
• • • • • •

Tcl Extension Architecture
Developer’s Guide — DRAFT

Scriptics Corporation
August 25, 1999

ar in
COPYRIGHT
Copyright ©1999 Scriptics Corporation. All rights reserved.

Information in this document is subject to change without notice.

Scriptics Corporation
2593 Coast Avenue
Second Floor
Mountain View, CA 94043
U.S.A

http://www.scriptics.com

TRADEMARKS
TclPro and Scriptics are trademarks of the Scriptics Corporation.
Other products and company names not owned by the Scriptics Corporation that appe
this manual may be trademarks of their respective owners.

 . 12
 . 12
 . 13
 13
 . 14
. 15
 . 15
 . 15
 . 15
. . 16
 . 16
. . 16
 . 16
 . 17
• • • • • •
Contents

Preface. v

Chapter 1 Overview . 1

Chapter 2 Designing and Coding Tcl Extensions. 3

Directory Structure . 3

Chapter 3 Recommended Coding Style. 5

Chapter 4 Tcl Packages. 7

Chapter 5 Tcl Stubs . 9

Chapter 6 Configure and Make Files . 11

Quick Overview . 11
Programs You’ll Use. .
The tcl.m4 File .
The configure.in File. .

The AC_INIT Macro .
Extension Name and Version Numbers .
Miscellaneous Platform-Specific Items .
Shared Libraries and Static Libraries .

The Makefile.in File .
Library Name .
Source File Names .
Object File Names .
Header File Names .
Other Variables. .
all Target .
iii

•
•
•
•
•
•

iv
binaries Target. 17
libraries Target . 17
doc Target . 17
test Target . 18
install Target . 18
install-binaries Target . 18
install-libraries Target . 18
install-doc Target . 18
$(exampleA_LIB_FILE) Target . 19
Object File Targets . 19
clean Target. 20
distclean Target . 20
depend Target . 20

Chapter 7 Writing and Running a Test Suite . 21

Chapter 8 Documentation . 23

Appendix A Required Configure Switches . 25
•
•
•
•
•
•

 than

 and

 to

 ways
ted or
sed
s
rs.

ing
m

l)
EA
e’s a

• • • • • •
Preface

Tcl (Tool Command Language, often pronounced “tickle”) is a freely-available
scripting language that’s designed to be extensible. Extending Tcl means more
writing new Tcl procedures using Tcl itself. You can add new functionality,
creating new Tcl commands, by writing code in C or C++. (A package called
TclBlend lets you extend Tcl by writing Java.) Thousands of extensions have
already been written. A few of the most popular extensions include Tk (for
graphical interfaces), Expect (for automating interaction with other programs),
[incr Tcl] (object-oriented Tcl).

Although Tcl is extensible, there’s never been a standard recommended way
write an extension. So, for instance, different extensions have different build
procedures. Libraries are installed in assorted places, and are built in various
as extensions are ported to various platforms. Some APIs haven’t been crea
exported for extension writers—so, for example, some Tcl extensions have u
internal APIs that required modifications to the Tcl core itself. All of this mean
extra work and headaches for system administrators, users, and programme

TEA, the Tcl Extension Architecture, is a proposed standard for writing, build
and documenting Tcl extensions. TEA is far from complete. It needs input fro
extension writers and users to become a standard that helps everyone.

This document also is incomplete. Scriptics Corporation (which distributes Tc
will work with the community to revise and complete this document and the T
standard. Please help us by reading the latest version of this document; ther
link from http://www.scriptics.com/products/tcltk/tea/. You can discuss TEA, and
this document, on the mailing list tea@scriptics.com. To subscribe to the list, send
a message to tea-request@scriptics.com with the single word subscribe in the
message body.
v

•
•
•
•
•
•

http://www.scriptics.com/doc/tea.pdf
http://www.scriptics.com/products/tcltk/tea/

vi
•
•
•
•
•
•

ent.

ions.
l
ons
r to
tall

ee

.

• • • • • •

Chapter 1
Overview

TEA, the Tcl Extension Architecture, is a draft standard that’s under developm
As of August 1999, TEA covers only the required configuration and Makefile
settings. The proposed goal for TEA is a universal architecture for Tcl extens
An end user should be able to go to a Tcl extension server (similar to the Per
CPAN archives) and use a GUI to choose extensions they want. The extensi
will conform to the TEA API, which means that the user should be able eithe
download a binary file and install it automatically or download sources and ins
them almost as easily.

For more about TEA, see http://www.scriptics.com/products/tcltk/tea/. You can
download the sample extension from ftp://ftp.scriptics.com/pub/tcl/examples/tea/.

Like TEA itself, this document is a rough draft. Some chapters are basically
skeletons, placeholders for information that may be added in the future.

For an overview of how to write an extension and how it integrates with Tcl, s
Chapter 2. It has more information, including the recommended filesystem
locations for an extension.

Chapter 3 has a brief description of recommended coding styles for Tcl and C

Collections of Tcl commands are kept in libraries and organized into packages.
Packages support version numbers and have a provide/require model of use. Read
more in Chapter 4.

Tcl Stubs solve several problems with extensions, including conflicts between
static vs. dynamic loading and recompilation when new versions of Tcl are
released. See Chapter 5 for details.

TEA standardizes configuration and build tools. You’ll need to modify two
template files that control the build process: configure.in and Makefile.in. Chapter
6 describes these files and the changes needed.

Chapter 7 explains how to create a test suite for your extension.

Chapter 8 discusses writing documentation, naming and storing the files.

Appendix A describes each required Configure switch defined in the tcl.m4 file.
1

•
•
•
•
•
•

ftp://ftp.scriptics.com/pub/tcl/examples/tea/
http://www.scriptics.com/products/tcltk/tea/
ftp://ftp.scriptics.com/pub/tcl/examples/tea/

2
 Chapter 1

•
•
•
•
•
•

 the
y

 one

tic
• • • • • •

Chapter 2
Designing and Coding Tcl Extensions

[This document is a rough draft. Here we’re planning to add summary info on
basics of writing extensions—enough to get the context without the nitty-gritt
details.]

Directory Structure
TEA recommends directory structures for extensions but doesn’t require any
of them.

[We’re thinking of describing two suggested hierarchies here: 1) Tcl-only, 2)
Platform-independent (Tcl plus C). Two other possible hierarchies are: 3)
Platform-dependent (UNIX and Windows), and especially 4) How to build sta
shells (Tcl & Tk).]
3

•
•
•
•
•
•

4
 Chapter 2

•
•
•
•
•
•

ere.
• • • • • •

Chapter 3
Recommended Coding Style

We have recommended (not required) coding guidelines for Tcl. These can make
your code easier to understand and more maintainable. See
http://www.scriptics.com/doc/styleGuide.pdf.

Another good source of coding information for C programming is the Tcl
Engineering Manual at http://www.scriptics.com/doc/engManual.ps.

[This document is a rough draft. We’ll add highlights from those documents h
We also should update those documents and/or put updates here.]
5

•
•
•
•
•
•

http://www.scriptics.com/doc/styleGuide.pdf
http://www.scriptics.com/doc/engManual.ps
http://www.scriptics.com/doc/styleGuide.pdf
http://www.scriptics.com/doc/engManual.ps

6
 Chapter 3

•
•
•
•
•
•

ion

l
• • • • • •

Chapter 4
Tcl Packages

[This document is a rough draft. Here, the document could describe packages and
the benefits of using them. It can also explain the namespace facility. The Style
Guide has recommendations for coding packages; see
http://www.scriptics.com/doc/styleGuide.pdf.]

Package names: The name must not end with a digit (0 through 9). [?Rules for other
special characters like () {} ‘’ ““?] This name should be unique; no other extens
should have the same one. The NIST registry of Tcl packages at
http://pitch.nist.gov/nics/ lists some Tcl extensions. You also can search the Tc
Resource Center on the Scriptics website, http://www.scriptics.com/resource/, to
see if anyone else has used the name you want.

[Here we’re planning to explain package rules. For example:

• Naming (initial caps vs. all lowercase)
• Namespace and name of package
• Define declarations in namespace eval
• Define all procs in global space
• How to import/export
...]
7

•
•
•
•
•
•

http://www.scriptics.com/doc/styleGuide.pdf
http://www.scriptics.com/doc/styleGuide.pdf
http://pitch.nist.gov/nics/
http://www.scriptics.com/resource/
http://pitch.nist.gov/nics/
http://www.scriptics.com/resource/

8
 Chapter 4

•
•
•
•
•
•

• • • • • •

Chapter 5
Tcl Stubs

[This document is a rough draft. The plans for this chapter include:

The benefits of using stubs, an overview of how they work.

1) Extension writers should link against the Tcl stub library, not against Tcl itself.

For more information, see the document How To Use Stub Libraries at
http://www.scriptics.com/services/support/howto/stubs.html.

2) How to stub-enable extensions.]
9

•
•
•
•
•
•

http://www.scriptics.com/services/support/howto/stubs.html
http://www.scriptics.com/services/support/howto/stubs.html

10
 Chapter 5

•
•
•
•
•
•

n
h the

es,

le
s of

pper
• • • • • •

Chapter 6
Configure and Make Files

The extension writer must supply customized configuration files named
configure.in and Makefile.in, modified from templates. These two template files,
plus a stock library of Autoconf macros in the file tcl.m4, are supplied with the Tcl
Sample Extension. This section describes those three files. You can get a copy from
the directory ftp://ftp.scriptics.com/pub/tcl/examples/tea/.

Quick Overview
This section is a high-level summary for extension writers who are familiar with
Autoconf, Cygwin and Makefiles. You may be able to “TEA-ify” your extensio
simply by reading this section. If you need more details, though, scan throug
rest of this Chapter.

The tcl.m4 file defines standard TEA Configure switches. To add more switch
you can either edit the configure.in file or add another M4 file. You must append
tcl.m4 (and any other M4 file you create) to the aclocal.m4 file before running
autoconf.

The configure.in and Makefile.in files have well-marked places at the start, midd
and end of each file that you’ll need to edit for your extension. The main kind
changes are:

• Replace the sample extension name “exampleA,” wherever it occurs, in u
or lower case, with the name of your extension.

• Update the macros and targets that list the files from the sample extension
(exampleA.* and tclexampleA.*) to list the files from your extension.

Finally, please help us make TEA into an architecture that works for everyone by
discussing your experiences on the TEA mailing list. If you define new M4 macros,
send them in! This document’s Preface has details.
11

•
•
•
•
•
•

ftp://ftp.scriptics.com/pub/tcl/examples/tea/

12

 so

 be

n
H

ard
Programs You’ll Use
To write a TEA-compliant extension, a programmer uses the GNU Autoconf
package; this generates a configure script for the end user. To install an extension,
the end user runs the configure script, then runs a compatible version of make.

• These freely available utilities, from http://www.gnu.org/, are common on
UNIX and UNIX-like systems.

• On Microsoft Windows platforms, these utilities are part of the freely available
Cygwin package. To install and use Cygwin, follow these steps:
a) Download and install the Cygnus Cygwin user tools package from

ftp://go.cygnus.com/pub/sourceware.cygnus.com/pub/cygwin/cygwin-
b20/usertools.exe.

b) Install GNU Make for Windows. You can get the GNU make binary from
the same directory as the Tcl Sample Extension:
ftp://ftp.scriptics.com/pub/tcl/example/

c) Create a directory called C:\bin. Copy the sh.exe program from the Cygnus
bin directory (C:\cygnus\cygwin-b20\H-i586-cygwin32\bin\sh.exe) to
C:\bin. This will allow you to run shell scripts that use the “#!/bin/sh”
invocation.

d) Run vcvars32.bat. You must run that batch file every time you build an
extension. We recommend that you modify your system environment
that you don't have to run vcvars32.bat every time. If you look in the
vcvars32.bat file, you’ll see what system environment variables need to
set to make this work.

[This document is a rough draft. Here we should document how to ru
Cygwin if you already have MKS installed... basically, change the PAT
to put Cygwin at start and unset the ENV variable.]

You’ll use the Windows compiler Visual C++ 5.0. (Version 6.0 may also
work).

• As of this writing, TEA isn’t compatible with the Macintosh.
For more about Autoconf, see http://sourceware.cygnus.com/autoconf/.

The tcl.m4 File
The tcl.m4 file, which comes with the Tcl Sample Extension, defines the stand
Tcl options; these are listed in Appendix A. tcl.m4 is written in the M4 macro
language. Although it’s helpful to understand M4, that isn’t required.
Chapter 6

•
•
•
•
•
•

http://www.gnu.org/
http://sourceware.cygnus.com/cygwin/
http://sourceware.cygnus.com/autoconf/
ftp://go.cygnus.com/pub/sourceware.cygnus.com/pub/cygwin/cygwin-b20/usertools.exe
ftp://go.cygnus.com/pub/sourceware.cygnus.com/pub/cygwin/cygwin-b20/usertools.exe
ftp://ftp.scriptics.com/pub/tcl/example/

ll
set of

:
ance,

BAR

e
 For

d.
sn't
The easiest way to add options for your extension is by modifying the configure.in
file, as the next section explains. If your extension has many additional options,
you may want to create a separate M4 file.

The tcl.m4 file (plus any separate M4 files you might create) must be appended to
the aclocal.m4 file before you run autoconf. Autoconf reads its macros from
aclocal.m4.

The configure.in File
The configure.in file is written in the M4 macro language. The Tcl Sample
Extension comes with both tcl.m4 (which you don’t need to edit) and a sample
configure.in (which you do). As with tcl.m4, you can probably get by without
understanding the details of M4 and, in this section, we’ll show you how.

You’ll edit two constructs in configure.in: macro calls and variables. A macro ca
starts with a name in UPPERCASE and has optional argument(s) in a single
parentheses. For example, here’s the AC_INIT macro with the argument
exampleA.h:

AC_INIT(exampleA.h)

A variable is written NAME=value. The name is an UPPERCASE string. It’s
followed by an equal sign (=) but no spaces. The value can be fairly complex
strings and/or expanded variables, possibly with quotes around them. For inst
the following line sets the variable named FOO to the value bar:

FOO=bar

The next example sets the variable FOO to contain the value of the variable
followed by the string xyz, a dot (.) and finally the value of the variable BAZ:

FOO=${BAR}xyz.${BAZ}

When you edit configure.in, your main job will be to replace the abbreviated nam
of this sample extension, exampleA, with an abbreviation for your extension.
example, if your extension is named Tclbaz, you could edit the variable
exampleA_LIB_FILE to become TCLBAZ_LIB_FILE. Handy tip: use your text
editor’s search function to find the string “exampleA” and replace it with (for
example) “TCLBAZ” or “tclbaz”.

You’ll need to edit three parts of configure.in: one each at the start, middle and en
(Most code in the middle is “boilerplate” that applies to all extensions and doe
need editing.) Let’s look at each edit.

The AC_INIT Macro
AC_INIT(exampleA.h)
Configure and Make Files 13

•
•
•
•
•
•

14

f the

 part
he

 test

ld

e

n
er
r. So,

the

ge
The AC_INIT macro is required. It verifies the location of the source files for the
extension. (It does not test for the existence of a file.) It’s important to use
AC_INIT because someone can build an extension from a directory outside o
extension’s source tree.

The argument to AC_INIT is the pathname to any file that's guaranteed to be
of your extension code and appears only once. Because users may unpack t
source code in any directory, this pathname should be relative to the current
directory (the directory containing the configure file). For instance, if all of the
source files for your extension come from the same directory and you want to
for the presence of the file exampleA.h in that directory, use
AC_INIT(exampleA.h). In a bigger extension with multiple directories, you cou
use a macro call like AC_INIT(foo/bar.c) to refer to bar.c in the foo subdirectory
or AC_INIT(../foo/bar.c) if that file is in a sibling directory (a directory at the sam
depth in the tree as the current directory).

Extension Name and Version Numbers
PACKAGE=exampleA

MAJOR_VERSION=0

MINOR_VERSION=2

PATCHLEVEL=

VERSION=${MAJOR_VERSION}.${MINOR_VERSION}${PATCHLEVEL}

NODOT_VERSION=${MAJOR_VERSION}${MINOR_VERSION}

The next section of configure.in has a series of variables whose values are ofte
used to build longer strings. For instance, the major and minor version numb
variables are combined with the patchlevel to make a complete version numbe
if your TclBaz extension is version 2.1, you’d set MAJOR_VERSION to 2 and
MINOR_VERSION to 1. If the source code doesn’t have a patchlevel, leave
PATCHLEVEL variable with an empty value. (Don’t delete unused variables.
Leave them as placeholders with an equal sign but no value.)

The PACKAGE is the full name of your package. See the discussion of packa
names in Chapter 4.
Chapter 6

•
•
•
•
•
•

’t

d

n

 the
Next come two version number strings that become part of the library name on
different systems. The first variable, VERSION, is for systems such as some
versions of UNIX that allow multiple dots (.) in their filenames. The second
variable, NODOT_VERSION, is for systems like Microsoft Windows that don
use dots.

Miscellaneous Platform-Specific Items
case "‘uname -s‘" in

 win32 | *WIN32* | *CYGWIN_NT*)

 AC_DEFINE(BUILD_exampleA)

Near the middle of the sample configure.in file is a single macro call that you
should change to your extension name. In the call AC_DEFINE
(BUILD_exampleA), change the “exampleA”. This code sets up function
declarations to allow dynamic loading on Microsoft Windows. See the sample
exampleA.h file for an example.

Shared Libraries and Static Libraries
AC_SUBST(exampleA_LIB_FILE)

AC_SUBST(SHLIB_LD_LIBS)

The Makefile.in File
The Configure process creates a Makefile that controls the actual building an
installation of the extension. (A Makefile is read by the widely used make utility.
One good source of information is the book Managing Projects with Make from
O’Reilly & Associates, http://www.oreilly.com/.) The extension writer needs to
supply Makefile.in, which is the template for the Makefile.

[This document is a rough draft. Here we need to add info about Makefiles.]

You'll edit two parts of Makefile.in: at the start and the middle. Here’s a descriptio
of each edit.

Library Name
lib_BINARIES = $(exampleA_LIB_FILE)

BINARIES = $(exampleA_LIB_FILE)

These two variables set the name of the library you’re building. The value for
exampleA_LIB_FILE was substituted by the AC_SUBST() macro at the end of
configure.in file.
Configure and Make Files 15

•
•
•
•
•
•

http://www.oreilly.com/

16

T)

le
n.

on
srcdir)

dir).

ation

Source File Names
exampleA_SOURCES = exampleA.c tclexampleA.c

SOURCES = $(exampleA_SOURCES)

The first variable sets the names of all source files (typically, files whose names
end with “.c”). The second variable is used when packing the files into a
distribution.

Object File Names
exampleA_OBJECTS = exampleA.$(OBJEXT) tclexampleA.$(OBJEXT)

exampleA_LIB_FILE = @exampleA_LIB_FILE@

$(exampleA_LIB_FILE)_OBJECTS = $(exampleA_OBJECTS)

OBJECTS = $(exampleA_OBJECTS)

The first variable is a list of names of object files. At build time, the $(OBJEX
macro will hold the extension for object filenames—for instance, “.o” on UNIX
and “.obj” on Windows. The second variable’s value, @exampleA_LIB_FILE@, is
substituted by configure when it runs; as with all other occurrences of this samp
extension’s name (exampleA), you’ll need to change the name to fit your extensio

Header File Names
GENERIC_HDRS= \

 $(srcdir)/exampleA.h

A C header filename typically ends in “.h”. List all header files in your extensi
that need to be installed. Each header file should have a correct pathname. $(
is the source directory found by the AC_INIT() macro in configure.in. If your
header files are in some other directory, modify this pathname relative to $(src
So, for example, if your extension has the files foo.h and bar.h in $(srcdir), you’d
use the value $(srcdir)/foo.h $(srcdir)/bar.h. Or, if you had one header file foo.h in
a subdirectory named include, you’d use the value $(srcdir)/include/foo.h.

You don’t need to use a backslash (\) as we do in the sample file. It’s a continu
character for variables whose values are longer than one line. This is just an
example that shows how to use one.

Other Variables
SAMPLE_NEW_VAR=@SAMPLE_NEW_VAR@
Chapter 6

•
•
•
•
•
•

d

ed

ve a
on,

e

ure

the

st-
led
.g.,
If you need to set variables in configure.in to pass into the Makefile, add a line like
the one above for each variable. For instance, your configure.in file could define
the variable TCL_TOP_DIR by calling AC_SUBST(TCL_TOP_DIR). You’d ad
a line like this to your Makefile.in:

TCL_TOP_DIR=@TCL_TOP_DIR@

When the configure script sees @TCL_TOP_DIR@ above, that string is replac
with the value of TCL_TOP_DIR to create the final Makefile.

all Target
all: binaries libraries doc

The all target should always be the first target in the Makefile and have the
following dependencies in the order shown above: binaries, libraries and doc. This
target simply makes the three sub targets, which implies that the user will ha
complete build after this target is called. Since all is the first target, by definiti
it’s the default target when make is called.

This target shouldn’t be changed. For instance, if your extension doesn’t hav
documentation, keep doc in the list of targets above and leave an empty “doc:”
target. The all target doesn’t need any following commands; it simply makes s
that the three listed targets have been made.

binaries Target
binaries: $(LIBRARIES)

The binaries target builds all platform-specific binaries. Essentially, this target
should build any binary that exists in the exec-prefix directory.

This target won’t need any following commands. The LIBRARIES are built by
$(exampleA_LIB_FILE) target, later.

libraries Target
The libraries target generates any platform-independent files and does any po
processing after the initial binaries have been built. This target should be cal
after the binaries target in case the binaries are needed to build the libraries (e
TclX uses the tclx shell to generate tlib library files).

doc Target
doc:

 xml2nroff exampleA.xml > exampleA.n
Configure and Make Files 17

•
•
•
•
•
•

18

after
on,
et.

ified
he
nto
 xml2html exampleA.xml > exampleA.html

The doc target generates or formats any documentation files, depending on the
current platform. This target should be called after the binaries target in case the
binaries are needed to build the documentation (e.g., generating Windows Help
files). The two commands above are just a sample.

Remember that, in a Makefile, each command must be indented with a TAB
character, not with space characters! This is a common Makefile error.

test Target
The test target runs the test suite for the extension. It should set up any necessary
environment variables and use the binary on the test suite.

install Target
install: all install-binaries install-libraries install-doc

The install target shouldn’t be changed. This target simply calls the three sub
targets, which implies that the user will have a completely-installed extension
this target is called. For instance, if your extension doesn’t have documentati
keep install-doc in the list of targets above and leave an empty “install-doc:” targ
The dependency on all lets a user run make install immediately after configure,
which minimizes the number of steps needed to build the extension.

install-binaries Target
install-binaries: INSTALL_LIB_BINARIES INSTALL_BIN_BINARIES

The install-binaries target installs all platform dependent binaries into the spec
$(exec-prefix) directory. This should be called only after the binaries target. T
actions for the two dependent targets install “.dll”, “.so” and executable files i
the correct directories. You shouldn’t need to modify them.

install-libraries Target
The install-libraries target installs all platform independent libraries into the
specified prefix directory. This should be called only after the libraries target.

install-doc Target
install-doc:

 $(mkinstalldirs) $(mandir)/man1

 $(mkinstalldirs) $(mandir)/man3
Chapter 6

•
•
•
•
•
•

ch

ame
 $(mkinstalldirs) $(mandir)/mann

 @for i in $(srcdir)/*.n; \

 do \

 echo "Installing $$i"; \

 rm -f $(mandir)/mann/$$i; \

 $(INSTALL_DATA) $$i $(mandir)/mann/$$i ; \

 chmod 444 $(mandir)/mann/$$i; \

 done

The install-doc target installs all manuals and related documentation into the
appropriate directory. This should be called only after the doc target. The example
above uses a loop to install Tcl manual pages, in nroff format, into three
directories.

$(exampleA_LIB_FILE) Target
$(exampleA_LIB_FILE): $(exampleA_OBJECTS)

 -rm -f $(exampleA_LIB_FILE)

 @MAKE_LIB@

 $(RANLIB) $(exampleA_LIB_FILE)

This target and the commands should only need editing to change the extension
name. The @MAKE_LIB@ string is a platform-dependent command that’s
generated and set by configure.

Object File Targets
exampleA.$(OBJEXT): $(srcdir)/exampleA.c

 $(COMPILE) -c ‘@CYGPATH@ $(srcdir)/exampleA.c‘ -o $@

tclexampleA.$(OBJEXT): $(srcdir)/tclexampleA.c

 $(COMPILE) -c ‘@CYGPATH@ $(srcdir)/tclexampleA.c‘ -o $@

The example above has targets and commands to make the object files. For
instance, the first target makes the file exampleA.* (exampleA.o on UNIX and
exampleA.obj on Windows). You should replace those with entries that build ea
of your object files.

If your header files are in some directory other than $(srcdir), modify the pathn
relative to $(srcdir). So, for example, if your extension has the files foo.c and bar.c
in $(srcdir), you’d use the value $(srcdir)/foo.c $(srcdir)/bar.c. Or, if you had one
source file foo.c in a subdirectory named baz, you’d use the value
$(srcdir)/baz/foo.c.
Configure and Make Files 19

•
•
•
•
•
•

20

d
ry
ailing

ted
lso

 by
t the
Note that using VPATH and implicit rules (like .c.o:) isn’t portable. The metho
above is the only portable one we’ve found that allows building from a directo
outside of the source tree. (If you have suggestions, please send them to the m
list. See the Preface.)

clean Target
clean:

 -test -z "$(BINARIES)" || rm -f $(BINARIES)

 -rm -f *.o core *.core

 -rm -f *.$(OBJEXT)

 -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES)

The clean target deletes from the current directory all files that are normally crea
by building the program. Don’t delete the files that record the configuration. A
preserve files that could be made by building but normally aren’t because the
distribution comes with them.

distclean Target
distclean: clean

 -rm -f *.tab.c

 -rm -f Makefile $(CONFIG_CLEAN_FILES)

 -rm -f config.cache config.log stamp-h stamp-h[0-9]*

 -rm -f config.status

The distclean target deletes all files from the current directory that are created
configuring or building the program. If you have unpacked the source and buil
program without creating any other files, make distclean should leave only the
files that were in the distribution.

depend Target
The depend target generates makefile dependencies and re-generates the Makefile
from the Makefile.in.
Chapter 6

•
•
•
•
•
•

l
• • • • • •

Chapter 7
Writing and Running a Test Suite

[This document is a rough draft. Here, we’ll explain the new test package. Al
extension writers should use it.]

For more information, see the section on tests in the Tcl Style Guide,
http://www.scriptics.com/doc/styleGuide.pdf.
21

•
•
•
•
•
•

http://www.scriptics.com/doc/styleGuide.pdf

22
 Chapter 7

•
•
•
•
•
•

t the
• • • • • •

Chapter 8
Documentation

As of August 1999, Tcl reference pages are still written and formatted with
nroff/troff and a special macro package. These are reformatted automatically into
HTML, Windows Help, and standard UNIX manual page formats. Soon
documents should be written in XML and then translated to other formats.

[This document is a rough draft. Here, we’re planning to add information abou
document tree, naming the files, and the files’ contents.]
23

•
•
•
•
•
•

24
 Chapter 8

•
•
•
•
•
•

• • • • • •

Appendix A
Required Configure Switches

An extension that complies with TEA must define all the switches listed here.
These switches are implemented automatically by the macros in the tcl.m4 file
supplied with the Tcl Sample Extension.

This is a minimum set; an extension can use any other configure switches it needs.
You can add switches by modifying the configure.in file or by writing a separate
M4 macro file. (If you do, please consider sending your macro to the mailing list!)

1) --enable-shared (--disable-shared)

The --enable-shared switch builds the executable as a shared library; --disable-
shared builds a static executable. The default is --enable-shared.

2) --enable-symbols (--disable-symbols)

The --enable-symbols switch builds the executable with debug symbols; --
disable-symbols builds an executable without debug symbols. The default is -
-disable-symbols.

3) --enable-threads (--disable-threads)

The --enable-threads switch builds binaries with Tcl threads enabled; --
disable-threads builds binaries with threads disabled. Currently, the default is
--disable-threads; this may change when the Tcl thread code is more stable.

4) --enable-gcc (--disable-gcc)

The --enable-gcc switch builds the executable using gcc; --disable-gcc builds
the executable using the system default: cc on UNIX and cl on Windows. The
default is to search for the first available compiler that works, defaulting to the
system compiler previously specified.

5) --with-tcl=DIR

The --with-tcl switch specifies the build or install directory for Tcl. This is
where the system will look for libraries, binaries and the tclConfig.sh file. The
default location is to look relative to the current location—for example
../../tcl8.1/unix.
25

•
•
•
•
•
•

26
 Appendix A

•
•
•
•
•
•

	Developer’s Guide — DRAFT
	Preface
	Overview
	Designing and Coding Tcl Extensions
	Directory Structure

	Recommended Coding Style
	Tcl Packages
	Tcl Stubs
	Configure and Make Files
	Quick Overview
	Programs You’ll Use
	The tcl.m4 File
	The configure.in File
	The AC_INIT Macro
	Extension Name and Version Numbers
	Miscellaneous Platform-Specific Items
	Shared Libraries and Static Libraries

	The Makefile.in File
	Library Name
	Source File Names
	Object File Names
	Header File Names
	Other Variables
	all Target
	binaries Target
	libraries Target
	doc Target
	test Target
	install Target
	install-binaries Target
	install-libraries Target
	install-doc Target
	$(exampleA_LIB_FILE) Target
	Object File Targets
	clean Target
	distclean Target
	depend Target

	Writing and Running a Test Suite
	Documentation
	Required Configure Switches

