $l =~ / $/;
      push @{$troubles->{tab}},                $lineno if $l =~ /\t/ && basename($file) !~ /^makefile/i;
      push @{$troubles->{non_ascii_char}},     $lineno if $l =~ /[^[:ascii:]]/;
      push @{$troubles->{cpp_comment}},        $lineno if $file =~ /\.(c|h)$/ && ($l =~ /\s\/\// || $l =~ /\/\/\s/);
      # we prefer using XMALLOC, XFREE, XREALLOC, XCALLOC ...
      push @{$troubles->{unwanted_malloc}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmalloc\s*\(/;
      push @{$troubles->{unwanted_realloc}},   $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\brealloc\s*\(/;
      push @{$troubles->{unwanted_calloc}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bcalloc\s*\(/;
      push @{$troubles->{unwanted_free}},      $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bfree\s*\(/;
      # and we probably want to also avoid the following
      push @{$troubles->{unwanted_memcpy}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcpy\s*\(/;
      push @{$troubles->{unwanted_memset}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemset\s*\(/;
      push @{$troubles->{unwanted_memcpy}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcpy\s*\(/;
      push @{$troubles->{unwanted_memmove}},   $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemmove\s*\(/;
      push @{$troubles->{unwanted_memcmp}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bmemcmp\s*\(/;
      push @{$troubles->{unwanted_strcmp}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrcmp\s*\(/;
      push @{$troubles->{unwanted_strcpy}},    $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrcpy\s*\(/;
      push @{$troubles->{unwanted_strncpy}},   $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bstrncpy\s*\(/;
      push @{$troubles->{unwanted_clock}},     $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bclock\s*\(/;
      push @{$troubles->{unwanted_qsort}},     $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bqsort\s*\(/;
      push @{$troubles->{sizeof_no_brackets}}, $lineno if $file =~ /^[^\/]+\.c$/ && $l =~ /\bsizeof\s*[^\(]/;
      if ($file =~ m|^[^\/]+\.c$| && $l =~ /^static(\s+[a-zA-Z0-9_]+)+\s+([a-zA-Z0-9_]+)\s*\(/) {
        my $funcname = $2;
        # static functions should start with s_
        push @{$troubles->{staticfunc_name}}, "$lineno($funcname)" if $funcname !~ /^s_/;
      }
      $lineno++;
    }
    for my $k (sort keys %$troubles) {
      warn "[$k] $file line:" . join(",", @{$troubles->{$k}}) . "\n";
      $fails++;
    }
  }

  warn( $fails > 0 ? "check-source:    FAIL $fails\n" : "check-source:    PASS\n" );
  return $fails;
}

sub check_comments {
  my $fails = 0;
  my $first_comment = <<'MARKER';
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
MARKER
  #my @all_files = (bsd_glob("*.{h,c}"), bsd_glob("*/*.{h,c}"));
  my @all_files = (bsd_glob("*.{h,c}"));
  for my $f (@all_files) {
    my $txt = read_file($f);
    if ($txt !~ /\Q$first_comment\E/s) {
      warn "[first_comment] $f\n";
      $fails++;
    }
  }
  warn( $fails > 0 ? "check-comments:  FAIL $fails\n" : "check-comments:  PASS\n" );
  return $fails;
}

sub check_doc {
  my $fails = 0;
  my $tex = read_file('doc/bn.tex');
  my $tmh = read_file('tommath.h');
  my @functions = $tmh =~ /\n\s*[a-zA-Z0-9_* ]+?(mp_[a-z0-9_]+)\s*\([^\)]+\)\s*;/sg;
  my @macros    = $tmh =~ /\n\s*#define\s+([a-z0-9_]+)\s*\([^\)]+\)/sg;
  for my $n (sort @functions) {
    (my $nn = $n) =~ s/_/\\_/g; # mp_sub_d >> mp\_sub\_d
    if ($tex !~ /index\Q{$nn}\E/) {
      warn "[missing_doc_for_function] $n\n";
      $fails++
    }
  }
  for my $n (sort @macros) {
    (my $nn = $n) =~ s/_/\\_/g; # mp_iszero >> mp\_iszero
    if ($tex !~ /index\Q{$nn}\E/) {
      warn "[missing_doc_for_macro] $n\n";
      $fails++
    }
  }
  warn( $fails > 0 ? "check_doc:       FAIL $fails\n" : "check-doc:       PASS\n" );
  return $fails;
}

sub prepare_variable {
  my ($varname, @list) = @_;
  my $output = "$varname=";
  my $len = length($output);
  foreach my $obj (sort @list) {
    $len = $len + length $obj;
    $obj =~ s/\*/\$/;
    if ($len > 100) {
      $output .= "\\\n";
      $len = length $obj;
    }
    $output .= $obj . ' ';
  }
  $output =~ s/ $//;
  return $output;
}

sub prepare_msvc_files_xml {
  my ($all, $exclude_re, $targets) = @_;
  my $last = [];
  my $depth = 2;

  # sort files in the same order as visual studio (ugly, I know)
  my @parts = ();
  for my $orig (@$all) {
    my $p = $orig;
    $p =~ s|/|/~|g;
    $p =~ s|/~([^/]+)$|/$1|g;
    my @l = map { sprintf "% -99s", $_ } split /\//, $p;
    push @parts, [ $orig, join(':', @l) ];
  }
  my @sorted = map { $_->[0] } sort { $a->[1] cmp $b->[1] } @parts;

  my $files = "<Files>\r\n";
  for my $full (@sorted) {
    my @items = split /\//, $full; # split by '/'
    $full =~ s|/|\\|g;             # replace '/' bt '\'
    shift @items; # drop first one (src)
    pop @items;   # drop last one (filename.ext)
    my $current = \@items;
    if (join(':', @$current) ne join(':', @$last)) {
      my $common = 0;
      $common++ while ($last->[$common] && $current->[$common] && $last->[$common] eq $current->[$common]);
      my $back = @$last - $common;
      if ($back > 0) {
        $files .= ("\t" x --$depth) . "</Filter>\r\n" for (1..$back);
      }
      my $fwd = [ @$current ]; splice(@$fwd, 0, $common);
      for my $i (0..scalar(@$fwd) - 1) {
        $files .= ("\t" x $depth) . "<Filter\r\n";
        $files .= ("\t" x $depth) . "\tName=\"$fwd->[$i]\"\r\n";
        $files .= ("\t" x $depth) . "\t>\r\n";
        $depth++;
      }
      $last = $current;
    }
    $files .= ("\t" x $depth) . "<File\r\n";
    $files .= ("\t" x $depth) . "\tRelativePath=\"$full\"\r\n";
    $files .= ("\t" x $depth) . "\t>\r\n";
    if ($full =~ $exclude_re) {
      for (@$targets) {
        $files .= ("\t" x $depth) . "\t<FileConfiguration\r\n";
        $files .= ("\t" x $depth) . "\t\tName=\"$_\"\r\n";
        $files .= ("\t" x $depth) . "\t\tExcludedFromBuild=\"true\"\r\n";
        $files .= ("\t" x $depth) . "\t\t>\r\n";
        $files .= ("\t" x $depth) . "\t\t<Tool\r\n";
        $files .= ("\t" x $depth) . "\t\t\tName=\"VCCLCompilerTool\"\r\n";
        $files .= ("\t" x $depth) . "\t\t\tAdditionalIncludeDirectories=\"\"\r\n";
        $files .= ("\t" x $depth) . "\t\t\tPreprocessorDefinitions=\"\"\r\n";
        $files .= ("\t" x $depth) . "\t\t/>\r\n";
        $files .= ("\t" x $depth) . "\t</FileConfiguration>\r\n";
      }
    }
    $files .= ("\t" x $depth) . "</File>\r\n";
  }
  $files .= ("\t" x --$depth) . "</Filter>\r\n" for (@$last);
  $files .= "\t</Files>";
  return $files;
}

sub patch_file {
  my ($content, @variables) = @_;
  for my $v (@variables) {
    if ($v =~ /^([A-Z0-9_]+)\s*=.*$/si) {
      my $name = $1;
      $content =~ s/\n\Q$name\E\b.*?[^\\]\n/\n$v\n/s;
    }
    else {
      die "patch_file failed: " . substr($v, 0, 30) . "..";
    }
  }
  return $content;
}

sub process_makefiles {
  my $write = shift;
  my $changed_count = 0;
  my @o = map { my $x = $_; $x =~ s/\.c$/.o/; $x } bsd_glob("*.c");
  my @all = bsd_glob("*.{c,h}");

  my $var_o = prepare_variable("OBJECTS", @o);
  (my $var_obj = $var_o) =~ s/\.o\b/.obj/sg;

  # update MSVC project files
  my $msvc_files = prepare_msvc_files_xml(\@all, qr/NOT_USED_HERE/, ['Debug|Win32', 'Release|Win32', 'Debug|x64', 'Release|x64']);
  for my $m (qw/libtommath_VS2008.vcproj/) {
    my $old = read_file($m);
    my $new = $old;
    $new =~ s|<Files>.*</Files>|$msvc_files|s;
    if ($old ne $new) {
      write_file($m, $new) if $write;
      warn "changed: $m\n";
      $changed_count++;
    }
  }

  # update OBJECTS + HEADERS in makefile*
  for my $m (qw/ makefile makefile.shared makefile_include.mk makefile.msvc makefile.unix makefile.mingw /) {
    my $old = read_file($m);
    my $new = $m eq 'makefile.msvc' ? patch_file($old, $var_obj)
                                    : patch_file($old, $var_o);
    if ($old ne $new) {
      write_file($m, $new) if $write;
      warn "changed: $m\n";
      $changed_count++;
    }
  }

  if ($write) {
    return 0; # no failures
  }
  else {
    warn( $changed_count > 0 ? "check-makefiles: FAIL $changed_count\n" : "check-makefiles: PASS\n" );
    return $changed_count;
  }
}

sub draw_func
{
   my ($deplist, $depmap, $out, $indent, $funcslist) = @_;
   my @funcs = split ',', $funcslist;
   # try this if you want to have a look at a minimized version of the callgraph without all the trivial functions
   #if ($deplist =~ /$funcs[0]/ || $funcs[0] =~ /BN_MP_(ADD|SUB|CLEAR|CLEAR_\S+|DIV|MUL|COPY|ZERO|GROW|CLAMP|INIT|INIT_\S+|SET|ABS|CMP|CMP_D|EXCH)_C/) {
   if ($deplist =~ /$funcs[0]/) {
      return $deplist;
   } else {
      $deplist = $deplist . $funcs[0];
   }
   if ($indent == 0) {
   } elsif ($indent >= 1) {
      print {$out} '|   ' x ($indent - 1) . '+--->';
   }
   print {$out} $funcs[0] . "\n";
   shift @funcs;
   my $olddeplist = $deplist;
   foreach my $i (@funcs) {
      $deplist = draw_func($deplist, $depmap, $out, $indent + 1, ${$depmap}{$i}) if exists ${$depmap}{$i};
   }
   return $olddeplist;
}

sub update_dep
{
    #open class file and write preamble
    open(my $class, '>', 'tommath_class.h') or die "Couldn't open tommath_class.h for writing\n";
    print {$class} << 'EOS';
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))
#define LTM_INSIDE
#if defined(LTM2)
#   define LTM3
#endif
#if defined(LTM1)
#   define LTM2
#endif
#define LTM1
#if defined(LTM_ALL)
EOS

    foreach my $filename (glob 'bn*.c') {
        my $define = $filename;

        print "Processing $filename\n";

        # convert filename to upper case so we can use it as a define
        $define =~ tr/[a-z]/[A-Z]/;
        $define =~ tr/\./_/;
        print {$class} "#   define $define\n";

        # now copy text and apply #ifdef as required
        my $apply = 0;
        open(my $src, '<', $filename);
        open(my $out, '>', 'tmp');

        # first line will be the #ifdef
        my $line = <$src>;
        if ($line =~ /include/) {
            print {$out} $line;
        } else {
            print {$out} << "EOS";
#include "tommath_private.h"
#ifdef $define
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
$line
EOS
            $apply = 1;
        }
        while (<$src>) {
            if ($_ !~ /tommath\.h/) {
                print {$out} $_;
            }
        }
        if ($apply == 1) {
            print {$out} "#endif\n";
        }
        close $src;
        close $out;

        unlink $filename;
        rename 'tmp', $filename;
    }
    print {$class} "#endif\n#endif\n";

    # now do classes
    my %depmap;
    foreach my $filename (glob 'bn*.c') {
        my $content;
        if ($filename =~ "bn_deprecated.c") {
            open(my $src, '<', $filename) or die "Can't open source file!\n";
            read $src, $content, -s $src;
            close $src;
        } else {
            my $cc = $ENV{'CC'} || 'gcc';
            $content = `$cc -E -x c -DLTM_ALL $filename`;
            $content =~ s/^# 1 "$filename".*?^# 2 "$filename"//ms;
        }

        # convert filename to upper case so we can use it as a define
        $filename =~ tr/[a-z]/[A-Z]/;
        $filename =~ tr/\./_/;

        print {$class} "#if defined($filename)\n";
        my $list = $filename;

        # strip comments
        $content =~ s{/\*.*?\*/}{}gs;

        # scan for mp_* and make classes
        my @deps = ();
        foreach my $line (split /\n/, $content) {
            while ($line =~ /(fast_)?(s_)?mp\_[a-z_0-9]*(?=\()|(?<=\()mp\_[a-z_0-9]*(?=,)/g) {
                my $a = $&;
                next if $a eq "mp_err";
                $a =~ tr/[a-z]/[A-Z]/;
                $a = 'BN_' . $a . '_C';
                push @deps, $a;
            }
        }
        @deps = sort(@deps);
        foreach my $a (@deps) {
            if ($list !~ /$a/) {
                print {$class} "#   define $a\n";
            }
            $list = $list . ',' . $a;
        }
        $depmap{$filename} = $list;

        print {$class} "#endif\n\n";
    }

    print {$class} << 'EOS';
#ifdef LTM_INSIDE
#undef LTM_INSIDE
#ifdef LTM3
#   define LTM_LAST
#endif

#include "tommath_superclass.h"
#include "tommath_class.h"
#else
#   define LTM_LAST
#endif
EOS
    close $class;

    #now let's make a cool call graph...

    open(my $out, '>', 'callgraph.txt');
    foreach (sort keys %depmap) {
        draw_func("", \%depmap, $out, 0, $depmap{$_});
        print {$out} "\n\n";
    }
    close $out;

    return 0;
}

sub generate_def {
    my @files = split /\n/, `git ls-files`;
    @files = grep(/\.c/, @files);
    @files = map { my $x = $_; $x =~ s/^bn_|\.c$//g; $x; } @files;
    @files = grep(!/mp_radix_smap/, @files);

    push(@files, qw(mp_set_int mp_set_long mp_set_long_long mp_get_int mp_get_long mp_get_long_long mp_init_set_int));

    my $files = join("\n    ", sort(grep(/^mp_/, @files)));
    write_file "tommath.def", "; libtommath
;
; Use this command to produce a 32-bit .lib file, for use in any MSVC version
;   lib -machine:X86 -name:libtommath.dll -def:tommath.def -out:tommath.lib
; Use this command to produce a 64-bit .lib file, for use in any MSVC version
;   lib -machine:X64 -name:libtommath.dll -def:tommath.def -out:tommath.lib
;
EXPORTS
    $files
";
    return 0;
}

sub die_usage {
  die <<"MARKER";
usage: $0 -s   OR   $0 --check-source
       $0 -o   OR   $0 --check-comments
       $0 -m   OR   $0 --check-makefiles
       $0 -a   OR   $0 --check-all
       $0 -u   OR   $0 --update-files
MARKER
}

GetOptions( "s|check-source"        => \my $check_source,
            "o|check-comments"      => \my $check_comments,
            "m|check-makefiles"     => \my $check_makefiles,
            "d|check-doc"           => \my $check_doc,
            "a|check-all"           => \my $check_all,
            "u|update-files"        => \my $update_files,
            "h|help"                => \my $help
          ) or die_usage;

my $failure;
$failure ||= check_source()       if $check_all || $check_source;
$failure ||= check_comments()     if $check_all || $check_comments;
$failure ||= check_doc()          if $check_doc; # temporarily excluded from --check-all
$failure ||= process_makefiles(0) if $check_all || $check_makefiles;
$failure ||= process_makefiles(1) if $update_files;
$failure ||= update_dep()         if $update_files;
$failure ||= generate_def()       if $update_files;

die_usage unless defined $failure;
exit $failure ? 1 : 0;
Changes to libtommath/libtommath_VS2008.vcproj.
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
			/>
		</Configuration>
	</Configurations>
	<References>
	</References>
	<Files>
		<File
			RelativePath="bn_error.c"
			>
		</File>
		<File
			RelativePath="bn_fast_mp_invmod.c"
			>
		</File>
		<File
			RelativePath="bn_fast_mp_montgomery_reduce.c"
			>
		</File>
		<File
			RelativePath="bn_fast_s_mp_mul_digs.c"
			>
		</File>
		<File
			RelativePath="bn_fast_s_mp_mul_high_digs.c"
			>
		</File>
		<File
			RelativePath="bn_fast_s_mp_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_2expt.c"
			>
		</File>
		<File







|



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







309
310
311
312
313
314
315
316
317
318
319
















320
321
322
323
324
325
326
327
			/>
		</Configuration>
	</Configurations>
	<References>
	</References>
	<Files>
		<File
			RelativePath="bn_cutoffs.c"
			>
		</File>
		<File
















			RelativePath="bn_deprecated.c"
			>
		</File>
		<File
			RelativePath="bn_mp_2expt.c"
			>
		</File>
		<File
395
396
397
398
399
400
401




402
403
404
405
406
407
408
		<File
			RelativePath="bn_mp_copy.c"
			>
		</File>
		<File
			RelativePath="bn_mp_count_bits.c"
			>




		</File>
		<File
			RelativePath="bn_mp_div.c"
			>
		</File>
		<File
			RelativePath="bn_mp_div_2.c"







>
>
>
>







379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
		<File
			RelativePath="bn_mp_copy.c"
			>
		</File>
		<File
			RelativePath="bn_mp_count_bits.c"
			>
		</File>
		<File
			RelativePath="bn_mp_decr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_div.c"
			>
		</File>
		<File
			RelativePath="bn_mp_div_2.c"
427
428
429
430
431
432
433




434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492




493
494
495
496
497




498
499
500
501




502
503
504
505
506
507
508
509








510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532




533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
		<File
			RelativePath="bn_mp_dr_reduce.c"
			>
		</File>
		<File
			RelativePath="bn_mp_dr_setup.c"
			>




		</File>
		<File
			RelativePath="bn_mp_exch.c"
			>
		</File>
		<File
			RelativePath="bn_mp_export.c"
			>
		</File>
		<File
			RelativePath="bn_mp_expt_d.c"
			>
		</File>
		<File
			RelativePath="bn_mp_expt_d_ex.c"
			>
		</File>
		<File
			RelativePath="bn_mp_exptmod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_exptmod_fast.c"
			>
		</File>
		<File
			RelativePath="bn_mp_exteuclid.c"
			>
		</File>
		<File
			RelativePath="bn_mp_fread.c"
			>
		</File>
		<File
			RelativePath="bn_mp_fwrite.c"
			>
		</File>
		<File
			RelativePath="bn_mp_gcd.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_bit.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_double.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_int.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_long.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_long_long.c"




			>
		</File>
		<File
			RelativePath="bn_mp_grow.c"
			>




		</File>
		<File
			RelativePath="bn_mp_import.c"
			>




		</File>
		<File
			RelativePath="bn_mp_init.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_copy.c"
			>








		</File>
		<File
			RelativePath="bn_mp_init_multi.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_set.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_set_int.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_size.c"
			>
		</File>
		<File
			RelativePath="bn_mp_invmod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_invmod_slow.c"




			>
		</File>
		<File
			RelativePath="bn_mp_is_square.c"
			>
		</File>
		<File
			RelativePath="bn_mp_jacobi.c"
			>
		</File>
		<File
			RelativePath="bn_mp_karatsuba_mul.c"
			>
		</File>
		<File
			RelativePath="bn_mp_karatsuba_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_kronecker.c"
			>
		</File>
		<File







>
>
>
>












<
<
<
<




<
<
<
<
















<
<
<
<






|



|



|
>
>
>
>





>
>
>
>




>
>
>
>








>
>
>
>
>
>
>
>








<
<
<
<






|



|
>
>
>
>







|



|
<
<
<
<







415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437




438
439
440
441




442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457




458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517




518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544




545
546
547
548
549
550
551
		<File
			RelativePath="bn_mp_dr_reduce.c"
			>
		</File>
		<File
			RelativePath="bn_mp_dr_setup.c"
			>
		</File>
		<File
			RelativePath="bn_mp_error_to_string.c"
			>
		</File>
		<File
			RelativePath="bn_mp_exch.c"
			>
		</File>
		<File
			RelativePath="bn_mp_export.c"
			>
		</File>
		<File
			RelativePath="bn_mp_expt_d.c"
			>




		</File>
		<File
			RelativePath="bn_mp_exptmod.c"
			>




		</File>
		<File
			RelativePath="bn_mp_exteuclid.c"
			>
		</File>
		<File
			RelativePath="bn_mp_fread.c"
			>
		</File>
		<File
			RelativePath="bn_mp_fwrite.c"
			>
		</File>
		<File
			RelativePath="bn_mp_gcd.c"
			>




		</File>
		<File
			RelativePath="bn_mp_get_double.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_i32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_i64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_mag32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_get_mag64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_grow.c"
			>
		</File>
		<File
			RelativePath="bn_mp_ilogb.c"
			>
		</File>
		<File
			RelativePath="bn_mp_import.c"
			>
		</File>
		<File
			RelativePath="bn_mp_incr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_copy.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_i32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_i64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_multi.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_set.c"
			>




		</File>
		<File
			RelativePath="bn_mp_init_size.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_u32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_init_u64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_invmod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_is_square.c"
			>
		</File>
		<File
			RelativePath="bn_mp_iseven.c"
			>
		</File>
		<File
			RelativePath="bn_mp_isodd.c"




			>
		</File>
		<File
			RelativePath="bn_mp_kronecker.c"
			>
		</File>
		<File
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
		<File
			RelativePath="bn_mp_mulmod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_n_root.c"
			>
		</File>
		<File
			RelativePath="bn_mp_n_root_ex.c"
			>
		</File>
		<File
			RelativePath="bn_mp_neg.c"
			>
		</File>
		<File
			RelativePath="bn_mp_or.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_fermat.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_frobenius_underwood.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_is_divisible.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_is_prime.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_miller_rabin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_next_prime.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_rabin_miller_trials.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_random_ex.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_strong_lucas_selfridge.c"
			>
		</File>
		<File







<
<
<
<
















<
<
<
<


















|







599
600
601
602
603
604
605




606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621




622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
		<File
			RelativePath="bn_mp_mulmod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_n_root.c"
			>




		</File>
		<File
			RelativePath="bn_mp_neg.c"
			>
		</File>
		<File
			RelativePath="bn_mp_or.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_fermat.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_frobenius_underwood.c"
			>




		</File>
		<File
			RelativePath="bn_mp_prime_is_prime.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_miller_rabin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_next_prime.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_rabin_miller_trials.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_rand.c"
			>
		</File>
		<File
			RelativePath="bn_mp_prime_strong_lucas_selfridge.c"
			>
		</File>
		<File
721
722
723
724
725
726
727
728




729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745




746
747
748
749
750
751
752
			>
		</File>
		<File
			RelativePath="bn_mp_set_double.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_int.c"




			>
		</File>
		<File
			RelativePath="bn_mp_set_long.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_long_long.c"
			>
		</File>
		<File
			RelativePath="bn_mp_shrink.c"
			>
		</File>
		<File
			RelativePath="bn_mp_signed_bin_size.c"
			>




		</File>
		<File
			RelativePath="bn_mp_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_sqrmod.c"







|
>
>
>
>



|



|









>
>
>
>







709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
			>
		</File>
		<File
			RelativePath="bn_mp_set_double.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_i32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_i64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_u32.c"
			>
		</File>
		<File
			RelativePath="bn_mp_set_u64.c"
			>
		</File>
		<File
			RelativePath="bn_mp_shrink.c"
			>
		</File>
		<File
			RelativePath="bn_mp_signed_bin_size.c"
			>
		</File>
		<File
			RelativePath="bn_mp_signed_rsh.c"
			>
		</File>
		<File
			RelativePath="bn_mp_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_sqrmod.c"
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
		<File
			RelativePath="bn_mp_sub_d.c"
			>
		</File>
		<File
			RelativePath="bn_mp_submod.c"
			>
		</File>
		<File
			RelativePath="bn_mp_tc_and.c"
			>
		</File>
		<File
			RelativePath="bn_mp_tc_div_2d.c"
			>
		</File>
		<File
			RelativePath="bn_mp_tc_or.c"
			>
		</File>
		<File
			RelativePath="bn_mp_tc_xor.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_signed_bin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_signed_bin_n.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_unsigned_bin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_unsigned_bin_n.c"
			>
		</File>
		<File
			RelativePath="bn_mp_toom_mul.c"
			>
		</File>
		<File
			RelativePath="bn_mp_toom_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_mp_toradix.c"
			>
		</File>
		<File
			RelativePath="bn_mp_toradix_n.c"







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















<
<
<
<
<
<
<
<







763
764
765
766
767
768
769
















770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785








786
787
788
789
790
791
792
		<File
			RelativePath="bn_mp_sub_d.c"
			>
		</File>
		<File
			RelativePath="bn_mp_submod.c"
			>
















		</File>
		<File
			RelativePath="bn_mp_to_signed_bin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_signed_bin_n.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_unsigned_bin.c"
			>
		</File>
		<File
			RelativePath="bn_mp_to_unsigned_bin_n.c"
			>








		</File>
		<File
			RelativePath="bn_mp_toradix.c"
			>
		</File>
		<File
			RelativePath="bn_mp_toradix_n.c"
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847




848
849
850
851




























852
853




854
855
856
857




















858
859
860
861




862
863
864
865
866
867
868




869
870
871
872
873
874
875
876
877




878
879
880
881
882
883
884
885
886
887
888
889
890
		<File
			RelativePath="bn_mp_zero.c"
			>
		</File>
		<File
			RelativePath="bn_prime_tab.c"
			>
		</File>
		<File
			RelativePath="bn_reverse.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_add.c"
			>
		</File>
		<File




			RelativePath="bn_s_mp_exptmod.c"
			>
		</File>
		<File




























			RelativePath="bn_s_mp_mul_digs.c"
			>




		</File>
		<File
			RelativePath="bn_s_mp_mul_high_digs.c"
			>




















		</File>
		<File
			RelativePath="bn_s_mp_sqr.c"
			>




		</File>
		<File
			RelativePath="bn_s_mp_sub.c"
			>
		</File>
		<File
			RelativePath="bncore.c"




			>
		</File>
		<File
			RelativePath="tommath.h"
			>
		</File>
		<File
			RelativePath="tommath_class.h"
			>




		</File>
		<File
			RelativePath="tommath_private.h"
			>
		</File>
		<File
			RelativePath="tommath_superclass.h"
			>
		</File>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>







<
<
<
<






>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>
>
>






|
>
>
>
>









>
>
>
>













803
804
805
806
807
808
809




810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
		<File
			RelativePath="bn_mp_zero.c"
			>
		</File>
		<File
			RelativePath="bn_prime_tab.c"
			>




		</File>
		<File
			RelativePath="bn_s_mp_add.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_balance_mul.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_exptmod.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_exptmod_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_get_bit.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_invmod_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_invmod_slow.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_karatsuba_mul.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_karatsuba_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_montgomery_reduce_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_mul_digs.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_mul_digs_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_mul_high_digs.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_mul_high_digs_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_prime_is_divisible.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_rand_jenkins.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_rand_platform.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_reverse.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_sqr.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_sqr_fast.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_sub.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_toom_mul.c"
			>
		</File>
		<File
			RelativePath="bn_s_mp_toom_sqr.c"
			>
		</File>
		<File
			RelativePath="tommath.h"
			>
		</File>
		<File
			RelativePath="tommath_class.h"
			>
		</File>
		<File
			RelativePath="tommath_cutoffs.h"
			>
		</File>
		<File
			RelativePath="tommath_private.h"
			>
		</File>
		<File
			RelativePath="tommath_superclass.h"
			>
		</File>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>
Changes to libtommath/makefile.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54


55
56
57
58
59
60
61
	@echo "   * ${CC} $@"
endif
	${silent} ${CC} -c ${CFLAGS} $< -o $@

LCOV_ARGS=--directory .

#START_INS
OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \

bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o



#END_INS

$(OBJECTS): $(HEADERS)

$(LIBNAME):  $(OBJECTS)
	$(AR) $(ARFLAGS) $@ $(OBJECTS)







<
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>







22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
	@echo "   * ${CC} $@"
endif
	${silent} ${CC} -c ${CFLAGS} $< -o $@

LCOV_ARGS=--directory .

#START_INS

OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \
bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \
bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \
bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \
bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \
bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \
bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \
bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \
bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \
bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \
bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \
bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \
bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \
bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \
bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \
bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \
bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \
bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o

#END_INS

$(OBJECTS): $(HEADERS)

$(LIBNAME):  $(OBJECTS)
	$(AR) $(ARFLAGS) $@ $(OBJECTS)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108




109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
	install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)
	install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)

uninstall:
	rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)

test: $(LIBNAME) demo/demo.o
	$(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test

test_standalone: $(LIBNAME) demo/demo.o
	$(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test

.PHONY: mtest
mtest:
	cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest

timing: $(LIBNAME) demo/timing.c
	$(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o timing





# You have to create a file .coveralls.yml with the content "repo_token: <the token>"
# in the base folder to be able to submit to coveralls
coveralls: lcov
	coveralls-lcov

docdvi poster docs mandvi manual:
	$(MAKE) -C doc/ $@ V=$(V)

pretty:
	perl pretty.build

.PHONY: pre_gen
pre_gen:
	mkdir -p pre_gen
	perl gen.pl
	sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c
	rm mpi.c








|
|

|
|







>
>
>
>









<
<
<







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123



124
125
126
127
128
129
130
	install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)
	install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)

uninstall:
	rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)

test: demo/main.o demo/opponent.o demo/test.o $(LIBNAME)
	$(CC) $(CFLAGS) $^ $(LFLAGS) -o test

test_standalone: demo/main.o demo/opponent.o demo/test.o $(LIBNAME)
	$(CC) $(CFLAGS) $^ $(LFLAGS) -o test

.PHONY: mtest
mtest:
	cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest

timing: $(LIBNAME) demo/timing.c
	$(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o timing

tune: $(LIBNAME)
	$(MAKE) -C etc tune
	$(MAKE)

# You have to create a file .coveralls.yml with the content "repo_token: <the token>"
# in the base folder to be able to submit to coveralls
coveralls: lcov
	coveralls-lcov

docdvi poster docs mandvi manual:
	$(MAKE) -C doc/ $@ V=$(V)




.PHONY: pre_gen
pre_gen:
	mkdir -p pre_gen
	perl gen.pl
	sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c
	rm mpi.c

144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
	cp doc/bn.pdf bn-$(VERSION).pdf
	cp doc/tommath.pdf tommath-$(VERSION).pdf
	rm -rf libtommath-$(VERSION)
	gpg -b -a ltm-$(VERSION).tar.xz
	gpg -b -a ltm-$(VERSION).zip

new_file:
	bash updatemakes.sh
	perl dep.pl

perlcritic:
	perlcritic *.pl doc/*.pl

astyle:

	astyle --options=astylerc $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c







|
<





>
|
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
	cp doc/bn.pdf bn-$(VERSION).pdf
	cp doc/tommath.pdf tommath-$(VERSION).pdf
	rm -rf libtommath-$(VERSION)
	gpg -b -a ltm-$(VERSION).tar.xz
	gpg -b -a ltm-$(VERSION).zip

new_file:
	perl helper.pl --update-files


perlcritic:
	perlcritic *.pl doc/*.pl

astyle:
	@echo "   * run astyle on all sources"
	@astyle --options=astylerc --formatted $(OBJECTS:.o=.c) tommath*.h demo/*.c etc/*.c mtest/mtest.c
Changes to libtommath/makefile.mingw.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57


58
59
60
61
62
63
64
65
66
67
68
# MAKEFILE for MS Windows (mingw + gcc + gmake)
#
# BEWARE: variable OBJECTS is updated via ./updatemakes.sh

### USAGE:
# Open a command prompt with gcc + gmake in PATH and start:
#
# gmake -f makefile.mingw all
# test.exe
# gmake -f makefile.mingw PREFIX=c:\devel\libtom install

#The following can be overridden from command line e.g. make -f makefile.mingw CC=gcc ARFLAGS=rcs
PREFIX    = c:\mingw
CC        = gcc
AR        = ar
ARFLAGS   = r
RANLIB    = ranlib
STRIP     = strip
CFLAGS    = -O2
LDFLAGS   =

#Compilation flags
LTM_CFLAGS  = -I. $(CFLAGS)
LTM_LDFLAGS = $(LDFLAGS)

#Libraries to be created
LIBMAIN_S =libtommath.a
LIBMAIN_I =libtommath.dll.a
LIBMAIN_D =libtommath.dll

#List of objects to compile (all goes to libtommath.a)
OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \

bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o



HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h

HEADERS=tommath_private.h $(HEADERS_PUB)

#The default rule for make builds the libtommath.a library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)



|




















|







<
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>

|
<
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
# MAKEFILE for MS Windows (mingw + gcc + gmake)
#
# BEWARE: variable OBJECTS is updated via helper.pl

### USAGE:
# Open a command prompt with gcc + gmake in PATH and start:
#
# gmake -f makefile.mingw all
# test.exe
# gmake -f makefile.mingw PREFIX=c:\devel\libtom install

#The following can be overridden from command line e.g. make -f makefile.mingw CC=gcc ARFLAGS=rcs
PREFIX    = c:\mingw
CC        = gcc
AR        = ar
ARFLAGS   = r
RANLIB    = ranlib
STRIP     = strip
CFLAGS    = -O2
LDFLAGS   =

#Compilation flags
LTM_CFLAGS  = -I. $(CFLAGS)
LTM_LDFLAGS = $(LDFLAGS) -static-libgcc

#Libraries to be created
LIBMAIN_S =libtommath.a
LIBMAIN_I =libtommath.dll.a
LIBMAIN_D =libtommath.dll

#List of objects to compile (all goes to libtommath.a)

OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \
bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \
bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \
bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \
bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \
bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \
bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \
bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \
bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \
bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \
bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \
bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \
bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \
bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \
bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \
bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \
bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \
bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o

HEADERS_PUB=tommath.h

HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB)

#The default rule for make builds the libtommath.a library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)

76
77
78
79
80
81
82
83
84
85
86
87
88
89




90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

#Create DLL + import library libtommath.dll.a
$(LIBMAIN_D) $(LIBMAIN_I): $(OBJECTS)
	$(CC) -s -shared -o $(LIBMAIN_D) $^ -Wl,--enable-auto-import,--export-all -Wl,--out-implib=$(LIBMAIN_I) $(LTM_LDFLAGS)
	$(STRIP) -S $(LIBMAIN_D)

#Build test_standalone suite
test.exe: $(LIBMAIN_S) demo/demo.c
	$(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) demo/demo.c $(LIBMAIN_S) -DLTM_DEMO_TEST_VS_MTEST=0 -o $@
	@echo NOTICE: start the tests by launching test.exe

test_standalone: test.exe

all: $(LIBMAIN_S) test_standalone





clean:
	@-cmd /c del /Q /S *.o *.a *.exe *.dll 2>nul

#Install the library + headers
install: $(LIBMAIN_S) $(LIBMAIN_I) $(LIBMAIN_D)
	cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin"
	cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib"
	cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include"
	copy /Y $(LIBMAIN_S) "$(PREFIX)\lib"
	copy /Y $(LIBMAIN_I) "$(PREFIX)\lib"
	copy /Y $(LIBMAIN_D) "$(PREFIX)\bin"
	copy /Y tommath*.h "$(PREFIX)\include"

# ref:         $Format:%D$
# git commit:  $Format:%H$
# commit time: $Format:%ai$







|
|





>
>
>
>













<
<
<
<
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107





#Create DLL + import library libtommath.dll.a
$(LIBMAIN_D) $(LIBMAIN_I): $(OBJECTS)
	$(CC) -s -shared -o $(LIBMAIN_D) $^ -Wl,--enable-auto-import,--export-all -Wl,--out-implib=$(LIBMAIN_I) $(LTM_LDFLAGS)
	$(STRIP) -S $(LIBMAIN_D)

#Build test_standalone suite
test.exe: demo/main.c demo/opponent.c demo/test.c $(LIBMAIN_S)
	$(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) $^ -DLTM_DEMO_TEST_VS_MTEST=0 -o $@
	@echo NOTICE: start the tests by launching test.exe

test_standalone: test.exe

all: $(LIBMAIN_S) test_standalone

tune: $(LIBNAME_S)
	$(MAKE) -C etc tune
	$(MAKE)

clean:
	@-cmd /c del /Q /S *.o *.a *.exe *.dll 2>nul

#Install the library + headers
install: $(LIBMAIN_S) $(LIBMAIN_I) $(LIBMAIN_D)
	cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin"
	cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib"
	cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include"
	copy /Y $(LIBMAIN_S) "$(PREFIX)\lib"
	copy /Y $(LIBMAIN_I) "$(PREFIX)\lib"
	copy /Y $(LIBMAIN_D) "$(PREFIX)\bin"
	copy /Y tommath*.h "$(PREFIX)\include"




Changes to libtommath/makefile.msvc.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75




76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# MAKEFILE for MS Windows (nmake + Windows SDK)
#
# BEWARE: variable OBJECTS is updated via ./updatemakes.sh

### USAGE:
# Open a command prompt with WinSDK variables set and start:
#
# nmake -f makefile.msvc all
# test.exe
# nmake -f makefile.msvc PREFIX=c:\devel\libtom install

#The following can be overridden from command line e.g. make -f makefile.msvc CC=gcc ARFLAGS=rcs
PREFIX    = c:\devel
CFLAGS    = /Ox

#Compilation flags
LTM_CFLAGS  = /nologo /I./ /D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE /W3 $(CFLAGS)
LTM_LDFLAGS = advapi32.lib

#Libraries to be created (this makefile builds only static libraries)
LIBMAIN_S =tommath.lib

#List of objects to compile (all goes to tommath.lib)
OBJECTS=bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \
bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \
bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_complement.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div.obj \
bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj \
bn_mp_dr_setup.obj bn_mp_exch.obj bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj \
bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_bit.obj \
bn_mp_get_double.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj bn_mp_grow.obj bn_mp_import.obj \
bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_init_size.obj \
bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj \
bn_mp_karatsuba_sqr.obj bn_mp_kronecker.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \
bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj bn_mp_montgomery_setup.obj bn_mp_mul.obj \
bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_neg.obj \
bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_frobenius_underwood.obj bn_mp_prime_is_divisible.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_prime_strong_lucas_selfridge.obj \
bn_mp_radix_size.obj bn_mp_radix_smap.obj bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj \
bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj \
bn_mp_reduce_2k_setup_l.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj \
bn_mp_set.obj bn_mp_set_double.obj bn_mp_set_int.obj bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj \
bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj \
bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_tc_and.obj bn_mp_tc_div_2d.obj bn_mp_tc_or.obj bn_mp_tc_xor.obj \
bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj \
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj \
bn_mp_zero.obj bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj \



bn_s_mp_mul_high_digs.obj bn_s_mp_sqr.obj bn_s_mp_sub.obj bncore.obj

HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h

HEADERS=tommath_private.h $(HEADERS_PUB)

#The default rule for make builds the tommath.lib library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)

.c.obj:
	$(CC) $(LTM_CFLAGS) /c $< /Fo$@

#Create tomcrypt.lib
$(LIBMAIN_S): $(OBJECTS)
	lib /out:$(LIBMAIN_S) $(OBJECTS)

#Build test_standalone suite
test.exe: $(LIBMAIN_S) demo/demo.c
	cl $(LTM_CFLAGS) $(TOBJECTS) $(LIBMAIN_S) $(LTM_LDFLAGS) demo/demo.c /DLTM_DEMO_TEST_VS_MTEST=0 /Fe$@
	@echo NOTICE: start the tests by launching test.exe

test_standalone: test.exe

all: $(LIBMAIN_S) test_standalone





clean:
	@-cmd /c del /Q /S *.OBJ *.LIB *.EXE *.DLL 2>nul

#Install the library + headers
install: $(LIBMAIN_S)
	cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin"
	cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib"
	cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include"
	copy /Y $(LIBMAIN_S) "$(PREFIX)\lib"
	copy /Y tommath*.h "$(PREFIX)\include"

# ref:         $Format:%D$
# git commit:  $Format:%H$
# commit time: $Format:%ai$


|













|






<
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
|

|
<
|










|




|
|





>
>
>
>











<
<
<
<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91




# MAKEFILE for MS Windows (nmake + Windows SDK)
#
# BEWARE: variable OBJECTS is updated via helper.pl

### USAGE:
# Open a command prompt with WinSDK variables set and start:
#
# nmake -f makefile.msvc all
# test.exe
# nmake -f makefile.msvc PREFIX=c:\devel\libtom install

#The following can be overridden from command line e.g. make -f makefile.msvc CC=gcc ARFLAGS=rcs
PREFIX    = c:\devel
CFLAGS    = /Ox

#Compilation flags
LTM_CFLAGS  = /nologo /I./ /D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE /D__STDC_WANT_SECURE_LIB__=1 /D_CRT_HAS_CXX17=0 /Wall /wd4146 /wd4127 /wd4710 /wd4711 /wd4820 /WX $(CFLAGS)
LTM_LDFLAGS = advapi32.lib

#Libraries to be created (this makefile builds only static libraries)
LIBMAIN_S =tommath.lib

#List of objects to compile (all goes to tommath.lib)

OBJECTS=bn_cutoffs.obj bn_deprecated.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj bn_mp_addmod.obj \
bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj bn_mp_cmp_mag.obj \
bn_mp_cnt_lsb.obj bn_mp_complement.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_decr.obj bn_mp_div.obj bn_mp_div_2.obj \
bn_mp_div_2d.obj bn_mp_div_3.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj \
bn_mp_error_to_string.obj bn_mp_exch.obj bn_mp_export.obj bn_mp_expt_d.obj bn_mp_exptmod.obj bn_mp_exteuclid.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_double.obj bn_mp_get_i32.obj bn_mp_get_i64.obj \
bn_mp_get_mag32.obj bn_mp_get_mag64.obj bn_mp_grow.obj bn_mp_ilogb.obj bn_mp_import.obj bn_mp_incr.obj bn_mp_init.obj \
bn_mp_init_copy.obj bn_mp_init_i32.obj bn_mp_init_i64.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_size.obj \
bn_mp_init_u32.obj bn_mp_init_u64.obj bn_mp_invmod.obj bn_mp_is_square.obj bn_mp_iseven.obj bn_mp_isodd.obj \
bn_mp_kronecker.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \
bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj bn_mp_montgomery_setup.obj bn_mp_mul.obj \
bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_n_root.obj bn_mp_neg.obj bn_mp_or.obj \
bn_mp_prime_fermat.obj bn_mp_prime_frobenius_underwood.obj bn_mp_prime_is_prime.obj \
bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj bn_mp_prime_rabin_miller_trials.obj \
bn_mp_prime_rand.obj bn_mp_prime_strong_lucas_selfridge.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \
bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj \
bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj \
bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj \
bn_mp_set_double.obj bn_mp_set_i32.obj bn_mp_set_i64.obj bn_mp_set_u32.obj bn_mp_set_u64.obj bn_mp_shrink.obj \
bn_mp_signed_bin_size.obj bn_mp_signed_rsh.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj \
bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \
bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_toradix.obj bn_mp_toradix_n.obj \
bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj bn_prime_tab.obj bn_s_mp_add.obj bn_s_mp_balance_mul.obj \
bn_s_mp_exptmod.obj bn_s_mp_exptmod_fast.obj bn_s_mp_get_bit.obj bn_s_mp_invmod_fast.obj bn_s_mp_invmod_slow.obj \
bn_s_mp_karatsuba_mul.obj bn_s_mp_karatsuba_sqr.obj bn_s_mp_montgomery_reduce_fast.obj bn_s_mp_mul_digs.obj \
bn_s_mp_mul_digs_fast.obj bn_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs_fast.obj \
bn_s_mp_prime_is_divisible.obj bn_s_mp_rand_jenkins.obj bn_s_mp_rand_platform.obj bn_s_mp_reverse.obj \
bn_s_mp_sqr.obj bn_s_mp_sqr_fast.obj bn_s_mp_sub.obj bn_s_mp_toom_mul.obj bn_s_mp_toom_sqr.obj

HEADERS_PUB=tommath.h

HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB)

#The default rule for make builds the tommath.lib library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)

.c.obj:
	$(CC) $(LTM_CFLAGS) /c $< /Fo$@

#Create tommath.lib
$(LIBMAIN_S): $(OBJECTS)
	lib /out:$(LIBMAIN_S) $(OBJECTS)

#Build test_standalone suite
test.exe: $(LIBMAIN_S) demo/main.c demo/opponent.c demo/test.c
	cl $(LTM_CFLAGS) $(TOBJECTS) $(LIBMAIN_S) $(LTM_LDFLAGS) demo/main.c demo/opponent.c demo/test.c /DLTM_DEMO_TEST_VS_MTEST=0 /Fe$@
	@echo NOTICE: start the tests by launching test.exe

test_standalone: test.exe

all: $(LIBMAIN_S) test_standalone

tune: $(LIBMAIN_S)
	$(MAKE) -C etc tune
	$(MAKE)

clean:
	@-cmd /c del /Q /S *.OBJ *.LIB *.EXE *.DLL 2>nul

#Install the library + headers
install: $(LIBMAIN_S)
	cmd /c if not exist "$(PREFIX)\bin" mkdir "$(PREFIX)\bin"
	cmd /c if not exist "$(PREFIX)\lib" mkdir "$(PREFIX)\lib"
	cmd /c if not exist "$(PREFIX)\include" mkdir "$(PREFIX)\include"
	copy /Y $(LIBMAIN_S) "$(PREFIX)\lib"
	copy /Y tommath*.h "$(PREFIX)\include"




Changes to libtommath/makefile.shared.
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


80
81
82
83


84
85
86
87
88
89
90
91






  ifeq ($(PLATFORM), Darwin)
    LIBTOOL:=glibtool
  else
    LIBTOOL:=libtool
  endif
endif
LTCOMPILE = $(LIBTOOL) --mode=compile --tag=CC $(CC)


LCOV_ARGS=--directory .libs --directory .

#START_INS
OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \

bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o



#END_INS

objs: $(OBJECTS)

.c.o:
	$(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $<

LOBJECTS = $(OBJECTS:.o=.lo)

$(LIBNAME):  $(OBJECTS)
	$(LIBTOOL) --mode=link --tag=CC $(CC) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO) $(LIBTOOLFLAGS)

install: $(LIBNAME)
	install -d $(DESTDIR)$(LIBPATH)
	install -d $(DESTDIR)$(INCPATH)
	$(LIBTOOL) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
	sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc
	install -d $(DESTDIR)$(LIBPATH)/pkgconfig
	install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/

uninstall:
	$(LIBTOOL) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
	rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc

test: $(LIBNAME) demo/demo.o
	$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o


	$(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)

test_standalone: $(LIBNAME) demo/demo.o
	$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o


	$(LIBTOOL) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)

.PHONY: mtest
mtest:
	cd mtest ; $(CC) $(CFLAGS) $(LDFLAGS) mtest.c -o mtest

timing: $(LIBNAME) demo/timing.c
	$(LIBTOOL) --mode=link $(CC) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o timing













>




<
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>











|















|
|
>
>
|

|
|
>
>
|



|


|
>
>
>
>
>
>
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  ifeq ($(PLATFORM), Darwin)
    LIBTOOL:=glibtool
  else
    LIBTOOL:=libtool
  endif
endif
LTCOMPILE = $(LIBTOOL) --mode=compile --tag=CC $(CC)
LTLINK = $(LIBTOOL) --mode=link --tag=CC $(CC)

LCOV_ARGS=--directory .libs --directory .

#START_INS

OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \
bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \
bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \
bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \
bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \
bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \
bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \
bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \
bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \
bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \
bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \
bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \
bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \
bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \
bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \
bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \
bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \
bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o

#END_INS

objs: $(OBJECTS)

.c.o:
	$(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $<

LOBJECTS = $(OBJECTS:.o=.lo)

$(LIBNAME):  $(OBJECTS)
	$(LTLINK) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO) $(LIBTOOLFLAGS)

install: $(LIBNAME)
	install -d $(DESTDIR)$(LIBPATH)
	install -d $(DESTDIR)$(INCPATH)
	$(LIBTOOL) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
	sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc
	install -d $(DESTDIR)$(LIBPATH)/pkgconfig
	install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/

uninstall:
	$(LIBTOOL) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
	rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
	rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc

test: $(LIBNAME)
	$(LTCOMPILE) $(CFLAGS) -c demo/main.c -o demo/main.o
	$(LTCOMPILE) $(CFLAGS) -c demo/opponent.c -o demo/opponent.o
	$(LTCOMPILE) $(CFLAGS) -c demo/test.c -o demo/test.o
	$(LTLINK) $(LDFLAGS) -o test demo/main.o demo/opponent.o demo/test.o $(LIBNAME)

test_standalone: $(LIBNAME)
	$(LTCOMPILE) $(CFLAGS) -c demo/main.c -o demo/main.o
	$(LTCOMPILE) $(CFLAGS) -c demo/opponent.c -o demo/opponent.o
	$(LTCOMPILE) $(CFLAGS) -c demo/test.c -o demo/test.o
	$(LTLINK) $(LDFLAGS) -o test demo/main.o demo/opponent.o demo/test.o $(LIBNAME)

.PHONY: mtest
mtest:
	cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LDFLAGS) -o mtest

timing: $(LIBNAME) demo/timing.c
	$(LTLINK) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o timing

tune: $(LIBNAME)
	$(LTCOMPILE) $(CFLAGS) -c etc/tune.c -o etc/tune.o
	$(LTLINK) $(LDFLAGS) -o etc/tune etc/tune.o $(LIBNAME)
	cd etc/; /bin/sh tune_it.sh; cd ..
	$(MAKE) -f makefile.shared
Changes to libtommath/makefile.unix.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87




88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#Compilation flags
LTM_CFLAGS  = -I. $(CFLAGS)
LTM_LDFLAGS = $(LDFLAGS)

#Library to be created (this makefile builds only static library)
LIBMAIN_S = libtommath.a

OBJECTS=bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \

bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o



HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h

HEADERS=tommath_private.h $(HEADERS_PUB)

#The default rule for make builds the libtommath.a library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)

#This is necessary for compatibility with BSD make (namely on OpenBSD)
.SUFFIXES: .o .c
.c.o:
	$(CC) $(LTM_CFLAGS) -c $< -o $@

#Create libtommath.a
$(LIBMAIN_S): $(OBJECTS)
	$(AR) $(ARFLAGS) $@ $(OBJECTS)
	$(RANLIB) $@

#Build test_standalone suite
test: $(LIBMAIN_S) demo/demo.c
	$(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) demo/demo.c $(LIBMAIN_S) -DLTM_DEMO_TEST_VS_MTEST=0 -o $@
	@echo "NOTICE: start the tests by: ./test"

test_standalone: test

all: $(LIBMAIN_S) test_standalone





#NOTE: this makefile works also on cygwin, thus we need to delete *.exe
clean:
	-@rm -f $(OBJECTS) $(LIBMAIN_S)
	-@rm -f demo/demo.o test test.exe

#Install the library + headers
install: $(LIBMAIN_S)
	@mkdir -p $(DESTDIR)$(INCPATH) $(DESTDIR)$(LIBPATH)/pkgconfig
	@cp $(LIBMAIN_S) $(DESTDIR)$(LIBPATH)/
	@cp $(HEADERS_PUB) $(DESTDIR)$(INCPATH)/
	@sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION),' libtommath.pc.in > $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc

# ref:         $Format:%D$
# git commit:  $Format:%H$
# commit time: $Format:%ai$







<
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>

|
<
|


















|
|





>
>
>
>




|







<
<
<
<
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104




#Compilation flags
LTM_CFLAGS  = -I. $(CFLAGS)
LTM_LDFLAGS = $(LDFLAGS)

#Library to be created (this makefile builds only static library)
LIBMAIN_S = libtommath.a


OBJECTS=bn_cutoffs.o bn_deprecated.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o bn_mp_addmod.o \
bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o bn_mp_cmp_mag.o \
bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_decr.o bn_mp_div.o bn_mp_div_2.o \
bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o \
bn_mp_error_to_string.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_exptmod.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o bn_mp_get_i32.o bn_mp_get_i64.o \
bn_mp_get_mag32.o bn_mp_get_mag64.o bn_mp_grow.o bn_mp_ilogb.o bn_mp_import.o bn_mp_incr.o bn_mp_init.o \
bn_mp_init_copy.o bn_mp_init_i32.o bn_mp_init_i64.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_size.o \
bn_mp_init_u32.o bn_mp_init_u64.o bn_mp_invmod.o bn_mp_is_square.o bn_mp_iseven.o bn_mp_isodd.o \
bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_neg.o bn_mp_or.o \
bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_prime.o \
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
bn_mp_prime_rand.o bn_mp_prime_strong_lucas_selfridge.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o \
bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o \
bn_mp_set_double.o bn_mp_set_i32.o bn_mp_set_i64.o bn_mp_set_u32.o bn_mp_set_u64.o bn_mp_shrink.o \
bn_mp_signed_bin_size.o bn_mp_signed_rsh.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o \
bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_toradix.o bn_mp_toradix_n.o \
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_s_mp_add.o bn_s_mp_balance_mul.o \
bn_s_mp_exptmod.o bn_s_mp_exptmod_fast.o bn_s_mp_get_bit.o bn_s_mp_invmod_fast.o bn_s_mp_invmod_slow.o \
bn_s_mp_karatsuba_mul.o bn_s_mp_karatsuba_sqr.o bn_s_mp_montgomery_reduce_fast.o bn_s_mp_mul_digs.o \
bn_s_mp_mul_digs_fast.o bn_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs_fast.o \
bn_s_mp_prime_is_divisible.o bn_s_mp_rand_jenkins.o bn_s_mp_rand_platform.o bn_s_mp_reverse.o \
bn_s_mp_sqr.o bn_s_mp_sqr_fast.o bn_s_mp_sub.o bn_s_mp_toom_mul.o bn_s_mp_toom_sqr.o

HEADERS_PUB=tommath.h

HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB)

#The default rule for make builds the libtommath.a library (static)
default: $(LIBMAIN_S)

#Dependencies on *.h
$(OBJECTS): $(HEADERS)

#This is necessary for compatibility with BSD make (namely on OpenBSD)
.SUFFIXES: .o .c
.c.o:
	$(CC) $(LTM_CFLAGS) -c $< -o $@

#Create libtommath.a
$(LIBMAIN_S): $(OBJECTS)
	$(AR) $(ARFLAGS) $@ $(OBJECTS)
	$(RANLIB) $@

#Build test_standalone suite
test: demo/main.c demo/opponent.c demo/test.c $(LIBMAIN_S)
	$(CC) $(LTM_CFLAGS) $(LTM_LDFLAGS) $^ -DLTM_DEMO_TEST_VS_MTEST=0 -o $@
	@echo "NOTICE: start the tests by: ./test"

test_standalone: test

all: $(LIBMAIN_S) test_standalone

tune: $(LIBMAIN_S)
	$(MAKE) -C etc tune
	$(MAKE)

#NOTE: this makefile works also on cygwin, thus we need to delete *.exe
clean:
	-@rm -f $(OBJECTS) $(LIBMAIN_S)
	-@rm -f demo/main.o demo/opponent.o demo/test.o test test.exe

#Install the library + headers
install: $(LIBMAIN_S)
	@mkdir -p $(DESTDIR)$(INCPATH) $(DESTDIR)$(LIBPATH)/pkgconfig
	@cp $(LIBMAIN_S) $(DESTDIR)$(LIBPATH)/
	@cp $(HEADERS_PUB) $(DESTDIR)$(INCPATH)/
	@sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION),' libtommath.pc.in > $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc




Changes to libtommath/makefile_include.mk.
1
2
3
4
5
6
7
8
9
10
11
12
13
#
# Include makefile for libtommath
#

#version of library
VERSION=1.1.0
VERSION_PC=1.1.0
VERSION_SO=2:0:1

PLATFORM := $(shell uname | sed -e 's/_.*//')

# default make target
default: ${LIBNAME}





|







1
2
3
4
5
6
7
8
9
10
11
12
13
#
# Include makefile for libtommath
#

#version of library
VERSION=1.1.0-develop
VERSION_PC=1.1.0
VERSION_SO=2:0:1

PLATFORM := $(shell uname | sed -e 's/_.*//')

# default make target
default: ${LIBNAME}
44
45
46
47
48
49
50




51
52
53
54
55
56









57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  MAKE=gmake
else
  MAKE=make
endif
endif

CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow





ifndef NO_ADDTL_WARNINGS
# additional warnings
CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
CFLAGS += -Wstrict-prototypes -Wpointer-arith
endif










ifdef COMPILE_DEBUG
#debug
CFLAGS += -g3
else

ifdef COMPILE_SIZE
#for size
CFLAGS += -Os
else

ifndef IGNORE_SPEED
#for speed
CFLAGS += -O3 -funroll-loops

#x86 optimizations [should be valid for any GCC install though]
CFLAGS  += -fomit-frame-pointer
endif

endif # COMPILE_SIZE
endif # COMPILE_DEBUG

ifneq ($(findstring clang,$(CC)),)
CFLAGS += -Wno-typedef-redefinition -Wno-tautological-compare -Wno-builtin-requires-header
endif
ifneq ($(findstring mingw,$(CC)),)
CFLAGS += -Wno-shadow
endif
ifeq ($(PLATFORM), Darwin)
CFLAGS += -Wno-nullability-completeness
endif
ifeq ($(PLATFORM), CYGWIN)
LIBTOOLFLAGS += -no-undefined
endif

ifeq ($(PLATFORM),FreeBSD)
  _ARCH := $(shell sysctl -b hw.machine_arch)
else
  _ARCH := $(shell arch)
endif

# adjust coverage set
ifneq ($(filter $(_ARCH), i386 i686 x86_64 amd64 ia64),)
   COVERAGE = test_standalone timing
   COVERAGE_APP = ./test && ./timing
else
   COVERAGE = test_standalone
   COVERAGE_APP = ./test
endif

HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
HEADERS=tommath_private.h $(HEADERS_PUB)

test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0

#LIBPATH  The directory for libtommath to be installed to.
#INCPATH  The directory to install the header files for libtommath.
#DATAPATH The directory to install the pdf docs.
DESTDIR  ?=







>
>
>
>



|


>
>
>
>
>
>
>
>
>




|















<

















|











|
|







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  MAKE=gmake
else
  MAKE=make
endif
endif

CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow

ifdef SANITIZER
CFLAGS += -fsanitize=undefined -fno-sanitize-recover=all -fno-sanitize=float-divide-by-zero
endif

ifndef NO_ADDTL_WARNINGS
# additional warnings
CFLAGS += -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
CFLAGS += -Wstrict-prototypes -Wpointer-arith
endif

ifdef CONV_WARNINGS
CFLAGS += -std=c89 -Wconversion -Wsign-conversion
ifeq ($(CONV_WARNINGS), strict)
CFLAGS += -DMP_USE_ENUMS -Wc++-compat
endif
else
CFLAGS += -Wsystem-headers
endif

ifdef COMPILE_DEBUG
#debug
CFLAGS += -g3
endif

ifdef COMPILE_SIZE
#for size
CFLAGS += -Os
else

ifndef IGNORE_SPEED
#for speed
CFLAGS += -O3 -funroll-loops

#x86 optimizations [should be valid for any GCC install though]
CFLAGS  += -fomit-frame-pointer
endif

endif # COMPILE_SIZE


ifneq ($(findstring clang,$(CC)),)
CFLAGS += -Wno-typedef-redefinition -Wno-tautological-compare -Wno-builtin-requires-header
endif
ifneq ($(findstring mingw,$(CC)),)
CFLAGS += -Wno-shadow
endif
ifeq ($(PLATFORM), Darwin)
CFLAGS += -Wno-nullability-completeness
endif
ifeq ($(PLATFORM), CYGWIN)
LIBTOOLFLAGS += -no-undefined
endif

ifeq ($(PLATFORM),FreeBSD)
  _ARCH := $(shell sysctl -b hw.machine_arch)
else
  _ARCH := $(shell uname -m)
endif

# adjust coverage set
ifneq ($(filter $(_ARCH), i386 i686 x86_64 amd64 ia64),)
   COVERAGE = test_standalone timing
   COVERAGE_APP = ./test && ./timing
else
   COVERAGE = test_standalone
   COVERAGE_APP = ./test
endif

HEADERS_PUB=tommath.h
HEADERS=tommath_private.h tommath_class.h tommath_superclass.h $(HEADERS_PUB)

test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0

#LIBPATH  The directory for libtommath to be installed to.
#INCPATH  The directory to install the header files for libtommath.
#DATAPATH The directory to install the pdf docs.
DESTDIR  ?=
137
138
139
140
141
142
143
144
145
146
147
148
	rm -f `find . -type f -name "*.info" | xargs`
	rm -rf coverage/

# cleans everything - coverage output and standard 'clean'
cleancov: cleancov-clean clean

clean:
	rm -f *.gcda *.gcno *.gcov *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test timing mpitest mtest/mtest mtest/mtest.exe \
        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
	rm -rf .libs/
	${MAKE} -C etc/ clean MAKE=${MAKE}
	${MAKE} -C doc/ clean MAKE=${MAKE}







|




149
150
151
152
153
154
155
156
157
158
159
160
	rm -f `find . -type f -name "*.info" | xargs`
	rm -rf coverage/

# cleans everything - coverage output and standard 'clean'
cleancov: cleancov-clean clean

clean:
	rm -f *.gcda *.gcno *.gcov *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/test.o demo/main.o demo/opponent.o test timing mpitest mtest/mtest mtest/mtest.exe tuning_list\
        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
	rm -rf .libs/
	${MAKE} -C etc/ clean MAKE=${MAKE}
	${MAKE} -C doc/ clean MAKE=${MAKE}
Added libtommath/tommath.def.














































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
; libtommath
;
; Use this command to produce a 32-bit .lib file, for use in any MSVC version
;   lib -machine:X86 -name:libtommath.dll -def:tommath.def -out:tommath.lib
; Use this command to produce a 64-bit .lib file, for use in any MSVC version
;   lib -machine:X64 -name:libtommath.dll -def:tommath.def -out:tommath.lib
;
EXPORTS
    mp_2expt
    mp_abs
    mp_add
    mp_add_d
    mp_addmod
    mp_and
    mp_clamp
    mp_clear
    mp_clear_multi
    mp_cmp
    mp_cmp_d
    mp_cmp_mag
    mp_cnt_lsb
    mp_complement
    mp_copy
    mp_count_bits
    mp_decr
    mp_div
    mp_div_2
    mp_div_2d
    mp_div_3
    mp_div_d
    mp_dr_is_modulus
    mp_dr_reduce
    mp_dr_setup
    mp_error_to_string
    mp_exch
    mp_export
    mp_expt_d
    mp_exptmod
    mp_exteuclid
    mp_fread
    mp_fwrite
    mp_gcd
    mp_get_double
    mp_get_i32
    mp_get_i64
    mp_get_int
    mp_get_long
    mp_get_long_long
    mp_get_mag32
    mp_get_mag64
    mp_grow
    mp_ilogb
    mp_import
    mp_incr
    mp_init
    mp_init_copy
    mp_init_i32
    mp_init_i64
    mp_init_multi
    mp_init_set
    mp_init_set_int
    mp_init_size
    mp_init_u32
    mp_init_u64
    mp_invmod
    mp_is_square
    mp_iseven
    mp_isodd
    mp_kronecker
    mp_lcm
    mp_lshd
    mp_mod
    mp_mod_2d
    mp_mod_d
    mp_montgomery_calc_normalization
    mp_montgomery_reduce
    mp_montgomery_setup
    mp_mul
    mp_mul_2
    mp_mul_2d
    mp_mul_d
    mp_mulmod
    mp_n_root
    mp_neg
    mp_or
    mp_prime_fermat
    mp_prime_frobenius_underwood
    mp_prime_is_prime
    mp_prime_miller_rabin
    mp_prime_next_prime
    mp_prime_rabin_miller_trials
    mp_prime_rand
    mp_prime_strong_lucas_selfridge
    mp_radix_size
    mp_rand
    mp_read_radix
    mp_read_signed_bin
    mp_read_unsigned_bin
    mp_reduce
    mp_reduce_2k
    mp_reduce_2k_l
    mp_reduce_2k_setup
    mp_reduce_2k_setup_l
    mp_reduce_is_2k
    mp_reduce_is_2k_l
    mp_reduce_setup
    mp_rshd
    mp_set
    mp_set_double
    mp_set_i32
    mp_set_i64
    mp_set_int
    mp_set_long
    mp_set_long_long
    mp_set_u32
    mp_set_u64
    mp_shrink
    mp_signed_bin_size
    mp_signed_rsh
    mp_sqr
    mp_sqrmod
    mp_sqrt
    mp_sqrtmod_prime
    mp_sub
    mp_sub_d
    mp_submod
    mp_to_signed_bin
    mp_to_signed_bin_n
    mp_to_unsigned_bin
    mp_to_unsigned_bin_n
    mp_toradix
    mp_toradix_n
    mp_unsigned_bin_size
    mp_xor
    mp_zero
Changes to libtommath/tommath.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17



18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46




47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76
77
78
79
80
81
82

83




84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103




104






























105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140


141
142
143

144
145
146


147





148








































149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199



200


































201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282


283
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

306
307
308

309
310
311

312
313
314

315
316



317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362



363
364
365



366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568


569



570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */
#ifndef BN_H_
#define BN_H_

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>





#include "tommath_class.h"


#ifdef __cplusplus
extern "C" {
#endif

/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
#   define MP_32BIT
#endif

/* detect 64-bit mode if possible */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
    defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
    defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
    defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
    defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
    defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
#   if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
#      if defined(__GNUC__)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
#         define MP_64BIT
#      else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
#         define MP_32BIT
#      endif
#   endif
#endif





/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */

#ifdef MP_8BIT
typedef unsigned char        mp_digit;
typedef unsigned short       mp_word;
#   define MP_SIZEOF_MP_DIGIT 1
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_8BIT
#   endif
#elif defined(MP_16BIT)
typedef unsigned short       mp_digit;
typedef unsigned int         mp_word;
#   define MP_SIZEOF_MP_DIGIT 2
#   ifdef DIGIT_BIT
#      error You must not define DIGIT_BIT when using MP_16BIT
#   endif
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
typedef unsigned long long   mp_digit;

typedef unsigned long        mp_word __attribute__((mode(TI)));

#   define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */

/* this is to make porting into LibTomCrypt easier :-) */
typedef unsigned int         mp_digit;
typedef unsigned long long   mp_word;

#   ifdef MP_31BIT

/* this is an extension that uses 31-bit digits */




#      define DIGIT_BIT 31
#   else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#      define DIGIT_BIT 28
#      define MP_28BIT
#   endif
#endif

/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */

#ifndef DIGIT_BIT
#   define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
typedef unsigned long mp_min_u32;
#else
typedef mp_digit mp_min_u32;
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK





/* equalities */






























#define MP_LT        -1   /* less than */
#define MP_EQ         0   /* equal to */
#define MP_GT         1   /* greater than */

#define MP_ZPOS       0   /* positive integer */
#define MP_NEG        1   /* negative */

#define MP_OKAY       0   /* ok result */

#define MP_MEM        -2  /* out of mem */
#define MP_VAL        -3  /* invalid input */
#define MP_RANGE      MP_VAL
#define MP_ITER       -4  /* Max. iterations reached */

#define MP_YES        1   /* yes response */
#define MP_NO         0   /* no response */

/* Primality generation flags */
#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
       KARATSUBA_SQR_CUTOFF,
       TOOM_MUL_CUTOFF,
       TOOM_SQR_CUTOFF;


/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#   ifndef MP_LOW_MEM
#      define MP_PREC 32        /* default digits of precision */


#   else
#      define MP_PREC 8         /* default digits of precision */
#   endif

#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */


#define MP_WARRAY               (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))














































/* the infamous mp_int structure */
typedef struct  {
   int used, alloc, sign;

   mp_digit *dp;
} mp_int;

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)     ((m)->used)
#define DIGIT(m, k) ((m)->dp[(k)])
#define SIGN(m)     ((m)->sign)

/* error code to char* string */
const char *mp_error_to_string(int code);

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
int mp_init(mp_int *a);

/* free a bignum */
void mp_clear(mp_int *a);

/* init a null terminated series of arguments */
int mp_init_multi(mp_int *mp, ...);

/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);

/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);

/* shrink ram required for a bignum */
int mp_shrink(mp_int *a);

/* grow an int to a given size */
int mp_grow(mp_int *a, int size);

/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
#define mp_isodd(a)  ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
#define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)

/* set to zero */
void mp_zero(mp_int *a);




/* set to a digit */


































void mp_set(mp_int *a, mp_digit b);

/* set a double */
int mp_set_double(mp_int *a, double b);

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);

/* set a platform dependent unsigned long value */
int mp_set_long(mp_int *a, unsigned long b);

/* set a platform dependent unsigned long long value */
int mp_set_long_long(mp_int *a, unsigned long long b);

/* get a double */
double mp_get_double(const mp_int *a);

/* get a 32-bit value */
unsigned long mp_get_int(const mp_int *a);

/* get a platform dependent unsigned long value */
unsigned long mp_get_long(const mp_int *a);

/* get a platform dependent unsigned long long value */
unsigned long long mp_get_long_long(const mp_int *a);

/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b);

/* initialize and set 32-bit value */
int mp_init_set_int(mp_int *a, unsigned long b);

/* copy, b = a */
int mp_copy(const mp_int *a, mp_int *b);

/* inits and copies, a = b */
int mp_init_copy(mp_int *a, const mp_int *b);

/* trim unused digits */
void mp_clamp(mp_int *a);

/* import binary data */
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);

/* export binary data */
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);

/* c = a / 2**b, implemented as c = a >> b */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);

/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b);

/* c = a * 2**b, implemented as c = a << b */
int mp_mul_2d(const mp_int *a, int b, mp_int *c);

/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b);

/* c = a mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c);

/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a);

/* I Love Earth! */

/* makes a pseudo-random mp_int of a given size */
int mp_rand(mp_int *a, int digits);
/* makes a pseudo-random small int of a given size */
int mp_rand_digit(mp_digit *r);



#ifdef MP_PRNG_ENABLE_LTM_RNG

/* A last resort to provide random data on systems without any of the other
 * implemented ways to gather entropy.
 * It is compatible with `rng_get_bytes()` from libtomcrypt so you could
 * provide that one and then set `ltm_rng = rng_get_bytes;` */
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
extern void (*ltm_rng_callback)(void);
#endif

/* ---> binary operations <--- */
/* c = a XOR b  */
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a OR b */
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a AND b */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);

/* Checks the bit at position b and returns MP_YES
   if the bit is 1, MP_NO if it is 0 and MP_VAL
   in case of error */

int mp_get_bit(const mp_int *a, int b);

/* c = a XOR b (two complement) */

int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a OR b (two complement) */

int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a AND b (two complement) */

int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);




/* right shift (two complement) */
int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);


/* ---> Basic arithmetic <--- */

/* b = ~a */
int mp_complement(const mp_int *a, mp_int *b);

/* b = -a */
int mp_neg(const mp_int *a, mp_int *b);

/* b = |a| */
int mp_abs(const mp_int *a, mp_int *b);

/* compare a to b */
int mp_cmp(const mp_int *a, const mp_int *b);

/* compare |a| to |b| */
int mp_cmp_mag(const mp_int *a, const mp_int *b);

/* c = a + b */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a - b */
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);

/* c = a * b */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);

/* b = a*a  */
int mp_sqr(const mp_int *a, mp_int *b);

/* a/b => cb + d == a */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);

/* c = a mod b, 0 <= c < b  */
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);

/* ---> single digit functions <--- */

/* compare against a single digit */
int mp_cmp_d(const mp_int *a, mp_digit b);

/* c = a + b */
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);




/* c = a - b */
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);




/* c = a * b */
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);

/* a/b => cb + d == a */
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);

/* a/3 => 3c + d == a */
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);

/* c = a**b */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);

/* c = a mod b, 0 <= c < b  */
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);

/* ---> number theory <--- */

/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

/* d = a - b (mod c) */
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);

/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);

/* c = 1/a (mod b) */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);

/* c = (a, b) */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);

/* produces value such that U1*a + U2*b = U3 */
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);

/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);

/* special sqrt algo */
int mp_sqrt(const mp_int *arg, mp_int *ret);

/* special sqrt (mod prime) */
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);

/* is number a square? */
int mp_is_square(const mp_int *arg, int *ret);

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);

/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
int mp_kronecker(const mp_int *a, const mp_int *p, int *c);

/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, const mp_int *b);

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
 */
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);

/* setups the montgomery reduction */
int mp_montgomery_setup(const mp_int *n, mp_digit *rho);

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);

/* computes x/R == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);

/* returns 1 if a is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a);

/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);

/* reduces a modulo n using the Diminished Radix method */
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);

/* returns true if a can be reduced with mp_reduce_2k */
int mp_reduce_is_2k(const mp_int *a);

/* determines k value for 2k reduction */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);

/* returns true if a can be reduced with mp_reduce_2k_l */
int mp_reduce_is_2k_l(const mp_int *a);

/* determines k value for 2k reduction */
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);

/* Y = G**X (mod P) */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIME_SIZE 31
#else
#  define PRIME_SIZE 256
#endif


/* table of first PRIME_SIZE primes */
extern const mp_digit ltm_prime_tab[PRIME_SIZE];

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(const mp_int *a, int *result);

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
int mp_prime_rabin_miller_trials(int size);

/* performs one strong Lucas-Selfridge test of "a".
 * Sets result to 0 if composite or 1 if probable prime
 */
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);

/* performs one Frobenius test of "a" as described by Paul Underwood.
 * Sets result to 0 if composite or 1 if probable prime
 */
int mp_prime_frobenius_underwood(const mp_int *N, int *result);

/* performs t random rounds of Miller-Rabin on "a" additional to
 * bases 2 and 3.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 * Both a strong Lucas-Selfridge to complete the BPSW test
 * and a separate Frobenius test are available at compile time.
 * With t<0 a deterministic test is run for primes up to
 * 318665857834031151167461. With t<13 (abs(t)-13) additional
 * tests with sequential small primes are run starting at 43.
 * Is Fips 186.4 compliant if called with t as computed by
 * mp_prime_rabin_miller_trials();
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
int mp_prime_is_prime(const mp_int *a, int t, int *result);

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);

/* makes a truly random prime of a given size (bytes),
 * call with bbs = 1 if you want it to be congruent to 3 mod 4
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 * The prime generated will be larger than 2^(8*size).
 */
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);






/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a);

int mp_unsigned_bin_size(const mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);

int mp_signed_bin_size(const mp_int *a);
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_signed_bin(const mp_int *a,  unsigned char *b);
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);

int mp_read_radix(mp_int *a, const char *str, int radix);
int mp_toradix(const mp_int *a, char *str, int radix);
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
int mp_radix_size(const mp_int *a, int radix, int *size);

#ifndef LTM_NO_FILE
int mp_fread(mp_int *a, int radix, FILE *stream);
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

#ifdef __cplusplus
}
#endif

#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
|
<
<
<
<
<
<
<
<
|
|



|
|
|
>
>
>

>
|
>






|










|
|








>
>
>
>



|
|




>


|
|
<
<
<


|
|
<
<
<



>
|
>
|

<
<
<

|
<

>
|
>
>
>
>
|


|




|
>
|
|
<
<
<
<

<
|


>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
|
|
|

>


|

|
<
<

|
<
<
<

|
|
<
|
|
|
|
>







|
>
>

|

>



>
>
|
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
>




|
|

<
<
<
<

|



|





|


|





|


|


|



|
|





>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
<
<

<
<
|
<
<
<
<
<
<
<
<
<
<
|
<
<
|
<
<
|
|
<
|
|
<
|


|


|





|


|







|


|


|


|


|


|


|


|




|

|
>
>


>









<
<

<
<
<
<
<
<

|
|
>
|


>
|


>
|


>
|

>
>
>
|
|
>



<
<
<

|


|


|


|


|


|


|


|


|


|




|


|

>
>
>

|

>
>
>

|


|


|


|
|


|




|


|


|


|


|


|


|


|





|
|


|


|


|


|


|


|






|


|




|


|


|





|


|


|


|


|


|


|


|





|

|

>


|


|




|




|




|




|




|















|






|










|





|
|
|






|
>
>

>
>
>

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|


|
|
|
|
|
|











<
<
<
<
<
1








2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61



62
63
64
65



66
67
68
69
70
71
72
73



74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94




95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


148
149



150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234




235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311


312


313










314


315


316
317

318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


386






387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413



414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710





/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */

#ifndef BN_H_
#define BN_H_

#include <limits.h>

#ifdef LTM_NO_FILE
#  warning LTM_NO_FILE has been deprecated, use MP_NO_FILE.
#  define MP_NO_FILE
#endif

#ifndef MP_NO_FILE
#  include <stdio.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if (defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)) && !defined(MP_64BIT)
#   define MP_32BIT
#endif

/* detect 64-bit mode if possible */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
    defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
    defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
    defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
    defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
    defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
#   if !(defined(MP_64BIT) || defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
#      if defined(__GNUC__) && !defined(__hppa)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
#         define MP_64BIT
#      else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
#         define MP_32BIT
#      endif
#   endif
#endif

#ifdef MP_DIGIT_BIT
#   error Defining MP_DIGIT_BIT is disallowed, use MP_8/16/31/32/64BIT
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold MP_DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*MP_DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */

#ifdef MP_8BIT
typedef unsigned char        mp_digit;
typedef unsigned short       private_mp_word;
#   define MP_DIGIT_BIT 7



#elif defined(MP_16BIT)
typedef unsigned short       mp_digit;
typedef unsigned int         private_mp_word;
#   define MP_DIGIT_BIT 15



#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
typedef unsigned long long   mp_digit;
#if defined(__GNUC__)
typedef unsigned long        private_mp_word __attribute__((mode(TI)));
#endif
#   define MP_DIGIT_BIT 60
#else



typedef unsigned int         mp_digit;
typedef unsigned long long   private_mp_word;

#   ifdef MP_31BIT
/*
 * This is an extension that uses 31-bit digits.
 * Please be aware that not all functions support this size, especially s_mp_mul_digs_fast
 * will be reduced to work on small numbers only:
 * Up to 8 limbs, 248 bits instead of up to 512 limbs, 15872 bits with MP_28BIT.
 */
#      define MP_DIGIT_BIT 31
#   else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
#      define MP_DIGIT_BIT 28
#      define MP_28BIT
#   endif
#endif

/* mp_word is a private type */
#define mp_word MP_DEPRECATED_PRAGMA("mp_word has been made private") private_mp_word

#define MP_SIZEOF_MP_DIGIT (MP_DEPRECATED_PRAGMA("MP_SIZEOF_MP_DIGIT has been deprecated, use sizeof (mp_digit)") sizeof (mp_digit))






#define MP_MASK          ((((mp_digit)1)<<((mp_digit)MP_DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* Primality generation flags */
#define MP_PRIME_BBS      0x0001 /* BBS style prime */
#define MP_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
#define MP_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

#define LTM_PRIME_BBS      (MP_DEPRECATED_PRAGMA("LTM_PRIME_BBS has been deprecated, use MP_PRIME_BBS") MP_PRIME_BBS)
#define LTM_PRIME_SAFE     (MP_DEPRECATED_PRAGMA("LTM_PRIME_SAFE has been deprecated, use MP_PRIME_SAFE") MP_PRIME_SAFE)
#define LTM_PRIME_2MSB_ON  (MP_DEPRECATED_PRAGMA("LTM_PRIME_2MSB_ON has been deprecated, use MP_PRIME_2MSB_ON") MP_PRIME_2MSB_ON)

#ifdef MP_USE_ENUMS
typedef enum {
   MP_ZPOS = 0,
   MP_NEG = 1
} mp_sign;
typedef enum {
   MP_LT = -1,
   MP_EQ = 0,
   MP_GT = 1
} mp_ord;
typedef enum {
   MP_NO = 0,
   MP_YES = 1
} mp_bool;
typedef enum {
   MP_OKAY  = 0,
   MP_ERR   = -1,
   MP_MEM   = -2,
   MP_VAL   = -3,
   MP_ITER  = -4
} mp_err;
#else
typedef int mp_sign;
#define MP_ZPOS       0   /* positive integer */
#define MP_NEG        1   /* negative */
typedef int mp_ord;
#define MP_LT        -1   /* less than */
#define MP_EQ         0   /* equal to */
#define MP_GT         1   /* greater than */
typedef int mp_bool;
#define MP_YES        1   /* yes response */
#define MP_NO         0   /* no response */
typedef int mp_err;
#define MP_OKAY       0   /* ok result */
#define MP_ERR        -1  /* unknown error */
#define MP_MEM        -2  /* out of mem */
#define MP_VAL        -3  /* invalid input */
#define MP_RANGE      (MP_DEPRECATED_PRAGMA("MP_RANGE has been deprecated in favor of MP_VAL") MP_VAL)
#define MP_ITER       -4  /* Max. iterations reached */
#endif



/* tunable cutoffs */




#ifndef MP_FIXED_CUTOFFS
extern int

KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
#   ifndef MP_LOW_MEM
#      define PRIVATE_MP_PREC 32        /* default digits of precision */
#   elif defined(MP_8BIT)
#      define PRIVATE_MP_PREC 16        /* default digits of precision */
#   else
#      define PRIVATE_MP_PREC 8         /* default digits of precision */
#   endif
#   define MP_PREC (MP_DEPRECATED_PRAGMA("MP_PREC is an internal macro") PRIVATE_MP_PREC)
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define PRIVATE_MP_WARRAY (int)(1uLL << (((CHAR_BIT * sizeof(private_mp_word)) - (2 * MP_DIGIT_BIT)) + 1))
#define MP_WARRAY (MP_DEPRECATED_PRAGMA("MP_WARRAY is an internal macro") PRIVATE_MP_WARRAY)

#if defined(__GNUC__) && __GNUC__ >= 4
#   define MP_NULL_TERMINATED __attribute__((sentinel))
#else
#   define MP_NULL_TERMINATED
#endif

/*
 * MP_WUR - warn unused result
 * ---------------------------
 *
 * The result of functions annotated with MP_WUR must be
 * checked and cannot be ignored.
 *
 * Most functions in libtommath return an error code.
 * This error code must be checked in order to prevent crashes or invalid
 * results.
 *
 * If you still want to avoid the error checks for quick and dirty programs
 * without robustness guarantees, you can `#define MP_WUR` before including
 * tommath.h, disabling the warnings.
 */
#ifndef MP_WUR
#  if defined(__GNUC__) && __GNUC__ >= 4
#     define MP_WUR __attribute__((warn_unused_result))
#  else
#     define MP_WUR
#  endif
#endif

#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
#  define MP_DEPRECATED(x) __attribute__((deprecated("replaced by " #x)))
#  define PRIVATE_MP_DEPRECATED_PRAGMA(s) _Pragma(#s)
#  define MP_DEPRECATED_PRAGMA(s) PRIVATE_MP_DEPRECATED_PRAGMA(GCC warning s)
#elif defined(_MSC_VER) && _MSC_VER >= 1500
#  define MP_DEPRECATED(x) __declspec(deprecated("replaced by " #x))
#  define MP_DEPRECATED_PRAGMA(s) __pragma(message(s))
#else
#  define MP_DEPRECATED(s)
#  define MP_DEPRECATED_PRAGMA(s)
#endif

#define DIGIT_BIT   (MP_DEPRECATED_PRAGMA("DIGIT_BIT macro is deprecated, MP_DIGIT_BIT instead") MP_DIGIT_BIT)
#define USED(m)     (MP_DEPRECATED_PRAGMA("USED macro is deprecated, use z->used instead") (m)->used)
#define DIGIT(m, k) (MP_DEPRECATED_PRAGMA("DIGIT macro is deprecated, use z->dp instead") (m)->dp[(k)])
#define SIGN(m)     (MP_DEPRECATED_PRAGMA("SIGN macro is deprecated, use z->sign instead") (m)->sign)

/* the infamous mp_int structure */
typedef struct  {
   int used, alloc;
   mp_sign sign;
   mp_digit *dp;
} mp_int;

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int private_mp_prime_callback(unsigned char *dst, int len, void *dat);
typedef private_mp_prime_callback MP_DEPRECATED(mp_rand_source) ltm_prime_callback;





/* error code to char* string */
const char *mp_error_to_string(mp_err code) MP_WUR;

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
mp_err mp_init(mp_int *a) MP_WUR;

/* free a bignum */
void mp_clear(mp_int *a);

/* init a null terminated series of arguments */
mp_err mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED MP_WUR;

/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED;

/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);

/* shrink ram required for a bignum */
mp_err mp_shrink(mp_int *a) MP_WUR;

/* grow an int to a given size */
mp_err mp_grow(mp_int *a, int size) MP_WUR;

/* init to a given number of digits */
mp_err mp_init_size(mp_int *a, int size) MP_WUR;

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
mp_bool mp_iseven(const mp_int *a) MP_WUR;
mp_bool mp_isodd(const mp_int *a) MP_WUR;
#define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)

/* set to zero */
void mp_zero(mp_int *a);

/* get and set doubles */
double mp_get_double(const mp_int *a) MP_WUR;
mp_err mp_set_double(mp_int *a, double b) MP_WUR;

/* get integer, set integer and init with integer () */
int mp_get_i32(const mp_int *a) MP_WUR;
void mp_set_i32(mp_int *a, int b);
mp_err mp_init_i32(mp_int *a, int b) MP_WUR;

/* get integer, set integer and init with integer, behaves like two complement for negative numbers (unsigned int) */
#define mp_get_u32(a) ((unsigned int)mp_get_i32(a))
void mp_set_u32(mp_int *a, unsigned int b);
mp_err mp_init_u32(mp_int *a, unsigned int b) MP_WUR;

/* get integer, set integer and init with integer (long long) */
long long mp_get_i64(const mp_int *a) MP_WUR;
void mp_set_i64(mp_int *a, long long b);
mp_err mp_init_i64(mp_int *a, long long b) MP_WUR;

/* get integer, set integer and init with integer, behaves like two complement for negative numbers (unsigned long long) */
#define mp_get_u64(a) ((unsigned long long)mp_get_i64(a))
void mp_set_u64(mp_int *a, unsigned long long b);
mp_err mp_init_u64(mp_int *a, unsigned long long b) MP_WUR;

/* get magnitude */
unsigned int mp_get_mag32(const mp_int *a) MP_WUR;
unsigned long long mp_get_mag64(const mp_int *a) MP_WUR;

/* get integer, set integer (long) */
#define mp_get_l(a)        (sizeof (long) == 8 ? (long)mp_get_i64(a) : (long)mp_get_i32(a))
#define mp_set_l(a, b)     (sizeof (long) == 8 ? mp_set_i64((a), (b)) : mp_set_i32((a), (int)(b)))

/* get integer, set integer (unsigned long) */
#define mp_get_ul(a)       (sizeof (long) == 8 ? (unsigned long)mp_get_u64(a) : (unsigned long)mp_get_u32(a))
#define mp_set_ul(a, b)    (sizeof (long) == 8 ? mp_set_u64((a), (b)) : mp_set_u32((a), (unsigned int)(b)))
#define mp_get_magl(a)     (sizeof (long) == 8 ? (unsigned long)mp_get_mag64(a) : (unsigned long)mp_get_mag32(a))

/* set to single unsigned digit, up to MP_DIGIT_MAX */
void mp_set(mp_int *a, mp_digit b);
mp_err mp_init_set(mp_int *a, mp_digit b) MP_WUR;





/* get integer, set integer and init with integer (deprecated) */










MP_DEPRECATED(mp_get_mag32/mp_get_u32) unsigned long mp_get_int(const mp_int *a) MP_WUR;


MP_DEPRECATED(mp_get_magl/mp_get_ul) unsigned long mp_get_long(const mp_int *a) MP_WUR;


MP_DEPRECATED(mp_get_mag64/mp_get_u64) unsigned long long mp_get_long_long(const mp_int *a) MP_WUR;
MP_DEPRECATED(mp_set_u32) mp_err mp_set_int(mp_int *a, unsigned long b);

MP_DEPRECATED(mp_set_ul) mp_err mp_set_long(mp_int *a, unsigned long b);
MP_DEPRECATED(mp_set_u64) mp_err mp_set_long_long(mp_int *a, unsigned long long b);

MP_DEPRECATED(mp_init_u32) mp_err mp_init_set_int(mp_int *a, unsigned long b) MP_WUR;

/* copy, b = a */
mp_err mp_copy(const mp_int *a, mp_int *b) MP_WUR;

/* inits and copies, a = b */
mp_err mp_init_copy(mp_int *a, const mp_int *b) MP_WUR;

/* trim unused digits */
void mp_clamp(mp_int *a);

/* import binary data */
mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op) MP_WUR;

/* export binary data */
mp_err mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op) MP_WUR;

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
mp_err mp_lshd(mp_int *a, int b) MP_WUR;

/* c = a / 2**b, implemented as c = a >> b */
mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) MP_WUR;

/* b = a/2 */
mp_err mp_div_2(const mp_int *a, mp_int *b) MP_WUR;

/* c = a * 2**b, implemented as c = a << b */
mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c) MP_WUR;

/* b = a*2 */
mp_err mp_mul_2(const mp_int *a, mp_int *b) MP_WUR;

/* c = a mod 2**b */
mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c) MP_WUR;

/* computes a = 2**b */
mp_err mp_2expt(mp_int *a, int b) MP_WUR;

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a) MP_WUR;

/* I Love Earth! */

/* makes a pseudo-random mp_int of a given size */
mp_err mp_rand(mp_int *a, int digits) MP_WUR;
/* makes a pseudo-random small int of a given size */
MP_DEPRECATED(mp_rand) mp_err mp_rand_digit(mp_digit *r) MP_WUR;
/* use custom random data source instead of source provided the platform */
void mp_rand_source(mp_err(*source)(void *out, size_t size));

#ifdef MP_PRNG_ENABLE_LTM_RNG
#  warning MP_PRNG_ENABLE_LTM_RNG has been deprecated, use mp_rand_source instead.
/* A last resort to provide random data on systems without any of the other
 * implemented ways to gather entropy.
 * It is compatible with `rng_get_bytes()` from libtomcrypt so you could
 * provide that one and then set `ltm_rng = rng_get_bytes;` */
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
extern void (*ltm_rng_callback)(void);
#endif

/* ---> binary operations <--- */









/* Checks the bit at position b and returns MP_YES
 * if the bit is 1, MP_NO if it is 0 and MP_VAL
 * in case of error
 */
MP_DEPRECATED(s_mp_get_bit) int mp_get_bit(const mp_int *a, int b) MP_WUR;

/* c = a XOR b (two complement) */
MP_DEPRECATED(mp_xor) mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = a OR b (two complement) */
MP_DEPRECATED(mp_or) mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = a AND b (two complement) */
MP_DEPRECATED(mp_and) mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* b = ~a (bitwise not, two complement) */
mp_err mp_complement(const mp_int *a, mp_int *b) MP_WUR;

/* right shift with sign extension */
MP_DEPRECATED(mp_signed_rsh) mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c) MP_WUR;
mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c) MP_WUR;

/* ---> Basic arithmetic <--- */




/* b = -a */
mp_err mp_neg(const mp_int *a, mp_int *b) MP_WUR;

/* b = |a| */
mp_err mp_abs(const mp_int *a, mp_int *b) MP_WUR;

/* compare a to b */
mp_ord mp_cmp(const mp_int *a, const mp_int *b) MP_WUR;

/* compare |a| to |b| */
mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) MP_WUR;

/* c = a + b */
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = a - b */
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = a * b */
mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* b = a*a  */
mp_err mp_sqr(const mp_int *a, mp_int *b) MP_WUR;

/* a/b => cb + d == a */
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR;

/* c = a mod b, 0 <= c < b  */
mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* ---> single digit functions <--- */

/* compare against a single digit */
mp_ord mp_cmp_d(const mp_int *a, mp_digit b) MP_WUR;

/* c = a + b */
mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;

/* Increment "a" by one like "a++". Changes input! */
mp_err mp_incr(mp_int *a) MP_WUR;

/* c = a - b */
mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;

/* Decrement "a" by one like "a--". Changes input! */
mp_err mp_decr(mp_int *a) MP_WUR;

/* c = a * b */
mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;

/* a/b => cb + d == a */
mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) MP_WUR;

/* a/3 => 3c + d == a */
mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR;

/* c = a**b */
mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;
MP_DEPRECATED(mp_expt_d) mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) MP_WUR;

/* c = a mod b, 0 <= c < b  */
mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c) MP_WUR;

/* ---> number theory <--- */

/* d = a + b (mod c) */
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;

/* d = a - b (mod c) */
mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;

/* d = a * b (mod c) */
mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;

/* c = a * a (mod b) */
mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = 1/a (mod b) */
mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* c = (a, b) */
mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* produces value such that U1*a + U2*b = U3 */
mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) MP_WUR;

/* c = [a, b] or (a*b)/(a, b) */
mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;
MP_DEPRECATED(mp_n_root_ex) mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) MP_WUR;

/* special sqrt algo */
mp_err mp_sqrt(const mp_int *arg, mp_int *ret) MP_WUR;

/* special sqrt (mod prime) */
mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) MP_WUR;

/* is number a square? */
mp_err mp_is_square(const mp_int *arg, mp_bool *ret) MP_WUR;

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
MP_DEPRECATED(mp_kronecker) mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c) MP_WUR;

/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) MP_WUR;

/* used to setup the Barrett reduction for a given modulus b */
mp_err mp_reduce_setup(mp_int *a, const mp_int *b) MP_WUR;

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
 */
mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) MP_WUR;

/* setups the montgomery reduction */
mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho) MP_WUR;

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) MP_WUR;

/* computes x/R == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;

/* returns 1 if a is a valid DR modulus */
mp_bool mp_dr_is_modulus(const mp_int *a) MP_WUR;

/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);

/* reduces a modulo n using the Diminished Radix method */
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) MP_WUR;

/* returns true if a can be reduced with mp_reduce_2k */
mp_bool mp_reduce_is_2k(const mp_int *a) MP_WUR;

/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) MP_WUR;

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) MP_WUR;

/* returns true if a can be reduced with mp_reduce_2k_l */
mp_bool mp_reduce_is_2k_l(const mp_int *a) MP_WUR;

/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) MP_WUR;

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) MP_WUR;

/* Y = G**X (mod P) */
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) MP_WUR;

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
#  define PRIVATE_MP_PRIME_TAB_SIZE 31
#else
#  define PRIVATE_MP_PRIME_TAB_SIZE 256
#endif
#define PRIME_SIZE (MP_DEPRECATED_PRAGMA("PRIME_SIZE has been made internal") PRIVATE_MP_PRIME_TAB_SIZE)

/* table of first PRIME_SIZE primes */
MP_DEPRECATED(internal) extern const mp_digit ltm_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE];

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
MP_DEPRECATED(mp_prime_is_prime) mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result) MP_WUR;

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR;

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR;

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 */
int mp_prime_rabin_miller_trials(int size) MP_WUR;

/* performs one strong Lucas-Selfridge test of "a".
 * Sets result to 0 if composite or 1 if probable prime
 */
mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result) MP_WUR;

/* performs one Frobenius test of "a" as described by Paul Underwood.
 * Sets result to 0 if composite or 1 if probable prime
 */
mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) MP_WUR;

/* performs t random rounds of Miller-Rabin on "a" additional to
 * bases 2 and 3.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 * Both a strong Lucas-Selfridge to complete the BPSW test
 * and a separate Frobenius test are available at compile time.
 * With t<0 a deterministic test is run for primes up to
 * 318665857834031151167461. With t<13 (abs(t)-13) additional
 * tests with sequential small primes are run starting at 43.
 * Is Fips 186.4 compliant if called with t as computed by
 * mp_prime_rabin_miller_trials();
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) MP_WUR;

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style) MP_WUR;

/* makes a truly random prime of a given size (bytes),
 * call with bbs = 1 if you want it to be congruent to 3 mod 4
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 * The prime generated will be larger than 2^(8*size).
 */
#define mp_prime_random(a, t, size, bbs, cb, dat) (MP_DEPRECATED_PRAGMA("mp_prime_random has been deprecated, use mp_prime_rand instead") mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?MP_PRIME_BBS:0, cb, dat))

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 *
 *   MP_PRIME_BBS      - make prime congruent to 3 mod 4
 *   MP_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS)
 *   MP_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
MP_DEPRECATED(mp_prime_rand) mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags,
      private_mp_prime_callback cb, void *dat) MP_WUR;
mp_err mp_prime_rand(mp_int *a, int t, int size, int flags) MP_WUR;

/* Integer logarithm to integer base */
mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c) MP_WUR;

/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a) MP_WUR;

int mp_unsigned_bin_size(const mp_int *a) MP_WUR;
mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c) MP_WUR;
mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b) MP_WUR;
mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) MP_WUR;

int mp_signed_bin_size(const mp_int *a) MP_WUR;
mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c) MP_WUR;
mp_err mp_to_signed_bin(const mp_int *a,  unsigned char *b) MP_WUR;
mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen) MP_WUR;

mp_err mp_read_radix(mp_int *a, const char *str, int radix) MP_WUR;
mp_err mp_toradix(const mp_int *a, char *str, int radix) MP_WUR;
mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen) MP_WUR;
mp_err mp_radix_size(const mp_int *a, int radix, int *size) MP_WUR;

#ifndef MP_NO_FILE
mp_err mp_fread(mp_int *a, int radix, FILE *stream) MP_WUR;
mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream) MP_WUR;
#endif

#define mp_read_raw(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_signed_bin") mp_read_signed_bin((mp), (str), (len)))
#define mp_raw_size(mp)           (MP_DEPRECATED_PRAGMA("replaced by mp_signed_bin_size") mp_signed_bin_size(mp))
#define mp_toraw(mp, str)         (MP_DEPRECATED_PRAGMA("replaced by mp_to_signed_bin") mp_to_signed_bin((mp), (str)))
#define mp_read_mag(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_unsigned_bin") mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           (MP_DEPRECATED_PRAGMA("replaced by mp_unsigned_bin_size") mp_unsigned_bin_size(mp))
#define mp_tomag(mp, str)         (MP_DEPRECATED_PRAGMA("replaced by mp_to_unsigned_bin") mp_to_unsigned_bin((mp), (str)))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

#ifdef __cplusplus
}
#endif

#endif





Changes to libtommath/tommath_class.h.
1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155







156

157





158

159
160

161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183






184
185
186
187
188

189
190
191


192



193
194
195
196
197
198
199
200
201














202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))

#if defined(LTM2)
#   define LTM3
#endif
#if defined(LTM1)
#   define LTM2
#endif
#define LTM1
#if defined(LTM_ALL)
#   define BN_ERROR_C
#   define BN_FAST_MP_INVMOD_C
#   define BN_FAST_MP_MONTGOMERY_REDUCE_C
#   define BN_FAST_S_MP_MUL_DIGS_C
#   define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#   define BN_FAST_S_MP_SQR_C
#   define BN_MP_2EXPT_C
#   define BN_MP_ABS_C
#   define BN_MP_ADD_C
#   define BN_MP_ADD_D_C
#   define BN_MP_ADDMOD_C
#   define BN_MP_AND_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_COMPLEMENT_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C

#   define BN_MP_DIV_C
#   define BN_MP_DIV_2_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_DIV_3_C
#   define BN_MP_DIV_D_C
#   define BN_MP_DR_IS_MODULUS_C
#   define BN_MP_DR_REDUCE_C
#   define BN_MP_DR_SETUP_C

#   define BN_MP_EXCH_C
#   define BN_MP_EXPORT_C
#   define BN_MP_EXPT_D_C
#   define BN_MP_EXPT_D_EX_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_EXPTMOD_FAST_C
#   define BN_MP_EXTEUCLID_C
#   define BN_MP_FREAD_C
#   define BN_MP_FWRITE_C
#   define BN_MP_GCD_C
#   define BN_MP_GET_BIT_C
#   define BN_MP_GET_DOUBLE_C
#   define BN_MP_GET_INT_C
#   define BN_MP_GET_LONG_C
#   define BN_MP_GET_LONG_LONG_C
#   define BN_MP_GROW_C

#   define BN_MP_IMPORT_C

#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_INIT_MULTI_C

#   define BN_MP_INIT_SET_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_INVMOD_C
#   define BN_MP_INVMOD_SLOW_C
#   define BN_MP_IS_SQUARE_C
#   define BN_MP_JACOBI_C
#   define BN_MP_KARATSUBA_MUL_C
#   define BN_MP_KARATSUBA_SQR_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_LCM_C
#   define BN_MP_LSHD_C
#   define BN_MP_MOD_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_MOD_D_C
#   define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#   define BN_MP_MONTGOMERY_REDUCE_C
#   define BN_MP_MONTGOMERY_SETUP_C
#   define BN_MP_MUL_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_MUL_D_C
#   define BN_MP_MULMOD_C
#   define BN_MP_N_ROOT_C
#   define BN_MP_N_ROOT_EX_C
#   define BN_MP_NEG_C
#   define BN_MP_OR_C
#   define BN_MP_PRIME_FERMAT_C
#   define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
#   define BN_MP_PRIME_IS_DIVISIBLE_C
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_PRIME_MILLER_RABIN_C
#   define BN_MP_PRIME_NEXT_PRIME_C
#   define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#   define BN_MP_PRIME_RANDOM_EX_C
#   define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
#   define BN_MP_RADIX_SIZE_C
#   define BN_MP_RADIX_SMAP_C
#   define BN_MP_RAND_C
#   define BN_MP_READ_RADIX_C
#   define BN_MP_READ_SIGNED_BIN_C
#   define BN_MP_READ_UNSIGNED_BIN_C
#   define BN_MP_REDUCE_C
#   define BN_MP_REDUCE_2K_C
#   define BN_MP_REDUCE_2K_L_C
#   define BN_MP_REDUCE_2K_SETUP_C
#   define BN_MP_REDUCE_2K_SETUP_L_C
#   define BN_MP_REDUCE_IS_2K_C
#   define BN_MP_REDUCE_IS_2K_L_C
#   define BN_MP_REDUCE_SETUP_C
#   define BN_MP_RSHD_C
#   define BN_MP_SET_C
#   define BN_MP_SET_DOUBLE_C
#   define BN_MP_SET_INT_C
#   define BN_MP_SET_LONG_C
#   define BN_MP_SET_LONG_LONG_C

#   define BN_MP_SHRINK_C
#   define BN_MP_SIGNED_BIN_SIZE_C

#   define BN_MP_SQR_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_SQRT_C
#   define BN_MP_SQRTMOD_PRIME_C
#   define BN_MP_SUB_C
#   define BN_MP_SUB_D_C
#   define BN_MP_SUBMOD_C
#   define BN_MP_TC_AND_C
#   define BN_MP_TC_DIV_2D_C
#   define BN_MP_TC_OR_C
#   define BN_MP_TC_XOR_C
#   define BN_MP_TO_SIGNED_BIN_C
#   define BN_MP_TO_SIGNED_BIN_N_C
#   define BN_MP_TO_UNSIGNED_BIN_C
#   define BN_MP_TO_UNSIGNED_BIN_N_C
#   define BN_MP_TOOM_MUL_C
#   define BN_MP_TOOM_SQR_C
#   define BN_MP_TORADIX_C
#   define BN_MP_TORADIX_N_C
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#   define BN_MP_XOR_C
#   define BN_MP_ZERO_C
#   define BN_PRIME_TAB_C
#   define BN_REVERSE_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_EXPTMOD_C







#   define BN_S_MP_MUL_DIGS_C

#   define BN_S_MP_MUL_HIGH_DIGS_C





#   define BN_S_MP_SQR_C

#   define BN_S_MP_SUB_C
#   define BNCORE_C

#endif

#if defined(BN_ERROR_C)
#   define BN_MP_ERROR_TO_STRING_C
#endif

#if defined(BN_FAST_MP_INVMOD_C)
#   define BN_MP_ISEVEN_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_COPY_C
#   define BN_MP_MOD_C
#   define BN_MP_ISZERO_C
#   define BN_MP_SET_C
#   define BN_MP_DIV_2_C
#   define BN_MP_ISODD_C
#   define BN_MP_SUB_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_ADD_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_MULTI_C
#endif







#if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C)
#   define BN_MP_GROW_C
#   define BN_MP_RSHD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CMP_MAG_C

#   define BN_S_MP_SUB_C
#endif



#if defined(BN_FAST_S_MP_MUL_DIGS_C)



#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#endif















#if defined(BN_FAST_S_MP_SQR_C)
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_2EXPT_C)
#   define BN_MP_ZERO_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_ABS_C)
#   define BN_MP_COPY_C
#endif

#if defined(BN_MP_ADD_C)
#   define BN_S_MP_ADD_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_ADD_D_C)
#   define BN_MP_GROW_C
#   define BN_MP_SUB_D_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_ADDMOD_C)
#   define BN_MP_INIT_C
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_MOD_C
#endif

#if defined(BN_MP_AND_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_CLAMP_C)
#endif

#if defined(BN_MP_CLEAR_C)
#endif
|
<
<
<
<
<
<
<
<
|
<


>








|
<
<
<
<
|
















>








>



<

<




|
|
|
|
|

>

>


|
>
|
|

|
|
|
|
|
|















<




<




|


















|
|
|
>


>







<
<
<
<




<
<






|
|

>
>
>
>
>
>
>

>

>
>
>
>
>

>

|
>

>
|
<


|
<
<
|
|
<
|
|
|
|
|

|
|
|
|
|
|
>
>
>
>
>
>
|
|
|
|
|
>
|
<
|
>
>
|
>
>
>
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|



|
|







|
|




|
|
|



|
|
|




<

|
<







1








2

3
4
5
6
7
8
9
10
11
12
13
14




15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127




128
129
130
131


132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164
165
166


167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259

260
261
262
263
264
265
266
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))
#define LTM_INSIDE
#if defined(LTM2)
#   define LTM3
#endif
#if defined(LTM1)
#   define LTM2
#endif
#define LTM1
#if defined(LTM_ALL)
#   define BN_CUTOFFS_C




#   define BN_DEPRECATED_C
#   define BN_MP_2EXPT_C
#   define BN_MP_ABS_C
#   define BN_MP_ADD_C
#   define BN_MP_ADD_D_C
#   define BN_MP_ADDMOD_C
#   define BN_MP_AND_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_COMPLEMENT_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DECR_C
#   define BN_MP_DIV_C
#   define BN_MP_DIV_2_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_DIV_3_C
#   define BN_MP_DIV_D_C
#   define BN_MP_DR_IS_MODULUS_C
#   define BN_MP_DR_REDUCE_C
#   define BN_MP_DR_SETUP_C
#   define BN_MP_ERROR_TO_STRING_C
#   define BN_MP_EXCH_C
#   define BN_MP_EXPORT_C
#   define BN_MP_EXPT_D_C

#   define BN_MP_EXPTMOD_C

#   define BN_MP_EXTEUCLID_C
#   define BN_MP_FREAD_C
#   define BN_MP_FWRITE_C
#   define BN_MP_GCD_C
#   define BN_MP_GET_DOUBLE_C
#   define BN_MP_GET_I32_C
#   define BN_MP_GET_I64_C
#   define BN_MP_GET_MAG32_C
#   define BN_MP_GET_MAG64_C
#   define BN_MP_GROW_C
#   define BN_MP_ILOGB_C
#   define BN_MP_IMPORT_C
#   define BN_MP_INCR_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_INIT_I32_C
#   define BN_MP_INIT_I64_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_INIT_SET_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_INIT_U32_C
#   define BN_MP_INIT_U64_C
#   define BN_MP_INVMOD_C
#   define BN_MP_IS_SQUARE_C
#   define BN_MP_ISEVEN_C
#   define BN_MP_ISODD_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_LCM_C
#   define BN_MP_LSHD_C
#   define BN_MP_MOD_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_MOD_D_C
#   define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#   define BN_MP_MONTGOMERY_REDUCE_C
#   define BN_MP_MONTGOMERY_SETUP_C
#   define BN_MP_MUL_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_MUL_D_C
#   define BN_MP_MULMOD_C
#   define BN_MP_N_ROOT_C

#   define BN_MP_NEG_C
#   define BN_MP_OR_C
#   define BN_MP_PRIME_FERMAT_C
#   define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C

#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_PRIME_MILLER_RABIN_C
#   define BN_MP_PRIME_NEXT_PRIME_C
#   define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#   define BN_MP_PRIME_RAND_C
#   define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
#   define BN_MP_RADIX_SIZE_C
#   define BN_MP_RADIX_SMAP_C
#   define BN_MP_RAND_C
#   define BN_MP_READ_RADIX_C
#   define BN_MP_READ_SIGNED_BIN_C
#   define BN_MP_READ_UNSIGNED_BIN_C
#   define BN_MP_REDUCE_C
#   define BN_MP_REDUCE_2K_C
#   define BN_MP_REDUCE_2K_L_C
#   define BN_MP_REDUCE_2K_SETUP_C
#   define BN_MP_REDUCE_2K_SETUP_L_C
#   define BN_MP_REDUCE_IS_2K_C
#   define BN_MP_REDUCE_IS_2K_L_C
#   define BN_MP_REDUCE_SETUP_C
#   define BN_MP_RSHD_C
#   define BN_MP_SET_C
#   define BN_MP_SET_DOUBLE_C
#   define BN_MP_SET_I32_C
#   define BN_MP_SET_I64_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SET_U64_C
#   define BN_MP_SHRINK_C
#   define BN_MP_SIGNED_BIN_SIZE_C
#   define BN_MP_SIGNED_RSH_C
#   define BN_MP_SQR_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_SQRT_C
#   define BN_MP_SQRTMOD_PRIME_C
#   define BN_MP_SUB_C
#   define BN_MP_SUB_D_C
#   define BN_MP_SUBMOD_C




#   define BN_MP_TO_SIGNED_BIN_C
#   define BN_MP_TO_SIGNED_BIN_N_C
#   define BN_MP_TO_UNSIGNED_BIN_C
#   define BN_MP_TO_UNSIGNED_BIN_N_C


#   define BN_MP_TORADIX_C
#   define BN_MP_TORADIX_N_C
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#   define BN_MP_XOR_C
#   define BN_MP_ZERO_C
#   define BN_PRIME_TAB_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_BALANCE_MUL_C
#   define BN_S_MP_EXPTMOD_C
#   define BN_S_MP_EXPTMOD_FAST_C
#   define BN_S_MP_GET_BIT_C
#   define BN_S_MP_INVMOD_FAST_C
#   define BN_S_MP_INVMOD_SLOW_C
#   define BN_S_MP_KARATSUBA_MUL_C
#   define BN_S_MP_KARATSUBA_SQR_C
#   define BN_S_MP_MONTGOMERY_REDUCE_FAST_C
#   define BN_S_MP_MUL_DIGS_C
#   define BN_S_MP_MUL_DIGS_FAST_C
#   define BN_S_MP_MUL_HIGH_DIGS_C
#   define BN_S_MP_MUL_HIGH_DIGS_FAST_C
#   define BN_S_MP_PRIME_IS_DIVISIBLE_C
#   define BN_S_MP_RAND_JENKINS_C
#   define BN_S_MP_RAND_PLATFORM_C
#   define BN_S_MP_REVERSE_C
#   define BN_S_MP_SQR_C
#   define BN_S_MP_SQR_FAST_C
#   define BN_S_MP_SUB_C
#   define BN_S_MP_TOOM_MUL_C
#   define BN_S_MP_TOOM_SQR_C
#endif
#endif
#if defined(BN_CUTOFFS_C)

#endif

#if defined(BN_DEPRECATED_C)


#   define BN_FAST_MP_INVMOD_C
#   define BN_FAST_MP_MONTGOMERY_REDUCE_C

#   define BN_FAST_S_MP_MUL_DIGS_C
#   define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#   define BN_FAST_S_MP_SQR_C
#   define BN_MP_AND_C
#   define BN_MP_BALANCE_MUL_C
#   define BN_MP_CMP_D_C
#   define BN_MP_EXPTMOD_FAST_C
#   define BN_MP_EXPT_D_C
#   define BN_MP_EXPT_D_EX_C
#   define BN_MP_GET_BIT_C
#   define BN_MP_GET_INT_C
#   define BN_MP_GET_LONG_C
#   define BN_MP_GET_LONG_LONG_C
#   define BN_MP_GET_MAG32_C
#   define BN_MP_GET_MAG64_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_INIT_U32_C
#   define BN_MP_INVMOD_SLOW_C
#   define BN_MP_JACOBI_C
#   define BN_MP_KARATSUBA_MUL_C
#   define BN_MP_KARATSUBA_SQR_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_N_ROOT_C
#   define BN_MP_N_ROOT_EX_C
#   define BN_MP_OR_C

#   define BN_MP_PRIME_IS_DIVISIBLE_C
#   define BN_MP_PRIME_RANDOM_EX_C
#   define BN_MP_RAND_DIGIT_C
#   define BN_MP_SET_INT_C
#   define BN_MP_SET_LONG_C
#   define BN_MP_SET_LONG_LONG_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SET_U64_C
#   define BN_MP_SIGNED_RSH_C
#   define BN_MP_TC_AND_C
#   define BN_MP_TC_DIV_2D_C
#   define BN_MP_TC_OR_C
#   define BN_MP_TC_XOR_C
#   define BN_MP_TOOM_MUL_C
#   define BN_MP_TOOM_SQR_C
#   define BN_MP_XOR_C
#   define BN_S_MP_BALANCE_MUL_C
#   define BN_S_MP_EXPTMOD_FAST_C
#   define BN_S_MP_GET_BIT_C
#   define BN_S_MP_INVMOD_FAST_C
#   define BN_S_MP_INVMOD_SLOW_C
#   define BN_S_MP_KARATSUBA_MUL_C
#   define BN_S_MP_KARATSUBA_SQR_C
#   define BN_S_MP_MONTGOMERY_REDUCE_FAST_C
#   define BN_S_MP_MUL_DIGS_FAST_C
#   define BN_S_MP_MUL_HIGH_DIGS_FAST_C
#   define BN_S_MP_PRIME_IS_DIVISIBLE_C
#   define BN_S_MP_PRIME_RANDOM_EX_C
#   define BN_S_MP_RAND_SOURCE_C
#   define BN_S_MP_REVERSE_C
#   define BN_S_MP_SQR_FAST_C
#   define BN_S_MP_TOOM_MUL_C
#   define BN_S_MP_TOOM_SQR_C
#endif

#if defined(BN_MP_2EXPT_C)
#   define BN_MP_GROW_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_ABS_C)
#   define BN_MP_COPY_C
#endif

#if defined(BN_MP_ADD_C)
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_ADD_D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_ADDMOD_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_C
#   define BN_MP_MOD_C
#endif

#if defined(BN_MP_AND_C)

#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C

#endif

#if defined(BN_MP_CLAMP_C)
#endif

#if defined(BN_MP_CLEAR_C)
#endif
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449



450
451
452
453

454
455
456
457
458
459
460
461
462
463
464
465












466




467




468


469
470
471
472
473
474
475
476
477










478
479
480
481
482
483
484
485
486
487
488
489
490
491



492
493
494
495
496
497

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780



781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

942

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962




963


964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156


1157
1158
1159


1160

1161



1162
1163
1164


1165

1166
1167


1168





1169
1170


1171

1172


1173



1174







1175








1176











1177

































1178
1179
1180
1181
1182
1183
1184




1185

1186
1187
1188
1189


1190




1191
1192



1193










1194
1195
1196
1197
1198
1199
1200





1201
1202
1203

1204




1205










1206
1207
1208











1209
1210


1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
#if defined(BN_MP_CMP_D_C)
#endif

#if defined(BN_MP_CMP_MAG_C)
#endif

#if defined(BN_MP_CNT_LSB_C)
#   define BN_MP_ISZERO_C
#endif

#if defined(BN_MP_COMPLEMENT_C)
#   define BN_MP_NEG_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_COPY_C)
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_COUNT_BITS_C)
#endif

#if defined(BN_MP_DIV_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COPY_C
#   define BN_MP_ZERO_C

#   define BN_MP_INIT_MULTI_C

#   define BN_MP_SET_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_ABS_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_CMP_C
#   define BN_MP_SUB_C
#   define BN_MP_ADD_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_LSHD_C
#   define BN_MP_RSHD_C
#   define BN_MP_MUL_D_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_DIV_2_C)
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_DIV_2D_C)
#   define BN_MP_COPY_C
#   define BN_MP_ZERO_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_RSHD_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_DIV_3_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_DIV_D_C)
#   define BN_MP_ISZERO_C

#   define BN_MP_COPY_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_DIV_3_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_DR_IS_MODULUS_C)
#endif

#if defined(BN_MP_DR_REDUCE_C)
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_DR_SETUP_C)
#endif




#if defined(BN_MP_EXCH_C)
#endif

#if defined(BN_MP_EXPORT_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_EXPT_D_C)
#   define BN_MP_EXPT_D_EX_C
#endif

#if defined(BN_MP_EXPT_D_EX_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_SET_C
#   define BN_MP_MUL_C
#   define BN_MP_CLEAR_C
#   define BN_MP_SQR_C
#endif

#if defined(BN_MP_EXPTMOD_C)
#   define BN_MP_INIT_C
#   define BN_MP_INVMOD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_ABS_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_REDUCE_IS_2K_L_C
#   define BN_S_MP_EXPTMOD_C
#   define BN_MP_DR_IS_MODULUS_C
#   define BN_MP_REDUCE_IS_2K_C
#   define BN_MP_ISODD_C
#   define BN_MP_EXPTMOD_FAST_C
#endif

#if defined(BN_MP_EXPTMOD_FAST_C)
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLEAR_C
#   define BN_MP_MONTGOMERY_SETUP_C
#   define BN_FAST_MP_MONTGOMERY_REDUCE_C
#   define BN_MP_MONTGOMERY_REDUCE_C
#   define BN_MP_DR_SETUP_C
#   define BN_MP_DR_REDUCE_C
#   define BN_MP_REDUCE_2K_SETUP_C
#   define BN_MP_REDUCE_2K_C
#   define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#   define BN_MP_MULMOD_C
#   define BN_MP_SET_C
#   define BN_MP_MOD_C
#   define BN_MP_COPY_C
#   define BN_MP_SQR_C
#   define BN_MP_MUL_C
#   define BN_MP_EXCH_C
#endif

#if defined(BN_MP_EXTEUCLID_C)
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_SET_C
#   define BN_MP_COPY_C
#   define BN_MP_ISZERO_C
#   define BN_MP_DIV_C
#   define BN_MP_MUL_C
#   define BN_MP_SUB_C
#   define BN_MP_NEG_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_FREAD_C)
#   define BN_MP_ZERO_C
#   define BN_MP_S_RMAP_REVERSE_SZ_C
#   define BN_MP_S_RMAP_REVERSE_C
#   define BN_MP_MUL_D_C
#   define BN_MP_ADD_D_C
#   define BN_MP_CMP_D_C
#endif

#if defined(BN_MP_FWRITE_C)
#   define BN_MP_RADIX_SIZE_C
#   define BN_MP_TORADIX_C
#endif

#if defined(BN_MP_GCD_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_ABS_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_EXCH_C
#   define BN_S_MP_SUB_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_GET_BIT_C)
#   define BN_MP_ISZERO_C
#endif

#if defined(BN_MP_GET_DOUBLE_C)



#   define BN_MP_ISNEG_C
#endif

#if defined(BN_MP_GET_INT_C)

#endif

#if defined(BN_MP_GET_LONG_C)
#endif

#if defined(BN_MP_GET_LONG_LONG_C)
#endif

#if defined(BN_MP_GROW_C)
#endif

#if defined(BN_MP_IMPORT_C)












#   define BN_MP_ZERO_C




#   define BN_MP_MUL_2D_C




#   define BN_MP_CLAMP_C


#endif

#if defined(BN_MP_INIT_C)
#endif

#if defined(BN_MP_INIT_COPY_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_COPY_C
#   define BN_MP_CLEAR_C










#endif

#if defined(BN_MP_INIT_MULTI_C)
#   define BN_MP_ERR_C
#   define BN_MP_INIT_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_INIT_SET_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_C
#endif

#if defined(BN_MP_INIT_SET_INT_C)



#   define BN_MP_INIT_C
#   define BN_MP_SET_INT_C
#endif

#if defined(BN_MP_INIT_SIZE_C)
#   define BN_MP_INIT_C

#endif

#if defined(BN_MP_INVMOD_C)
#   define BN_MP_CMP_D_C
#   define BN_MP_ISODD_C
#   define BN_FAST_MP_INVMOD_C
#   define BN_MP_INVMOD_SLOW_C
#endif

#if defined(BN_MP_INVMOD_SLOW_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_C
#   define BN_MP_COPY_C
#   define BN_MP_ISEVEN_C
#   define BN_MP_SET_C
#   define BN_MP_DIV_2_C
#   define BN_MP_ISODD_C
#   define BN_MP_ADD_C
#   define BN_MP_SUB_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_IS_SQUARE_C)
#   define BN_MP_MOD_D_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_MOD_C
#   define BN_MP_GET_INT_C
#   define BN_MP_SQRT_C
#   define BN_MP_SQR_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_JACOBI_C)
#   define BN_MP_KRONECKER_C
#   define BN_MP_ISNEG_C
#   define BN_MP_CMP_D_C
#endif

#if defined(BN_MP_KARATSUBA_MUL_C)
#   define BN_MP_MUL_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_S_MP_ADD_C
#   define BN_MP_ADD_C
#   define BN_S_MP_SUB_C
#   define BN_MP_LSHD_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_KARATSUBA_SQR_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_MP_SQR_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#   define BN_MP_LSHD_C
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_KRONECKER_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_ISEVEN_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_CMP_D_C
#   define BN_MP_COPY_C
#   define BN_MP_MOD_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_LCM_C)
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_GCD_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_DIV_C
#   define BN_MP_MUL_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_LSHD_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_GROW_C
#   define BN_MP_RSHD_C
#endif

#if defined(BN_MP_MOD_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_DIV_C
#   define BN_MP_CLEAR_C
#   define BN_MP_ISZERO_C
#   define BN_MP_EXCH_C
#   define BN_MP_ADD_C
#endif

#if defined(BN_MP_MOD_2D_C)
#   define BN_MP_ZERO_C
#   define BN_MP_COPY_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_MOD_D_C)
#   define BN_MP_DIV_D_C
#endif

#if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C)
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_2EXPT_C
#   define BN_MP_SET_C
#   define BN_MP_MUL_2_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_MONTGOMERY_REDUCE_C)
#   define BN_FAST_MP_MONTGOMERY_REDUCE_C
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#   define BN_MP_RSHD_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_MONTGOMERY_SETUP_C)
#endif

#if defined(BN_MP_MUL_C)
#   define BN_MP_TOOM_MUL_C
#   define BN_MP_KARATSUBA_MUL_C
#   define BN_FAST_S_MP_MUL_DIGS_C
#   define BN_S_MP_MUL_C
#   define BN_S_MP_MUL_DIGS_C
#endif

#if defined(BN_MP_MUL_2_C)
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_MUL_2D_C)

#   define BN_MP_COPY_C
#   define BN_MP_GROW_C
#   define BN_MP_LSHD_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_MUL_D_C)
#   define BN_MP_GROW_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_MULMOD_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_MUL_C
#   define BN_MP_CLEAR_C
#   define BN_MP_MOD_C
#endif

#if defined(BN_MP_N_ROOT_C)
#   define BN_MP_N_ROOT_EX_C
#endif

#if defined(BN_MP_N_ROOT_EX_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_C
#   define BN_MP_COPY_C
#   define BN_MP_EXPT_D_EX_C
#   define BN_MP_MUL_C
#   define BN_MP_SUB_C
#   define BN_MP_MUL_D_C
#   define BN_MP_DIV_C
#   define BN_MP_CMP_C
#   define BN_MP_SUB_D_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_NEG_C)
#   define BN_MP_COPY_C
#   define BN_MP_ISZERO_C
#endif

#if defined(BN_MP_OR_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_PRIME_FERMAT_C)
#   define BN_MP_CMP_D_C
#   define BN_MP_INIT_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_CMP_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_PRIME_FROBENIUS_UNDERWOOD_C)
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_SET_LONG_C
#   define BN_MP_SQR_C
#   define BN_MP_SUB_D_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_GCD_C
#   define BN_MP_ADD_D_C
#   define BN_MP_SET_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_D_C
#   define BN_MP_ADD_C
#   define BN_MP_MUL_C
#   define BN_MP_SUB_C
#   define BN_MP_MOD_C
#   define BN_MP_GET_BIT_C
#   define BN_MP_EXCH_C
#   define BN_MP_ISZERO_C
#   define BN_MP_CMP_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_PRIME_IS_DIVISIBLE_C)
#   define BN_MP_MOD_D_C
#endif

#if defined(BN_MP_PRIME_IS_PRIME_C)
#   define BN_MP_ISEVEN_C
#   define BN_MP_IS_SQUARE_C
#   define BN_MP_CMP_D_C
#   define BN_MP_PRIME_IS_DIVISIBLE_C
#   define BN_MP_INIT_SET_C
#   define BN_MP_PRIME_MILLER_RABIN_C
#   define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
#   define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
#   define BN_MP_READ_RADIX_C
#   define BN_MP_CMP_C
#   define BN_MP_SET_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_RAND_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_PRIME_MILLER_RABIN_C)
#   define BN_MP_CMP_D_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_SUB_D_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_EXPTMOD_C

#   define BN_MP_CMP_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_PRIME_NEXT_PRIME_C)
#   define BN_MP_CMP_D_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_D_C
#   define BN_MP_ISEVEN_C
#   define BN_MP_MOD_D_C
#   define BN_MP_INIT_C
#   define BN_MP_ADD_D_C
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C)
#endif

#if defined(BN_MP_PRIME_RANDOM_EX_C)
#   define BN_MP_READ_UNSIGNED_BIN_C
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_SUB_D_C
#   define BN_MP_DIV_2_C
#   define BN_MP_MUL_2_C
#   define BN_MP_ADD_D_C



#endif

#if defined(BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C)
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_MUL_D_C
#   define BN_S_MP_MUL_SI_C
#   define BN_MP_INIT_C
#   define BN_MP_SET_LONG_C
#   define BN_MP_MUL_C
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_GCD_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_ADD_D_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_SET_C
#   define BN_MP_MUL_2_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_MOD_C
#   define BN_MP_SQR_C
#   define BN_MP_SUB_C
#   define BN_MP_GET_BIT_C
#   define BN_MP_ADD_C
#   define BN_MP_ISODD_C
#   define BN_MP_DIV_2_C
#   define BN_MP_SUB_D_C
#   define BN_MP_ISZERO_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_RADIX_SIZE_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_DIV_D_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_RADIX_SMAP_C)
#   define BN_MP_S_RMAP_C
#   define BN_MP_S_RMAP_REVERSE_C
#   define BN_MP_S_RMAP_REVERSE_SZ_C
#endif

#if defined(BN_MP_RAND_C)
#   define BN_MP_RAND_DIGIT_C
#   define BN_MP_ZERO_C
#   define BN_MP_ADD_D_C
#   define BN_MP_LSHD_C
#endif

#if defined(BN_MP_READ_RADIX_C)
#   define BN_MP_ZERO_C
#   define BN_MP_S_RMAP_REVERSE_SZ_C
#   define BN_MP_S_RMAP_REVERSE_C
#   define BN_MP_MUL_D_C
#   define BN_MP_ADD_D_C
#   define BN_MP_ISZERO_C
#endif

#if defined(BN_MP_READ_SIGNED_BIN_C)
#   define BN_MP_READ_UNSIGNED_BIN_C
#endif

#if defined(BN_MP_READ_UNSIGNED_BIN_C)
#   define BN_MP_GROW_C
#   define BN_MP_ZERO_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_REDUCE_C)
#   define BN_MP_REDUCE_SETUP_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_RSHD_C
#   define BN_MP_MUL_C
#   define BN_S_MP_MUL_HIGH_DIGS_C
#   define BN_FAST_S_MP_MUL_HIGH_DIGS_C
#   define BN_MP_MOD_2D_C
#   define BN_S_MP_MUL_DIGS_C
#   define BN_MP_SUB_C
#   define BN_MP_CMP_D_C
#   define BN_MP_SET_C
#   define BN_MP_LSHD_C
#   define BN_MP_ADD_C
#   define BN_MP_CMP_C
#   define BN_S_MP_SUB_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_REDUCE_2K_C)
#   define BN_MP_INIT_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_MUL_D_C
#   define BN_S_MP_ADD_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_REDUCE_2K_L_C)
#   define BN_MP_INIT_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_MUL_C
#   define BN_S_MP_ADD_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_REDUCE_2K_SETUP_C)
#   define BN_MP_INIT_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_2EXPT_C
#   define BN_MP_CLEAR_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_2K_SETUP_L_C)
#   define BN_MP_INIT_C
#   define BN_MP_2EXPT_C
#   define BN_MP_COUNT_BITS_C
#   define BN_S_MP_SUB_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_REDUCE_IS_2K_C)
#   define BN_MP_REDUCE_2K_C
#   define BN_MP_COUNT_BITS_C
#endif

#if defined(BN_MP_REDUCE_IS_2K_L_C)
#endif

#if defined(BN_MP_REDUCE_SETUP_C)
#   define BN_MP_2EXPT_C
#   define BN_MP_DIV_C
#endif

#if defined(BN_MP_RSHD_C)
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_SET_C)
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_SET_DOUBLE_C)
#   define BN_MP_SET_LONG_LONG_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_ISZERO_C
#endif

#if defined(BN_MP_SET_INT_C)
#   define BN_MP_ZERO_C

#   define BN_MP_MUL_2D_C

#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_SET_LONG_C)
#endif

#if defined(BN_MP_SET_LONG_LONG_C)
#endif

#if defined(BN_MP_SHRINK_C)
#endif

#if defined(BN_MP_SIGNED_BIN_SIZE_C)
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#endif

#if defined(BN_MP_SQR_C)
#   define BN_MP_TOOM_SQR_C
#   define BN_MP_KARATSUBA_SQR_C
#   define BN_FAST_S_MP_SQR_C




#   define BN_S_MP_SQR_C


#endif

#if defined(BN_MP_SQRMOD_C)
#   define BN_MP_INIT_C
#   define BN_MP_SQR_C
#   define BN_MP_CLEAR_C
#   define BN_MP_MOD_C
#endif

#if defined(BN_MP_SQRT_C)
#   define BN_MP_N_ROOT_C
#   define BN_MP_ISZERO_C
#   define BN_MP_ZERO_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_RSHD_C
#   define BN_MP_DIV_C
#   define BN_MP_ADD_C
#   define BN_MP_DIV_2_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_SQRTMOD_PRIME_C)
#   define BN_MP_CMP_D_C
#   define BN_MP_ZERO_C
#   define BN_MP_JACOBI_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_D_C
#   define BN_MP_ADD_D_C
#   define BN_MP_DIV_2_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_COPY_C
#   define BN_MP_SUB_D_C
#   define BN_MP_ISEVEN_C
#   define BN_MP_SET_INT_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_MULMOD_C
#   define BN_MP_SET_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_SUB_C)
#   define BN_S_MP_ADD_C
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_SUB_D_C)
#   define BN_MP_GROW_C
#   define BN_MP_ADD_D_C
#   define BN_MP_CLAMP_C
#endif

#if defined(BN_MP_SUBMOD_C)
#   define BN_MP_INIT_C
#   define BN_MP_SUB_C
#   define BN_MP_CLEAR_C
#   define BN_MP_MOD_C
#endif

#if defined(BN_MP_TC_AND_C)
#   define BN_MP_ISNEG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_AND_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_MP_TC_DIV_2D_C)
#   define BN_MP_ISNEG_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_ADD_D_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_TC_OR_C)
#   define BN_MP_ISNEG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_OR_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_MP_TC_XOR_C)
#   define BN_MP_ISNEG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_SET_INT_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_XOR_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_MP_TO_SIGNED_BIN_C)
#   define BN_MP_TO_UNSIGNED_BIN_C
#endif

#if defined(BN_MP_TO_SIGNED_BIN_N_C)
#   define BN_MP_SIGNED_BIN_SIZE_C
#   define BN_MP_TO_SIGNED_BIN_C
#endif

#if defined(BN_MP_TO_UNSIGNED_BIN_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_ISZERO_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_TO_UNSIGNED_BIN_N_C)
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#   define BN_MP_TO_UNSIGNED_BIN_C
#endif

#if defined(BN_MP_TOOM_MUL_C)
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_COPY_C
#   define BN_MP_RSHD_C
#   define BN_MP_MUL_C
#   define BN_MP_MUL_2_C
#   define BN_MP_ADD_C
#   define BN_MP_SUB_C
#   define BN_MP_DIV_2_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_MUL_D_C
#   define BN_MP_DIV_3_C
#   define BN_MP_LSHD_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_TOOM_SQR_C)
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_COPY_C
#   define BN_MP_RSHD_C
#   define BN_MP_SQR_C
#   define BN_MP_MUL_2_C
#   define BN_MP_ADD_C
#   define BN_MP_SUB_C
#   define BN_MP_DIV_2_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_MUL_D_C
#   define BN_MP_DIV_3_C
#   define BN_MP_LSHD_C
#   define BN_MP_CLEAR_MULTI_C
#endif

#if defined(BN_MP_TORADIX_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_DIV_D_C
#   define BN_MP_CLEAR_C
#   define BN_MP_S_RMAP_C
#endif

#if defined(BN_MP_TORADIX_N_C)
#   define BN_MP_ISZERO_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_DIV_D_C
#   define BN_MP_CLEAR_C
#   define BN_MP_S_RMAP_C
#endif

#if defined(BN_MP_UNSIGNED_BIN_SIZE_C)
#   define BN_MP_COUNT_BITS_C
#endif

#if defined(BN_MP_XOR_C)
#   define BN_MP_INIT_COPY_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C
#endif

#if defined(BN_MP_ZERO_C)
#endif

#if defined(BN_PRIME_TAB_C)
#endif

#if defined(BN_REVERSE_C)


#endif

#if defined(BN_S_MP_ADD_C)


#   define BN_MP_GROW_C

#   define BN_MP_CLAMP_C



#endif

#if defined(BN_S_MP_EXPTMOD_C)


#   define BN_MP_COUNT_BITS_C

#   define BN_MP_INIT_C
#   define BN_MP_CLEAR_C


#   define BN_MP_REDUCE_SETUP_C





#   define BN_MP_REDUCE_C
#   define BN_MP_REDUCE_2K_SETUP_L_C


#   define BN_MP_REDUCE_2K_L_C

#   define BN_MP_MOD_C


#   define BN_MP_COPY_C



#   define BN_MP_SQR_C







#   define BN_MP_MUL_C








#   define BN_MP_SET_C











#   define BN_MP_EXCH_C

































#endif

#if defined(BN_S_MP_MUL_DIGS_C)
#   define BN_FAST_S_MP_MUL_DIGS_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C




#   define BN_MP_CLEAR_C

#endif

#if defined(BN_S_MP_MUL_HIGH_DIGS_C)
#   define BN_FAST_S_MP_MUL_HIGH_DIGS_C


#   define BN_MP_INIT_SIZE_C




#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C



#   define BN_MP_CLEAR_C










#endif

#if defined(BN_S_MP_SQR_C)
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_CLAMP_C
#   define BN_MP_EXCH_C
#   define BN_MP_CLEAR_C





#endif

#if defined(BN_S_MP_SUB_C)

#   define BN_MP_GROW_C




#   define BN_MP_CLAMP_C










#endif

#if defined(BNCORE_C)











#endif



#ifdef LTM3
#   define LTM_LAST
#endif

#include <tommath_superclass.h>
#include <tommath_class.h>
#else
#   define LTM_LAST
#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







<














|
|
|
|

>
|
>
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|



|
|



|
|


|



|
|

|



|
>



<
<

|






|
|
|





>
>
>





|


|



|
<
<
<

<

|




|
<

<

<
<

|
|
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
|
|
<
<
<
<



<
|

|
|
|
|

|
|



|
<
<

|
<








|
|
|


<

|

|
<
<
<
<



>
>
>
|


|
>


|


|





|
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>

>
>
>
>
|
>
>






|

|
>
>
>
>
>
>
>
>
>
>



|

<







|
>
>
>

|


|

>




|
<
|


|
|
<
<
<
<
<
<
<
<
<
<
<

|
<
<
<
<
<
|

|


<
<


|
<
<
<


|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



|
|
|
|

|
|

<



|
|
|
|
|
|



<

<



|
<

|

|



|

|







|
|
|

|




|
|
|

|







|
|
|
|
|







>



<



|
|



|
|
|
|



|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|




<



<

|
<



|
|
|
|
|



|
|
|
|
|
|

|
|
|

<
<

|
<
|
|
|
|
|
<
<
<
|



|
|

|
|
|
<
<
|
|
|
|
|
|
|



|
|
|



>
|

|



|
|
|
|

|
<
|
|





|
|
|
|
|
|
|
>
>
>



|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
<
<

|
|



|

<

|



<
<
<



|
|
|
|



|
<
<

<
|







|
|

|



|
|
|
|
<
<
|
|
|
|
|
|
|
|
|
|



|
|
|
|
|
|
|
|



|
|
|
|
|
|
|
|



|
|
|
|




|
|

|
|



<
















<



<


|


|
|
>
|
>
|


|


|









|
|
|
|
>
>
>
>

>
>



|
|
|
|



|
|
|
|
<

|
|
|
|
|



|
|
|
|
|
|
|
|
|
|
|
|

|
<
|



|
|




<


<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<


|
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<

|
<
<













|
|
|
|



<

<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|
<

|
|



|
<

|
|







<

|
<








|
>
>


|
>
>
|
>
|
>
>
>



>
>

>

|
>
>

>
>
>
>
>
|
|
>
>
|
>

>
>
|
>
>
>

>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
|
|
|
>
>
>
>
|
>



|
>
>

>
>
>
>

|
>
>
>
|
>
>
>
>
>
>
>
>
>
>



|
|

|
>
>
>
>
>



>

>
>
>
>

>
>
>
>
>
>
>
>
>
>


|
>
>
>
>
>
>
>
>
>
>
>


>
>




|
|



<
<
<
<
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382



383

384
385
386
387
388
389
390

391

392


393
394
395












396
397


398
399




400
401
402

403
404
405
406
407
408
409
410
411
412
413
414
415


416
417

418
419
420
421
422
423
424
425
426
427
428
429
430

431
432
433
434




435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

530
531
532
533
534











535
536





537
538
539
540
541


542
543
544



545
546
547



















548
549
550
551
552
553
554
555
556
557
558

559
560
561
562
563
564
565
566
567
568
569
570

571

572
573
574
575

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664
665
666

667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690


691
692

693
694
695
696
697



698
699
700
701
702
703
704
705
706
707


708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778


779
780
781
782
783
784
785
786

787
788
789
790
791



792
793
794
795
796
797
798
799
800
801
802


803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822


823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

890
891
892

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

967
968
969
970
971
972
973
974
975
976

977
978











979







980
981
982













983









984
985


986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006





1007











1008
1009

















1010
1011

1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1029
1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244




#if defined(BN_MP_CMP_D_C)
#endif

#if defined(BN_MP_CMP_MAG_C)
#endif

#if defined(BN_MP_CNT_LSB_C)

#endif

#if defined(BN_MP_COMPLEMENT_C)
#   define BN_MP_NEG_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_COPY_C)
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_COUNT_BITS_C)
#endif

#if defined(BN_MP_DECR_C)
#   define BN_MP_INCR_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_D_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_DIV_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_MUL_D_C
#   define BN_MP_RSHD_C
#   define BN_MP_SUB_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_DIV_2_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_DIV_2D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_COPY_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_RSHD_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_DIV_3_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#endif

#if defined(BN_MP_DIV_D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_DIV_3_C


#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#endif

#if defined(BN_MP_DR_IS_MODULUS_C)
#endif

#if defined(BN_MP_DR_REDUCE_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_GROW_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_DR_SETUP_C)
#endif

#if defined(BN_MP_ERROR_TO_STRING_C)
#endif

#if defined(BN_MP_EXCH_C)
#endif

#if defined(BN_MP_EXPORT_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_COPY_C
#endif

#if defined(BN_MP_EXPT_D_C)
#   define BN_MP_CLEAR_C



#   define BN_MP_INIT_COPY_C

#   define BN_MP_MUL_C
#   define BN_MP_SET_C
#   define BN_MP_SQR_C
#endif

#if defined(BN_MP_EXPTMOD_C)
#   define BN_MP_ABS_C

#   define BN_MP_CLEAR_C

#   define BN_MP_CLEAR_MULTI_C


#   define BN_MP_DR_IS_MODULUS_C
#   define BN_MP_INIT_C
#   define BN_MP_INVMOD_C












#   define BN_MP_REDUCE_IS_2K_C
#   define BN_MP_REDUCE_IS_2K_L_C


#   define BN_S_MP_EXPTMOD_C
#   define BN_S_MP_EXPTMOD_FAST_C




#endif

#if defined(BN_MP_EXTEUCLID_C)

#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MUL_C
#   define BN_MP_NEG_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_MP_FREAD_C)
#   define BN_MP_ADD_D_C


#   define BN_MP_MUL_D_C
#   define BN_MP_ZERO_C

#endif

#if defined(BN_MP_FWRITE_C)
#   define BN_MP_RADIX_SIZE_C
#   define BN_MP_TORADIX_C
#endif

#if defined(BN_MP_GCD_C)
#   define BN_MP_ABS_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C

#   define BN_MP_EXCH_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_MUL_2D_C
#   define BN_S_MP_SUB_C




#endif

#if defined(BN_MP_GET_DOUBLE_C)
#endif

#if defined(BN_MP_GET_I32_C)
#   define BN_MP_GET_MAG32_C
#endif

#if defined(BN_MP_GET_I64_C)
#   define BN_MP_GET_MAG64_C
#endif

#if defined(BN_MP_GET_MAG32_C)
#endif

#if defined(BN_MP_GET_MAG64_C)
#endif

#if defined(BN_MP_GROW_C)
#endif

#if defined(BN_MP_ILOGB_C)
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_EXCH_C
#   define BN_MP_EXPT_D_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MUL_C
#   define BN_MP_SET_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SQR_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_IMPORT_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_INCR_C)
#   define BN_MP_ADD_D_C
#   define BN_MP_DECR_C
#   define BN_MP_SET_C
#endif

#if defined(BN_MP_INIT_C)
#endif

#if defined(BN_MP_INIT_COPY_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_COPY_C
#   define BN_MP_INIT_SIZE_C
#endif

#if defined(BN_MP_INIT_I32_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_I32_C
#endif

#if defined(BN_MP_INIT_I64_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_I64_C
#endif

#if defined(BN_MP_INIT_MULTI_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_C

#endif

#if defined(BN_MP_INIT_SET_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_C
#endif

#if defined(BN_MP_INIT_SIZE_C)
#endif

#if defined(BN_MP_INIT_U32_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_U32_C
#endif

#if defined(BN_MP_INIT_U64_C)
#   define BN_MP_INIT_C
#   define BN_MP_SET_U64_C
#endif

#if defined(BN_MP_INVMOD_C)
#   define BN_MP_CMP_D_C
#   define BN_S_MP_INVMOD_FAST_C

#   define BN_S_MP_INVMOD_SLOW_C
#endif

#if defined(BN_MP_IS_SQUARE_C)
#   define BN_MP_CLEAR_C











#   define BN_MP_CMP_MAG_C
#   define BN_MP_GET_I32_C





#   define BN_MP_INIT_U32_C
#   define BN_MP_MOD_C
#   define BN_MP_MOD_D_C
#   define BN_MP_SQRT_C
#   define BN_MP_SQR_C


#endif

#if defined(BN_MP_ISEVEN_C)



#endif

#if defined(BN_MP_ISODD_C)



















#endif

#if defined(BN_MP_KRONECKER_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_MOD_C

#endif

#if defined(BN_MP_LCM_C)
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_DIV_C
#   define BN_MP_GCD_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MUL_C
#endif

#if defined(BN_MP_LSHD_C)

#   define BN_MP_GROW_C

#endif

#if defined(BN_MP_MOD_C)
#   define BN_MP_ADD_C

#   define BN_MP_CLEAR_C
#   define BN_MP_DIV_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#endif

#if defined(BN_MP_MOD_2D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_COPY_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_MOD_D_C)
#   define BN_MP_DIV_D_C
#endif

#if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C)
#   define BN_MP_2EXPT_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_MUL_2_C
#   define BN_MP_SET_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_MONTGOMERY_REDUCE_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_GROW_C
#   define BN_MP_RSHD_C
#   define BN_S_MP_MONTGOMERY_REDUCE_FAST_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_MONTGOMERY_SETUP_C)
#endif

#if defined(BN_MP_MUL_C)
#   define BN_S_MP_BALANCE_MUL_C
#   define BN_S_MP_KARATSUBA_MUL_C
#   define BN_S_MP_MUL_DIGS_C
#   define BN_S_MP_MUL_DIGS_FAST_C
#   define BN_S_MP_TOOM_MUL_C
#endif

#if defined(BN_MP_MUL_2_C)
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_MUL_2D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_COPY_C
#   define BN_MP_GROW_C
#   define BN_MP_LSHD_C

#endif

#if defined(BN_MP_MUL_D_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_MP_MULMOD_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_MOD_C
#   define BN_MP_MUL_C
#endif

#if defined(BN_MP_N_ROOT_C)
#   define BN_MP_2EXPT_C

#   define BN_MP_ADD_D_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_C
#   define BN_MP_EXCH_C
#   define BN_MP_EXPT_D_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MUL_C
#   define BN_MP_MUL_D_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_NEG_C)
#   define BN_MP_COPY_C

#endif

#if defined(BN_MP_OR_C)

#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C

#endif

#if defined(BN_MP_PRIME_FERMAT_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_INIT_C
#endif

#if defined(BN_MP_PRIME_FROBENIUS_UNDERWOOD_C)
#   define BN_MP_ADD_C
#   define BN_MP_ADD_D_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_EXCH_C
#   define BN_MP_GCD_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_MOD_C
#   define BN_MP_MUL_2_C


#   define BN_MP_MUL_C
#   define BN_MP_MUL_D_C

#   define BN_MP_SET_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SQR_C
#   define BN_MP_SUB_C
#   define BN_MP_SUB_D_C



#   define BN_S_MP_GET_BIT_C
#endif

#if defined(BN_MP_PRIME_IS_PRIME_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_SET_C


#   define BN_MP_IS_SQUARE_C
#   define BN_MP_PRIME_MILLER_RABIN_C
#   define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
#   define BN_MP_RAND_C
#   define BN_MP_READ_RADIX_C
#   define BN_MP_SET_C
#   define BN_S_MP_PRIME_IS_DIVISIBLE_C
#endif

#if defined(BN_MP_PRIME_MILLER_RABIN_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_PRIME_NEXT_PRIME_C)
#   define BN_MP_ADD_D_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_D_C
#   define BN_MP_INIT_C
#   define BN_MP_MOD_D_C
#   define BN_MP_PRIME_IS_PRIME_C

#   define BN_MP_SET_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C)
#endif

#if defined(BN_MP_PRIME_RAND_C)
#   define BN_MP_ADD_D_C
#   define BN_MP_DIV_2_C
#   define BN_MP_MUL_2_C
#   define BN_MP_PRIME_IS_PRIME_C
#   define BN_MP_READ_UNSIGNED_BIN_C
#   define BN_MP_SUB_D_C
#   define BN_S_MP_PRIME_RANDOM_EX_C
#   define BN_S_MP_RAND_CB_C
#   define BN_S_MP_RAND_SOURCE_C
#endif

#if defined(BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C)
#   define BN_MP_ADD_C
#   define BN_MP_ADD_D_C

#   define BN_MP_CLEAR_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CNT_LSB_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_DIV_2_C
#   define BN_MP_GCD_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_MOD_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_C
#   define BN_MP_SET_C
#   define BN_MP_SET_I32_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SQR_C
#   define BN_MP_SUB_C


#   define BN_MP_SUB_D_C
#   define BN_S_MP_GET_BIT_C
#   define BN_S_MP_MUL_SI_C
#endif

#if defined(BN_MP_RADIX_SIZE_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_COUNT_BITS_C

#   define BN_MP_DIV_D_C
#   define BN_MP_INIT_COPY_C
#endif

#if defined(BN_MP_RADIX_SMAP_C)



#endif

#if defined(BN_MP_RAND_C)
#   define BN_MP_GROW_C
#   define BN_MP_RAND_SOURCE_C
#   define BN_MP_ZERO_C
#   define BN_S_MP_RAND_SOURCE_C
#endif

#if defined(BN_MP_READ_RADIX_C)
#   define BN_MP_ADD_D_C


#   define BN_MP_MUL_D_C

#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_READ_SIGNED_BIN_C)
#   define BN_MP_READ_UNSIGNED_BIN_C
#endif

#if defined(BN_MP_READ_UNSIGNED_BIN_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_REDUCE_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C


#   define BN_MP_INIT_COPY_C
#   define BN_MP_LSHD_C
#   define BN_MP_MOD_2D_C
#   define BN_MP_MUL_C
#   define BN_MP_RSHD_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_C
#   define BN_S_MP_MUL_DIGS_C
#   define BN_S_MP_MUL_HIGH_DIGS_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_2K_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_MUL_D_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_2K_L_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_C
#   define BN_MP_MUL_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_2K_SETUP_C)
#   define BN_MP_2EXPT_C
#   define BN_MP_CLEAR_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_2K_SETUP_L_C)
#   define BN_MP_2EXPT_C
#   define BN_MP_CLEAR_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_INIT_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_REDUCE_IS_2K_C)

#   define BN_MP_COUNT_BITS_C
#endif

#if defined(BN_MP_REDUCE_IS_2K_L_C)
#endif

#if defined(BN_MP_REDUCE_SETUP_C)
#   define BN_MP_2EXPT_C
#   define BN_MP_DIV_C
#endif

#if defined(BN_MP_RSHD_C)
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_SET_C)

#endif

#if defined(BN_MP_SET_DOUBLE_C)

#   define BN_MP_DIV_2D_C
#   define BN_MP_MUL_2D_C
#   define BN_MP_SET_U64_C
#endif

#if defined(BN_MP_SET_I32_C)
#   define BN_MP_SET_U32_C
#endif

#if defined(BN_MP_SET_I64_C)
#   define BN_MP_SET_U64_C
#endif

#if defined(BN_MP_SET_U32_C)
#endif

#if defined(BN_MP_SET_U64_C)
#endif

#if defined(BN_MP_SHRINK_C)
#endif

#if defined(BN_MP_SIGNED_BIN_SIZE_C)
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#endif

#if defined(BN_MP_SIGNED_RSH_C)
#   define BN_MP_ADD_D_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_SUB_D_C
#endif

#if defined(BN_MP_SQR_C)
#   define BN_S_MP_KARATSUBA_SQR_C
#   define BN_S_MP_SQR_C
#   define BN_S_MP_SQR_FAST_C
#   define BN_S_MP_TOOM_SQR_C
#endif

#if defined(BN_MP_SQRMOD_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_C
#   define BN_MP_MOD_C
#   define BN_MP_SQR_C
#endif

#if defined(BN_MP_SQRT_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_DIV_2_C

#   define BN_MP_DIV_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_COPY_C
#   define BN_MP_RSHD_C
#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_SQRTMOD_PRIME_C)
#   define BN_MP_ADD_D_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_D_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_2_C
#   define BN_MP_EXPTMOD_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_KRONECKER_C
#   define BN_MP_MOD_D_C
#   define BN_MP_MULMOD_C
#   define BN_MP_SET_C
#   define BN_MP_SET_U32_C
#   define BN_MP_SQRMOD_C
#   define BN_MP_SUB_D_C

#   define BN_MP_ZERO_C
#endif

#if defined(BN_MP_SUB_C)
#   define BN_MP_CMP_MAG_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_MP_SUB_D_C)

#   define BN_MP_ADD_D_C
#   define BN_MP_CLAMP_C











#   define BN_MP_GROW_C







#endif

#if defined(BN_MP_SUBMOD_C)













#   define BN_MP_CLEAR_C









#   define BN_MP_INIT_C
#   define BN_MP_MOD_C


#   define BN_MP_SUB_C
#endif

#if defined(BN_MP_TO_SIGNED_BIN_C)
#   define BN_MP_TO_UNSIGNED_BIN_C
#endif

#if defined(BN_MP_TO_SIGNED_BIN_N_C)
#   define BN_MP_SIGNED_BIN_SIZE_C
#   define BN_MP_TO_SIGNED_BIN_C
#endif

#if defined(BN_MP_TO_UNSIGNED_BIN_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_DIV_2D_C
#   define BN_MP_INIT_COPY_C
#   define BN_S_MP_REVERSE_C
#endif

#if defined(BN_MP_TO_UNSIGNED_BIN_N_C)

#   define BN_MP_TO_UNSIGNED_BIN_C





#   define BN_MP_UNSIGNED_BIN_SIZE_C











#endif


















#if defined(BN_MP_TORADIX_C)
#   define BN_MP_CLEAR_C

#   define BN_MP_DIV_D_C
#   define BN_MP_INIT_COPY_C
#   define BN_S_MP_REVERSE_C
#endif

#if defined(BN_MP_TORADIX_N_C)
#   define BN_MP_CLEAR_C

#   define BN_MP_DIV_D_C
#   define BN_MP_INIT_COPY_C
#   define BN_S_MP_REVERSE_C
#endif

#if defined(BN_MP_UNSIGNED_BIN_SIZE_C)
#   define BN_MP_COUNT_BITS_C
#endif

#if defined(BN_MP_XOR_C)

#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C

#endif

#if defined(BN_MP_ZERO_C)
#endif

#if defined(BN_PRIME_TAB_C)
#endif

#if defined(BN_S_MP_ADD_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_S_MP_BALANCE_MUL_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_MUL_C
#endif

#if defined(BN_S_MP_EXPTMOD_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_C
#   define BN_MP_MOD_C
#   define BN_MP_MUL_C
#   define BN_MP_REDUCE_2K_SETUP_L_C
#   define BN_MP_REDUCE_SETUP_C
#   define BN_MP_SET_C
#   define BN_MP_SQR_C
#endif

#if defined(BN_S_MP_EXPTMOD_FAST_C)
#   define BN_MP_CLEAR_C
#   define BN_MP_COPY_C
#   define BN_MP_COUNT_BITS_C
#   define BN_MP_DR_SETUP_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_MOD_C
#   define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
#   define BN_MP_MONTGOMERY_SETUP_C
#   define BN_MP_MULMOD_C
#   define BN_MP_MUL_C
#   define BN_MP_REDUCE_2K_SETUP_C
#   define BN_MP_SET_C
#   define BN_MP_SQR_C
#endif

#if defined(BN_S_MP_GET_BIT_C)
#endif

#if defined(BN_S_MP_INVMOD_FAST_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_2_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_S_MP_INVMOD_SLOW_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_CMP_C
#   define BN_MP_CMP_D_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_COPY_C
#   define BN_MP_DIV_2_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_MOD_C
#   define BN_MP_SET_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_S_MP_KARATSUBA_MUL_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_MUL_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_S_MP_KARATSUBA_SQR_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_SQR_C
#   define BN_S_MP_ADD_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_S_MP_MONTGOMERY_REDUCE_FAST_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CMP_MAG_C
#   define BN_MP_GROW_C
#   define BN_S_MP_SUB_C
#endif

#if defined(BN_S_MP_MUL_DIGS_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#   define BN_S_MP_MUL_DIGS_FAST_C
#endif

#if defined(BN_S_MP_MUL_DIGS_FAST_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_S_MP_MUL_HIGH_DIGS_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#   define BN_S_MP_MUL_HIGH_DIGS_FAST_C
#endif

#if defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_S_MP_PRIME_IS_DIVISIBLE_C)
#   define BN_MP_MOD_D_C
#endif

#if defined(BN_S_MP_RAND_JENKINS_C)
#   define BN_S_MP_RAND_JENKINS_INIT_C
#endif

#if defined(BN_S_MP_RAND_PLATFORM_C)
#endif

#if defined(BN_S_MP_REVERSE_C)
#endif

#if defined(BN_S_MP_SQR_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_EXCH_C
#   define BN_MP_INIT_SIZE_C
#endif

#if defined(BN_S_MP_SQR_FAST_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_S_MP_SUB_C)
#   define BN_MP_CLAMP_C
#   define BN_MP_GROW_C
#endif

#if defined(BN_S_MP_TOOM_MUL_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_DIV_2_C
#   define BN_MP_DIV_3_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_C
#   define BN_MP_SUB_C
#endif

#if defined(BN_S_MP_TOOM_SQR_C)
#   define BN_MP_ADD_C
#   define BN_MP_CLAMP_C
#   define BN_MP_CLEAR_C
#   define BN_MP_DIV_2_C
#   define BN_MP_INIT_C
#   define BN_MP_INIT_SIZE_C
#   define BN_MP_LSHD_C
#   define BN_MP_MUL_2_C
#   define BN_MP_MUL_C
#   define BN_MP_SQR_C
#   define BN_MP_SUB_C
#endif

#ifdef LTM_INSIDE
#undef LTM_INSIDE
#ifdef LTM3
#   define LTM_LAST
#endif

#include "tommath_superclass.h"
#include "tommath_class.h"
#else
#   define LTM_LAST
#endif




Added libtommath/tommath_cutoffs.h.


























>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
   Current values evaluated on an AMD A8-6600K (64-bit).
   Type "make tune" to optimize them for your machine but
   be aware that it may take a long time. It took 2:30 minutes
   on the aforementioned machine for example.
 */

#define MP_DEFAULT_KARATSUBA_MUL_CUTOFF 80
#define MP_DEFAULT_KARATSUBA_SQR_CUTOFF 120
#define MP_DEFAULT_TOOM_MUL_CUTOFF      350
#define MP_DEFAULT_TOOM_SQR_CUTOFF      400
Changes to libtommath/tommath_private.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16














17
18










































19
20
21


22























23
24















25





26




27
28
29
30
31

32


33
34
35
36
37
38

39
40










41
42
43
44
45





















46
47

48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65


66





67
68
69
70




































71
72
73
74
75
76
77
78
79
80






81
82
83
84

85
86
87

88



89
90


91

92
93
94
95
96





97
98
99
100
101
102
103
104
105
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */
#ifndef TOMMATH_PRIV_H_
#define TOMMATH_PRIV_H_

#include "tommath.h"
















#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? (x) : (y))










































#endif

#ifndef MAX


#define MAX(x, y) (((x) > (y)) ? (x) : (y))























#endif
















#ifdef __cplusplus





extern "C" {




#endif

/* define heap macros */
#ifndef XMALLOC
/* default to libc stuff */

#   define XMALLOC(size)                   malloc(size)


#   define XFREE(mem, size)                free(mem)
#   define XREALLOC(mem, oldsize, newsize) realloc(mem, newsize)
#else
/* prototypes for our heap functions */
extern void *XMALLOC(size_t size);
extern void *XREALLOC(void *mem, size_t oldsize, size_t newsize);

extern void XFREE(void *mem, size_t size);
#endif











/* ---> Basic Manipulations <--- */
#define IS_ZERO(a) ((a)->used == 0)
#define IS_EVEN(a) (((a)->used == 0) || (((a)->dp[0] & 1u) == 0u))
#define IS_ODD(a)  (((a)->used > 0) && (((a)->dp[0] & 1u) == 1u))






















/* lowlevel functions, do not call! */

int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int fast_s_mp_sqr(const mp_int *a, mp_int *b);
int s_mp_sqr(const mp_int *a, mp_int *b);

int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
int mp_toom_sqr(const mp_int *a, mp_int *b);
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);


void bn_reverse(unsigned char *s, int len);






extern const char *const mp_s_rmap;
extern const unsigned char mp_s_rmap_reverse[];
extern const size_t mp_s_rmap_reverse_sz;





































/* Fancy macro to set an MPI from another type.
 * There are several things assumed:
 *  x is the counter
 *  a is the pointer to the MPI
 *  b is the original value that should be set in the MPI.
 */
#define MP_SET_XLONG(func_name, type)                    \
int func_name (mp_int * a, type b)                       \
{                                                        \






   int x = 0;                                            \
   int new_size = (((CHAR_BIT * sizeof(type)) + DIGIT_BIT) - 1) / DIGIT_BIT; \
   int res = mp_grow(a, new_size);                       \
   if (res == MP_OKAY) {                                 \

     mp_zero(a);                                         \
     while (b != 0u) {                                   \
        a->dp[x++] = ((mp_digit)b & MP_MASK);            \

        if ((CHAR_BIT * sizeof (b)) <= DIGIT_BIT) { break; } \



        b >>= ((CHAR_BIT * sizeof (b)) <= DIGIT_BIT ? 0 : DIGIT_BIT); \
     }                                                   \


     a->used = x;                                        \

   }                                                     \
   return res;                                           \
}

#ifdef __cplusplus





}
#endif

#endif


/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */
|
<
<
<
<
<
<
<
<
|
|




>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
>
>



|

>
|
>
>
|
<


|
|
>
|

>
>
>
>
>
>
>
>
>
>


|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
|
|
<
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
>
>
|
>
>
>
>
>

|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
<
<
<
<
<
|
|
|
>
>
>
>
>
>
|
<
|
|
>
|
|
|
>
|
>
>
>
|
|
>
>
|
>
|
|
|

<
>
>
>
>
>
|
<


<
<
<
<
<
1








2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248





249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285

286
287





/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */

#ifndef TOMMATH_PRIV_H_
#define TOMMATH_PRIV_H_

#include "tommath.h"
#include "tommath_class.h"

/*
 * Private symbols
 * ---------------
 *
 * On Unix symbols can be marked as hidden if libtommath is compiled
 * as a shared object. By default, symbols are visible.
 * As of now, this feature is opt-in via the MP_PRIVATE_SYMBOLS define.
 *
 * On Win32 a .def file must be used to specify the exported symbols.
 */
#if defined (MP_PRIVATE_SYMBOLS) && __GNUC__ >= 4
#   define MP_PRIVATE __attribute__ ((visibility ("hidden")))
#else
#   define MP_PRIVATE
#endif

/* Hardening libtommath
 * --------------------
 *
 * By default memory is zeroed before calling
 * MP_FREE to avoid leaking data. This is good
 * practice in cryptographical applications.
 *
 * Note however that memory allocators used
 * in cryptographical applications can often
 * be configured by itself to clear memory,
 * rendering the clearing in tommath unnecessary.
 * See for example https://github.com/GrapheneOS/hardened_malloc
 * and the option CONFIG_ZERO_ON_FREE.
 *
 * Furthermore there are applications which
 * value performance more and want this
 * feature to be disabled. For such applications
 * define MP_NO_ZERO_ON_FREE during compilation.
 */
#ifdef MP_NO_ZERO_ON_FREE
#  define MP_FREE_BUFFER(mem, size)   MP_FREE((mem), (size))
#  define MP_FREE_DIGITS(mem, digits) MP_FREE((mem), sizeof (mp_digit) * (size_t)(digits))
#else
#  define MP_FREE_BUFFER(mem, size)                     \
do {                                                    \
   size_t fs_ = (size);                                 \
   void* fm_ = (mem);                                   \
   if (fm_ != NULL) {                                   \
      MP_ZERO_BUFFER(fm_, fs_);                         \
      MP_FREE(fm_, fs_);                                \
   }                                                    \
} while (0)
#  define MP_FREE_DIGITS(mem, digits)                   \
do {                                                    \
   int fd_ = (digits);                                  \
   void* fm_ = (mem);                                   \
   if (fm_ != NULL) {                                   \
      size_t fs_ = sizeof (mp_digit) * (size_t)fd_;     \
      MP_ZERO_BUFFER(fm_, fs_);                         \
      MP_FREE(fm_, fs_);                                \
   }                                                    \
} while (0)
#endif

#ifdef MP_USE_MEMSET
#  include <string.h>
#  define MP_ZERO_BUFFER(mem, size)   memset((mem), 0, (size))
#  define MP_ZERO_DIGITS(mem, digits)                   \
do {                                                    \
   int zd_ = (digits);                                  \
   if (zd_ > 0) {                                       \
      memset((mem), 0, sizeof(mp_digit) * (size_t)zd_); \
   }                                                    \
} while (0)
#else
#  define MP_ZERO_BUFFER(mem, size)                     \
do {                                                    \
   size_t zs_ = (size);                                 \
   char* zm_ = (char*)(mem);                            \
   while (zs_-- > 0u) {                                 \
      *zm_++ = '\0';                                    \
   }                                                    \
} while (0)
#  define MP_ZERO_DIGITS(mem, digits)                   \
do {                                                    \
   int zd_ = (digits);                                  \
   mp_digit* zm_ = (mem);                               \
   while (zd_-- > 0) {                                  \
      *zm_++ = 0;                                       \
   }                                                    \
} while (0)
#endif

/* Tunable cutoffs
 * ---------------
 *
 *  - In the default settings, a cutoff X can be modified at runtime
 *    by adjusting the corresponding X_CUTOFF variable.
 *
 *  - Tunability of the library can be disabled at compile time
 *    by defining the MP_FIXED_CUTOFFS macro.
 *
 *  - There is an additional file tommath_cutoffs.h, which defines
 *    the default cutoffs. These can be adjusted manually or by the
 *    autotuner.
 *
 */

#ifdef MP_FIXED_CUTOFFS
#  include "tommath_cutoffs.h"
#  define MP_KARATSUBA_MUL_CUTOFF MP_DEFAULT_KARATSUBA_MUL_CUTOFF
#  define MP_KARATSUBA_SQR_CUTOFF MP_DEFAULT_KARATSUBA_SQR_CUTOFF
#  define MP_TOOM_MUL_CUTOFF      MP_DEFAULT_TOOM_MUL_CUTOFF
#  define MP_TOOM_SQR_CUTOFF      MP_DEFAULT_TOOM_SQR_CUTOFF
#else
#  define MP_KARATSUBA_MUL_CUTOFF KARATSUBA_MUL_CUTOFF
#  define MP_KARATSUBA_SQR_CUTOFF KARATSUBA_SQR_CUTOFF
#  define MP_TOOM_MUL_CUTOFF      TOOM_MUL_CUTOFF
#  define MP_TOOM_SQR_CUTOFF      TOOM_SQR_CUTOFF
#endif

/* define heap macros */
#ifndef MP_MALLOC
/* default to libc stuff */
#   include <stdlib.h>
#   define MP_MALLOC(size)                   malloc(size)
#   define MP_REALLOC(mem, oldsize, newsize) realloc((mem), (newsize))
#   define MP_CALLOC(nmemb, size)            calloc((nmemb), (size))
#   define MP_FREE(mem, size)                free(mem)

#else
/* prototypes for our heap functions */
extern void *MP_MALLOC(size_t size);
extern void *MP_REALLOC(void *mem, size_t oldsize, size_t newsize);
extern void *MP_CALLOC(size_t nmemb, size_t size);
extern void MP_FREE(void *mem, size_t size);
#endif

/* TODO: Remove private_mp_word as soon as deprecated mp_word is removed from tommath. */
#undef mp_word
typedef private_mp_word mp_word;

#define MP_MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MP_MAX(x, y) (((x) > (y)) ? (x) : (y))

/* Static assertion */
#define MP_STATIC_ASSERT(msg, cond) typedef char mp_static_assert_##msg[(cond) ? 1 : -1];

/* ---> Basic Manipulations <--- */
#define MP_IS_ZERO(a) ((a)->used == 0)
#define MP_IS_EVEN(a) (((a)->used == 0) || (((a)->dp[0] & 1u) == 0u))
#define MP_IS_ODD(a)  (((a)->used > 0) && (((a)->dp[0] & 1u) == 1u))

#define MP_SIZEOF_BITS(type)    ((size_t)CHAR_BIT * sizeof(type))
#define MP_MAXFAST              (int)(1uL << (MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT)))

/* TODO: Remove PRIVATE_MP_WARRAY as soon as deprecated MP_WARRAY is removed from tommath.h */
#undef MP_WARRAY
#define MP_WARRAY PRIVATE_MP_WARRAY

/* TODO: Remove PRIVATE_MP_PREC as soon as deprecated MP_PREC is removed from tommath.h */
#ifdef PRIVATE_MP_PREC
#   undef MP_PREC
#   define MP_PREC PRIVATE_MP_PREC
#endif

/* Minimum number of available digits in mp_int, MP_PREC >= MP_MIN_PREC */
#define MP_MIN_PREC ((((int)MP_SIZEOF_BITS(long long) + MP_DIGIT_BIT) - 1) / MP_DIGIT_BIT)

MP_STATIC_ASSERT(prec_geq_min_prec, MP_PREC >= MP_MIN_PREC)

/* random number source */
extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size);

/* lowlevel functions, do not call! */
MP_PRIVATE mp_bool s_mp_get_bit(const mp_int *a, unsigned int b);
MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;

MP_PRIVATE mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
MP_PRIVATE mp_err s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
MP_PRIVATE mp_err s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
MP_PRIVATE mp_err s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
MP_PRIVATE mp_err s_mp_sqr_fast(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_sqr(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_karatsuba_sqr(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_toom_sqr(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;
MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
MP_PRIVATE mp_err s_mp_rand_platform(void *p, size_t n) MP_WUR;
MP_PRIVATE mp_err s_mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat);
MP_PRIVATE void s_mp_reverse(unsigned char *s, int len);
MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result);

/* TODO: jenkins prng is not thread safe as of now */
MP_PRIVATE mp_err s_mp_rand_jenkins(void *p, size_t n) MP_WUR;
MP_PRIVATE void s_mp_rand_jenkins_init(uint64_t seed);

extern MP_PRIVATE const char *const mp_s_rmap;
extern MP_PRIVATE const unsigned char mp_s_rmap_reverse[];
extern MP_PRIVATE const size_t mp_s_rmap_reverse_sz;
extern MP_PRIVATE const mp_digit *s_mp_prime_tab;

/* deprecated functions */
MP_DEPRECATED(s_mp_invmod_fast) mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
MP_DEPRECATED(s_mp_montgomery_reduce_fast) mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n,
      mp_digit rho);
MP_DEPRECATED(s_mp_mul_digs_fast) mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c,
      int digs);
MP_DEPRECATED(s_mp_mul_high_digs_fast) mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b,
      mp_int *c,
      int digs);
MP_DEPRECATED(s_mp_sqr_fast) mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b);
MP_DEPRECATED(s_mp_balance_mul) mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c);
MP_DEPRECATED(s_mp_exptmod_fast) mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P,
      mp_int *Y,
      int redmode);
MP_DEPRECATED(s_mp_invmod_slow) mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
MP_DEPRECATED(s_mp_karatsuba_mul) mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
MP_DEPRECATED(s_mp_karatsuba_sqr) mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b);
MP_DEPRECATED(s_mp_toom_mul) mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
MP_DEPRECATED(s_mp_toom_sqr) mp_err mp_toom_sqr(const mp_int *a, mp_int *b);
MP_DEPRECATED(s_mp_reverse) void bn_reverse(unsigned char *s, int len);

/* code-generating macros */
#define MP_SET_UNSIGNED(name, type)                                                    \
    void name(mp_int * a, type b)                                                      \
    {                                                                                  \
        int i = 0;                                                                     \
        while (b != 0u) {                                                              \
            a->dp[i++] = ((mp_digit)b & MP_MASK);                                      \
            if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; }                       \
            b >>= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT);         \
        }                                                                              \
        a->used = i;                                                                   \
        a->sign = MP_ZPOS;                                                             \
        MP_ZERO_DIGITS(a->dp + a->used, a->alloc - a->used);                           \
    }






#define MP_SET_SIGNED(name, uname, type, utype)          \
    void name(mp_int * a, type b)                        \
    {                                                    \
        uname(a, (b < 0) ? -(utype)b : (utype)b);        \
        if (b < 0) { a->sign = MP_NEG; }                 \
    }

#define MP_INIT_INT(name , set, type)                    \
    mp_err name(mp_int * a, type b)                      \
    {                                                    \

        mp_err err;                                      \
        if ((err = mp_init(a)) != MP_OKAY) {             \
            return err;                                  \
        }                                                \
        set(a, b);                                       \
        return MP_OKAY;                                  \
    }

#define MP_GET_MAG(type, name)                                                         \
    type name(const mp_int* a)                                                         \
    {                                                                                  \
        unsigned i = MP_MIN((unsigned)a->used, (unsigned)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \
        type res = 0u;                                                                 \
        while (i --> 0u) {                                                             \
            res <<= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT);       \
            res |= (type)a->dp[i];                                                     \
            if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; }                       \
        }                                                                              \
        return res;                                                                    \
    }


#define MP_GET_SIGNED(type, name, mag)                        \
    type name(const mp_int* a)                                \
    {                                                         \
        uint64_t res = mag(a);                                \
        return (a->sign == MP_NEG) ? (type)-res : (type)res;  \
    }


#endif





Changes to libtommath/tommath_superclass.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* super class file for PK algos */

/* default ... include all MPI */
#define LTM_ALL

/* RSA only (does not support DH/DSA/ECC) */
|
<
<
<
<
<
<
<
<
|
<







1








2

3
4
5
6
7
8
9
/* LibTomMath, multiple-precision integer library -- Tom St Denis */








/* SPDX-License-Identifier: Unlicense */


/* super class file for PK algos */

/* default ... include all MPI */
#define LTM_ALL

/* RSA only (does not support DH/DSA/ECC) */
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#   define BN_MP_SET_INT_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#   define BN_MP_TO_UNSIGNED_BIN_C
#   define BN_MP_MOD_D_C
#   define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#   define BN_REVERSE_C
#   define BN_PRIME_TAB_C

/* other modifiers */
#   define BN_MP_DIV_SMALL                    /* Slower division, not critical */

/* here we are on the last pass so we turn things off.  The functions classes are still there
 * but we remove them specifically from the build.  This also invokes tweaks in functions
 * like removing support for even moduli, etc...
 */
#   ifdef LTM_LAST
#      undef BN_MP_TOOM_MUL_C
#      undef BN_MP_TOOM_SQR_C
#      undef BN_MP_KARATSUBA_MUL_C
#      undef BN_MP_KARATSUBA_SQR_C
#      undef BN_MP_REDUCE_C
#      undef BN_MP_REDUCE_SETUP_C
#      undef BN_MP_DR_IS_MODULUS_C
#      undef BN_MP_DR_SETUP_C
#      undef BN_MP_DR_REDUCE_C
#      undef BN_MP_REDUCE_IS_2K_C
#      undef BN_MP_REDUCE_2K_SETUP_C
#      undef BN_MP_REDUCE_2K_C
#      undef BN_S_MP_EXPTMOD_C
#      undef BN_MP_DIV_3_C
#      undef BN_S_MP_MUL_HIGH_DIGS_C
#      undef BN_FAST_S_MP_MUL_HIGH_DIGS_C
#      undef BN_FAST_MP_INVMOD_C

/* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold
 * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines]
 * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without
 * trouble.
 */
#      undef BN_S_MP_MUL_DIGS_C
#      undef BN_S_MP_SQR_C
#      undef BN_MP_MONTGOMERY_REDUCE_C
#   endif

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */







|










|
|
|
|











|
|












<
<
<
<
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75




#   define BN_MP_SET_INT_C
#   define BN_MP_INIT_MULTI_C
#   define BN_MP_CLEAR_MULTI_C
#   define BN_MP_UNSIGNED_BIN_SIZE_C
#   define BN_MP_TO_UNSIGNED_BIN_C
#   define BN_MP_MOD_D_C
#   define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
#   define BN_S_MP_REVERSE_C
#   define BN_PRIME_TAB_C

/* other modifiers */
#   define BN_MP_DIV_SMALL                    /* Slower division, not critical */

/* here we are on the last pass so we turn things off.  The functions classes are still there
 * but we remove them specifically from the build.  This also invokes tweaks in functions
 * like removing support for even moduli, etc...
 */
#   ifdef LTM_LAST
#      undef BN_S_MP_TOOM_MUL_C
#      undef BN_S_MP_TOOM_SQR_C
#      undef BN_S_MP_KARATSUBA_MUL_C
#      undef BN_S_MP_KARATSUBA_SQR_C
#      undef BN_MP_REDUCE_C
#      undef BN_MP_REDUCE_SETUP_C
#      undef BN_MP_DR_IS_MODULUS_C
#      undef BN_MP_DR_SETUP_C
#      undef BN_MP_DR_REDUCE_C
#      undef BN_MP_REDUCE_IS_2K_C
#      undef BN_MP_REDUCE_2K_SETUP_C
#      undef BN_MP_REDUCE_2K_C
#      undef BN_S_MP_EXPTMOD_C
#      undef BN_MP_DIV_3_C
#      undef BN_S_MP_MUL_HIGH_DIGS_C
#      undef BN_S_MP_MUL_HIGH_DIGS_FAST_C
#      undef BN_S_MP_INVMOD_FAST_C

/* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold
 * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines]
 * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without
 * trouble.
 */
#      undef BN_S_MP_MUL_DIGS_C
#      undef BN_S_MP_SQR_C
#      undef BN_MP_MONTGOMERY_REDUCE_C
#   endif

#endif




Deleted libtommath/updatemakes.sh.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/bin/bash

./helper.pl --update-makefiles || exit 1

makefiles=(makefile makefile.shared makefile_include.mk makefile.msvc makefile.unix makefile.mingw)
vcproj=(libtommath_VS2008.vcproj)

if [ $# -eq 1 ] && [ "$1" == "-c" ]; then
  git add ${makefiles[@]} ${vcproj[@]} && git commit -m 'Update makefiles'
fi

exit 0

# ref:         $Format:%D$
# git commit:  $Format:%H$
# commit time: $Format:%ai$
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<