/*
* tclBinary.c --
*
* This file contains the implementation of the "binary" Tcl built-in
* command and the Tcl binary data object.
*
* Copyright (c) 1997 by Sun Microsystems, Inc.
* Copyright (c) 1998-1999 by Scriptics Corporation.
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*/
#include "tclInt.h"
#include "tclTomMath.h"
#include <math.h>
#include <assert.h>
/*
* The following constants are used by GetFormatSpec to indicate various
* special conditions in the parsing of a format specifier.
*/
#define BINARY_ALL ((size_t)-1) /* Use all elements in the argument. */
#define BINARY_NOCOUNT ((size_t)-2) /* No count was specified in format. */
/*
* The following flags may be ORed together and returned by GetFormatSpec
*/
#define BINARY_SIGNED 0 /* Field to be read as signed data */
#define BINARY_UNSIGNED 1 /* Field to be read as unsigned data */
/*
* The following defines the maximum number of different (integer) numbers
* placed in the object cache by 'binary scan' before it bails out and
* switches back to Plan A (creating a new object for each value.)
* Theoretically, it would be possible to keep the cache about for the values
* that are already in it, but that makes the code slower in practise when
* overflow happens, and makes little odds the rest of the time (as measured
* on my machine.) It is also slower (on the sample I tried at least) to grow
* the cache to hold all items we might want to put in it; presumably the
* extra cost of managing the memory for the enlarged table outweighs the
* benefit from allocating fewer objects. This is probably because as the
* number of objects increases, the likelihood of reuse of any particular one
* drops, and there is very little gain from larger maximum cache sizes (the
* value below is chosen to allow caching to work in full with conversion of
* bytes.) - DKF
*/
#define BINARY_SCAN_MAX_CACHE 260
/*
* Prototypes for local procedures defined in this file:
*/
static void DupByteArrayInternalRep(Tcl_Obj *srcPtr,
Tcl_Obj *copyPtr);
static void DupProperByteArrayInternalRep(Tcl_Obj *srcPtr,
Tcl_Obj *copyPtr);
static int FormatNumber(Tcl_Interp *interp, int type,
Tcl_Obj *src, unsigned char **cursorPtr);
static void FreeByteArrayInternalRep(Tcl_Obj *objPtr);
static void FreeProperByteArrayInternalRep(Tcl_Obj *objPtr);
static int GetFormatSpec(const char **formatPtr, char *cmdPtr,
size_t *countPtr, int *flagsPtr);
static Tcl_Obj * ScanNumber(unsigned char *buffer, int type,
int flags, Tcl_HashTable **numberCachePtr);
static int SetByteArrayFromAny(Tcl_Interp *interp,
Tcl_Obj *objPtr);
static void UpdateStringOfByteArray(Tcl_Obj *listPtr);
static void DeleteScanNumberCache(Tcl_HashTable *numberCachePtr);
static int NeedReversing(int format);
static void CopyNumber(const void *from, void *to,
size_t length, int type);
/* Binary ensemble commands */
static int BinaryFormatCmd(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
static int BinaryScanCmd(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
/* Binary encoding sub-ensemble commands */
static int BinaryEncodeHex(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
static int BinaryDecodeHex(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
static int BinaryEncode64(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
static int BinaryDecode64(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
static int BinaryEncodeUu(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *const objv[]);
static int BinaryDecodeUu(ClientData clientData,
Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]);
/*
* The following tables are used by the binary encoders
*/
static const char HexDigits[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
static const char UueDigits[65] = {
'`', '!', '"', '#', '$', '%', '&', '\'',
'(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?',
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z', '[', '\\',']', '^', '_',
'`'
};
static const char B64Digits[65] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/',
'='
};
/*
* How to construct the ensembles.
*/
static const EnsembleImplMap binaryMap[] = {
{ "format", BinaryFormatCmd, TclCompileBasicMin1ArgCmd, NULL, NULL, 0 },
{ "scan", BinaryScanCmd, TclCompileBasicMin2ArgCmd, NULL, NULL, 0 },
{ "encode", NULL, NULL, NULL, NULL, 0 },
{ "decode", NULL, NULL, NULL, NULL, 0 },
{ NULL, NULL, NULL, NULL, NULL, 0 }
};
static const EnsembleImplMap encodeMap[] = {
{ "hex", BinaryEncodeHex, TclCompileBasic1ArgCmd, NULL, NULL, 0 },
{ "uuencode", BinaryEncodeUu, NULL, NULL, NULL, 0 },
{ "base64", BinaryEncode64, NULL, NULL, NULL, 0 },
{ NULL, NULL, NULL, NULL, NULL, 0 }
};
static const EnsembleImplMap decodeMap[] = {
{ "hex", BinaryDecodeHex, TclCompileBasic1Or2ArgCmd, NULL, NULL, 0 },
{ "uuencode", BinaryDecodeUu, TclCompileBasic1Or2ArgCmd, NULL, NULL, 0 },
{ "base64", BinaryDecode64, TclCompileBasic1Or2ArgCmd, NULL, NULL, 0 },
{ NULL, NULL, NULL, NULL, NULL, 0 }
};
/*
* The following object types represent an array of bytes. The intent is to
* allow arbitrary binary data to pass through Tcl as a Tcl value without loss
* or damage. Such values are useful for things like encoded strings or Tk
* images to name just two.
*
* It's strange to have two Tcl_ObjTypes in place for this task when one would
* do, so a bit of detail and history how we got to this point and where we
* might go from here.
*
* A bytearray is an ordered sequence of bytes. Each byte is an integer value
* in the range [0-255]. To be a Tcl value type, we need a way to encode each
* value in the value set as a Tcl string. The simplest encoding is to
* represent each byte value as the same codepoint value. A bytearray of N
* bytes is encoded into a Tcl string of N characters where the codepoint of
* each character is the value of corresponding byte. This approach creates a
* one-to-one map between all bytearray values and a subset of Tcl string
* values.
*
* When converting a Tcl string value to the bytearray internal rep, the
* question arises what to do with strings outside that subset? That is,
* those Tcl strings containing at least one codepoint greater than 255? The
* obviously correct answer is to raise an error! That string value does not
* represent any valid bytearray value. Full Stop. The setFromAnyProc
* signature has a completion code return value for just this reason, to
* reject invalid inputs.
*
* Unfortunately this was not the path taken by the authors of the original
* tclByteArrayType. They chose to accept all Tcl string values as acceptable
* string encodings of the bytearray values that result from masking away the
* high bits of any codepoint value at all. This meant that every bytearray
* value had multiple accepted string representations.
*
* The implications of this choice are truly ugly. When a Tcl value has a
* string representation, we are required to accept that as the true value.
* Bytearray values that possess a string representation cannot be processed
* as bytearrays because we cannot know which true value that bytearray
* represents. The consequence is that we drag around an internal rep that we
* cannot make any use of. This painful price is extracted at any point after
* a string rep happens to be generated for the value. This happens even when
* the troublesome codepoints outside the byte range never show up. This
* happens rather routinely in normal Tcl operations unless we burden the
* script writer with the cognitive burden of avoiding it. The price is also
* paid by callers of the C interface. The routine
*
* unsigned char *Tcl_GetByteArrayFromObj(objPtr, lenPtr)
*
* has a guarantee to always return a non-NULL value, but that value points to
* a byte sequence that cannot be used by the caller to process the Tcl value
* absent some sideband testing that objPtr is "pure". Tcl offers no public
* interface to perform this test, so callers either break encapsulation or
* are unavoidably buggy. Tcl has defined a public interface that cannot be
* used correctly. The Tcl source code itself suffers the same problem, and
* has been buggy, but progressively less so as more and more portions of the
* code have been retrofitted with the required "purity testing". The set of
* values able to pass the purity test can be increased via the introduction
* of a "canonical" flag marker, but the only way the broken interface itself
* can be discarded is to start over and define the Tcl_ObjType properly.
* Bytearrays should simply be usable as bytearrays without a kabuki dance of
* testing.
*
* The Tcl_ObjType "properByteArrayType" is (nearly) a correct implementation
* of bytearrays. Any Tcl value with the type properByteArrayType can have
* its bytearray value fetched and used with confidence that acting on that
* value is equivalent to acting on the true Tcl string value. This still
* implies a side testing burden -- past mistakes will not let us avoid that
* immediately, but it is at least a conventional test of type, and can be
* implemented entirely by examining the objPtr fields, with no need to query
* the intrep, as a canonical flag would require.
*
* Until Tcl_GetByteArrayFromObj() and Tcl_SetByteArrayLength() can be revised
* to admit the possibility of returning NULL when the true value is not a
* valid bytearray, we need a mechanism to retain compatibility with the
* deployed callers of the broken interface. That's what the retained
* "tclByteArrayType" provides. In those unusual circumstances where we
* convert an invalid bytearray value to a bytearray type, it is to this
* legacy type. Essentially any time this legacy type gets used, it's a
* signal of a bug being ignored. A TIP should be drafted to remove this
* connection to the broken past so that Tcl 9 will no longer have any trace
* of it. Prescribing a migration path will be the key element of that work.
* The internal changes now in place are the limit of what can be done short
* of interface repair. They provide a great expansion of the histories over
* which bytearray values can be useful in the meanwhile.
*/
static const Tcl_ObjType properByteArrayType = {
"bytearray",
FreeProperByteArrayInternalRep,
DupProperByteArrayInternalRep,
UpdateStringOfByteArray,
NULL
};
const Tcl_ObjType tclByteArrayType = {
"bytearray",
FreeByteArrayInternalRep,
DupByteArrayInternalRep,
NULL,
SetByteArrayFromAny
};
/*
* The following structure is the internal rep for a ByteArray object. Keeps
* track of how much memory has been used and how much has been allocated for
* the byte array to enable growing and shrinking of the ByteArray object with
* fewer mallocs.
*/
typedef struct {
size_t bad; /* Index of the character that is a nonbyte.
* If all characters are bytes, bad = used,
* though then we should never read it. */
size_t used; /* The number of bytes used in the byte
* array. */
size_t allocated; /* The amount of space actually allocated
* minus 1 byte. */
unsigned char bytes[1]; /* The array of bytes. The actual size of this
* field depends on the 'allocated' field
* above. */
} ByteArray;
#define BYTEARRAY_SIZE(len) \
(offsetof(ByteArray, bytes) + (len))
#define GET_BYTEARRAY(irPtr) ((ByteArray *) (irPtr)->twoPtrValue.ptr1)
#define SET_BYTEARRAY(irPtr, baPtr) \
(irPtr)->twoPtrValue.ptr1 = (baPtr)
int
TclIsPureByteArray(
Tcl_Obj * objPtr)
{
return TclHasIntRep(objPtr, &properByteArrayType);
}
/*
*----------------------------------------------------------------------
*
* Tcl_NewByteArrayObj --
*
* This procedure is creates a new ByteArray object and initializes it
* from the given array of bytes.
*
* Results:
* The newly create object is returned. This object will have no initial
* string representation. The returned object has a ref count of 0.
*
* Side effects:
* Memory allocated for new object and copy of byte array argument.
*
*----------------------------------------------------------------------
*/
#undef Tcl_NewByteArrayObj
Tcl_Obj *
Tcl_NewByteArrayObj(
const unsigned char *bytes, /* The array of bytes used to initialize the
* new object. */
size_t length) /* Length of the array of bytes */
{
#ifdef TCL_MEM_DEBUG
return Tcl_DbNewByteArrayObj(bytes, length, "unknown", 0);
#else /* if not TCL_MEM_DEBUG */
Tcl_Obj *objPtr;
TclNewObj(objPtr);
Tcl_SetByteArrayObj(objPtr, bytes, length);
return objPtr;
#endif /* TCL_MEM_DEBUG */
}
/*
*----------------------------------------------------------------------
*
* Tcl_DbNewByteArrayObj --
*
* This procedure is normally called when debugging: i.e., when
* TCL_MEM_DEBUG is defined. It is the same as the Tcl_NewByteArrayObj
* above except that it calls Tcl_DbCkalloc directly with the file name
* and line number from its caller. This simplifies debugging since then
* the [memory active] command will report the correct file name and line
* number when reporting objects that haven't been freed.
*
* When TCL_MEM_DEBUG is not defined, this procedure just returns the
* result of calling Tcl_NewByteArrayObj.
*
* Results:
* The newly create object is returned. This object will have no initial
* string representation. The returned object has a ref count of 0.
*
* Side effects:
* Memory allocated for new object and copy of byte array argument.
*
*----------------------------------------------------------------------
*/
#ifdef TCL_MEM_DEBUG
Tcl_Obj *
Tcl_DbNewByteArrayObj(
const unsigned char *bytes, /* The array of bytes used to initialize the
* new object. */
size_t length, /* Length of the array of bytes. */
const char *file, /* The name of the source file calling this
* procedure; used for debugging. */
int line) /* Line number in the source file; used for
* debugging. */
{
Tcl_Obj *objPtr;
TclDbNewObj(objPtr, file, line);
Tcl_SetByteArrayObj(objPtr, bytes, length);
return objPtr;
}
#else /* if not TCL_MEM_DEBUG */
Tcl_Obj *
Tcl_DbNewByteArrayObj(
const unsigned char *bytes, /* The array of bytes used to initialize the
* new object. */
size_t length, /* Length of the array of bytes, which must be
* >= 0. */
TCL_UNUSED(const char *) /*file*/,
TCL_UNUSED(int) /*line*/)
{
return Tcl_NewByteArrayObj(bytes, length);
}
#endif /* TCL_MEM_DEBUG */
/*
*---------------------------------------------------------------------------
*
* Tcl_SetByteArrayObj --
*
* Modify an object to be a ByteArray object and to have the specified
* array of bytes as its value.
*
* Results:
* None.
*
* Side effects:
* The object's old string rep and internal rep is freed. Memory
* allocated for copy of byte array argument.
*
*----------------------------------------------------------------------
*/
void
Tcl_SetByteArrayObj(
Tcl_Obj *objPtr, /* Object to initialize as a ByteArray. */
const unsigned char *bytes, /* The array of bytes to use as the new value.
* May be NULL even if length > 0. */
size_t length) /* Length of the array of bytes, which must
* be >= 0. */
{
ByteArray *byteArrayPtr;
Tcl_ObjIntRep ir;
if (Tcl_IsShared(objPtr)) {
Tcl_Panic("%s called with shared object", "Tcl_SetByteArrayObj");
}
TclInvalidateStringRep(objPtr);
byteArrayPtr = (ByteArray *)Tcl_Alloc(BYTEARRAY_SIZE(length));
byteArrayPtr->bad = length;
byteArrayPtr->used = length;
byteArrayPtr->allocated = length;
if ((bytes != NULL) && (length > 0)) {
memcpy(byteArrayPtr->bytes, bytes, length);
}
SET_BYTEARRAY(&ir, byteArrayPtr);
Tcl_StoreIntRep(objPtr, &properByteArrayType, &ir);
}
/*
*----------------------------------------------------------------------
*
* TclGetBytesFromObj --
*
* Attempt to extract the value from objPtr in the representation
* of a byte sequence. On success return the extracted byte sequence.
* On failures, return NULL and record error message and code in
* interp (if not NULL).
*
* Results:
* Pointer to array of bytes, or NULL. representing the ByteArray object.
* Writes number of bytes in array to *lengthPtr.
*
*----------------------------------------------------------------------
*/
unsigned char *
TclGetBytesFromObj(
Tcl_Interp *interp, /* For error reporting */
Tcl_Obj *objPtr, /* Value to extract from */
size_t *lengthPtr) /* If non-NULL, filled with length of the
* array of bytes in the ByteArray object. */
{
ByteArray *baPtr;
const Tcl_ObjIntRep *irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
SetByteArrayFromAny(NULL, objPtr);
irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
if (interp) {
const char *nonbyte;
Tcl_UniChar ch;
irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
baPtr = GET_BYTEARRAY(irPtr);
nonbyte = Tcl_UtfAtIndex(Tcl_GetString(objPtr), baPtr->bad);
Tcl_UtfToUniChar(nonbyte, &ch);
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"expected byte sequence but character %" TCL_Z_MODIFIER "u "
"was '%1s' (U+%04X)", baPtr->bad, nonbyte, ch));
Tcl_SetErrorCode(interp, "TCL", "VALUE", "BYTES", NULL);
}
return NULL;
}
}
baPtr = GET_BYTEARRAY(irPtr);
if (lengthPtr != NULL) {
*lengthPtr = baPtr->used;
}
return baPtr->bytes;
}
/*
*----------------------------------------------------------------------
*
* Tcl_GetByteArrayFromObj --
*
* Attempt to get the array of bytes from the Tcl object. If the object
* is not already a ByteArray object, an attempt will be made to convert
* it to one.
*
* Results:
* Pointer to array of bytes representing the ByteArray object.
*
* Side effects:
* Frees old internal rep. Allocates memory for new internal rep.
*
*----------------------------------------------------------------------
*/
unsigned char *
Tcl_GetByteArrayFromObj(
Tcl_Obj *objPtr, /* The ByteArray object. */
int *lengthPtr) /* If non-NULL, filled with length of the
* array of bytes in the ByteArray object. */
{
size_t numBytes = 0;
unsigned char *bytes = TclGetBytesFromObj(NULL, objPtr, &numBytes);
if (bytes == NULL) {
ByteArray *baPtr;
const Tcl_ObjIntRep *irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
assert(irPtr != NULL);
baPtr = GET_BYTEARRAY(irPtr);
bytes = baPtr->bytes;
numBytes = baPtr->used;
}
/* Macro TclGetByteArrayFromObj passes NULL for lengthPtr as
* a trick to get around changing size. */
if (lengthPtr) {
if (numBytes > INT_MAX) {
/* Caller asked for an int length, but true length is outside
* the int range. This case will be developed out of existence
* in Tcl 9. As interim measure, fail. */
*lengthPtr = 0;
return NULL;
} else {
*lengthPtr = (int) numBytes;
}
}
return bytes;
}
/*
*----------------------------------------------------------------------
*
* Tcl_SetByteArrayLength --
*
* This procedure changes the length of the byte array for this object.
* Once the caller has set the length of the array, it is acceptable to
* directly modify the bytes in the array up until Tcl_GetStringFromObj()
* has been called on this object.
*
* Results:
* The new byte array of the specified length.
*
* Side effects:
* Allocates enough memory for an array of bytes of the requested size.
* When growing the array, the old array is copied to the new array; new
* bytes are undefined. When shrinking, the old array is truncated to the
* specified length.
*
*----------------------------------------------------------------------
*/
unsigned char *
Tcl_SetByteArrayLength(
Tcl_Obj *objPtr, /* The ByteArray object. */
size_t length) /* New length for internal byte array. */
{
ByteArray *byteArrayPtr;
Tcl_ObjIntRep *irPtr;
if (Tcl_IsShared(objPtr)) {
Tcl_Panic("%s called with shared object", "Tcl_SetByteArrayLength");
}
irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
if (irPtr == NULL) {
SetByteArrayFromAny(NULL, objPtr);
irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
}
}
}
byteArrayPtr = GET_BYTEARRAY(irPtr);
if (length > byteArrayPtr->allocated) {
byteArrayPtr = (ByteArray *)Tcl_Realloc(byteArrayPtr, BYTEARRAY_SIZE(length));
byteArrayPtr->allocated = length;
SET_BYTEARRAY(irPtr, byteArrayPtr);
}
TclInvalidateStringRep(objPtr);
objPtr->typePtr = &properByteArrayType;
byteArrayPtr->bad = length;
byteArrayPtr->used = length;
return byteArrayPtr->bytes;
}
/*
*----------------------------------------------------------------------
*
* SetByteArrayFromAny --
*
* Generate the ByteArray internal rep from the string rep.
*
* Results:
* The return value is always TCL_OK.
*
* Side effects:
* A ByteArray object is stored as the internal rep of objPtr.
*
*----------------------------------------------------------------------
*/
static int
SetByteArrayFromAny(
TCL_UNUSED(Tcl_Interp *),
Tcl_Obj *objPtr) /* The object to convert to type ByteArray. */
{
size_t length, bad;
const char *src, *srcEnd;
unsigned char *dst;
Tcl_UniChar ch = 0;
ByteArray *byteArrayPtr;
Tcl_ObjIntRep ir;
if (TclHasIntRep(objPtr, &properByteArrayType)) {
return TCL_OK;
}
if (TclHasIntRep(objPtr, &tclByteArrayType)) {
return TCL_OK;
}
src = TclGetStringFromObj(objPtr, &length);
bad = length;
srcEnd = src + length;
byteArrayPtr = (ByteArray *)Tcl_Alloc(BYTEARRAY_SIZE(length));
for (dst = byteArrayPtr->bytes; src < srcEnd; ) {
src += TclUtfToUniChar(src, &ch);
if ((bad == length) && (ch > 255)) {
bad = dst - byteArrayPtr->bytes;
}
*dst++ = UCHAR(ch);
}
SET_BYTEARRAY(&ir, byteArrayPtr);
byteArrayPtr->allocated = length;
byteArrayPtr->used = dst - byteArrayPtr->bytes;
if (bad == length) {
byteArrayPtr->bad = byteArrayPtr->used;
Tcl_StoreIntRep(objPtr, &properByteArrayType, &ir);
} else {
byteArrayPtr->bad = bad;
Tcl_StoreIntRep(objPtr, &tclByteArrayType, &ir);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* FreeByteArrayInternalRep --
*
* Deallocate the storage associated with a ByteArray data object's
* internal representation.
*
* Results:
* None.
*
* Side effects:
* Frees memory.
*
*----------------------------------------------------------------------
*/
static void
FreeByteArrayInternalRep(
Tcl_Obj *objPtr) /* Object with internal rep to free. */
{
Tcl_Free(GET_BYTEARRAY(TclFetchIntRep(objPtr, &tclByteArrayType)));
}
static void
FreeProperByteArrayInternalRep(
Tcl_Obj *objPtr) /* Object with internal rep to free. */
{
Tcl_Free(GET_BYTEARRAY(TclFetchIntRep(objPtr, &properByteArrayType)));
}
/*
*----------------------------------------------------------------------
*
* DupByteArrayInternalRep --
*
* Initialize the internal representation of a ByteArray Tcl_Obj to a
* copy of the internal representation of an existing ByteArray object.
*
* Results:
* None.
*
* Side effects:
* Allocates memory.
*
*----------------------------------------------------------------------
*/
static void
DupByteArrayInternalRep(
Tcl_Obj *srcPtr, /* Object with internal rep to copy. */
Tcl_Obj *copyPtr) /* Object with internal rep to set. */
{
size_t length;
ByteArray *srcArrayPtr, *copyArrayPtr;
Tcl_ObjIntRep ir;
srcArrayPtr = GET_BYTEARRAY(TclFetchIntRep(srcPtr, &tclByteArrayType));
length = srcArrayPtr->used;
copyArrayPtr = (ByteArray *)Tcl_Alloc(BYTEARRAY_SIZE(length));
copyArrayPtr->bad = srcArrayPtr->bad;
copyArrayPtr->used = length;
copyArrayPtr->allocated = length;
memcpy(copyArrayPtr->bytes, srcArrayPtr->bytes, length);
SET_BYTEARRAY(&ir, copyArrayPtr);
Tcl_StoreIntRep(copyPtr, &tclByteArrayType, &ir);
}
static void
DupProperByteArrayInternalRep(
Tcl_Obj *srcPtr, /* Object with internal rep to copy. */
Tcl_Obj *copyPtr) /* Object with internal rep to set. */
{
unsigned int length;
ByteArray *srcArrayPtr, *copyArrayPtr;
Tcl_ObjIntRep ir;
srcArrayPtr = GET_BYTEARRAY(TclFetchIntRep(srcPtr, &properByteArrayType));
length = srcArrayPtr->used;
copyArrayPtr = (ByteArray *)Tcl_Alloc(BYTEARRAY_SIZE(length));
copyArrayPtr->bad = length;
copyArrayPtr->used = length;
copyArrayPtr->allocated = length;
memcpy(copyArrayPtr->bytes, srcArrayPtr->bytes, length);
SET_BYTEARRAY(&ir, copyArrayPtr);
Tcl_StoreIntRep(copyPtr, &properByteArrayType, &ir);
}
/*
*----------------------------------------------------------------------
*
* UpdateStringOfByteArray --
*
* Update the string representation for a ByteArray data object.
*
* Results:
* None.
*
* Side effects:
* The object's string is set to a valid string that results from the
* ByteArray-to-string conversion.
*
*----------------------------------------------------------------------
*/
static void
UpdateStringOfByteArray(
Tcl_Obj *objPtr) /* ByteArray object whose string rep to
* update. */
{
const Tcl_ObjIntRep *irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
ByteArray *byteArrayPtr = GET_BYTEARRAY(irPtr);
unsigned char *src = byteArrayPtr->bytes;
size_t i, length = byteArrayPtr->used;
size_t size = length;
/*
* How much space will string rep need?
*/
for (i = 0; i < length; i++) {
if ((src[i] == 0) || (src[i] > 127)) {
size++;
}
}
if (size == length) {
char *dst = Tcl_InitStringRep(objPtr, (char *)src, size);
TclOOM(dst, size);
} else {
char *dst = Tcl_InitStringRep(objPtr, NULL, size);
TclOOM(dst, size);
for (i = 0; i < length; i++) {
dst += Tcl_UniCharToUtf(src[i], dst);
}
(void) Tcl_InitStringRep(objPtr, NULL, size);
}
}
/*
*----------------------------------------------------------------------
*
* TclAppendBytesToByteArray --
*
* This function appends an array of bytes to a byte array object. Note
* that the object *must* be unshared, and the array of bytes *must not*
* refer to the object being appended to.
*
* Results:
* None.
*
* Side effects:
* Allocates enough memory for an array of bytes of the requested total
* size, or possibly larger. [Bug 2992970]
*
*----------------------------------------------------------------------
*/
void
TclAppendBytesToByteArray(
Tcl_Obj *objPtr,
const unsigned char *bytes,
size_t len)
{
ByteArray *byteArrayPtr;
size_t needed;
Tcl_ObjIntRep *irPtr;
if (Tcl_IsShared(objPtr)) {
Tcl_Panic("%s called with shared object","TclAppendBytesToByteArray");
}
if (len == TCL_AUTO_LENGTH) {
Tcl_Panic("%s must be called with definite number of bytes to append",
"TclAppendBytesToByteArray");
}
if (len == 0) {
/*
* Append zero bytes is a no-op.
*/
return;
}
irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
if (irPtr == NULL) {
SetByteArrayFromAny(NULL, objPtr);
irPtr = TclFetchIntRep(objPtr, &properByteArrayType);
if (irPtr == NULL) {
irPtr = TclFetchIntRep(objPtr, &tclByteArrayType);
}
}
}
byteArrayPtr = GET_BYTEARRAY(irPtr);
if (len > UINT_MAX - byteArrayPtr->used) {
Tcl_Panic("max size for a Tcl value (%u bytes) exceeded", UINT_MAX);
}
needed = byteArrayPtr->used + len;
/*
* If we need to, resize the allocated space in the byte array.
*/
if (needed > byteArrayPtr->allocated) {
ByteArray *ptr = NULL;
size_t attempt;
if (needed <= INT_MAX/2) {
/*
* Try to allocate double the total space that is needed.
*/
attempt = 2 * needed;
ptr = (ByteArray *)Tcl_AttemptRealloc(byteArrayPtr, BYTEARRAY_SIZE(attempt));
}
if (ptr == NULL) {
/*
* Try to allocate double the increment that is needed (plus).
*/
size_t limit = UINT_MAX - needed;
size_t extra = len + TCL_MIN_GROWTH;
size_t growth = (extra > limit) ? limit : extra;
attempt = needed + growth;
ptr = (ByteArray *)Tcl_AttemptRealloc(byteArrayPtr, BYTEARRAY_SIZE(attempt));
}
if (ptr == NULL) {
/*
* Last chance: Try to allocate exactly what is needed.
*/
attempt = needed;
ptr = (ByteArray *)Tcl_Realloc(byteArrayPtr, BYTEARRAY_SIZE(attempt));
}
byteArrayPtr = ptr;
byteArrayPtr->allocated = attempt;
SET_BYTEARRAY(irPtr, byteArrayPtr);
}
if (bytes) {
memcpy(byteArrayPtr->bytes + byteArrayPtr->used, bytes, len);
}
byteArrayPtr->used += len;
TclInvalidateStringRep(objPtr);
objPtr->typePtr = &properByteArrayType;
}
/*
*----------------------------------------------------------------------
*
* TclInitBinaryCmd --
*
* This function is called to create the "binary" Tcl command. See the
* user documentation for details on what it does.
*
* Results:
* A command token for the new command.
*
* Side effects:
* Creates a new binary command as a mapped ensemble.
*
*----------------------------------------------------------------------
*/
Tcl_Command
TclInitBinaryCmd(
Tcl_Interp *interp)
{
Tcl_Command binaryEnsemble;
binaryEnsemble = TclMakeEnsemble(interp, "binary", binaryMap);
TclMakeEnsemble(interp, "binary encode", encodeMap);
TclMakeEnsemble(interp, "binary decode", decodeMap);
return binaryEnsemble;
}
/*
*----------------------------------------------------------------------
*
* BinaryFormatCmd --
*
* This procedure implements the "binary format" Tcl command.
*
* Results:
* A standard Tcl result.
*
* Side effects:
* See the user documentation.
*
*----------------------------------------------------------------------
*/
static int
BinaryFormatCmd(
TCL_UNUSED(ClientData),
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *const objv[]) /* Argument objects. */
{
int arg; /* Index of next argument to consume. */
int value = 0; /* Current integer value to be packed.
* Initialized to avoid compiler warning. */
char cmd; /* Current format character. */
size_t count; /* Count associated with current format
* character. */
int flags; /* Format field flags */
const char *format; /* Pointer to current position in format
* string. */
Tcl_Obj *resultPtr = NULL; /* Object holding result buffer. */
unsigned char *buffer; /* Start of result buffer. */
unsigned char *cursor; /* Current position within result buffer. */
unsigned char *maxPos; /* Greatest position within result buffer that
* cursor has visited.*/
const char *errorString;
const char *errorValue, *str;
int offset, size;
size_t length;
if (objc < 2) {
Tcl_WrongNumArgs(interp, 1, objv, "formatString ?arg ...?");
return TCL_ERROR;
}
/*
* To avoid copying the data, we format the string in two passes. The
* first pass computes the size of the output buffer. The second pass
* places the formatted data into the buffer.
*/
format = TclGetString(objv[1]);
arg = 2;
offset = 0;
length = 0;
while (*format != '\0') {
str = format;
flags = 0;
if (!GetFormatSpec(&format, &cmd, &count, &flags)) {
break;
}
switch (cmd) {
case 'a':
case 'A':
case 'b':
case 'B':
case 'h':
case 'H':
/*
* For string-type specifiers, the count corresponds to the number
* of bytes in a single argument.
*/
if (arg >= objc) {
goto badIndex;
}
if (count == BINARY_ALL) {
(void)TclGetByteArrayFromObj(objv[arg], &count);
} else if (count == BINARY_NOCOUNT) {
count = 1;
}
arg++;
if (cmd == 'a' || cmd == 'A') {
offset += count;
} else if (cmd == 'b' || cmd == 'B') {
offset += (count + 7) / 8;
} else {
offset += (count + 1) / 2;
}
break;
case 'c':
size = 1;
goto doNumbers;
case 't':
case 's':
case 'S':
size = 2;
goto doNumbers;
case 'n':
case 'i':
case 'I':
size = 4;
goto doNumbers;
case 'm':
case 'w':
case 'W':
size = 8;
goto doNumbers;
case 'r':
case 'R':
case 'f':
size = sizeof(float);
goto doNumbers;
case 'q':
case 'Q':
case 'd':
size = sizeof(double);
doNumbers:
if (arg >= objc) {
goto badIndex;
}
/*
* For number-type specifiers, the count corresponds to the number
* of elements in the list stored in a single argument. If no
* count is specified, then the argument is taken as a single
* non-list value.
*/
if (count == BINARY_NOCOUNT) {
arg++;
count = 1;
} else {
int listc;
Tcl_Obj **listv;
/*
* The macro evals its args more than once: avoid arg++
*/
if (TclListObjGetElements(interp, objv[arg], &listc,
&listv) != TCL_OK) {
return TCL_ERROR;
}
arg++;
if (count == BINARY_ALL) {
count = listc;
} else if (count > (size_t)listc) {
Tcl_SetObjResult(interp, Tcl_NewStringObj(
"number of elements in list does not match count",
-1));
return TCL_ERROR;
}
}
offset += count*size;
break;
case 'x':
if (count == BINARY_ALL) {
Tcl_SetObjResult(interp, Tcl_NewStringObj(
"cannot use \"*\" in format string with \"x\"", -1));
return TCL_ERROR;
} else if (count == BINARY_NOCOUNT) {
count = 1;
}
offset += count;
break;
case 'X':
if (count == BINARY_NOCOUNT) {
count = 1;
}
if ((count > (size_t)offset) || (count == BINARY_ALL)) {
count = offset;
}
if (offset > (int)length) {
length = offset;
}
offset -= count;
break;
case '@':
if (offset > (int)length) {
length = offset;
}
if (count == BINARY_ALL) {
offset = length;
} else if (count == BINARY_NOCOUNT) {
goto badCount;
} else {
offset = count;
}
break;
default:
errorString = str;
goto badField;
}
}
if (offset > (int)length) {
length = offset;
}
if (length == 0) {
return TCL_OK;
}
/*
* Prepare the result object by preallocating the caclulated number of
* bytes and filling with nulls.
*/
resultPtr = Tcl_NewObj();
buffer = Tcl_SetByteArrayLength(resultPtr, length);
memset(buffer, 0, length);
/*
* Pack the data into the result object. Note that we can skip the error
* checking during this pass, since we have already parsed the string
* once.
*/
arg = 2;
format = TclGetString(objv[1]);
cursor = buffer;
maxPos = cursor;
while (*format != 0) {
flags = 0;
if (!GetFormatSpec(&format, &cmd, &count, &flags)) {
break;
}
if ((count == 0) && (cmd != '@')) {
if (cmd != 'x') {
arg++;
}
continue;
}
switch (cmd) {
case 'a':
case 'A': {
char pad = (char) (cmd == 'a' ? '\0' : ' ');
unsigned char *bytes;
bytes = TclGetByteArrayFromObj(objv[arg], &length);
arg++;
if (count == BINARY_ALL) {
count = length;
} else if (count == BINARY_NOCOUNT) {
count = 1;
}
if (length >= count) {
memcpy(cursor, bytes, count);
} else {
memcpy(cursor, bytes, length);
memset(cursor + length, pad, count - length);
}
cursor += count;
break;
}
case 'b':
case 'B': {
unsigned char *last;
str = TclGetStringFromObj(objv[arg], &length);
arg++;
if (count == BINARY_ALL) {
count = length;
} else if (count == BINARY_NOCOUNT) {
count = 1;
}
last = cursor + ((count + 7) / 8);
if (count > length) {
count = length;
}
value = 0;
errorString = "binary";
if (cmd == 'B') {
for (offset = 0; (size_t)offset < count; offset++) {
value <<= 1;
if (str[offset] == '1') {
value |= 1;
} else if (str[offset] != '0') {
errorValue = str;
Tcl_DecrRefCount(resultPtr);
goto badValue;
}
if (((offset + 1) % 8) == 0) {
*cursor++ = UCHAR(value);
value = 0;
}
}
} else {
for (offset = 0; (size_t)offset < count; offset++) {
value >>= 1;
if (str[offset] == '1') {
value |= 128;
} else if (str[offset] != '0') {
errorValue = str;
Tcl_DecrRefCount(resultPtr);
goto badValue;
}
if (!((offset + 1) % 8)) {
*cursor++ = UCHAR(value);
value = 0;
}
}
}
if ((offset % 8) != 0) {
if (cmd == 'B') {
value <<= 8 - (offset % 8);
} else {
value >>= 8 - (offset % 8);
}
*cursor++ = UCHAR(value);
}
while (cursor < last) {
*cursor++ = '\0';
}
break;
}
case 'h':
case 'H': {
unsigned char *last;
int c;
str = TclGetStringFromObj(objv[arg], &length);
arg++;
if (count == BINARY_ALL) {
count = length;
} else if (count == BINARY_NOCOUNT) {
count = 1;
}
last = cursor + ((count + 1) / 2);
if (count > length) {
count = length;
}
value = 0;
errorString = "hexadecimal";
if (cmd == 'H') {
for (offset = 0; (size_t)offset < count; offset++) {
value <<= 4;
if (!isxdigit(UCHAR(str[offset]))) { /* INTL: digit */
errorValue = str;
Tcl_DecrRefCount(resultPtr);
goto badValue;
}
c = str[offset] - '0';
if (c > 9) {
c += ('0' - 'A') + 10;
}
if (c > 16) {
c += ('A' - 'a');
}
value |= (c & 0xF);
if (offset % 2) {
*cursor++ = (char) value;
value = 0;
}
}
} else {
for (offset = 0; (size_t)offset < count; offset++) {
value >>= 4;
if (!isxdigit(UCHAR(str[offset]))) { /* INTL: digit */
errorValue = str;
Tcl_DecrRefCount(resultPtr);
goto badValue;
}
c = str[offset] - '0';
if (c > 9) {
c += ('0' - 'A') + 10;
}
if (c > 16) {
c += ('A' - 'a');
}
value |= ((c << 4) & 0xF0);
if (offset % 2) {
*cursor++ = UCHAR(value & 0xFF);
value = 0;
}
}
}
if (offset % 2) {
if (cmd == 'H') {
value <<= 4;
} else {
value >>= 4;
}
*cursor++ = UCHAR(value);
}
while (cursor < last) {
*cursor++ = '\0';
}
break;
}
case 'c':
case 't':
case 's':
case 'S':
case 'n':
case 'i':
case 'I':
case 'm':
case 'w':
case 'W':
case 'r':
case 'R':
case 'd':
case 'q':
case 'Q':
case 'f': {
int listc, i;
Tcl_Obj **listv;
if (count == BINARY_NOCOUNT) {
/*
* Note that we are casting away the const-ness of objv, but
* this is safe since we aren't going to modify the array.
*/
listv = (Tcl_Obj **) (objv + arg);
listc = 1;
count = 1;
} else {
TclListObjGetElements(interp, objv[arg], &listc, &listv);
if (count == BINARY_ALL) {
count = listc;
}
}
arg++;
for (i = 0; (size_t)i < count; i++) {
if (FormatNumber(interp, cmd, listv[i], &cursor) != TCL_OK) {
Tcl_DecrRefCount(resultPtr);
return TCL_ERROR;
}
}
break;
}
case 'x':
if (count == BINARY_NOCOUNT) {
count = 1;
}
memset(cursor, 0, count);
cursor += count;
break;
case 'X':
if (cursor > maxPos) {
maxPos = cursor;
}
if (count == BINARY_NOCOUNT) {
count = 1;
}
if ((count == BINARY_ALL) || (count > (size_t)(cursor - buffer))) {
cursor = buffer;
} else {
cursor -= count;
}
break;
case '@':
if (cursor > maxPos) {
maxPos = cursor;
}
if (count == BINARY_ALL) {
cursor = maxPos;
} else {
cursor = buffer + count;
}
break;
}
}
Tcl_SetObjResult(interp, resultPtr);
return TCL_OK;
badValue:
Tcl_ResetResult(interp);
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"expected %s string but got \"%s\" instead",
errorString, errorValue));
return TCL_ERROR;
badCount:
errorString = "missing count for \"@\" field specifier";
goto error;
badIndex:
errorString = "not enough arguments for all format specifiers";
goto error;
badField:
{
Tcl_UniChar ch = 0;
char buf[5] = "";
TclUtfToUniChar(errorString, &ch);
buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"bad field specifier \"%s\"", buf));
return TCL_ERROR;
}
error:
Tcl_SetObjResult(interp, Tcl_NewStringObj(errorString, -1));
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* BinaryScanCmd --
*
* This procedure implements the "binary scan" Tcl command.
*
* Results:
* A standard Tcl result.
*
* Side effects:
* See the user documentation.
*
*----------------------------------------------------------------------
*/
int
BinaryScanCmd(
TCL_UNUSED(ClientData),
Tcl_Interp *interp, /* Current interpreter. */
int objc, /* Number of arguments. */
Tcl_Obj *const objv[]) /* Argument objects. */
{
int arg; /* Index of next argument to consume. */
int value = 0; /* Current integer value to be packed.
* Initialized to avoid compiler warning. */
char cmd; /* Current format character. */
size_t count; /* Count associated with current format
* character. */
int flags; /* Format field flags */
const char *format; /* Pointer to current position in format
* string. */
Tcl_Obj *resultPtr = NULL; /* Object holding result buffer. */
unsigned char *buffer; /* Start of result buffer. */
const char *errorString;
const char *str;
int offset, size, i;
size_t length = 0;
Tcl_Obj *valuePtr, *elementPtr;
Tcl_HashTable numberCacheHash;
Tcl_HashTable *numberCachePtr;
if (objc < 3) {
Tcl_WrongNumArgs(interp, 1, objv,
"value formatString ?varName ...?");
return TCL_ERROR;
}
numberCachePtr = &numberCacheHash;
Tcl_InitHashTable(numberCachePtr, TCL_ONE_WORD_KEYS);
buffer = TclGetByteArrayFromObj(objv[1], &length);
format = TclGetString(objv[2]);
arg = 3;
offset = 0;
while (*format != '\0') {
str = format;
flags = 0;
if (!GetFormatSpec(&format, &cmd, &count, &flags)) {
goto done;
}
switch (cmd) {
case 'a':
case 'A': {
unsigned char *src;
if (arg >= objc) {
DeleteScanNumberCache(numberCachePtr);
goto badIndex;
}
if (count == BINARY_ALL) {
count = length - offset;
} else {
if (count == BINARY_NOCOUNT) {
count = 1;
}
if (count > length - offset) {
goto done;
}
}
src = buffer + offset;
size = count;
/*
* Trim trailing nulls and spaces, if necessary.
*/
if (cmd == 'A') {
while (size > 0) {
if (src[size - 1] != '\0' && src[size - 1] != ' ') {
break;
}
size--;
}
}
/*
* Have to do this #ifdef-fery because (as part of defining
* Tcl_NewByteArrayObj) we removed the #def that hides this stuff
* normally. If this code ever gets copied to another file, it
* should be changed back to the simpler version.
*/
#ifdef TCL_MEM_DEBUG
valuePtr = Tcl_DbNewByteArrayObj(src, size, __FILE__, __LINE__);
#else
valuePtr = Tcl_NewByteArrayObj(src, size);
#endif /* TCL_MEM_DEBUG */
resultPtr = Tcl_ObjSetVar2(interp, objv[arg], NULL, valuePtr,
TCL_LEAVE_ERR_MSG);
arg++;
if (resultPtr == NULL) {
DeleteScanNumberCache(numberCachePtr);
return TCL_ERROR;
}
offset += count;
break;
}
case 'b':
case 'B': {
unsigned char *src;
char *dest;
if (arg >= objc) {
DeleteScanNumberCache(numberCachePtr);
goto badIndex;
}
if (count == BINARY_ALL) {
count = (length - offset) * 8;
} else {
if (count == BINARY_NOCOUNT) {
count = 1;
}
if (count > (size_t)(length - offset) * 8) {
goto done;
}
}
src = buffer + offset;
valuePtr = Tcl_NewObj();
Tcl_SetObjLength(valuePtr, count);
dest = TclGetString(valuePtr);
if (cmd == 'b') {
for (i = 0; (size_t)i < count; i++) {
if (i % 8) {
value >>= 1;
} else {
value = *src++;
}
*dest++ = (char) ((value & 1) ? '1' : '0');
}
} else {
for (i = 0; (size_t)i < count; i++) {
if (i % 8) {
value <<= 1;
} else {
value = *src++;
}
*dest++ = (char) ((value & 0x80) ? '1' : '0');
}
}
resultPtr = Tcl_ObjSetVar2(interp, objv[arg], NULL, valuePtr,
TCL_LEAVE_ERR_MSG);
arg++;
if (resultPtr == NULL) {
DeleteScanNumberCache(numberCachePtr);
return TCL_ERROR;
}
offset += (count + 7) / 8;
break;
}
case 'h':
case 'H': {
char *dest;
unsigned char *src;
static const char hexdigit[] = "0123456789abcdef";
if (arg >= objc) {
DeleteScanNumberCache(numberCachePtr);
goto badIndex;
}
if (count == BINARY_ALL) {
count = (length - offset)*2;
} else {
if (count == BINARY_NOCOUNT) {
count = 1;
}
if (count > (length - offset)*2) {
goto done;
}
}
src = buffer + offset;
valuePtr = Tcl_NewObj();
Tcl_SetObjLength(valuePtr, count);
dest = TclGetString(valuePtr);
if (cmd == 'h') {
for (i = 0; (size_t)i < count; i++) {
if (i % 2) {
value >>= 4;
} else {
value = *src++;
}
*dest++ = hexdigit[value & 0xF];
}
} else {
for (i = 0; (size_t)i < count; i++) {
if (i % 2) {
value <<= 4;
} else {
value = *src++;
}
*dest++ = hexdigit[(value >> 4) & 0xF];
}
}
resultPtr = Tcl_ObjSetVar2(interp, objv[arg], NULL, valuePtr,
TCL_LEAVE_ERR_MSG);
arg++;
if (resultPtr == NULL) {
DeleteScanNumberCache(numberCachePtr);
return TCL_ERROR;
}
offset += (count + 1) / 2;
break;
}
case 'c':
size = 1;
goto scanNumber;
case 't':
case 's':
case 'S':
size = 2;
goto scanNumber;
case 'n':
case 'i':
case 'I':
size = 4;
goto scanNumber;
case 'm':
case 'w':
case 'W':
size = 8;
goto scanNumber;
case 'r':
case 'R':
case 'f':
size = sizeof(float);
goto scanNumber;
case 'q':
case 'Q':
case 'd': {
unsigned char *src;
size = sizeof(double);
/* fall through */
scanNumber:
if (arg >= objc) {
DeleteScanNumberCache(numberCachePtr);
goto badIndex;
}
if (count == BINARY_NOCOUNT) {
if ((length - offset) < (size_t)size) {
goto done;
}
valuePtr = ScanNumber(buffer+offset, cmd, flags,
&numberCachePtr);
offset += size;
} else {
if (count == BINARY_ALL) {
count = (length - offset) / size;
}
if ((length - offset) < (count * size)) {
goto done;
}
valuePtr = Tcl_NewObj();
src = buffer + offset;
for (i = 0; (size_t)i < count; i++) {
elementPtr = ScanNumber(src, cmd, flags, &numberCachePtr);
src += size;
Tcl_ListObjAppendElement(NULL, valuePtr, elementPtr);
}
offset += count * size;
}
resultPtr = Tcl_ObjSetVar2(interp, objv[arg], NULL, valuePtr,
TCL_LEAVE_ERR_MSG);
arg++;
if (resultPtr == NULL) {
DeleteScanNumberCache(numberCachePtr);
return TCL_ERROR;
}
break;
}
case 'x':
if (count == BINARY_NOCOUNT) {
count = 1;
}
if ((count == BINARY_ALL) || (count > length - offset)) {
offset = length;
} else {
offset += count;
}
break;
case 'X':
if (count == BINARY_NOCOUNT) {
count = 1;
}
if ((count == BINARY_ALL) || (count > (size_t)offset)) {
offset = 0;
} else {
offset -= count;
}
break;
case '@':
if (count == BINARY_NOCOUNT) {
DeleteScanNumberCache(numberCachePtr);
goto badCount;
}
if ((count == BINARY_ALL) || (count > length)) {
offset = length;
} else {
offset = count;
}
break;
default:
DeleteScanNumberCache(numberCachePtr);
errorString = str;
goto badField;
}
}
/*
* Set the result to the last position of the cursor.
*/
done:
Tcl_SetObjResult(interp, Tcl_NewWideIntObj(arg - 3));
DeleteScanNumberCache(numberCachePtr);
return TCL_OK;
badCount:
errorString = "missing count for \"@\" field specifier";
goto error;
badIndex:
errorString = "not enough arguments for all format specifiers";
goto error;
badField:
{
Tcl_UniChar ch = 0;
char buf[5] = "";
TclUtfToUniChar(errorString, &ch);
buf[Tcl_UniCharToUtf(ch, buf)] = '\0';
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"bad field specifier \"%s\"", buf));
return TCL_ERROR;
}
error:
Tcl_SetObjResult(interp, Tcl_NewStringObj(errorString, -1));
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* GetFormatSpec --
*
* This function parses the format strings used in the binary format and
* scan commands.
*
* Results:
* Moves the formatPtr to the start of the next command. Returns the
* current command character and count in cmdPtr and countPtr. The count
* is set to BINARY_ALL if the count character was '*' or BINARY_NOCOUNT
* if no count was specified. Returns 1 on success, or 0 if the string
* did not have a format specifier.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
GetFormatSpec(
const char **formatPtr, /* Pointer to format string. */
char *cmdPtr, /* Pointer to location of command char. */
size_t *countPtr, /* Pointer to repeat count value. */
int *flagsPtr) /* Pointer to field flags */
{
/*
* Skip any leading blanks.
*/
while (**formatPtr == ' ') {
(*formatPtr)++;
}
/*
* The string was empty, except for whitespace, so fail.
*/
if (!(**formatPtr)) {
return 0;
}
/*
* Extract the command character and any trailing digits or '*'.
*/
*cmdPtr = **formatPtr;
(*formatPtr)++;
if (**formatPtr == 'u') {
(*formatPtr)++;
*flagsPtr |= BINARY_UNSIGNED;
}
if (**formatPtr == '*') {
(*formatPtr)++;
*countPtr = BINARY_ALL;
} else if (isdigit(UCHAR(**formatPtr))) { /* INTL: digit */
unsigned long int count;
errno = 0;
count = strtoul(*formatPtr, (char **) formatPtr, 10);
if (errno || (count > (unsigned long) INT_MAX)) {
*countPtr = INT_MAX;
} else {
*countPtr = (int) count;
}
} else {
*countPtr = BINARY_NOCOUNT;
}
return 1;
}
/*
*----------------------------------------------------------------------
*
* NeedReversing --
*
* This routine determines, if bytes of a number need to be re-ordered,
* and returns a numeric code indicating the re-ordering to be done.
* This depends on the endiannes of the machine and the desired format.
* It is in effect a table (whose contents depend on the endianness of
* the system) describing whether a value needs reversing or not. Anyone
* porting the code to a big-endian platform should take care to make
* sure that they define WORDS_BIGENDIAN though this is already done by
* configure for the Unix build; little-endian platforms (including
* Windows) don't need to do anything.
*
* Results:
* 0 No re-ordering needed.
* 1 Reverse the bytes: 01234567 <-> 76543210 (little to big)
* 2 Apply this re-ordering: 01234567 <-> 45670123 (Nokia to little)
* 3 Apply this re-ordering: 01234567 <-> 32107654 (Nokia to big)
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
NeedReversing(
int format)
{
switch (format) {
/* native floats and doubles: never reverse */
case 'd':
case 'f':
/* big endian ints: never reverse */
case 'I':
case 'S':
case 'W':
#ifdef WORDS_BIGENDIAN
/* native ints: reverse if we're little-endian */
case 'n':
case 't':
case 'm':
/* f: reverse if we're little-endian */
case 'Q':
case 'R':
#else /* !WORDS_BIGENDIAN */
/* small endian floats: reverse if we're big-endian */
case 'r':
#endif /* WORDS_BIGENDIAN */
return 0;
#ifdef WORDS_BIGENDIAN
/* small endian floats: reverse if we're big-endian */
case 'q':
case 'r':
#else /* !WORDS_BIGENDIAN */
/* native ints: reverse if we're little-endian */
case 'n':
case 't':
case 'm':
/* f: reverse if we're little-endian */
case 'R':
#endif /* WORDS_BIGENDIAN */
/* small endian ints: always reverse */
case 'i':
case 's':
case 'w':
return 1;
#ifndef WORDS_BIGENDIAN
/*
* The Q and q formats need special handling to account for the unusual
* byte ordering of 8-byte floats on Nokia 770 systems, which claim to be
* little-endian, but also reverse word order.
*/
case 'Q':
if (TclNokia770Doubles()) {
return 3;
}
return 1;
case 'q':
if (TclNokia770Doubles()) {
return 2;
}
return 0;
#endif
}
Tcl_Panic("unexpected fallthrough");
return 0;
}
/*
*----------------------------------------------------------------------
*
* CopyNumber --
*
* This routine is called by FormatNumber and ScanNumber to copy a
* floating-point number. If required, bytes are reversed while copying.
* The behaviour is only fully defined when used with IEEE float and
* double values (guaranteed to be 4 and 8 bytes long, respectively.)
*
* Results:
* None
*
* Side effects:
* Copies length bytes
*
*----------------------------------------------------------------------
*/
static void
CopyNumber(
const void *from, /* source */
void *to, /* destination */
size_t length, /* Number of bytes to copy */
int type) /* What type of thing are we copying? */
{
switch (NeedReversing(type)) {
case 0:
memcpy(to, from, length);
break;
case 1: {
const unsigned char *fromPtr = (const unsigned char *)from;
unsigned char *toPtr = (unsigned char *)to;
switch (length) {
case 4:
toPtr[0] = fromPtr[3];
toPtr[1] = fromPtr[2];
toPtr[2] = fromPtr[1];
toPtr[3] = fromPtr[0];
break;
case 8:
toPtr[0] = fromPtr[7];
toPtr[1] = fromPtr[6];
toPtr[2] = fromPtr[5];
toPtr[3] = fromPtr[4];
toPtr[4] = fromPtr[3];
toPtr[5] = fromPtr[2];
toPtr[6] = fromPtr[1];
toPtr[7] = fromPtr[0];
break;
}
break;
}
case 2: {
const unsigned char *fromPtr = (const unsigned char *)from;
unsigned char *toPtr = (unsigned char *)to;
toPtr[0] = fromPtr[4];
toPtr[1] = fromPtr[5];
toPtr[2] = fromPtr[6];
toPtr[3] = fromPtr[7];
toPtr[4] = fromPtr[0];
toPtr[5] = fromPtr[1];
toPtr[6] = fromPtr[2];
toPtr[7] = fromPtr[3];
break;
}
case 3: {
const unsigned char *fromPtr = (const unsigned char *)from;
unsigned char *toPtr = (unsigned char *)to;
toPtr[0] = fromPtr[3];
toPtr[1] = fromPtr[2];
toPtr[2] = fromPtr[1];
toPtr[3] = fromPtr[0];
toPtr[4] = fromPtr[7];
toPtr[5] = fromPtr[6];
toPtr[6] = fromPtr[5];
toPtr[7] = fromPtr[4];
break;
}
}
}
/*
*----------------------------------------------------------------------
*
* FormatNumber --
*
* This routine is called by Tcl_BinaryObjCmd to format a number into a
* location pointed at by cursor.
*
* Results:
* A standard Tcl result.
*
* Side effects:
* Moves the cursor to the next location to be written into.
*
*----------------------------------------------------------------------
*/
static int
FormatNumber(
Tcl_Interp *interp, /* Current interpreter, used to report
* errors. */
int type, /* Type of number to format. */
Tcl_Obj *src, /* Number to format. */
unsigned char **cursorPtr) /* Pointer to index into destination buffer. */
{
double dvalue;
Tcl_WideInt wvalue;
float fvalue;
switch (type) {
case 'd':
case 'q':
case 'Q':
/*
* Double-precision floating point values. Tcl_GetDoubleFromObj
* returns TCL_ERROR for NaN, but we can check by comparing the
* object's type pointer.
*/
if (Tcl_GetDoubleFromObj(interp, src, &dvalue) != TCL_OK) {
const Tcl_ObjIntRep *irPtr = TclFetchIntRep(src, &tclDoubleType);
if (irPtr == NULL) {
return TCL_ERROR;
}
dvalue = irPtr->doubleValue;
}
CopyNumber(&dvalue, *cursorPtr, sizeof(double), type);
*cursorPtr += sizeof(double);
return TCL_OK;
case 'f':
case 'r':
case 'R':
/*
* Single-precision floating point values. Tcl_GetDoubleFromObj
* returns TCL_ERROR for NaN, but we can check by comparing the
* object's type pointer.
*/
if (Tcl_GetDoubleFromObj(interp, src, &dvalue) != TCL_OK) {
const Tcl_ObjIntRep *irPtr = TclFetchIntRep(src, &tclDoubleType);
if (irPtr == NULL) {
return TCL_ERROR;
}
dvalue = irPtr->doubleValue;
}
/*
* Because some compilers will generate floating point exceptions on
* an overflow cast (e.g. Borland), we restrict the values to the
* valid range for float.
*/
if (fabs(dvalue) > (double) FLT_MAX) {
fvalue = (dvalue >= 0.0) ? FLT_MAX : -FLT_MAX;
} else {
fvalue = (float) dvalue;
}
CopyNumber(&fvalue, *cursorPtr, sizeof(float), type);
*cursorPtr += sizeof(float);
return TCL_OK;
/*
* 64-bit integer values.
*/
case 'w':
case 'W':
case 'm':
if (TclGetWideBitsFromObj(interp, src, &wvalue) != TCL_OK) {
return TCL_ERROR;
}
if (NeedReversing(type)) {
*(*cursorPtr)++ = UCHAR(wvalue);
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
*(*cursorPtr)++ = UCHAR(wvalue >> 16);
*(*cursorPtr)++ = UCHAR(wvalue >> 24);
*(*cursorPtr)++ = UCHAR(wvalue >> 32);
*(*cursorPtr)++ = UCHAR(wvalue >> 40);
*(*cursorPtr)++ = UCHAR(wvalue >> 48);
*(*cursorPtr)++ = UCHAR(wvalue >> 56);
} else {
*(*cursorPtr)++ = UCHAR(wvalue >> 56);
*(*cursorPtr)++ = UCHAR(wvalue >> 48);
*(*cursorPtr)++ = UCHAR(wvalue >> 40);
*(*cursorPtr)++ = UCHAR(wvalue >> 32);
*(*cursorPtr)++ = UCHAR(wvalue >> 24);
*(*cursorPtr)++ = UCHAR(wvalue >> 16);
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
*(*cursorPtr)++ = UCHAR(wvalue);
}
return TCL_OK;
/*
* 32-bit integer values.
*/
case 'i':
case 'I':
case 'n':
if (TclGetWideBitsFromObj(interp, src, &wvalue) != TCL_OK) {
return TCL_ERROR;
}
if (NeedReversing(type)) {
*(*cursorPtr)++ = UCHAR(wvalue);
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
*(*cursorPtr)++ = UCHAR(wvalue >> 16);
*(*cursorPtr)++ = UCHAR(wvalue >> 24);
} else {
*(*cursorPtr)++ = UCHAR(wvalue >> 24);
*(*cursorPtr)++ = UCHAR(wvalue >> 16);
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
*(*cursorPtr)++ = UCHAR(wvalue);
}
return TCL_OK;
/*
* 16-bit integer values.
*/
case 's':
case 'S':
case 't':
if (TclGetWideBitsFromObj(interp, src, &wvalue) != TCL_OK) {
return TCL_ERROR;
}
if (NeedReversing(type)) {
*(*cursorPtr)++ = UCHAR(wvalue);
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
} else {
*(*cursorPtr)++ = UCHAR(wvalue >> 8);
*(*cursorPtr)++ = UCHAR(wvalue);
}
return TCL_OK;
/*
* 8-bit integer values.
*/
case 'c':
if (TclGetWideBitsFromObj(interp, src, &wvalue) != TCL_OK) {
return TCL_ERROR;
}
*(*cursorPtr)++ = UCHAR(wvalue);
return TCL_OK;
default:
Tcl_Panic("unexpected fallthrough");
return TCL_ERROR;
}
}
/*
*----------------------------------------------------------------------
*
* ScanNumber --
*
* This routine is called by Tcl_BinaryObjCmd to scan a number out of a
* buffer.
*
* Results:
* Returns a newly created object containing the scanned number. This
* object has a ref count of zero.
*
* Side effects:
* Might reuse an object in the number cache, place a new object in the
* cache, or delete the cache and set the reference to it (itself passed
* in by reference) to NULL.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *
ScanNumber(
unsigned char *buffer, /* Buffer to scan number from. */
int type, /* Format character from "binary scan" */
int flags, /* Format field flags */
Tcl_HashTable **numberCachePtrPtr)
/* Place to look for cache of scanned value
* objects, or NULL if too many different
* numbers have been scanned. */
{
long value;
float fvalue;
double dvalue;
Tcl_WideUInt uwvalue;
/*
* We cannot rely on the compiler to properly sign extend integer values
* when we cast from smaller values to larger values because we don't know
* the exact size of the integer types. So, we have to handle sign
* extension explicitly by checking the high bit and padding with 1's as
* needed. This practice is disabled if the BINARY_UNSIGNED flag is set.
*/
switch (type) {
case 'c':
/*
* Characters need special handling. We want to produce a signed
* result, but on some platforms (such as AIX) chars are unsigned. To
* deal with this, check for a value that should be negative but
* isn't.
*/
value = buffer[0];
if (!(flags & BINARY_UNSIGNED)) {
if (value & 0x80) {
value |= -0x100;
}
}
goto returnNumericObject;
/*
* 16-bit numeric values. We need the sign extension trick (see above)
* here as well.
*/
case 's':
case 'S':
case 't':
if (NeedReversing(type)) {
value = (long) (buffer[0] + (buffer[1] << 8));
} else {
value = (long) (buffer[1] + (buffer[0] << 8));
}
if (!(flags & BINARY_UNSIGNED)) {
if (value & 0x8000) {
value |= -0x10000;
}
}
goto returnNumericObject;
/*
* 32-bit numeric values.
*/
case 'i':
case 'I':
case 'n':
if (NeedReversing(type)) {
value = (long) (buffer[0]
+ (buffer[1] << 8)
+ (buffer[2] << 16)
+ (((long)buffer[3]) << 24));
} else {
value = (long) (buffer[3]
+ (buffer[2] << 8)
+ (buffer[1] << 16)
+ (((long) buffer[0]) << 24));
}
/*
* Check to see if the value was sign extended properly on systems
* where an int is more than 32-bits.
*
* We avoid caching unsigned integers as we cannot distinguish between
* 32bit signed and unsigned in the hash (short and char are ok).
*/
if (flags & BINARY_UNSIGNED) {
return Tcl_NewWideIntObj((Tcl_WideInt)(unsigned long)value);
}
if ((value & (((unsigned) 1) << 31)) && (value > 0)) {
value -= (((unsigned) 1) << 31);
value -= (((unsigned) 1) << 31);
}
returnNumericObject:
if (*numberCachePtrPtr == NULL) {
return Tcl_NewWideIntObj(value);
} else {
Tcl_HashTable *tablePtr = *numberCachePtrPtr;
Tcl_HashEntry *hPtr;
int isNew;
hPtr = Tcl_CreateHashEntry(tablePtr, INT2PTR(value), &isNew);
if (!isNew) {
return (Tcl_Obj *)Tcl_GetHashValue(hPtr);
}
if (tablePtr->numEntries <= BINARY_SCAN_MAX_CACHE) {
Tcl_Obj *objPtr = Tcl_NewWideIntObj(value);
Tcl_IncrRefCount(objPtr);
Tcl_SetHashValue(hPtr, objPtr);
return objPtr;
}
/*
* We've overflowed the cache! Someone's parsing a LOT of varied
* binary data in a single call! Bail out by switching back to the
* old behaviour for the rest of the scan.
*
* Note that anyone just using the 'c' conversion (for bytes)
* cannot trigger this.
*/
DeleteScanNumberCache(tablePtr);
*numberCachePtrPtr = NULL;
return Tcl_NewWideIntObj(value);
}
/*
* Do not cache wide (64-bit) values; they are already too large to
* use as keys.
*/
case 'w':
case 'W':
case 'm':
if (NeedReversing(type)) {
uwvalue = ((Tcl_WideUInt) buffer[0])
| (((Tcl_WideUInt) buffer[1]) << 8)
| (((Tcl_WideUInt) buffer[2]) << 16)
| (((Tcl_WideUInt) buffer[3]) << 24)
| (((Tcl_WideUInt) buffer[4]) << 32)
| (((Tcl_WideUInt) buffer[5]) << 40)
| (((Tcl_WideUInt) buffer[6]) << 48)
| (((Tcl_WideUInt) buffer[7]) << 56);
} else {
uwvalue = ((Tcl_WideUInt) buffer[7])
| (((Tcl_WideUInt) buffer[6]) << 8)
| (((Tcl_WideUInt) buffer[5]) << 16)
| (((Tcl_WideUInt) buffer[4]) << 24)
| (((Tcl_WideUInt) buffer[3]) << 32)
| (((Tcl_WideUInt) buffer[2]) << 40)
| (((Tcl_WideUInt) buffer[1]) << 48)
| (((Tcl_WideUInt) buffer[0]) << 56);
}
if (flags & BINARY_UNSIGNED) {
Tcl_Obj *bigObj = NULL;
mp_int big;
if (mp_init_u64(&big, uwvalue) == MP_OKAY) {
bigObj = Tcl_NewBignumObj(&big);
}
return bigObj;
}
return Tcl_NewWideIntObj((Tcl_WideInt) uwvalue);
/*
* Do not cache double values; they are already too large to use as
* keys and the values stored are utterly incompatible with the
* integer part of the cache.
*/
/*
* 32-bit IEEE single-precision floating point.
*/
case 'f':
case 'R':
case 'r':
CopyNumber(buffer, &fvalue, sizeof(float), type);
return Tcl_NewDoubleObj(fvalue);
/*
* 64-bit IEEE double-precision floating point.
*/
case 'd':
case 'Q':
case 'q':
CopyNumber(buffer, &dvalue, sizeof(double), type);
return Tcl_NewDoubleObj(dvalue);
}
return NULL;
}
/*
*----------------------------------------------------------------------
*
* DeleteScanNumberCache --
*
* Deletes the hash table acting as a scan number cache.
*
* Results:
* None
*
* Side effects:
* Decrements the reference counts of the objects in the cache.
*
*----------------------------------------------------------------------
*/
static void
DeleteScanNumberCache(
Tcl_HashTable *numberCachePtr)
/* Pointer to the hash table, or NULL (when
* the cache has already been deleted due to
* overflow.) */
{
Tcl_HashEntry *hEntry;
Tcl_HashSearch search;
if (numberCachePtr == NULL) {
return;
}
hEntry = Tcl_FirstHashEntry(numberCachePtr, &search);
while (hEntry != NULL) {
Tcl_Obj *value = (Tcl_Obj *)Tcl_GetHashValue(hEntry);
if (value != NULL) {
Tcl_DecrRefCount(value);
}
hEntry = Tcl_NextHashEntry(&search);
}
Tcl_DeleteHashTable(numberCachePtr);
}
/*
* ----------------------------------------------------------------------
*
* NOTES --
*
* Some measurements show that it is faster to use a table to to perform
* uuencode and base64 value encoding than to calculate the output (at
* least on intel P4 arch).
*
* Conversely using a lookup table for the decoding is slower than just
* calculating the values. We therefore use the fastest of each method.
*
* Presumably this has to do with the size of the tables. The base64
* decode table is 255 bytes while the encode table is only 65 bytes. The
* choice likely depends on CPU memory cache sizes.
*/
/*
*----------------------------------------------------------------------
*
* BinaryEncodeHex --
*
* Implement the [binary encode hex] binary encoding. clientData must be
* a table to convert values to hexadecimal digits.
*
* Results:
* Interp result set to an encoded byte array object
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
BinaryEncodeHex(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj = NULL;
unsigned char *data = NULL;
unsigned char *cursor = NULL;
size_t offset = 0, count = 0;
if (objc != 2) {
Tcl_WrongNumArgs(interp, 1, objv, "data");
return TCL_ERROR;
}
TclNewObj(resultObj);
data = TclGetByteArrayFromObj(objv[1], &count);
cursor = Tcl_SetByteArrayLength(resultObj, count * 2);
for (offset = 0; offset < count; ++offset) {
*cursor++ = HexDigits[(data[offset] >> 4) & 0x0F];
*cursor++ = HexDigits[data[offset] & 0x0F];
}
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* BinaryDecodeHex --
*
* Implement the [binary decode hex] binary encoding.
*
* Results:
* Interp result set to an decoded byte array object
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
BinaryDecodeHex(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj = NULL;
unsigned char *data, *datastart, *dataend;
unsigned char *begin, *cursor, c;
int i, index, value, pure = 1, strict = 0;
size_t size, cut = 0, count = 0;
Tcl_UniChar ch = 0;
enum {OPT_STRICT };
static const char *const optStrings[] = { "-strict", NULL };
if (objc < 2 || objc > 3) {
Tcl_WrongNumArgs(interp, 1, objv, "?options? data");
return TCL_ERROR;
}
for (i = 1; i < objc - 1; ++i) {
if (Tcl_GetIndexFromObj(interp, objv[i], optStrings, "option",
TCL_EXACT, &index) != TCL_OK) {
return TCL_ERROR;
}
switch (index) {
case OPT_STRICT:
strict = 1;
break;
}
}
TclNewObj(resultObj);
data = TclGetBytesFromObj(NULL, objv[objc - 1], &count);
if (data == NULL) {
pure = 0;
data = (unsigned char *) TclGetStringFromObj(objv[objc - 1], &count);
}
datastart = data;
dataend = data + count;
size = (count + 1) / 2;
begin = cursor = Tcl_SetByteArrayLength(resultObj, size);
while (data < dataend) {
value = 0;
for (i = 0 ; i < 2 ; i++) {
if (data >= dataend) {
value <<= 4;
break;
}
c = *data++;
if (!isxdigit(UCHAR(c))) {
if (strict || !TclIsSpaceProc(c)) {
goto badChar;
}
i--;
continue;
}
value <<= 4;
c -= '0';
if (c > 9) {
c += ('0' - 'A') + 10;
}
if (c > 16) {
c += ('A' - 'a');
}
value |= c & 0xF;
}
if (i < 2) {
cut++;
}
*cursor++ = UCHAR(value);
value = 0;
}
if (cut > size) {
cut = size;
}
Tcl_SetByteArrayLength(resultObj, cursor - begin - cut);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
badChar:
if (pure) {
ch = c;
} else {
TclUtfToUniChar((const char *)(data - 1), &ch);
}
TclDecrRefCount(resultObj);
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"invalid hexadecimal digit \"%c\" at position %" TCL_Z_MODIFIER "u",
ch, data - datastart - 1));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "DECODE", "INVALID", NULL);
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* BinaryEncode64 --
*
* This procedure implements the "binary encode base64" Tcl command.
*
* Results:
* The base64 encoded value prescribed by the input arguments.
*
*----------------------------------------------------------------------
*/
#define OUTPUT(c) \
do { \
*cursor++ = (c); \
outindex++; \
if (maxlen > 0 && cursor != limit) { \
if (outindex == maxlen) { \
memcpy(cursor, wrapchar, wrapcharlen); \
cursor += wrapcharlen; \
outindex = 0; \
} \
} \
if (cursor > limit) { \
Tcl_Panic("limit hit"); \
} \
} while (0)
static int
BinaryEncode64(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj;
unsigned char *data, *limit;
int maxlen = 0;
const char *wrapchar = "\n";
size_t wrapcharlen = 1;
int i, index, size, outindex = 0, purewrap = 1;
size_t offset, count = 0;
enum { OPT_MAXLEN, OPT_WRAPCHAR };
static const char *const optStrings[] = { "-maxlen", "-wrapchar", NULL };
if (objc < 2 || objc % 2 != 0) {
Tcl_WrongNumArgs(interp, 1, objv,
"?-maxlen len? ?-wrapchar char? data");
return TCL_ERROR;
}
for (i = 1; i < objc - 1; i += 2) {
if (Tcl_GetIndexFromObj(interp, objv[i], optStrings, "option",
TCL_EXACT, &index) != TCL_OK) {
return TCL_ERROR;
}
switch (index) {
case OPT_MAXLEN:
if (Tcl_GetIntFromObj(interp, objv[i + 1], &maxlen) != TCL_OK) {
return TCL_ERROR;
}
if (maxlen < 0) {
Tcl_SetObjResult(interp, Tcl_NewStringObj(
"line length out of range", -1));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "ENCODE",
"LINE_LENGTH", NULL);
return TCL_ERROR;
}
break;
case OPT_WRAPCHAR:
wrapchar = (const char *)TclGetBytesFromObj(NULL,
objv[i + 1], &wrapcharlen);
if (wrapchar == NULL) {
purewrap = 0;
wrapchar = TclGetStringFromObj(objv[i + 1], &wrapcharlen);
}
break;
}
}
if (wrapcharlen == 0) {
maxlen = 0;
}
resultObj = Tcl_NewObj();
data = TclGetByteArrayFromObj(objv[objc - 1], &count);
if (count > 0) {
unsigned char *cursor = NULL;
size = (((count * 4) / 3) + 3) & ~3; /* ensure 4 byte chunks */
if (maxlen > 0 && size > maxlen) {
int adjusted = size + (wrapcharlen * (size / maxlen));
if (size % maxlen == 0) {
adjusted -= wrapcharlen;
}
size = adjusted;
if (purewrap == 0) {
/* Wrapchar is (possibly) non-byte, so build result as
* general string, not bytearray */
Tcl_SetObjLength(resultObj, size);
cursor = (unsigned char *) TclGetString(resultObj);
}
}
if (cursor == NULL) {
cursor = Tcl_SetByteArrayLength(resultObj, size);
}
limit = cursor + size;
for (offset = 0; offset < count; offset += 3) {
unsigned char d[3] = {0, 0, 0};
for (i = 0; i < 3 && offset + i < count; ++i) {
d[i] = data[offset + i];
}
OUTPUT(B64Digits[d[0] >> 2]);
OUTPUT(B64Digits[((d[0] & 0x03) << 4) | (d[1] >> 4)]);
if (offset + 1 < count) {
OUTPUT(B64Digits[((d[1] & 0x0F) << 2) | (d[2] >> 6)]);
} else {
OUTPUT(B64Digits[64]);
}
if (offset+2 < count) {
OUTPUT(B64Digits[d[2] & 0x3F]);
} else {
OUTPUT(B64Digits[64]);
}
}
}
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
#undef OUTPUT
/*
*----------------------------------------------------------------------
*
* BinaryEncodeUu --
*
* This implements the uuencode binary encoding. Input is broken into 6
* bit chunks and a lookup table is used to turn these values into output
* characters. This differs from the generic code above in that line
* lengths are also encoded.
*
* Results:
* Interp result set to an encoded byte array object
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
BinaryEncodeUu(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj;
unsigned char *data, *start, *cursor;
int rawLength, n, i, bits, index;
int lineLength = 61;
const unsigned char SingleNewline[] = { (unsigned char) '\n' };
const unsigned char *wrapchar = SingleNewline;
size_t j, offset, count = 0, wrapcharlen = sizeof(SingleNewline);
enum { OPT_MAXLEN, OPT_WRAPCHAR };
static const char *const optStrings[] = { "-maxlen", "-wrapchar", NULL };
if (objc < 2 || objc % 2 != 0) {
Tcl_WrongNumArgs(interp, 1, objv,
"?-maxlen len? ?-wrapchar char? data");
return TCL_ERROR;
}
for (i = 1; i < objc - 1; i += 2) {
if (Tcl_GetIndexFromObj(interp, objv[i], optStrings, "option",
TCL_EXACT, &index) != TCL_OK) {
return TCL_ERROR;
}
switch (index) {
case OPT_MAXLEN:
if (Tcl_GetIntFromObj(interp, objv[i + 1],
&lineLength) != TCL_OK) {
return TCL_ERROR;
}
if (lineLength < 3 || lineLength > 85) {
Tcl_SetObjResult(interp, Tcl_NewStringObj(
"line length out of range", -1));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "ENCODE",
"LINE_LENGTH", NULL);
return TCL_ERROR;
}
break;
case OPT_WRAPCHAR:
wrapchar = TclGetByteArrayFromObj(objv[i + 1], &wrapcharlen);
break;
}
}
/*
* Allocate the buffer. This is a little bit too long, but is "good
* enough".
*/
resultObj = Tcl_NewObj();
offset = 0;
data = TclGetByteArrayFromObj(objv[objc - 1], &count);
rawLength = (lineLength - 1) * 3 / 4;
start = cursor = Tcl_SetByteArrayLength(resultObj,
(lineLength + wrapcharlen) *
((count + (rawLength - 1)) / rawLength));
n = bits = 0;
/*
* Encode the data. Each output line first has the length of raw data
* encoded by the output line described in it by one encoded byte, then
* the encoded data follows (encoding each 6 bits as one character).
* Encoded lines are always terminated by a newline.
*/
while (offset < count) {
int lineLen = count - offset;
if (lineLen > rawLength) {
lineLen = rawLength;
}
*cursor++ = UueDigits[lineLen];
for (i = 0 ; i < lineLen ; i++) {
n <<= 8;
n |= data[offset++];
for (bits += 8; bits > 6 ; bits -= 6) {
*cursor++ = UueDigits[(n >> (bits - 6)) & 0x3F];
}
}
if (bits > 0) {
n <<= 8;
*cursor++ = UueDigits[(n >> (bits + 2)) & 0x3F];
bits = 0;
}
for (j = 0 ; j < wrapcharlen ; ++j) {
*cursor++ = wrapchar[j];
}
}
/*
* Fix the length of the output bytearray.
*/
Tcl_SetByteArrayLength(resultObj, cursor - start);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* BinaryDecodeUu --
*
* Decode a uuencoded string.
*
* Results:
* Interp result set to an byte array object
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
BinaryDecodeUu(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj = NULL;
unsigned char *data, *datastart, *dataend;
unsigned char *begin, *cursor;
int i, index, pure = 1, strict = 0, lineLen;
size_t size, count = 0;
unsigned char c;
Tcl_UniChar ch = 0;
enum { OPT_STRICT };
static const char *const optStrings[] = { "-strict", NULL };
if (objc < 2 || objc > 3) {
Tcl_WrongNumArgs(interp, 1, objv, "?options? data");
return TCL_ERROR;
}
for (i = 1; i < objc - 1; ++i) {
if (Tcl_GetIndexFromObj(interp, objv[i], optStrings, "option",
TCL_EXACT, &index) != TCL_OK) {
return TCL_ERROR;
}
switch (index) {
case OPT_STRICT:
strict = 1;
break;
}
}
TclNewObj(resultObj);
data = TclGetBytesFromObj(NULL, objv[objc - 1], &count);
if (data == NULL) {
pure = 0;
data = (unsigned char *) TclGetStringFromObj(objv[objc - 1], &count);
}
datastart = data;
dataend = data + count;
size = ((count + 3) & ~3) * 3 / 4;
begin = cursor = Tcl_SetByteArrayLength(resultObj, size);
lineLen = -1;
/*
* The decoding loop. First, we get the length of line (strictly, the
* number of data bytes we expect to generate from the line) we're
* processing this time round if it is not already known (i.e., when the
* lineLen variable is set to the magic value, -1).
*/
while (data < dataend) {
char d[4] = {0, 0, 0, 0};
if (lineLen < 0) {
c = *data++;
if (c < 32 || c > 96) {
if (strict || !TclIsSpaceProc(c)) {
goto badUu;
}
i--;
continue;
}
lineLen = (c - 32) & 0x3F;
}
/*
* Now we read a four-character grouping.
*/
for (i = 0 ; i < 4 ; i++) {
if (data < dataend) {
d[i] = c = *data++;
if (c < 32 || c > 96) {
if (strict) {
if (!TclIsSpaceProc(c)) {
goto badUu;
} else if (c == '\n') {
goto shortUu;
}
}
i--;
continue;
}
}
}
/*
* Translate that grouping into (up to) three binary bytes output.
*/
if (lineLen > 0) {
*cursor++ = (((d[0] - 0x20) & 0x3F) << 2)
| (((d[1] - 0x20) & 0x3F) >> 4);
if (--lineLen > 0) {
*cursor++ = (((d[1] - 0x20) & 0x3F) << 4)
| (((d[2] - 0x20) & 0x3F) >> 2);
if (--lineLen > 0) {
*cursor++ = (((d[2] - 0x20) & 0x3F) << 6)
| (((d[3] - 0x20) & 0x3F));
lineLen--;
}
}
}
/*
* If we've reached the end of the line, skip until we process a
* newline.
*/
if (lineLen == 0 && data < dataend) {
lineLen = -1;
do {
c = *data++;
if (c == '\n') {
break;
} else if (c >= 32 && c <= 96) {
data--;
break;
} else if (strict || !TclIsSpaceProc(c)) {
goto badUu;
}
} while (data < dataend);
}
}
/*
* Sanity check, clean up and finish.
*/
if (lineLen > 0 && strict) {
goto shortUu;
}
Tcl_SetByteArrayLength(resultObj, cursor - begin);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
shortUu:
Tcl_SetObjResult(interp, Tcl_ObjPrintf("short uuencode data"));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "DECODE", "SHORT", NULL);
TclDecrRefCount(resultObj);
return TCL_ERROR;
badUu:
if (pure) {
ch = c;
} else {
TclUtfToUniChar((const char *)(data - 1), &ch);
}
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"invalid uuencode character \"%c\" at position %" TCL_Z_MODIFIER "u",
ch, data - datastart - 1));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "DECODE", "INVALID", NULL);
TclDecrRefCount(resultObj);
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
*
* BinaryDecode64 --
*
* Decode a base64 encoded string.
*
* Results:
* Interp result set to an byte array object
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
BinaryDecode64(
TCL_UNUSED(ClientData),
Tcl_Interp *interp,
int objc,
Tcl_Obj *const objv[])
{
Tcl_Obj *resultObj = NULL;
unsigned char *data, *datastart, *dataend, c = '\0';
unsigned char *begin = NULL;
unsigned char *cursor = NULL;
int pure = 1, strict = 0;
int i, index, cut = 0;
size_t size, count = 0;
Tcl_UniChar ch = 0;
enum { OPT_STRICT };
static const char *const optStrings[] = { "-strict", NULL };
if (objc < 2 || objc > 3) {
Tcl_WrongNumArgs(interp, 1, objv, "?options? data");
return TCL_ERROR;
}
for (i = 1; i < objc - 1; ++i) {
if (Tcl_GetIndexFromObj(interp, objv[i], optStrings, "option",
TCL_EXACT, &index) != TCL_OK) {
return TCL_ERROR;
}
switch (index) {
case OPT_STRICT:
strict = 1;
break;
}
}
TclNewObj(resultObj);
data = TclGetBytesFromObj(NULL, objv[objc - 1], &count);
if (data == NULL) {
pure = 0;
data = (unsigned char *) TclGetStringFromObj(objv[objc - 1], &count);
}
datastart = data;
dataend = data + count;
size = ((count + 3) & ~3) * 3 / 4;
begin = cursor = Tcl_SetByteArrayLength(resultObj, size);
while (data < dataend) {
unsigned long value = 0;
/*
* Decode the current block. Each base64 block consists of four input
* characters A-Z, a-z, 0-9, +, or /. Each character supplies six bits
* of output data, so each block's output is 24 bits (three bytes) in
* length. The final block can be shorter by one or two bytes, denoted
* by the input ending with one or two ='s, respectively.
*/
for (i = 0; i < 4; i++) {
/*
* Get the next input character. At end of input, pad with at most
* two ='s. If more than two ='s would be needed, instead discard
* the block read thus far.
*/
if (data < dataend) {
c = *data++;
} else if (i > 1) {
c = '=';
} else {
if (strict && i <= 1) {
/*
* Single resp. unfulfilled char (each 4th next single
* char) is rather bad64 error case in strict mode.
*/
goto bad64;
}
cut += 3;
break;
}
/*
* Load the character into the block value. Handle ='s specially
* because they're only valid as the last character or two of the
* final block of input. Unless strict mode is enabled, skip any
* input whitespace characters.
*/
if (cut) {
if (c == '=' && i > 1) {
value <<= 6;
cut++;
} else if (!strict) {
i--;
} else {
goto bad64;
}
} else if (c >= 'A' && c <= 'Z') {
value = (value << 6) | ((c - 'A') & 0x3F);
} else if (c >= 'a' && c <= 'z') {
value = (value << 6) | ((c - 'a' + 26) & 0x3F);
} else if (c >= '0' && c <= '9') {
value = (value << 6) | ((c - '0' + 52) & 0x3F);
} else if (c == '+') {
value = (value << 6) | 0x3E;
} else if (c == '/') {
value = (value << 6) | 0x3F;
} else if (c == '=' && (!strict || i > 1)) {
/*
* "=" and "a=" is rather bad64 error case in strict mode.
*/
value <<= 6;
if (i) {
cut++;
}
} else if (strict) {
goto bad64;
} else {
i--;
}
}
*cursor++ = UCHAR((value >> 16) & 0xFF);
*cursor++ = UCHAR((value >> 8) & 0xFF);
*cursor++ = UCHAR(value & 0xFF);
/*
* Since = is only valid within the final block, if it was encountered
* but there are still more input characters, confirm that strict mode
* is off and all subsequent characters are whitespace.
*/
if (cut && data < dataend) {
if (strict) {
goto bad64;
}
}
}
Tcl_SetByteArrayLength(resultObj, cursor - begin - cut);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
bad64:
if (pure) {
ch = c;
} else {
/* The decoder is byte-oriented. If we saw a byte that's not a
* valid member of the base64 alphabet, it could be the lead byte
* of a multi-byte character. */
/* Safe because we know data is NUL-terminated */
TclUtfToUniChar((const char *)(data - 1), &ch);
}
Tcl_SetObjResult(interp, Tcl_ObjPrintf(
"invalid base64 character \"%c\" at position %"
TCL_Z_MODIFIER "u", ch, data - datastart - 1));
Tcl_SetErrorCode(interp, "TCL", "BINARY", "DECODE", "INVALID", NULL);
TclDecrRefCount(resultObj);
return TCL_ERROR;
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 4
* fill-column: 78
* End:
*/