WG3:SXF-006
DM32.2-2012-00009

ISO/IEC JTC 1/SC 32
Date: 2011-12-21
IWD 9075-9:201?(E)

ISO/IEC JTC 1/SC 32/WG 3

The United States of America (ANSI)

Information technology — Database languages — SQL —

Part 9:
Management of External Data (SQL/MED)

Technologies de l'information — Langages de base de données — SQL —
Partie 9: Gestion des Données Externes (SQL/MED)

Document type: International Standard

Document subtype: Informal Working Draft (IWD)

Document stage: (2) IWD = unofficial 'informal working drafts'
Document language: English

Edited by: Jim Melton (Ed.) and Krishna Kulkarni (Associate Ed.)

5ende§|
PDF rendering performed by XEP, courtesy of RenderX, Inc._a

http://www.renderx.com

Copyright notice

This ISO document is a working draft or a committee draft and is copyright-protected by ISO. While the reproduction
of working drafts or committee drafts in any form for use by participants in the ISO standards development process
is permitted without prior permission from 1SO, neither this document nor any extract from it may be reproduced,
stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce for the purpose of selling it should be addressed as shown below or to ISO's
member body in the country of the requester.

ANSI Customer Service Department
25 West 43rd Street, 4th Floor

New York, NY 10036

Tele: 1-212-642-4980

Fax: 1-212-302-1286

Email: storemanager@ansi.org
Web: www.ansi.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

IWD 9075-9:201?(E)

Contents Page
O WO, . xiii
INEFOAUCTION. . . oo e e e e e e Xiv
O Y o 0 1 o 1
2 NOrmMaAtiVe FeferENCeS. . ..ttt e 3
2.1 ISO and IEC Standards.ot e 3
2.2 Other international standards. 3
3 Definitions, notations, and CONVENTIONS. ottt e e e e 5
3.1 D NIt ONS. . . o 5
3.1.1 Definitions taken from XML, oo e 5
3.1.2 Definitions provided in Part O. 5
N o o] o AP 7
4.1 DAt a Y PES. . o et 7
411 Naming of predefined types.ot 7
4.1.2 Data type terminology.ot e 7
4.2 O B gN ST IS, o ot e e 7
4.3 FOreign-gdata WrapPerS. . . . oottt e e e 8
4.4 USEI MAPPINGS. « o e v ettt ettt e et e e e e e e 9
45 ROULINE MaPPINGS. . ottt e e e e e e e 9
4.6 GENEIIC OPLIONS. « o oottt e e e e 10
4.7 Capabilities and options information. i 10
4.8 DatalinKS. . .. 11
4.8.1 Operations involving datalinks. 15
48.1.1 Operators that operate on datalinks. 15
48.1.2 Other operators involving datalinks. 15
49 Columns, fields, and attributes. 16
4.10 TaDlES. .o 16
4.10.1 Introduction 0 tables. o 16
4.10.2 Base tables. 16
4.10.2.1 Foreign tables.o 17
4.10.3 Unique identification of tables. 17
4.10.4 Table desCriptors.ottt 17
4.10.5 Relationships between tables. 17
411 Functional dependenCies.ottt e 17
4.11.1 Overview of functional dependency rules and notations. i 18
4.11.2 Known functional dependencies inaforeigntable. 18

Contents iii

IWD 9075-9:201?(E)

4.12 SOL-SCNEMAS. . . oo e 18
4.13 S-S A EIMENTS. . . ot e 18
4131 SQL-statements classified by function. 18
4.13.1.1 SQL-sChema StatementS.t 18
4.13.1.2 SOQL-SESSION StA BMENTS. . o\ ottt et e e e 19
4.14 BasiC SECUItY MOUEL.o e 19
4141 PrIVIIEOES. . oo 19
4.15 SO LL-trANSACTIONS. . . ottt 20
4.15.1 Properties of SQL-tranSactions. ot e 20
4.16 S-S ONS. .+ v vttt e 20
4.16.1 SQL-SESSION PrOPEItIES. . . o v vttt ettt e e e 20
4.17 Foreign-data wrapper interface. i e 21
4170 HaNAIes. . oo 21
4.17.2 FOreigN SEIVEN SESSIONS. . o . . vttt ettt ettt e e e e e e et e e e e 23
4.17.3 Foreign-data wrapper interface routines. ot 23
4.17.3. 1 Handle rOULINES.ot 23
4.17.3.2 Initialization TOULINES.ottt 27
4.17.3.3 ACCESS FOULINES. . . ot ottt et e e ettt e e e e e e e e e e 28
4.17.3.4 Termination FOULINES.ottt e e e e e e e e e 29
4.17.3.5 Decomposition and pass-through modes. i 29
4.17.3.6 Sequence of actions during the execution of foreign serverrequests. it 29
4174 REIUM COUES. . o vttt ettt e e e e e e e e e e 41
4,175 Foreign-data wrapper diagnoSstiCs areas.o vt ittt 42
4076 NUIL POINEEIS. . .o e e e e e 44
4.17.7 Foreign-data Wrapper deSCriptOr @rBas. v v vttt et e e e e 44
4.18 Introduction t0 SQL/CLL. o 47
5 Lexical elements. 49
5.1 <tOKEN> N0 <SP PaArAIOr ™. . . . oottt ettt e 49
5.2 Names and Identifiers. o e 51
B SCAlAr X PIESSIONS. .« .\ttt ettt 53
6.1 AT EY P>, . ettt 53
6.2 <CaSt SPECITICAtION ™. 56
6.3 VAU BXPIES S 0N, L . ot ittt et e e 58
6.4 <String value TUNCHION>. e 59
6.5 <datalink value eXpresSioN>. 63
6.6 <datalink value fUNCHION>. 64
T QUEKY BXPIESSIONS. . o ottt ettt ettt et e et e e et e e e e 67
7.1 <table TefOrENCE>. . . o e 67
8 O o 75
8.1 URL fOrmat. . .o 75
9 Additional COmMMON FUIES.\ e e 79
9.1 Retrieval asSignmMENt.o 79

iv.Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

9.2 StOre ASSIgNMIENL. .« o oottt e e e 80
9.3 Result of data type combinations. 81
9.4 Type precedence list determination. 82
9.5 Determination of identical ValUEs. i 83
9.6 Equality Operations.ot 84
9.7 GrOUPING OPeIatIONS. « .\ ottt et e e e e e e e e e 85
9.8 Multiset element grouping OPErations.ottt 86
9.9 Ordering OPEratiONS.ttt ettt et e e e e e e 87
10 Additional common elements. 89
10.1 SOBNEIIC OPLIONS >, L L ottt ettt et e e e e 89
10.2 <alter gENEIIC OPtIONS >,t e 91
11 Schema definition and manipulation. i 93
111 <schema definitioN>. 93
11.2 <drop SChema StatemENt>. o 94
11.3 <table definition>. 95
114 <unique constraint definition>. 96
115 <check constraint definition>. 97
11.6 <alter column data type Clause>. 98
11.7 <drop column definition>. 99
11.8 <domain definition>. 100
11.9 <assertion definition>. 101
11.10 <user-defined type definition>. 102
11.11 <SQL-INVOKEd TOULINE>. e e e e e 103
11.12 <Arop roUtiNE StatEIMENE>. . . oot 104
11.13 <user-defined cast definition>. 105
11.14 <user-defined ordering definition>. 106
11.15 <foreign table definition>. 107
11.16 <alter foreign table Statement>. e 110
11.17 <add basic column definition>. 112
11.18 <alter basic column definition>. 114
11.19 <drop basic column definition>. 115
11.20 <drop foreign table statement>. 117
12 Catalog manipulation. 119
12.1 <foreign server definition>. 119
12.2 <alter foreign Server StatemMeNt>. 121
12.3 <drop foreign Server Statement>. o 122
12.4 <foreign-data wrapper definition>. 124
125 <alter foreign-data wrapper StatemeNt>. 126
12.6 <drop foreign-data wrapper statement>. e 127
12.7 <import foreign schema statement>. 128
12.8 <routine mapping definition>. 130
12.9 <alter routine mapping StatemeNt>. 132
12.10 <drop routine Mapping StalemMeNt>. 133

Contents v

IWD 9075-9:201?(E)

13 ACCESS CONTIOL .. e e e 135
13.1 SPRIVIIEGES >, L o e 135
13.2 <SIEVOKE SEatEIMENE>. . . 136
13.3 <user mapping definition>. 137
13.4 <alter user Mapping StateMENt>. 139
135 <drop User mapping StatemMENt>. 140
14 SQL-Client MOAUIES. oo 141
14.1 <SQL-client module definition>. e 141
14.2 <externally-invoked procedure>. 143
14.3 <SQL procedure Statement>. o 146
144 Data type COMESPONUENCES. ot ettt ettt e e e e e e e e e e e e e 148
15 Additional data manipulation FUlES. 151
15.1 Effect of deleting rows from base tables. 151
15.2 Effect of inserting tables into base tables. 153
15.3 Effect of replacing rows in base tables. 155
16 SESSION MANAGEIMENT.ottt et et e et e e e e e e 157
16.1 <set passthrough Statement>. e 157
17 DYNamiC SO ... 159
17.1 Description of SQL deSCIPLOr @rEas. . . .« . vttt et ettt e e 159
17.2 SPrEPare StAlEIMEN >, . . .ot 161
17.3 <deallocate prepared Statement>. 163
17.4 <AESCIibE StAlEMENT>. . . . 164
175 <INPUL USING ClaUSe>. . . . o 166
17.6 <SOULPUL USING ClaUSE>. . . o .o e e e 170
17.7 SEXECULE St Mt . . . 174
17.8 <AYNAMIC JECIArE CUISOI™>. . . oottt ettt e e e e e e e e e e e e 175
17.9 <allocate extended dynamic cUrsor statement>. it 176
17.10 <allocate received CUrsOr StAtEMENt>. 177
17.11 <dynamic OPen STAtEMENT>. ot 178
17.12 <dynamic fetCh StatemeNt>. o 179
17.13 <dynamic CloSe StatemMENt>. o e 180
18 Embedded SQL.t 181
18.1 <embedded SQL Ada Programt e 181
18.2 <embedded SQL C Program>.ttt e e 183
18.3 <embedded SQL COBOL PrOgram™. . ..ottt ettt ettt et e e e 184
18.4 <embedded SQL FOrtran program>.ottt et e e e 185
18.5 <embedded SQL MUMPS PrOgram™.ottt et e et e e e e 186
18.6 <embedded SQL Pascal program>. 187
18.7 <embedded SQL PL/I Program>. e 188
19 Call-Level Interface specifications.c i e 189
19.1 QL FOULINE . . . o e e 189
19.2 Implicit DESCRIBE USING CIaUSE. e e e 190

vi Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

19.3 Description of CLI item deSCriptor @reas.ottt e 190
194 Other tables associated With CLLI. e 191
19.5 SQL/CLI data type COMreSPONUENCES. vttt ottt ettt e e e e e ettt 194
20 SOL/CLI FOULINES. . o oottt e e e e e e 197
20.1 BUIldDatalink.o 197
20.2 GetDatal INK AL, . . o 199
20.3 GEtINTO. . . e 201
21 SQL/MED common SPecCifiCations.ttt 203
21.1 Description of foreign-data wrapper item descriptor areas.ovviine i 203
21.2 Implicit foreign-data WrapPer CUISOL.ottt et ettt et et e 207
21.3 Implicit DESCRIBE INPUT USING ClausSe.ottt et 209
21.4 Implicit DESCRIBE OUTPUT USING ClauSe.ottt et e 212
215 Implicit EXECUTE USING and OPEN USING Clauses.ot 215
21.6 Implicit FETCH USING ClauSe.o oo e e 218
21.7 Character string retrieval. 222
21.8 Binary string retrieval. o e e 223
21.9 Tables used With SQL/MED. e 224
22 Foreign-data wrapper interface FrOULINES.ttt nens 237
22.1 <foreign-data wrapper interface roUting>. 237
22.2 <foreign-data wrapper interface routine> Invocation. it e 242
22.3 Foreign-data wrapper interface Wrapper rOUtINES.ttt e 244
22.3. 1 AdVanCelNitREQUEST.o 244
22.3.2 AlIOCQUEIYCONTEXL. ottt et et e e e e 246
22.3.3 ANIOCWIapPEIENV. . oo 247
22,34 ClOSB. ottt 249
22.3.5 CONNBCESEIVEL. « ottt ettt et e e e e e e 250
22.3.6 FreeExecutionHandle. e 252
22.3.7 FreeFSCONNECHION. . . oo 254
22.3.8 FreeQuUEryCONteXt. . o oottt 255
22.3.9 FreeReplyHandle. . .. oo 256
22.3.10 FreeWrapperENV. . .o 257
22.3.11 GetNexXtREPIY. . .o e 258
22.3.12 GetNUMReEPIYBOOIVE. 259
22.3.13 GetNUMREPIYOIAErBY. oot e e e 260
22.3.14 GetNumReplySeleCtEIemS.o 261
22.3.15 GetNUumReplyTableRers.o 262
22.3.06 GEEOPES. - o vt 263
22.3.17 GetReplyBOOIVE. . .. o e e 265
22.3.18 GetReplyCardinality. o e e e e 266
22.3.19 GetReplyDIStinCt. . . . oo 267
22.3.20 GetREPIYEXECCOST. . . o oottt ettt e e e 268
22321 GetREPIYFIIStCOST. . . oottt 269
22.3.22 GetReplyOrderElem. 270

Contents vii

IWD 9075-9:201?(E)

22.3.23
22.3.24
22.3.25
22.3.26
22.3.27
22.3.28
22.3.29
22.3.30
22.3.31
22.3.32
22.3.33
22.3.34
22.3.35
224
2241
2242
2243
2244
2245
22.4.6
22.4.7
22.4.8
22.4.9
22.4.10
22411
22412
22.4.13
22.4.14
22.4.15
22.4.16
22417
22.4.18
22.4.19
22.4.20
22.4.21
22.4.22
22.4.23
22.4.24
22.4.25
22.4.26
22.4.27
22.4.28
22.4.29
22.4.30

GetREPIYREEXECCOSE. . . ottt 271
GetReplySeleCtEIRM. . . o 272
GetReplyTableRe 273
GetSPDHaANAIE.o 274
GetSRDHANAIE. . . . oo 275
GOt atISTICS. . . oottt 276
GetWPDHaANGIe. . . . 278
GetWRDHaANdIe. . .. 279
I R EGUEST. . . oo 280
AT, . o 284
PN o e 286
RPN, . o e e e e 290
TraNSMITREQUEST. . . o .ottt 291
Foreign-data wrapper interface SQL-SErVer routines.t 294
ATLOCDESCIIPIO. . . o\ttt e e e e e e e e 294
[(=T=] =TT od]) o 295
GetAUtNOTIZAtIONId. 296
GetBOOIVE. . . o 297
LC T LT od 1 o] (] 298
Gt INCE. . oo e 300
GetNUMBOOIVE. . . . o e e 301
GetNUMCHIIrEN. . oo 302
GetNUMOIderBYEIEMS. . . . oo e e 303
GetNUMR OULIM AP O DS, .« ottt e 304
GetNUMSEIECTEIEMS. . . o 305
GtNUM S EIVEIO LS. . . oottt et e e e 306
GetNUMTabIECOIOPLS. . . o ot e e e 307
GetNUM T EO DTS, . . oo 309
GetNumTableRefEIEMS. . .. o 310
GEINUMU SO DS, . o vttt e e e 311
GetNUMMWV AP O LS. . . ottt e e e e e e e 312
GetOrderBYEIem. . . o 313
GetROUIMAP O, . . oo 314
GetROUIMAPOPINAME. . . o o e 316
GetROULINEM AP DING. .« ot ittt e e e e 318
GetSeleC E M. . oo 319
GetSe e E M Ty PE. . oot 320
Gt IV NI, . . ot 321
Gt IV O, o ot 322
GetServerOPtBYNAME. . ..o 324
LT LT Y= gl 1Y/ oL 326
GBS BIVEIVRISION. .« . oottt 327
LC 1= 6510]] oo P 328
GetTableCOlOPt. . . . oo 329

viii Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

22.4.31 GetTableColOPtBYNGAME.o e e e e e e e 331
22.4.32 GetTableOt. o o 333
22433 GetTableOptBYNAME. oottt e e e e 335
22.4.34 GetTableRefElIem. o 337
22.4.35 GetTableRe EIeM Y Pe. . o oot 338
22436 GetTableRefTableName. 339
22437 GetTableServerName. o 340
22.4.38 GetTRDHANAIE.o 341
22.4.39 GetUSEIODE. . oottt 342
22440 GetUserOptBYNAME.ot 344
22,441 GetValEXPrCOINaMe. . .. ot e 346
22442 GetValUBEXPDESC. . . o ottt e e 347
22443 GetValUeEXPKING.o 348
22444 GetValUueEXDPNaAMe. 349
22445 GetValUeEXpTable. . . oo 350
22446 GetVEChIId. 351
22.4.47 GetWrapperLibraryName.ot 352
22.4.48 Gt WIrapPerNaMI. .« .ot 353
22449 GetWIaPPErO L. « . . ottt 354
22450 GetWrapperOptBYNaMe.o 356
22451 S DESCIIPION. « . ottt ettt e e e 358
225 Foreign-data wrapper interface general routings.t 363
22.5.1 GEtDIagNOSTICS. . . oot 363
23 DiagnostiCs ManagemeNnt. i 367
23.1 <get diagnostiCs StatEMENT>. o 367
24 Information SChema. 369
24.1 ATTRIBUTES VIBW. . o oottt et e e e e e e e e e s 369
24.2 COLUMN_OPTIONS VIBW. .« . .ottt et e e e e e e e e et e e e e e e 370
24.3 COLUMNS VIO, .« oottt e e e e e e e e e e e e e e e 371
24.4 FOREIGN_DATA_WRAPPER_OPTIONS VIBW. . . . oottt et ettt et e et 372
245 FOREIGN_DATA WRAPPERS VIeW. . . . oot et 373
24.6 FOREIGN_SERVER _OPTIONS VIBW. . .\ vttt ettt e e e et e e ettt et 374
24.7 FOREIGN_SERVERS VIBW.ttt e e e 375
24.8 FOREIGN_TABLE_OPTIONS VIBW. . . . oottt et et et e e e e 376
24.9 FOREIGN_TABLES VIBW. . . oo e e e 377
24.10 ROUTINE_MAPPING_OPTIONS VIBW. . o o ittt et et e et et e e e e 378
24.11 ROUTINE _MAPPINGS VIBW. . . ottt e e e e e e e e e s 379
24.12 USER_MAPPING _OPTIONS VIBW. . . ottt ittt et e e e e et ettt et e et 380
24.13 USER_MAPPINGS VIBW. . . oottt et et e et e e e e e 381
24.14 SROIT NAME VIBWS. . . .o 382
25 Definition Schema. 387
251 COLUMN_OPTIONS base table. e 387
25.2 DATA _TYPE _DESCRIPTOR base table.o e 388

Contents ix

IWD 9075-9:201?(E)

25.3 FOREIGN_DATA_WRAPPER_OPTIONS base table........ ... 392
254 FOREIGN_DATA WRAPPERS base table. e 393
255 FOREIGN_SERVER_OPTIONS base table.o e 394
25.6 FOREIGN_SERVERS hase table.o e 395
25.7 FOREIGN_TABLE_OPTIONS base table. e 396
25.8 FOREIGN_TABLES bhase table.o s 397
25.9 ROUTINE_MAPPING_OPTIONS base table. e 398
25.10 ROUTINE_MAPPINGS base table. e 399
25.11 SQL_SIZING base table.o 400
25.12 TABLES base table.o 401
25.13 USAGE_PRIVILEGES base table.o 402
25.14 USER_MAPPING_OPTIONS base table. s 403
25.15 USER_MAPPINGS base table. o 404
26 STALUS COOBS. . ..\ttt e e e e e 405
26.1 SOL ST AT E. . .ottt 405
27 CONTOIMANCE. . .ttt 409
27.1 Claims of conformance to SQL/MED. e e e 409
27.2 Additional conformance requirements for SQL/MED. 409
Annex A (informative) SQL Conformance SUMMAIY.uuriitiee i 413
Annex B (informative) Implementation-defined elements............. ... i, 433
Annex C (informative) Implementation-dependent elements................... ..., 441
Annex D (informative) Deprecated features.t 445
Annex E (informative) Incompatibilities with ISO/IEC 9075:2008..............ccoviiiiieannn.. 447
Annex F (informative) SQL feature taXxonomy.ttt i 449
Annex G (informative) Defect reports not addressed in this edition of this part of ISO/IEC 9075. . . 451
Annex H (informative) Typical header files. 453
H.1 C Header File SQLCLLH. ... e 453
H.2 COBOL Library Item SQLCLL. o e 453
Annex | (informative) SQL/MED model. 455
DX, e 459

X Management of External Data (SQL/MED)

Valid datalink file control options
Sequence of actions during the execution of foreign server requests
Fields used in foreign-data wrapper diagnostics areas
Fields in foreign-data wrapper descriptor areas
Data type correspondences for Ada
Data type correspondences for C
Data type correspondences for COBOL
Data type correspondences for Fortran
Data type correspondences for M
Data type correspondences for Pascal
Data type correspondences for PL/I
Codes used for SQL data types in Dynamic SQL
Abbreviated SQL/CLI generic names
Codes used for implementation data types in SQL/CLI
Codes used for application data types in SQL/CLI
Codes used to identify SQL/CLI routines
Codes and data types for implementation information
Codes used for datalink attributes
Data types of attributes
SQL/CLI data type correspondences for Ada
SQL/CLI data type correspondences for C
SQL/CLI data type correspondences for COBOL
SQL/CLI data type correspondences for Fortran
SQL/CLI data type correspondences for M
SQL/CLI data type correspondences for Pascal
SQL/CLI data type correspondences for PL/I
Codes used for <table reference> types
Codes used for <value expression> kinds
Codes used for foreign-data wrapper diagnostic fields
Codes used for foreign-data wrapper descriptor fields
Codes used for foreign-data wrapper handle types
Ability to retrieve foreign-data wrapper descriptor fields
Ability to set foreign-data wrapper descriptor fields
Foreign-data wrapper descriptor field default values
Codes used for the format of the character string transmitted by GetSQLString()
SQL-statement codes
SQLSTATE class and subclass values
Implied feature relationships of SQL/MED
Feature taxonomy for optional features
Legend for SQL/MED interfaces
Legend for SQL/MED information flow

© 00 NO OB WN -

A DB W WWWWWWWWWMNRDNDNPDPNPDPNDNDNDNDNNDNNEPERPRPERPERPERERRRPR
P O OO ~NOOPRRWNPODOO~NOUUPARWDNPODOO~NOOGPWDNPEO

IWD 9075-9:201?(E)

Contents xi

IWD 9075-9:201?(E)

Figures
Figure Page
1 SQL/MED Nerfaces. . . . oot 455
2 SQL/MED information flow. 456

xii Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, 1SO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1SO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 9075-9 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

This third edition of ISO/IEC 9075-9 cancels and replaces the second edition (ISO/IEC 9075-9:2003), which
has been technically revised. It also incorporates Technical Corrigendum ISO/IEC 9075-9:2003/Cor.1:2005.

ISO/IEC 9075 consists of the following parts, under the general title Information technology — Database lan-
guages — SQL.:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schemas (SQL/Schemata)

— Part 13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

NOTE 1 — The individual parts of multi-part standards are not necessarily published together. New editions of one or more parts
may be published without publication of new editions of other parts.

Foreword xiii

IWD 9075-9:201?(E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part of
ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions”, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts”, presents concepts related to this part of ISO/IEC 9075.

5) Clause 5, “Lexical elements”, defines the lexical elements of the language specified in this part of ISO/IEC
9075.

6) Clause 6, “Scalar expressions”, defines the elements of the language that produce scalar values.
7) Clause 7, “Query expressions”, defines the elements of the language that produce rows and tables of data.
8) Clause 8, “URLSs”, specifies the format of URLSs used in this part of ISO/IEC 9075.

9) Clause 9, “Additional common rules”, specifies the rules for assignments that retrieve data from or store
data into SQL-data, and formation rules for set operations.

10) Clause 10, “Additional common elements”, defines additional common elements used in the definition of
foreign tables, foreign servers, and foreign-data wrappers.

11) Clause 11, “Schema definition and manipulation”, defines facilities related to foreign tables and datalink
type support for creating and managing a schema.

12) Clause 12, “Catalog manipulation”, defines facilities for creating, altering, and dropping foreign servers
and foreign-data wrappers.

13) Clause 13, “Access control”, defines facilities for controlling access to SQL-data.

14) Clause 14, “SQL-client modules”, defines SQL-client modules and externally-invoked procedures.
15) Clause 15, “Additional data manipulation rules”, defines additional rules for data manipulation.
16) Clause 16, “Session management”, defines the SQL-session management statements.

17) Clause 17, “Dynamic SQL”, defines the dynamic SQL statements.

18) Clause 18, “Embedded SQL”, defines the embedded SQL statements.

19) Clause 19, “Call-Level Interface specifications”, defines facilities for using SQL through a Call-Level
Interface.

20) Clause 20, “SQL/CLI routines”, defines each of the routines that comprise the Call-Level Interface.
21) Clause 21, “SQL/MED common specifications”, specifies common facilities used by SQL/MED.

22) Clause 22, “Foreign-data wrapper interface routines”, specifies the interaction between an SQL-server and
a foreign-data wrapper.

xiv. Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

23) Clause 23, “Diagnostics management”, defines the diagnostics management facilities.
24) Clause 24, “Information Schema”, defines viewed tables that contain schema information.

25) Clause 25, “Definition Schema”, defines base tables on which the viewed tables containing schema infor-
mation depend.

26) Clause 26, “Status codes”, defines values that identify the status of the execution of SQL-statements and
the mechanisms by which those values are returned.

27) Clause 27, “Conformance”, specifies the way in which conformance to this part of ISO/IEC 9075 may be
claimed.

28) Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the conformance
requirements of the SQL language.

29) Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-defined.

30) Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features for which
the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

31) Annex D, “Deprecated features”, is an informative Annex. It lists features that the responsible Technical
Committee intend will not appear in a future revised version of this part of ISO/IEC 9075.

32) Annex E, “Incompatibilities with ISO/IEC 9075:2008”, is an informative Annex. It lists incompatibilities
with the previous version of this part of ISO/IEC 9075.

33) Annex F, “SQL feature taxonomy”, is an informative Annex. It identifies features of the SQL language
specified in this part of ISO/IEC 9075 by an identifier and a short descriptive name. This taxonomy is used
to specify conformance.

34) Annex G, “Defect reports not addressed in this edition of this part of ISO/IEC 9075”, is an informative
Annex. It describes the Defect Reports that were known at the time of publication of this part of this
International Standard. Each of these problems is a problem carried forward from the previous edition of
ISO/IEC 9075. No new problems have been created in the drafting of this edition of this International
Standard.

35) Annex H, “Typical header files”, is an informative Annex. It provides examples of typical definition files
for application programs using the SQL Call-Level Interface.

36) Annex I, “SQL/MED model”, is an informative Annex. It uses annotated diagrams to illustrate the more
important concepts of the model of SQL/MED, including the relationships between the SQL-server, foreign-
data wrappers, and foreign servers.

In the text of this part of ISO/IEC 9075, Clauses and Annexes begin new odd-numbered pages, and in Clause 5,
“Lexical elements”, through Clause 27, “Conformance”, Subclauses begin new pages. Any resulting blank
space is not significant.

Introduction xv

IWD 9075-9:201?(E)

(Blank page)

xvi Management of External Data (SQL/MED)

INTERNATIONAL STANDARD ISO/IEC IWD 9075-9:2017

Information technology — Database languages — SQL —

Part 9:
Management of External Data (SQL/MED)

1 Scope

This part of ISO/IEC 9075 defines extensions to Database Language SQL to support management of external
data through the use of foreign-data wrappers and datalink types.

Scope 1

IWD 9075-9:201?(E)

(Blank page)

2 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
2.1 1SO and IEC standards

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

2.1 1SO and IEC standards

[1SO9075-1] ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework).

[1SO9075-2] ISO/IEC 9075-2:2011, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

[1ISO9075-3] ISO/IEC 9075-3:2008, Information technology — Database languages — QL — Part 3:
Call-Level Interface (SQL/CLI).

[1ISO9075-11] ISO/IEC 9075-11:2011, Information technology — Database languages — SQL — Part 11:
Information and Definition Schemas (SQL/Schemata).

2.2 Other international standards

[RFC2368] RFC 2368, The mailto URL scheme, R. Hoffman, L. Masinter, J. Zawinski.
http://www.ietf.org/rfc/rfc2368. txt

[RFC3986] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter.
http://www.ietf.org/rfc/rfc3986.txt

[XML] is used to reference either [XML 1.0] or [XML 1.1] when there is no significant difference between
the two for the purposes of a given citation.

[XML 1.0] (Recommendation) Extensible Markup Language (XML) Version 1.0.
http://www.w3.0org/TR/xml

[XML 1.1] (Recommendation) Extensible Markup Language (XML) Version 1.1.
http://www.w3.0rg/TR/xml11l

Normative references 3

http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml11

IWD 9075-9:201?(E)

(Blank page)

4 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
3.1 Definitions

3 Definitions, notations, and conventions

3.1 Definitions

This Subclause modifies Subclause 3.1, “Definitions’, in | SO/IEC 9075-2.

3.1.1 Definitions taken from XML

For the purposes of this document, the definitions of the following terms given in [XML] apply:
3.1.1.1 Valid XML document

3.1.1.2 XML document

3.1.1.3 XML document type declaration ="*(also known as a DTD)

3.1.2 Definitions provided in Part 9

For the purposes of this document, in addition to those definitions taken from other sources, the following
definitions apply:

3.1.21 access token
encrypted value returned under certain conditions by an SQL-server in combination with the File
Reference of a datalink value

NOTE 2 — An access token is either a read token or a write token.

3.1.2.2 datalink
value, of data type DATALINK, referencing some file that is not part of the SQL-environment

NOTE 3 — The file is assumed to be managed by some external file manager.

3.1.2.3 datalinker
implementation-dependent component for enabling integrity control, recovery, and access control
for external files

3.1.2.4 external data
data that is not managed by an SQL-server involved in an SQL-session, but that is nevertheless
accessible to that SQL-session

3.1.2.5 foreign-data wrapper
named collection of routines, invocable by the SQL-server, supporting the programming interface
specified for such routines in this part of ISO/IEC 9075

3.1.2.6 foreign server

Definitions, notations, and conventions 5

IWD 9075-9:201?(E)
3.1 Definitions

3.1.2.7

3.1.2.8

3.1.2.9

3.1.2.10

31211

3.1.2.12

3.1.2.13

3.1.2.14

3.1.2.15

3.1.2.16

3.1.2.17

named server, external to the SQL-environment, but known to the SQL-server, that manages external
data

foreign server request
statement that an SQL-server submits to a foreign-data wrapper

foreign table
named table whose rows are supplied when needed by some foreign server

NOTE 4 — The mechanism by which these rows are supplied is provided by a foreign-data wrapper. The data con-
stituting a foreign table is not part of the SQL-environment.

integrity control option
link control option specifying the level of integrity of the link between a datalink and the file that it
references

link control
property of a column of data type DATALINK, specifying the extent to which the links between
datalinks in that column and the files they reference are to be monitored (in various specific manners)

read permission option
link control option specifying how permission to read external files referenced by certain datalinks
is determined

recovery option
link control option specifying whether or not point in time recovery is required for the files referenced
by certain datalinks

routine mapping
implementation-defined mapping of an SQL-invoked routine to an equivalent concept maintained
by a foreign server

SQL/MED-implementation
SQL-implementation that processes SQL-statements that are possibly extended by the language
defined in this part of ISO/IEC 9075

NOTE 5 — A conforming SQL/MED-implementation is an SQL/MED-implementation that satisfied the requirements
for SQL/MED-implementations as defined in Clause 27, “Conformance”.

unlink option
link control option specifying the action to be taken when certain sites occupied by datalinks are
updated or deleted

user mapping
implementation-defined mapping of an authorization identifier to an equivalent concept maintained
by a foreign server

write permission option
link control option specifying how permission to write files referenced by certain datalinks is
determined

6 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.1 Data types

4 Concepts

This Clause modifies Clause 4, “Concepts”, in 1SO/IEC 9075-2.

4.1 Data types

This Subclause maodifies Subclause 4.1, “Data types”, in 1SO/IEC 9075-2.

4.1.1 Naming of predefined types

This Subclause modifies Subclause 4.1.2, “Naming of predefined types”, in ISO/IEC 9075-2.

| Insert after 1st paragraph| SQL defines a predefined data type named by the following <key word>: DATALINK.

| Insert after 3rd paragraph| For reference purposes, the data type DATALINK is referred to as a (or the) datalink
type.

4.1.2 Data type terminology

This Subclause modifies Subclause 4.1.4, ““Data type terminology”, in ISO/IEC 9075-2.

|Augment the list in the 11th paragraph|
— Atype Tis DATALINK-ordered if T is S-ordered, where Sis the set of datalink types.

4.2 Foreign servers

A foreign server is a named server, external to the SQL-environment but known to the SQL-server, that manages
external data. Such external data is manifested as SQL-data by use of a mechanism called a foreign-data
wrapper (see Subclause 4.3, “Foreign-data wrappers”).

A foreign server descriptor is a catalog element, identified by a foreign server name and created by invoking
a <foreign server definition>. A foreign server descriptor consists of:

— A foreign server name, identifying the foreign server locally to the SQL-server.
— The authorization identifier of the owner of the foreign server descriptor.
— The name of the foreign-data wrapper.

— A generic options descriptor.

Concepts 7

IWD 9075-9:201?(E)
4.2 Foreign servers

— Optionally, the foreign server type.
— Optionally, the foreign server version.
The possible values of server type and server version, and their meanings, are implementation-defined.

A foreign server descriptor is said to be owned by or to have been created by the current authorization identifier
for the SQL-session when the <foreign server definition> was invoked.

A foreign server descriptor can be modified by an <alter foreign server statement> and destroyed by a <drop
foreign server statement>.

A foreign server can be an SQL-awareforeign server or a non-SQL-aware foreign server. An SQL-aware foreign
server is a foreign server that has the ability to process a subset of statements conforming to ISO/IEC 9075,
particularly the statements comprising Feature E051, “Basic query specification”, in a standard-conforming
manner. A non-SQL-aware foreign server is a foreign server that has no ability to process SQL language. If
the foreign-data wrapper associated with a non-SQL-aware foreign server provides some (limited or conforming)
ability to process SQL language, then the effect is that the foreign server can be treated as though it is an SQL-
aware foreign server.

NOTE 6 — Some SQL-aware foreign servers may be, in fact, SQL-servers. However, because they are not in the same SQL-
environment as the SQL-server responding to an SQL-client, they are managed only through foreign-data wrappers and are treated
as foreign servers. Such foreign servers may concurrently respond to SQL-clients of their own; this does not change the relationships
specified in this part of ISO/IEC 9075.

Some foreign servers, especially SQL-aware foreign servers, admit the concept of a schema and the concept
of a table that are similar to SQL-schemas and to base tables, respectively. Such servers may (and SQL-aware
foreign servers do) maintain schema information about those entities, such as the Information Schema and
Definition Schema specified in [ISO9075-11].

If a foreign server maintains schema information about entities analogous to SQL-schemas and base tables,
then execution of an <import foreign schema statement> retrieves information about the tables (either all or
only some, as specified in the <import foreign schema statement>) associated with the named SQL-schema
analog and effectively performs one or more <foreign table definition> statement executions.

If a foreign server does not maintain such information or does not admit the concept of a schema, then foreign
tables managed by that server shall be specified by means of explicit <foreign table definition>s.

This International Standard does not specify the manner in which the SQL-server and the foreign-data wrapper
interact to cause information about foreign tables to be retrieved by execution of an <import foreign schema
statement>. In particular, no foreign-data wrapper interface routines are specified to support such interaction.
Such interaction is implementation-dependent.

4.3 Foreign-data wrappers

A foreign-data wrapper is the mechanism by which the SQL-server accesses external data managed by foreign
servers. Every foreign server is accessed through exactly one foreign-data wrapper, but one foreign-data
wrapper can be used to access several different foreign servers. A foreign-data wrapper is made up of foreign-
data wrapper interface routines and a set of routines written in a programming language. Foreign-data wrapper
interface routines are used to access every foreign server whose descriptor includes the name of that foreign-
data wrapper. It is possible for a foreign-data wrapper to exist that is not used to access any foreign server.

8 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.3 Foreign-data wrappers

A foreign-data wrapper descriptor is a catalog element, identified by a foreign-data wrapper name and created
by invoking a <foreign-data wrapper definition>. A <foreign-data wrapper definition> specifies the foreign-
data wrapper name, a library name that identifies a library containing the foreign-data wrapper interface routines,
and the name of the language in which the foreign-data wrapper interface routines are written.

A foreign-data wrapper descriptor consists of:

— A foreign-data wrapper name.

— The authorization identifier of the owner of the foreign-data wrapper descriptor.

— The name of the language in which the foreign-data wrapper interface routines are written.
— A generic options descriptor.

— Alibrary name.

A foreign-data wrapper descriptor can be modified by an <alter foreign-data wrapper statement> and destroyed
by a <drop foreign-data wrapper statement>.

4.4 User mappings

A user mapping is an SQL-environment element, pairing an authorization identifier U or the special identifier
PUBLIC, denoting all <authorization identifier>s in the SQL-environment, with a foreign server FS It defines
how to map U to an equivalent concept known to FSwhen a foreign table whose source is FSis to be accessed
during an SQL-session when the current authorization identifier is U. The mapping is specified by generic
options defined by the foreign-data wrapper.

A user mapping is defined by invoking a <user mapping definition>. Invocation of a <user mapping definition>
results in the creation of a user mapping descriptor in the SQL-environment. A user mapping descriptor consists
of:

— An authorization identifier.
— A foreign server name, identifying a foreign server descriptor.
— A generic options descriptor.

A user mapping descriptor can be modified by an <alter user mapping statement> and destroyed by a <drop
user mapping statement>.

4.5 Routine mappings

A routine mapping is an SQL-environment element, pairing an SQL-invoked routine SR with a foreign server
FS It defines how to map SR to an equivalent concept known to FSwhen a foreign table FT whose source is
FSis to be accessed and the foreign server request that includes FT also includes a reference to SR. The mapping
is specified by generic options defined by the foreign-data wrapper.

A routine mapping is defined by invoking a <routine mapping definition>. Invocation of a <routine mapping
definition> results in the creation of a routine mapping descriptor in the SQL-environment. A routine mapping
descriptor consists of:

Concepts 9

IWD 9075-9:201?(E)
4.5 Routine mappings

— The name of the routine mapping.

— The specific routine name of the SQL-invoked routine.

— A foreign server name, identifying a foreign server descriptor.
— A generic options descriptor.

A routine mapping descriptor can be modified by an <alter routine mapping statement> and destroyed by a
<drop routine mapping statement>.

4.6 Generic options

Several of the objects used in connection with external data support the specification of generic options. These
objects are foreign-data wrappers, foreign servers, foreign tables, columns of foreign tables, user mappings,
and routine mappings. A generic option is an option name paired with an optional option value. Both the option
name and the permissible ranges of option values of a generic option are defined by the foreign-data wrappers.
A set of generic options is described by a generic options descriptor. A generic options descriptor is included
in the descriptor of the object to which it pertains. The generic options are stored in the SQL-server for the
foreign-data wrapper to retrieve when the foreign-data wrapper needs this information.

Generic options may be specified in either <foreign-data wrapper definition>, <foreign server definition>,
<foreign table definition>, <user mapping definition>, <routine mapping definition>, <alter foreign-data
wrapper statement>, <alter foreign server statement>, <alter foreign table statement>, <alter user mapping
statement>, or <alter routine mapping statement>.

Generic options are specific to the object for which they are defined. For example, the generic options for a
foreign table are most likely different from the generic options for a foreign server, in both option names and
option values. Furthermore, generic options are highly dependent on the foreign-data wrapper that is used to
access the external data. For example, the generic options for a foreign server that uses a foreign-data wrapper
A might be totally different from the generic options specified for another foreign server that uses a foreign-
data wrapper B. Even the fact that the option names of two generic options for two different foreign-data
wrappers might be the same does not necessarily mean that the semantics and therefore the permissible ranges
of option values are the same.

Since an SQL-server cannot anticipate the different kinds of foreign-data wrappers with which it is likely to
deal, no generic option can ever be determined by the SQL-server or by this part of ISO/IEC 9075. Only a
foreign-data wrapper can specify generic options for that foreign-data wrapper, or for a foreign server, a foreign
table, a column of a foreign table, a user mapping, or a routine mapping for which it is used.

A generic options descriptor is either an empty list or a list consisting of one or more option names, each option
name being paired with at most one option value.

4.7 Capabilities and options information

The SQL-server needs information from the foreign-data wrapper about the capabilities of the foreign-data
wrapper itself, about the foreign server accessed through the foreign-data wrapper, and about certain schema
elements (foreign tables and their columns, user mappings) managed by the foreign server. The SQL-server
also needs information about options supported by the foreign-data wrapper, the foreign server, and certain

10 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.7 Capabilities and options information

schema elements. The SQL-server invokes the GetOpts () routine to request the capabilities and other
information from a foreign-data wrapper.

The specific capabilities and other information of a foreign-data wrapper, a foreign server, or any schema element
managed by a foreign server that are reported to the SQL-server in response to an invocation of GetOpts()
are partly specified in this part of ISO/IEC 9075 and partly implementation-defined. In general, each capability
or other piece of information that is reported corresponds to a generic option associated with the object being
queried by the invocation.

The capabilities and other information is returned in a buffer whose contents may comprise an XML document
or that may be returned in a format defined by the foreign-data wrapper. If the contents comprise an XML
document, then it shall be a valid XML document, the format of which is specified by a Document Type Dec-
laration (DTD) that is either internal to the XML document or external (requiring that it be available to the
SQL-server in an implementation-defined manner).

NOTE 7 — This edition of this part of ISO/IEC 9075 specifies the use of a DTD. Future editions may specify the use of an XML
Schema, either as an alternative to a DTD or instead of a DTD.

4.8 Datalinks

A datalink is a value of the DATALINK data type. A datalink references some file that is not part of the SQL-
environment. The file is assumed to be managed by some external file manager. A datalink is conceptually
represented by:

— File Reference: A character string forming a reference to an external file.

— SQL-Mediated Read Access Indication: A boolean value, where True, in datalink DL indicates that the
referenced file, being linked to the SQL-environment, is accessible to be read only by use of the specially
provided operations (see below) on DL.

— SQL-Mediated Write Access Indication: A boolean value, where True, in datalink DL indicates that the
referenced file, being linked to the SQL-environment, is accessible to be modified only by use of the specially
provided operations (see below) on DL.

— Write Token: An implementation-dependent value that represents an access token that is used to read or
modify the File Reference. This value can be the null value.

— Construction Indication: A character string indicating how the datalink was constructed. Possible values
are: NEWCOPY, PREVIOUSCOPY, and the null value.

The File Reference of a datalink is accessible by invoking operators defined in this part of ISO/IEC 9075. The
character set of the File Reference, referred to as the datalink character set is implementation-defined.

The purpose of datalinks is to provide a mechanism to synchronize the integrity control, recovery, and access
control of the files and the SQL-data associated with them. This part of ISO/IEC 9075 standardizes the way
that an SQL-server is made aware of datalink values and how applications retrieve information about the files
identified by datalink values. The mechanisms that enable integrity control, recovery, and access control for
the files represented by the datalink values are implementation-dependent. These mechanisms are collectively
called the datalinker.

A file is linked to the SQL-environment whenever execution of an SQL-data change statement causes a value
DL1 that references that file to appear in some datalink column whose descriptor includes the link control FILE
LINK CONTROL. If the read permission option included in the column descriptor is DB, then access to the

Concepts 11

IWD 9075-9:201?(E)
4.8 Datalinks

referenced file is said to be SQL-mediated. This is indicated by setting the SQL-Mediated Read Access Indication
of DL1 to True, and DL1 is said to be an SQL-mediated datalink. If the read permission option included in the
column descriptor is not DB, then the SQL-Mediated Read Access Indication of DL1 is set to False. If the write
permission option included in the column descriptor is ADMIN, then this is indicated by setting the SQL-
Mediated Write Access Indication of DL1 to True. If the write permission option included in the column
descriptor is not ADMIN, then the SQL-Mediated Write Access Indication of DL1 is set to False.

Execution of an SQL-data change statement that causes a value DL2 to appear in a datalink column defined
with the link control NO LINK CONTROL does not cause any file to be linked to the SQL-environment.

A linked file cannot be renamed or deleted by any agency outside of the SQL-environment. A datalink value
always references just one file. A file is unlinked from the SQL-environment whenever execution of an SQL-
data change statement causes a datalink that references that file to be removed from some datalink column
whose descriptor includes the link control FILE LINK CONTROL. The actions that occur when a datalink is
removed from a column depend on the link control options that are specified in the column descriptor of that
column. The file might be deleted, or the datalinker might return control of the file to the external data manager.

With the function provided by datalinks and the datalinker, it is possible to specify that access to the files should
be mediated by the SQL-server rather than by the external data manager. When access to the files is mediated
by an SQL-server, any request to access a file shall operate on an SQL-mediated datalink to obtain a character
string with which to reference the file, using one of the operators provided for that purpose. This character
string is constructed by combining the File Reference of a datalink value with an encrypted value called an
access token. An access token is either a read token or a write token, depending on the function that is used to
construct the character string. The generation of the access token and the method of combining it with the File
Reference is implementation-dependent. When the application uses the returned character string value to access
a file, the datalinker checks to see if the access token is valid. If it is valid, then the application is allowed to
access the file pointed to by the File Reference. Every attempt by an application to access, without a valid
access token, a file referenced by an SQL-mediated datalink is unsuccessful. The time at which a valid access
token ceases to be valid is implementation-defined.

The content of an SQL-mediated file cannot be modified, unless the SQL-Mediated Write Access Indication
of the datalink value DL referencing this file is True. After an application has modified the file, it uses a <datalink
value constructor> that specifies either DLNEWCOPY or DLPREVIOUSCOPY to construct a new datalink
value. This new datalink value is then used to update the site that contains DL.

NOTE 8 — Updating the site that contains a datalink in the manner described here is called “update-in-place”.
Datalinks are not comparable. A datalink is assignable only to sites of type DATALINK.

A datalink data type is described by a datalink data type descriptor. A datalink data type descriptor consists of
the name DATALINK and the set of link control options:

— The link control (NO LINK CONTROL or FILE LINK CONTROL).
— The integrity control option (ALL, SELECTIVE, or NONE).
— The read permission option (FS or DB).

— The write permission option (FS, ADMIN, or BLOCKED). If the write permission option is ADMIN, then
additionally the access token indication (either NOT REQUIRING TOKEN FOR UPDATE or REQUIRING
TOKEN FOR UPDATE).

— The recovery option (NO or YES).
— The unlink option (RESTORE, DELETE, or NONE).

12 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.8 Datalinks

The meanings of the various link control options are:

NO LINK CONTROL.: Although every File Reference shall conform to the Format and Syntax Rules of

Subclause 8.1, “URL format”, it is permitted for there to be no file referenced by that File Reference. This
option implies that the integrity control option is NONE, the read permission option is FS, the write per-

mission option is FS, the recovery option is NO and the unlink option is NONE, and no explicit syntax to
specify these options is permitted.

FILE LINK CONTROL: Every File Reference shall reference an existing file. Further file control depends
on the link control options.

INTEGRITY ALL: Files referenced by File References cannot be deleted or renamed, except possibly
through the use of operations on the column in question, invoked as part of some SQL-session.

INTEGRITY SELECTIVE: Files referenced by File References can be deleted or renamed using operators
provided by the file manager, unless a datalinker is installed in connection with the file manager.

INTEGRITY NONE: Files referenced by File References can only be deleted or renamed using operators
provided by the file manager. This option is not available if FILE LINK CONTROL is specified.

READ PERMISSION FS: Permission to read files referenced by datalinks is determined by the file manager.

READ PERMISSION DB: Datalinks of this type are SQL-Mediated. That is to say, permission to read
files referenced by such datalinks is determined by the SQL-implementation.

WRITE PERMISSION FS: Permission to write files referenced by datalinks is determined by the file
manager.

WRITE PERMISSION ADMIN REQUIRING TOKEN FOR UPDATE: Permission to write files referenced
by datalinks is determined by the SQL-implementation and the datalinker. This option is only available if
READ PERMISSION DB is also specified. If a site that was declared with this write permission is updated,
then the access token used to open and modify the file is required to be contained in the file reference
specified in the invocation of the functions DLNEWCOPY or DLPREVIOUSCOPY that yield the value
with which the site is updated.

WRITE PERMISSION ADMIN NOT REQUIRING TOKEN FOR UPDATE: Permission to write files
referenced by datalinks is determined by the SQL-implementation and the datalinker. This option is only
available if READ PERMISSION DB is also specified. If a site that was declared with this write permission
is updated, then an access token is not required to be contained in the file reference specified in the invo-
cation of the functions DLNEWCOPY or DLPREVIOUSCOPY that yield the value with which the site
is updated.

WRITE PERMISSION BLOCKED: Write access to files referenced by datalinks is not available. Updates
can, however, arise indirectly through the use of some implementation-defined mechanism.

RECOVERY YES: Enables point in time recovery of files referenced by datalinks.

NOTE 9 — “point in time recovery” is an implementation-defined mechanism that provides for recovery that is coordinated
between the SQL-server and the files of external file manager referenced by datalinks.

RECOVERY NO: Point in time recovery of files referenced by datalinks is disabled.

ON UNLINK RESTORE: When a file referenced by a datalink is unlinked, the external file manager
attempts to reinstate the ownership and permissions that existed when that file was linked.

ON UNLINK DELETE: A file referenced by a datalink is deleted when it is unlinked.

Concepts 13

IWD 9075-9:201?(E)
4.8 Datalinks

— ON UNLINK NONE: When afile referenced by a datalink is unlinked, there is no change in the ownership
and permissions occasioned by that unlinking.

Table 1, “Valid datalink file control options”, specifies what combinations of datalink file control options are
allowed.

Table 1 — Valid datalink file control options

Integrity Read_ _ Writg _ Recovery Unlink
permission permission

ALL FS FS NO NONE
ALL FS BLOCKED NO RESTORE
ALL FS BLOCKED | YES RESTORE
ALL DB BLOCKED | NO RESTORE
ALL DB BLOCKED | NO DELETE
ALL DB BLOCKED YES RESTORE
ALL DB BLOCKED | YES DELETE
ALL DB ADMIN NO RESTORE
ALL DB ADMIN NO DELETE
ALL DB ADMIN YES RESTORE
ALL DB ADMIN YES DELETE
SELECTIVE | FS FS NO NONE

NOTE 10 — In Table 1, “Valid datalink file control options”, the write permission option ADMIN is an abbreviation for both
ADMIN REQUIRING TOKEN FOR UPDATE and ADMIN NOT REQUIRING TOKEN FOR UPDATE.

The default value of a site whose declared type is DATALINK is the null value. Datalinks are subject to certain
restrictions. As a consequence of these restrictions, neither datalinks nor expressions whose declared type is
DATALINK-ordered can appear in (among other places):

— <comparison predicate>.

— <general set function>.

— <group by clause>.

— <order by clause>.

— <unique constraint definition>.

— <referential constraint definition>.

— <select list> of a <query specification> that has a <set quantifier> of DISTINCT.

14 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.8 Datalinks
— <select list> of an operand of UNION, INTERSECT, and EXCEPT.
— Columns used for matching when forming a <joined table>.

The implementation-defined maximum datalink length determines the amount of space, in octets, that is allocated
for:

— A host variable of data type DATALINK.
— An argument of declared type DATALINK to an invocation of an external routine.
— The value returned by an invocation of an external function whose result type is DATALINK.

The maximum datalink length constrains the values of expressions whose declared type is DATALINK such
that every such value can be assigned to a host variable, substituted for a parameter to an external routine, or
returned by an invocation of an external function.

4.8.1 Operations involving datalinks

4.8.1.1 Operators that operate on datalinks

<url complete expression> returns the File Reference of a given datalink, possibly combined with a read token.

<url complete for write expression> returns the File Reference of a given datalink, possibly combined with a
write token.

<url complete only expression> returns the File Reference, excluding any access token, of a given datalink.
<url path expression> returns the path, including any read token, of the File Reference of a given datalink.

<url path for write expression> returns the path, including any write token, of the File Reference of a given
datalink.

<url path only expression> returns the path, excluding any access token, of the File Reference of a given datalink.
<url scheme expression> returns the scheme of the File Reference of a given datalink.

<url server expression> returns the host of the File Reference of a given datalink.

NOTE 11 — “host”, “scheme”, and “path” are defined in Subclause 6.6, “<datalink value function>".

4.8.1.2 Other operators involving datalinks

A <datalink value constructor> specifies either DLVALUE, DLNEWCOPY, or DLPREVIOUSCOPY.
DLVALUE returns a datalink value, given only a File Reference, returns the corresponding datalink.
DLNEWCOPY and DLPREVIOUSCOPY return a datalink value, given a File Reference and an indication of
whether the File Reference includes a write token.

The datalink value returned by DLNEWCOPY indicates to the SQL-server that the content of the file, referenced
by that datalink, is different (i.e., the content has changed, but not the URL) from what was previously referenced
by the datalink.

Concepts 15

IWD 9075-9:201?(E)
4.8 Datalinks

The datalink value returned by DLPREVIOUSCOPY indicates to the SQL-server that the content of the file
might have changed, but the application is not interested in maintaining the changed file. The original file is
restored in an implementation-dependent fashion.

4.9 Columns, fields, and attributes

This Subclause modifies Subclause 4.13, ““Columns, fields, and attributes’, in 1SO/IEC 9075-2.

|Append this paragraph | The term constituent is defined for values such that a value V2 either is or is not a
constituent of a value V1.

NOTE 12 — For example, the integer 2 and the character string 'one' are both constituents of the row value denoted by ROW (2,
"one™). By contrast, the integer 3 is not a constituent of that row value.

V2 is an immediate constituent of V1 if any of the following are true:

— Vlisavalue of some predefined data type or of some distinct type whose source type is some predefined
data type and V2 is identical to V1.

— Vlisavalue of some structured type ST and, for some attribute A of ST, V2 is identical to V1.A().
— Vl1is avalue of some row type RT and, for some field F of RT, V2 is identical to V1.F.
— Vl1isa value of some collection type CT and V2 is an element of V1.

V2 is a constituent of V1 if V2 is an immediate constituent of V1 or there is some value V3 such that V3 is an
immediate constituent of V1 and V2 is a constituent of V3.

4.10 Tables

This Subclause modifies Subclause 4.15, “Tables™, in | SO/IEC 9075-2.

4.10.1 Introduction to tables

This Subclause modifies Subclause 4.15.1, “Introduction to tables”, in | SO/IEC 9075-2.

|Add the following table type to the list of table types 3rd paragraph|

— foreign table,

4.10.2 Base tables

This Subclause modifies Subclause 4.15.2, ““Base tables™, in |SO/IEC 9075-2.

16 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4,10 Tables

4.10.2.1 Foreign tables

The data constituting a foreign table is not part of the SQL-environment. Instead, its rows are supplied when
needed by some foreign server, known as the source of the foreign table. The mechanism by which these rows
are supplied is provided by a foreign-data wrapper (see Subclause 4.3, “Foreign-data wrappers”).

4.10.3 Unique identification of tables

This Subclause modifies Subclause 4.15.5, ““Unique identification of tables, in 1SO/IEC 9075-2.

— |Append after 4th list item| The <table name> of an external table uniquely identifies a multiset of rows.

4.10.4 Table descriptors

This Subclause modifies Subclause 4.15.7, “Table descriptors™, in ISO/IEC 9075-2.

|Replace 1st paragraph|A table is described by a table descriptor. A table descriptor is either a base table
descriptor, a view descriptor, a derived table descriptor (for a derived table that is not a view), or a foreign table
descriptor.

| Insert this paragraph| A foreign table descriptor describes a foreign table. In addition to the components of
every table descriptor, a foreign table descriptor includes:

— The name of the foreign table.

— A foreign server name, identifying the descriptor of the foreign server that is the source of the foreign
table.

— A generic options descriptor.

— An indication of whether the foreign table is updatable or not.

NOTE 13 — This part of ISO/IEC 9075 currently restricts foreign tables such that they are neither insertable-into nor
updatable. Future versions of this part of ISO/IEC 9075 may relax these restrictions.

4.10.5 Relationships between tables

This Subclause modifies Subclause 4.15.8, ““Relationships between tables”, in |SO/IEC 9075-2.

— [Replace 1st list item||of the 5th paragraph| If TORQN identifies a base table or a foreign table, or if
TORON is a <transition table name>, then TORQN has no generally underlying tables.

4.11 Functional dependencies

This Subclause modifies Subclause 4.19, “Functional dependencies”, in 1SO/IEC 9075-2.

Concepts 17

IWD 9075-9:201?(E)
4.11 Functional dependencies

4.11.1 Overview of functional dependency rules and notations

This Subclause modifies Subclause 4.19.1, “Overview of functional dependency rulesand notations”, in ISO/IEC
9075-2.

|Replace 1st paragraph| This Subclause defines functional dependency and specifies a minimal set of rules that
a conforming implementation shall follow to determine functional dependencies and candidate keys in base
tables, foreign tables, and <query expression>s.

4.11.2 Known functional dependencies in a foreign table

There are no rules in this part of ISO/IEC 9075 to determine known functional dependencies in a foreign table.
However, implementation-defined rules may determine known functional dependencies, if any, in a foreign
table.

4.12 SQL-schemas

This Subclause modifies Subclause 4.21, “SQL-schemas’, in | SO/IEC 9075-2.

|Rep|ace 5th paragraph| Base tables, foreign tables, and views are identified by <table name>s. A <table name>
consists of a <schema name> and an <identifier>. The <schema name> identifies the schema in which a persistent
base table, foreign table, or view identified by the <table name> is defined. Base tables, foreign tables, and
views defined in different schemas can have <identifier>s that are equal according to the General Rules of
Subclause 8.2, “<comparison predicate>”, in [ISO9075-2].

4.13 SQL-statements

This Subclause modifies Subclause 4.34, “SQL-statements”, in I SO/IEC 9075-2.

4.13.1 SQL-statements classified by function

This Subclause modifies Subclause 4.34.2, “SQL-statements classified by function™, in 1SO/IEC 9075-2.

4.13.1.1 SQL-schema statements

This Subclause modifies Subclause 4.34.2.1, “SQL-schema statements”, in | SO/IEC 9075-2.

|Insert this paragraph\ The following are additional SQL-schema statements:

— <import foreign schema statement>

— <foreign table definition>

18 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4,13 SQL-statements

— <alter foreign table statement>

— <drop foreign table statement>

— <foreign server definition>

— <alter foreign server statement>

— <drop foreign server statement>

— <foreign-data wrapper definition>

— <alter foreign-data wrapper statement>
— <drop foreign-data wrapper statement>
— <user mapping definition>

— <alter user mapping statement>

— <drop user mapping statement>

— <routine mapping definition>

— <alter routine mapping statement>

— <drop routine mapping statement>

4.13.1.2 SQL -session statements

This Subclause modifies Subclause 4.34.2.7, “SQL-session statements”, in ISO/IEC 9075-2.

|Insert this paragraph| The following are additional SQL-session statements:

— <set passthrough statement>

4.14 Basic security model

This Subclause modifies Subclause 4.35, “Basic security model”, in | SO/IEC 9075-2.

4.14.1 Privileges

This Subclause modifies Subclause 4.35.2, “Privileges™, in ISO/IEC 9075-2.
|Augment the list in the 1st paragraph|

— foreign table
— foreign-data wrapper

— foreign server

Concepts 19

IWD 9075-9:201?(E)
4.14 Basic security model

NOTE 14 — Privileges granted on foreign tables are not privileges to use the data constituting foreign tables, but privileges to use
the definitions of the foreign tables. The privileges to access the data constituting the foreign tables are enforced by the foreign
server, based on the user mapping. Consequently, a request by an SQL-client to access external data may raise exceptions.

|Augment the list in the 8th paragraph|

— foreign-data wrapper

— foreign server

4.15 SQL-transactions

This Subclause modifies Subclause 4.36, “SQL-transactions”, in | SO/IEC 9075-2.

4.15.1 Properties of SQL-transactions

This Subclause maodifies Subclause 4.36.3, “Properties of SQL-transactions”, in | SO/IEC 9075-2.

| Augment the 2nd paragraph|Add foreign tables to the list of objects for which the term read-only applies.

4.16 SQL-sessions

This Subclause modifies Subclause 4.38, “SQL-sessions”, in |SO/IEC 9075-2.

4.16.1 SQL-session properties

This Subclause modifies Subclause 4.38.3, ““SQL-session properties”, in ISO/IEC 9075-2.

|Insert this paragraph\At any time during an SQL-session, the SQL-server may obtain a WrapperEnvHandle
for a foreign-data wrapper and an FSConnectionHandle for a foreign server.

[Insert this paragraph| The SQL-session context also comprises:

— Zero or more {foreign-data wrapper name : WrapperEnvHandle} pairs.
— Zero or more {foreign server name : FSConnectionHandle} pairs.

— A pass-through flag.

— A pass-through foreign server name, if any.

— Zero or more {<statement name> : ExecutionHandle} pairs.

|Insert this paragraph| At the end of every SQL-session, every FSConnection handle that is contained in the
SQL-session context is freed.

20 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.16 SQL-sessions

| Insert this paragraph |At the end of every SQL-session, every WrapperEnv handle that is contained in the SQL-
session context is freed.

| Insert this paragraph |An SQL-session has a pass-through flag that is initially set to False when the SQL-session
is started. The successful execution of a <set passthrough statement> that contains a <foreign server name>
changes the pass-through flag to True. An SQL-session whose pass-through flag is True additionally has a
pass-through foreign server name. Every time a <set passthrough statement> is executed, all {<SQL statement
name> : ExecutionHandle} pairs are removed from the current SQL-session context. Every time a <set
passthrough statement> that contains a <foreign server name> FSN is successfully executed, the pass-through
foreign server name included the current SQL-session context is set to FSN. Every time a <prepare statement>
is executed after a <set passthrough statement> that contains a <foreign server name> has been executed suc-
cessfully, an {<SQL statement name> : ExecutionHandle} pair is made part of the current SQL-session context.
Every time a <deallocate prepared statement> is successfully executed after a <set passthrough statement> that
identifies a <foreign server name> has been executed, the corresponding {<SQL statement name> : Execution-
Handle} pair is removed from the current SQL-session context. Every time a <set passthrough statement> that
specifies 'OFF" is executed, the pass-through flag is set to False and the pass-through foreign server name is
deleted from the current SQL-session context.

4.17 Foreign-data wrapper interface

A foreign-data wrapper interface consists of the signatures of the routines that make up a given foreign-data
wrapper. These routines serve the following purposes:

— Allocate and deallocate resources.
— Control connections to foreign servers.
— Receive data from the SQL-server about the foreign server request to be executed at the foreign server.

— Send data from the foreign server to the SQL-server about the foreign server request that the foreign server
is willing to execute.

— Initiate and terminate the execution of foreign server requests by the foreign server.

4.17.1 Handles

A handle s a value of INTEGER data type that identifies an allocated resource that provides session state
information about a foreign server, a foreign-data wrapper, or a foreign server session of interest to connected
components of that session. Handles presented as arguments to invocations of foreign-data wrapper interface
routines enable the invoker to give or obtain the information they reference. The handle of a particular resource
is allocated by the keeper of the state information — either the foreign-data wrapper or the SQL-server — to
enable the SQL-server or the foreign-data wrapper, respectively, to access that state information. Although the
declared type for a handle is INTEGER, its value has no meaning in any other context and should not be used
as a numeric operand or modified in any way.

The following are the handles specified in the foreign-data wrapper interface, presented in approximately the
order in which they are materialized in Table 2, “Sequence of actions during the execution of foreign server
requests”. The operations that cause their creation and destruction are given in Table 2, “Sequence of actions
during the execution of foreign server requests”.

Concepts 21

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

— WorapperEnv handle: This handle is allocated by a foreign-data wrapper to reference information during
the interaction with the SQL-server. It identifies an allocated FDW-environment and is allocated via a call
from the SQL-server to the Al locWrapperEnv () routine. This handle shall be allocated before any
foreign server requests are made to a foreign-data wrapper. It remains valid until the SQL-server invokes
FreeWrapperEnv(WH), where WH is the handle in question.

— Server handle: This handle is allocated by the SQL-server to reference a foreign server. A foreign-data
wrapper uses this handle to obtain information about a foreign server to which it needs to connect. Routines
associated with a server handle allow information to be obtained about such things as the server name,
server type, server version, etc. This handle is allocated implicitly and presented by the SQL-server to a
foreign-data wrapper by invoking ConnectServer().

— FSConnection handle: This handle is allocated by a foreign-data wrapper to reference information about
a foreign server session. It is allocated via a call to the ConnectServer () routine. This handle shall
be allocated before any foreign server requests to be executed during that foreign server session are presented
to a foreign-data wrapper.

— Query Context handle: This handle is allocated by the foreign-data wrapper to reference information that
spans multiple foreign server requests. The SQL-server uses it to indicate to the foreign-data wrapper that
identical value expression handles in the same query context (denoted by the same Query Context handle)
but in different foreign server requests (represented by different Request handles) represent identical value
expressions. It is foreign-data wrapper implementation-dependent whether the foreign-data wrapper uses
this information to re-use the previously evaluated value expression or whether the foreign-data wrapper
re-evaluates the value expression. The handle remains valid until the SQL-server invokes FreeQueryCon-
text().

— Request handle: This handle is allocated by the SQL-server to reference a foreign server request that is
to be executed by a foreign server. A request handle may reference a simple foreign server request, such
as SELECT * FROM T, or it may reference a complex foreign server request that includes predicates,
joins, ordering, etc. A request handle is used by the foreign-data wrapper to retrieve (for example) the
names of foreign tables referenced in the from clause, the names of column references in the select list,
etc., using foreign-data wrapper interface SQL-server routines. This handle is allocated implicitly.

— Table Reference handle: This handle is allocated by the SQL-server to reference a <table reference>
contained in the <from clause> of a <query specification>. This handle is allocated implicitly.

— Value Expression handle: This handle is allocated by the SQL-server to reference a <value expression>
contained in a foreign server request. This handle is allocated implicitly.

— Reply handle: This handle is allocated by a foreign-data wrapper to reference the subset of foreign server
requests it is capable of executing. This handle is allocated via a call during a foreign server session to the
InitRequest() routine and remains valid in that foreign server session until it is the argument to an
invocation of FreeReplyHandle().

— Execution handle: This handle is allocated by a foreign-data wrapper. In decomposition mode, it is used
to reference the information the foreign-data wrapper needs to process the foreign server request referenced
by the corresponding reply handle and the information associated with the data resulting from the processing
of the foreign server request. This handle is allocated via a call to the InitRequest() routine, which
sets the associated PASSTHROUGH flag to False. In pass-through mode, this handle is used to reference
the information that the foreign-data wrapper needs to process the foreign server request that is sent to the
foreign server. This handle is allocated via a call to the TransmitRequest() routine, which sets the
associated PASSTHROUGH flag to True.

NOTE 15 — *“decomposition mode” and “pass-through mode” are defined in Subclause 4.17.3.5, “Decomposition and pass-
through modes”.

22 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

— Worapper handle: This handle is allocated implicitly by the SQL-server to reference the information about
a foreign-data wrapper.

— User handle: This handle is allocated implicitly by the SQL-server to reference information about the user
on whose behalf a connection to a foreign server is being made.

— Descriptor handle: This handle is allocated by either the SQL-server or a foreign-data wrapper to reference
a foreign-data wrapper descriptor area.

— Routine Mapping handle: This handle is implicitly allocated by the SQL-server to reference an allocated
routine mapping description.

4.17.2 Foreign server sessions
A foreign server session is the sequence of operations performed by a foreign-data wrapper on a particular
FSConnection handle during the existence of that handle.

A foreign server session on FSConnection handle FSCH begins with the invocation of ConnectServer ()
that brings FSCH into existence and ends with the invocation of FreeFSConnection(FSCH).

4.17.3 Foreign-data wrapper interface routines

The terms foreign-data wrapper interface SQL-server routine and foreign-data wrapper interface wrapper
routine are used to distinguish routines provided by the SQL-server from routines provided by a foreign-data
wrapper, respectively. A foreign-data wrapper interface routine that is both an SQL-server routine and a
wrapper routine is referred to as a foreign-data wrapper interface general routine.

The foreign-data wrapper interface routines of a given implementation are either all functions or all procedures,
the choice being implementation-defined. They are functions if their return codes are values returned by their
invocations and they are procedures if their return codes are instead assigned to an output parameter named
ReturnCode. The specific terms foreign-data wrapper interface function and foreign-data wrapper interface
procedure are used when it is necessary to distinguish between the two kinds.

4.17.3.1 Handle routines

— GetServerName: This routine returns the name of a foreign server given a server handle.
— GetServerType: This routine returns the type of a foreign server given a server handle.
— GetServerVersion: This routine returns the version of a foreign server given a server handle.

— GetNumServerOpts: This routine returns the number of generic options associated with a foreign server
given a server handle.

— GetServerOpt: This routine returns the generic option name and its value given a server handle and the
position of the option in the options list.

Concepts 23

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

24

GetServerOptByName: This routine returns the generic option value given a server handle and the name
of the option.

GetNumTableRefElems: This routine returns the number of <table reference>s in the <from clause> of
a query given a request handle.

GetTableRefElem: This routine returns the table reference handle of a <table reference> in the <from
clause> of a query given a request handle and the position of the <table reference> in the <from clause>.

GetTableRefElemType: This routine returns the “type” of a <table reference> given the table reference
handle. The only possible return value is TABLE_NAME.

GetTableRefTableName: This routine returns the table name given a table reference handle.

GetNumSelectElems: This routine returns the number of <value expression>s in the <select list> of a
<query specification> given a request handle.

GetSelectElem: This routine returns the value expression handle of a <value expression> in the <select
list> of a <query specification> given a request handle and the position of the <value expression> in the
<select list>.

GetSelectElemType: This routine returns the kind of a <value expression> given the value expression
handle. Possible return values are COLUMN_NAME, OPERATOR, PARAMETER, and CONSTANT.

GetValExprColName: This routine returns the name of the column, given a value expression handle.

GetNumReplyTableRefs: This routine returns the number of table references from the original foreign
server request that the foreign-data wrapper is capable of accessing, given a reply handle.

GetReplyTableRef: This routine returns the number of the table reference in the original request that the
foreign-data wrapper is capable of accessing, given a reply handle and a number that ranges from 1 (one)
to the value returned by the GetNumReplyTableRefs () routine.

GetNumReplySelectElems: This routine returns the number of select list elements from the original foreign
server request that the foreign-data wrapper is capable of accessing, given a reply handle.

GetReplySelectElem: This routine returns the number of the select list element in the original foreign
server request that the foreign-data wrapper is capable of accessing, given a reply handle and a number
that ranges from 1 (one) to the value returned by the GetNumReplySelectElems() routine.

GetNumReplyBoolVE: This routine returns the number of <boolean value expression>s simply contained
in the <where clause> of the original foreign server request that the foreign-data wrapper is capable of
handling, given a reply handle.

GetReplyBoolVE: This routine returns the number of a <boolean value expression> element from the
<where clause> in the original foreign server request that the foreign-data wrapper is capable of handling,
given a reply handle and a number that ranges from 1 (one) to the value returned by the GetNumReply-
BoolIVE(Q) routine.

GetReplyDistinct: This routine returns information identifying whether the foreign-data wrapper is
capable of providing distinct rows in the result set, given a reply handle.

GetReplyCardinality: This routine returns an estimate of the cardinality of the result set associated with
the reply, given a reply handle.

GetReplyFirstCost: This routine returns a value that represents the estimated cost to retrieve the first row
of the result set associated with the reply, given a reply handle. Larger values represent greater costs.

Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

GetReplyExecCost: This routine returns a value that represents the estimated cost to retrieve the result
set associated with the reply, given a reply handle. Larger values represent greater costs.

GetReplyReExecCost: This routine returns a value that represents the estimated cost to re-execute the
reply, given a reply handle. Larger values represent greater costs.

GetNumReplyOrderBy: This routine returns the number of columns that are used to order the result that
the foreign-data wrapper is capable of handling, given a reply handle.

GetReplyOrderElem: This routine returns the number of a <value expression> from the <select list> used
to order the result in the original foreign server request that the foreign-data wrapper is capable of handling,
given a reply handle and a number that ranges from 1 (one) to the value returned by the GetNumReply-
OrderBy() routine.

GetNextReply: This routine returns a new reply handle and execution handle for the original foreign server
request, given a reply handle.

GetNumBoolVE: This routine returns the number of <boolean value expression>s simply contained in
the <where clause> of a <query specification>, given a request handle.

GetBoolVE: This routine returns a handle for a <boolean value expression> from the <where clause> of
a <query specification>, given a request handle and a number that ranges from 1 (one) to the value returned
by the GetNumBoo I VE() routine.

GetDistinct: This routine returns information whether the query specifies DISTINCT or ALL, given a
request handle.

GetNumOrderByElems: This routine returns the number of columns that are used to order the result,
given a request handle.

GetOrderByElem: This routine returns a handle for a <value expression> used to order the result of a
query, given a request handle and a number that ranges from 1 (one) to the value returned by the GetNu-
mOrderByElems() routine.

GetValueExpKind: This routine returns the kind of a <value expression>, given a value expression handle.
Possible return values are COLUMN_NAME, OPERATOR, PARAMETER, CONSTANT.

GetNumChildren: This routine returns the number of <value expression>s immediately contained in the
containing <value expression>, given a value expression handle.

GetVECHhild: This routine returns a handle for a <value expression>immediately contained in the containing
<value expression>, given a value expression handle and a number that ranges from 1 (one) to the value
returned by the GetNumChi Idren() routine.

GetValueExpName: This routine returns the name associated with a <value expression>, given a value
expression handle.

GetValueExpTable: This routine returns a table reference handle with which the table associated with
the <value expression> is associated.

GetValueExpDesc: This routine returns a handle for a value expression descriptor describing a <value
expression>.

GetAuthorizationld: This routine returns the authorization identifier associated with a user mapping,
given a user handle.

Concepts 25

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

26

GetTableColOpt: This routine returns the generic option name and its value, given a table reference
handle, column name and the position of the option in the options list.

GetTableColOptByName: This routine returns the generic option value, given a table reference handle,
a column name and the name of the option.

GetTableOpt: This routine returns the generic option name and its value, given a table reference handle
and the position of the option in the options list.

GetTableOptByName: This routine returns the generic option value, given a table reference handle and
the name of the option.

GetTableServerName: This routine returns the name of the foreign server associated with a foreign table,
given a table reference handle.

GetNumTableColOpts: This routine returns the number of generic options associated with a column of
a foreign table, given a table reference handle and a column name.

GetNumTableOpts: This routine returns the number of generic options associated with a foreign table,
given a table reference handle.

GetNumUserOpts: This routine returns the number of generic options associated with a user mapping,
given a user handle.

GetNumWrapperOpts: This routine returns the number of generic options associated with a foreign-data
wrapper, given a wrapper handle.

GetUserOpt: This routine returns the generic option name and its value, given a user handle and the
position of the option in the options list.

GetUserOptByName: This routine returns the generic option value, given a user handle and the name of
the option.

GetWrapperLibraryName: This routine returns the name of the library associated with a foreign-data
wrapper, given a wrapper handle.

GetWrapperName: This routine returns the name of a foreign-data wrapper, given a wrapper handle.

GetWrapperOpt: This routine returns the generic option name and its value, given a wrapper handle and
the position of the option in the options list.

GetWrapperOptByName: This routine returns the generic option value, given a wrapper handle and the
name of the option.

GetDescriptor: This routine, given a descriptor handle and the identification of a descriptor area field,
retrieves the value of the specified field from a descriptor area.

SetDescriptor: This routine, given a descriptor handle, the identification of a descriptor area field, and a
new value to be assigned to that field, sets the value of the specified field of a descriptor area.

GetSPDHandle: This routine returns the SPDHandle given an ExecutionHandle.
GetSRDHandle: This routine returns the SRDHandle given an ExecutionHandle.
GetTRDHandle: This routine returns the TRDHandle given an TableReferenceHandle.
GetWPDHandle: This routine returns the WPDHandle given an ExecutionHandle.

Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

— GetWRDHandle: This routine returns the WRDHandle given an ExecutionHandle.

— GetSQLString: This routine returns a character string representation of the query that is associated with
the request handle.

— GetRoutineMapping: This routine returns the routine mapping handle for an allocated routine mapping
description, given a value expression handle.

— GetRoutMapOptName: This routine returns the generic option value, given the routine mapping handle
and the name of the option.

— GetRoutMapOpt: This routine returns the generic option name and its value, given a routine mapping
handle and the position of the option in the option list.

— GetNumRoutMapOpts: This routine returns the number of generic options associated with a routine
mapping, given a routine mapping handle.

4.17.3.2 Initialization routines

— AdvancelnitRequest: This routine is used by the SQL-server to cause a foreign server request to be pre-
pared. The routine has three input parameters: a previously allocated FSConnection handle, a previously
allocated QueryContext handle, and a request handle that describes the foreign server request. The routine
has two output parameters: a reply handle that describes how much of the foreign server request the foreign-
data wrapper is willing to handle, and an execution handle to the state information the foreign-data wrapper
needs to process the foreign server request and the data rows that will be returned. This routine uses the
InitRequest() routine multiple times to generate multiple reply handle/execution handle pairs.
Additional reply handle/execution handle pairs can be retrieved by the SQL-server using the GetNextRe-

ply Q) routine.

— AllocDescriptor: This routine is used by the foreign-data wrapper to request that the SQL-server allocate
a foreign-data wrapper descriptor area for use in exchanging information about values required to execute
a foreign server request or values expected to be returned from an execution of a foreign server request.

— AllocQueryContext: This routine is used by the SQL-server to retrieve a Query Context handle that the
SQL-server will use to indicate to the foreign-data wrapper that identical Value Expression handles in
different foreign server requests refer to identical value expressions.

— AllocWrapperEnv: This routine is used by the SQL-server to allow the foreign-data wrapper to perform
any initialization steps and allocate and initialize any necessary global data structures. It has a single input
parameter, a WrapperHandle, that describes the information about the foreign-data wrapper maintained
by the SQL-server, and a single output parameter, a WrapperEnv handle, which is a handle to the foreign-
data wrapper's newly initialized global data structures.

— ConnectServer: This routine is used by the SQL-server to request access to a foreign server, and allows
the foreign-data wrapper associated with that foreign server to establish a connection (if necessary) and
set up any required state information. ConnectServer has three input parameters: a previously allocated
WrapperEnv handle, a server handle that describes the foreign server for which the SQL-server is
requesting a connection, and a UserHandle that describes the user mapping maintained by the SQL-server.
The routine has one output parameter, the newly allocated FSConnection handle for the foreign server.

— GetOpts: This routine is used by the SQL-server to request that the foreign-data wrapper return information
about the capabilities and other aspects of the foreign-data wrapper, the foreign server, some foreign table

Concepts 27

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

at the foreign server, or some foreign column of some foreign table at the foreign server. This routine is
invoked by the SQL-server, and executed by the foreign-data wrapper, whenever the SQL-server requires
information about options supported by the foreign-data wrapper and the foreign server. It is thus invoked
under implementation-dependent circumstances.

— InitRequest: This routine is used to generate a reply handle and an execution handle for a given foreign
server request. The routine has two input parameters: a previously allocated FSConnection handle, and a
request handle that describes the foreign server request. The routine has two output parameters: a reply
handle that describes how much of the foreign server request the foreign-data wrapper is willing to handle,
and an execution handle to the state information the foreign-data wrapper needs to process the foreign
server request and the data rows that will be returned.

4.17.3.3 Access routines

— Open: This routine is used by the SQL-server to allow the foreign-data wrapper to allocate any resources
necessary to perform the operations represented by the ExecutionHandle (and described by a ReplyHandle
previously returned by an invocation of either Advance InitRequest() or GetNextReply()). The
routine has one input parameter: a previously allocated ExecutionHandle.

— Iterate: This routine is used by the SQL-server to iteratively retrieve data from a foreign-data wrapper.
The routine has one input parameter, a previously allocated ExecutionHandle. As a result of this call, the
foreign-data wrapper will associate the row with the ExecutionHandle. The SQL-server may invoke this
routine until all data is returned.

— ReOpen: This routine may be used by the SQL-server to allow a foreign-data wrapper to re-initialize any
resources necessary to re-execute the operations represented by the ExecutionHandle (and described by a
ReplyHandle previously returned by either the Advance InitRequest() routine or the GetNextRe-
ply () routine). This routine allows an SQL-server to re-execute the operations associated with an Execu-
tionHandle multiple times, for example, if the work to be done by the foreign-data wrapper represents the
inner node of a join being processed by the SQL-server. The routine has one input parameter: a previously
allocated ExecutionHandle.

— Close: This routine is used by the SQL-server to allow a foreign-data wrapper to free any resources that
had been allocated to perform the operations represented by the ExecutionHandle. The SQL-server invokes
this routine after it is done processing a foreign server request that initiated the communication with the
foreign-data wrapper. The routine has one input parameter: a previously allocated ExecutionHandle.

— GetStatistics: This routine is used by the SQL-server to request statistics, if any, related to the foreign
server request previously sent to the foreign-data wrapper. Such statistics are entirely implementation-
defined in nature. This routine is invoked by the SQL-server, and executed by the foreign-data wrapper,
whenever the SQL-server requires statistics that may be provided by the foreign-data wrapper and the
foreign server. It is thus invoked under implementation-dependent circumstances.

— TransmitRequest: This routine is used by the SQL-server to transmit a foreign server request in the native
language of the foreign server to the foreign server in pass-through mode. The foreign server analyzes the
transmitted foreign server request and returns information about that foreign server request to the SQL-
server. This information includes: Whether the foreign server request requires one or more input values
in order to be executed; and whether the foreign server request returns one or more result values upon
execution. This information is associated with the descriptors attached to the execution handle that is the
output parameter of this routine. This routine has three input parameters: a previously allocated FSConnection
handle, a string containing the foreign server request, and an integer indicating the string length.

28 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

4.17.3.4 Termination routines

— FreeDescriptor: This routine is used by the foreign-data wrapper to request that the SQL-server deallocate
a foreign-data wrapper descriptor area and to free the memory and other resources used by that descriptor.

— FreeExecutionHandle: This routine is used by the SQL-server to allow the foreign-data wrapper to free
the resources associated with an ExecutionHandle after the SQL-server has determined that it no longer
needs the information encapsulated by the ExecutionHandle. This routine has one input parameter, a pre-
viously allocated ExecutionHandle.

— FreeFSConnection: This routine is used by the SQL-server to terminate a connection to a foreign server.
It allows the foreign-data wrapper to disconnect from the foreign server and to free any resources associated
with the connection, such as the FSConnection handle. It has one input parameter: a previously allocated
FSConnection handle.

— FreeQueryContext: This routine is used by the SQL-server to allow the foreign-data wrapper to free all
resources it may have associated with a Query Context handle. This routine has one input parameter, a
previously allocated Query Context handle.

— FreeReplyHandle: This routine is used by the SQL-server to allow the foreign-data wrapper to free the
resources associated with a ReplyHandle after the SQL-server has determined that it no longer needs the
information encapsulated by the ReplyHandle. This routine has one input parameter, a previously allocated
ReplyHandle.

— FreeWrapperEnv: This routine is used by the SQL-server to terminate communication with a foreign-
data wrapper. It allows the foreign-data wrapper to free any global resources it had allocated, such as the
WrapperEnv handle. The routine has one input parameter, a previously allocated WrapperEnv handle.

4.17.3.5 Decomposition and pass-through modes

Depending on whether the pass-through flag in the current SQL-session context is set to True or False, the
SQL-server is said to be either in pass-through mode or decomposition mode. When the SQL-server is in
decomposition mode, the SQL-server analyzes the SQL-client request and invokes the Advance InitRe-
quest() routine to communicate foreign server request to the foreign-data wrapper. When the SQL-server
is in pass-through mode, the SQL-server does not analyze the SQL-client request and invokes the TransmitRe-
quest() routine to communicate foreign server request to the foreign-data wrapper.

4.17.3.6 Sequence of actions during the execution of foreign server requests

For decomposition mode, Table 2, “Sequence of actions during the execution of foreign server requests”, shows
the sequence of actions as described by the General Rules of Subclause 7.1, “<table reference>", when a foreign
table is identified by the <table name> simply contained in the <table reference>.

For pass-through mode, Table 2, “Sequence of actions during the execution of foreign server requests”, shows
the sequence of actions that is likely to occur when an SQL-client requests the preparation and execution of
statements using dynamic SQL.

Concepts 29

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Table 2 — Sequence of actions during the execution of foreign server requests

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
1 Receives a query Receives from the
from SQL-client that | SQL-client a state-
involves data from a | ment to be executed
foreign table in a in pass-through
<table reference>. mode that involves
Determines relation- | one foreign server.
ship of foreign table | Determines relation-
— foreign server —» | ship of the foreign
foreign-data wrap- | server to the foreign-
per. data wrapper.
2 Creates a WrapperHandle and associates
information about the foreign-data wrapper
with that handle.
3 Invokes the AllocWrapperEnv (Wrapper- | >
Handle, WrapperEnvHandle) routine to
initialize the foreign data wrapper.
4 < Invokes the Get... (WrapperHandle, ...)

routines in the SQL-server to retrieve infor-
mation about the foreign-data wrapper that
the SQL-server has stored in its Information
Schema.

information about the foreign server with
that handle.

NOTE 16 — This information is provided in the <foreign-data wrapper definition>.

5 Executes the Get... (WrapperHandle, ...) | >

routines as requested from the foreign-data
wrapper.

6 Allocates global data structures associated
with the wrapper and associates them with
the WrapperEnvHandle and performs any
initialization required.

7 Frees the WrapperHandle.

NOTE 17 — If the current SQL-session context already includes a {foreign-data wrapper name : WrapperEnvHandle} pair that
could be used, then Step 2 through Step 7 are optional.

8 Creates a ServerHandle and associates

30 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step

SQL-server

Flow

Foreign-data wrapper

Decomposition Pass-through

Decomposition Pass-through

Creates a UserHandle and associates infor-
mation about the current user with that han-
dle.

10

Invokes the ConnectServer (WrapperEn-
vHandle, ServerHandle, UserHandle,
FSConnectionHandle) routine in the for-
eign-data wrapper to establish a connection
to the foreign server that contains some of
the data required to process the SQL-server
client's query.

11

Invokes the Get... (ServerHandle, ...) rou-
tines in the SQL-Server to retrieve all infor-
mation about the foreign server that the
SQL-server has stored in its Information
Schema.

NOTE 18 — This information is provided in the <foreign server definition>.
12 Executes the Get... (ServerHandle, ...) rou- | >
tines as requested from the foreign data
wrapper.
13 = Invokes the Get... (UserHandle, ...) routines

in the SQL-Server to retrieve all information
about the user that the SQL-server has stored
in its Information Schema.

NOTE 19 — This information is provided in the <user mappi

ng definition>.

14 Executes the Get... (UserHandle, ...) rou- | =
tines as requested from the foreign data
wrapper.
15 Allocates global data structures associated
with the foreign server and associates them
with a FSConnectionHandle, establishes a
connection to the foreign server, and per-
forms any initialization required.
16 Frees the ServerHandle.
17 Frees the UserHandle.

NOTE 20 — If the current SQL-session context already includes a {foreign server name : FSConnectionHandle} pair that could
be used, then Step 8 Step 17 are optional.

Concepts 31

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step

SQL-server

Flow

Foreign-data wrapper

Decomposition

Pass-through

Decomposition

Pass-through

18

Invokes the Alloc-
QueryContext()
routine in the for-
eign-data wrapper to
obtain a QueryCon-
textHandle.

19

Allocates data struc-
tures to utilize the
information about
the query context
and associates them
with the QueryCon-
textHandle.

20

Creates a
RequestHandle and
associates with it the
information about
the part of query that
could be handled by
the foreign-data
wrapper.

21

Creates as many
TableReferenceHan-
dles as are needed
and associates with
each of them the
information about a
particular <table ref-
erence>.

22

Creates a TableRef-
erenceDescriptor

(TRD) for the result
of the <query specifi-
cation> described by
the RequestHandle,
and sets all the fields
with details about

each of the columns.

32 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

4.17 Foreign-data wrapper interface

Step

SQL-server

Flow

Foreign-data wrapper

Decomposition

Pass-through

Decomposition

Pass-through

23

Creates a Wrapper-
ParameterDescrip-
tor (WPD) to
describe the
<dynamic parameter
specification>s in the
<query specifica-
tion> described by
the RequestHandle,
abd sets all the fields
with details about
each of the
<dynamic parameter
specification>s.

24

Creates as many
ValueExpression-
Handles as are
needed and asso-
ciates with each of
them the information
about a particular
<value expression>
in the <select list>
and <where clause>,
respectively.

25

Invokes the Advan-
celnitRequest
(FSConnectionHan-
dle,
RequestHandle,
ReplyHandle, Exe-
cutionHandle,
QueryContex-
tHandle) routine in
the foreign-data
wrapper to find out
how much of the
request the foreign
server can actually
process.

Invokes the Trans-
mitRequest
(FSConnectionHan-
dle, RequestString,
StringLength, Exe-
cutionHandle) rou-
tine to allow the for-
eign-data wrapper
and the foreign
server to analyze the
foreign server
request.

Concepts 33

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

(RequestHandle,
...), GetTRDHandle
(TableReference-
Handle), GetDe-
scriptor (TRD),
Get... (TableRefer-
enceHandle, ...), and
Get... (ValueExpres-
sionHandle, ...) rou-
tines in the SQL-
server to examine
the SQL-server's
request and to deter-
mine how much of
the request the for-
eign-data wrapper
can handle.

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
26 < Invokes the Get... Executes the Trans-

mitRequest () rou-
tine.

NOTE 21 — The foreign-data wrapper could invoke the GetSQLString (RequestHandle, StringFormat, SQLString, Buffer-
Length, StringLength) routine in the SQL-server to examine the foreign server request and to determine how much of the foreign
server request the foreign-data wrapper can handle, instead of the Get... (RequestHandle, ...), Get... (TableReferenceHandle,
...), Get... (ValueExpressionHandle, ...), GetTRDHandle (TableReferenceHandle), and GetDescriptor (TRD) routines.

27

Executes the Get...
(RequestHandle,
...), GetTRDHandle
(TableReference-
Handle), GetDe-
scriptor (TRD),
Get... (TableRefer-
enceHandle, ...), and
Get... (ValueExpres-
sionHandle, ...) rou-
tines as requested by
the foreign-data
wrapper.

=

NOTE 22 — If the foreign-data wrapper invoked the GetSQL String (RequestHandle, StringFormat, SQLString, BufferLength,
StringLength) routine, then this routine is executed instead of the Get... (RequestHandle, ...), Get... (TableReferenceHandle,
...), Get... (ValueExpressionHandle, ...), GetTRDHandle (TableReferenceHandle), and GetDescriptor (TRD) routines.

34 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

4.17 Foreign-data wrapper interface

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through

28 Creates a ReplyHan-
dle and associates
with it the informa-
tion about the part of
query that could
actually be handled
by the foreign-data
wrapper.

29 = Creates an ExecutionHandle and associates
with it the information about the actual exe-
cution plan.

30 = Invokes the Invokes the
AllocDescriptor () | AllocDescriptor ()
routine to create two | routine to create two
descriptors (SRD descriptors (WRD
and SPD) and asso- | and SRD) to
ciates both of them | describe the columns
with the Execution- | of the result table
Handle. Initializes | and associates both
the descriptors with | of them with the
default values wher- | ExecutionHandle.
ever applicable. Initializes both the

descriptors with
default values wher-
ever applicable. Sets
the fields in the
WRD to correspond
to the result columns
associated with the
ExecutionHandle.
31 Executes the AllocDescriptor () routine as | =

requested by the foreign-data wrapper.

Concepts 35

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step

SQL-server

Flow

Foreign-data wrapper

Decomposition

Pass-through

Decomposition

Pass-through

32

Invokes the
AllocDescriptor ()
routine to create two
descriptors, WPD
and SPD, to describe
<dynamic parameter
specification>s.
Associates both of
them with the Execu-
tionHandle. Initial-
izes both the
descriptors with
default values wher-
ever applicable. Sets
the fields in the
WPD to correspond
to the dynamic
parameters associ-
ated with the Execu-
tionHandle.

33

Executes the
AllocDescriptor ()
routine as requested
by the foreign-data
wrapper.

34

Repeats steps Step
25 through Step 33
to create multiple
ReplyHandle / Exe-
cutionHandle pairs
for the same foreign
server request.

NOTE 23 — Step 34 is optional.

35

Invokes the
Get...(ReplyHandle,
...) routines in the
foreign-data wrapper
to incorporate the
work that a wrapper
can do into the execu-
tion plan for the
SQL-server client's

query.

36 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

4.17 Foreign-data wrapper interface

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
36 = Executes the
Get...(ReplyHandle,
...) routines as
requested by the
SQL-server.
37 Invokes the GetNex- >
tReply() routine to
retrieve another
ReplyHandle for the
same foreign server
request
38 < Executes the GetNex-
tReply() routine and
returns a ReplyHan-
dle and Execution-
Handle.
39 Repeats Step 35
through Step 38.
NOTE 24 — Step 37 through Step 38 39 are optional.
40 Invokes the FreeRe- >
plyHandle (Reply-
Handle) routine in
the foreign-data
wrapper to indicate
that the ReplyHan-
dle is no longer
required.
41 Frees resources asso-
ciated with Reply-
Handle.
42 Repeats steps Step
20 through Step 41.

NOTE 25 — Step 42 is optional.

Concepts 37

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

multiple times to populate appropriate fields

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
43 Invokes the GetSRD- | Invokes the >
Handle (Execution- | GetWRDHandle
Handle) routine to | (ExecutionHandle)
get the SRD. and GetSRDHandle
(ExecutionHandle)
routines to get the
WRD and the SRD,
respectively.

44 < Executes the Get- Executes the
SRDHandle (Execu- | GetWRDHandle
tionHandle) routine | (ExecutionHandle)
as requested by the | and GetSRDHandle
SQL-server. (ExecutionHandle)

routines as requested
by the SQL-server.

45 Invokes the GetDe-

scriptor (WRD)
routine multiple
times to get all the
information associ-
ated with WRD.
46 Invokes the SetDescriptor (SRD) routine

SPDHandle (Execu-
tionHandle) routine
as requested by the
SQL-server.

in SRD.
NOTE 26 — In pass-through mode, SetDescriptor (SRD) will only be invoked if results are returned by the foreign-data server.
47 Invokes the Get- Invokes the GetW- | >
SPDHandle (Execu- | PDHandle (Execu-
tionHandle) routine | tionHandle) and
to get the SPD. GetSPDHandle
(ExecutionHandle)
routines to get the
WPD and SPD,
respectively.
48 > Executes the Get- Executes the Getw-

PDHandle (Execu-
tionHandle) and
GetSPDHandle
(ExecutionHandle)
routines as requested
by the SQL-server.

38 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
49 Invokes GetDescrip-
tor (WPD) multiple
times to obtain the
information associ-
ated with WPD.
50 If there are any dynamic parameters present, | =
invokes SetDescriptor (SPD) multiple times
to populate appropriate fields in SPD.
51 Frees the
RequestHandle.
52 Frees each of the
TableReferenceHan-
dles.
53 Frees each of the
ValueExpression-
Handles.

54 Invokes the Open (ExecutionHandle) rou- | =

tine in the foreign-data wrapper to initiate
the execution of the foreign server request
in the foreign-data wrapper.

55 = Executes the Open (ExecutionHandle)
routine as requested by the SQL-server.

56 Invokes the Iterate (ExecutionHandle) =>

routine in the foreign-data wrapper to
retrieve a row.

57 = Performs the work needed to retrieve the
next row from the foreign server and asso-
ciates it with the ExecutionHandle.

58 Repeats Step 56 through Step 57 until all o

data is retrieved.

NOTE 27 — In pass-through mode, Step 56 through Step 58 steps 56 through 58 are executed only if the foreign-data wrapper
returns a set of rows.

Concepts 39

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step SQL-server Flow Foreign-data wrapper

Decomposition Pass-through Decomposition Pass-through
59 Optional: If the work =>

performed by the

wrapper needs to be

repeated, the SQL-

server may choose to

invoke ReOpen

(ExecutionHandle)

routine in the for-

eign-data wrapper to

allow the wrapper to

prepare to re-execute

the query.

60 Optional: Executes
the ReOpen (Execu-
tionHandle) routine
as requested by the
SQL-server to per-
forms the steps neces-
sary to reuse the
resources allocated
in the Open () call in
order to re-execute.
In the worst case, it
may need to redo
everything done in
the Open () call. In
the average case, it
may only need to
reset counters, cur-
Sors, €tc.

61 Completes the work | Completes the work | =

necessary to answer | necessary to answer
the SQL-client's the SQL-client's
query. As a result, statement in pass-
invokes Close (Exe- | through mode. Possi-
cutionHandle) rou- | bly invokes the
tine in the foreign- | Close (Execution-
data wrapper. Handle) routine in
the foreign-data
wrapper.

62 Executes the Close (ExecutionHandle)

routine as requested by the SQL-server.

40 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Step SQL-server Flow Foreign-data wrapper
Decomposition Pass-through Decomposition Pass-through
63 Invokes FreeExecutionHandle (Execution- | =
Handle) routine in the foreign-data wrapper.

64 Frees resources associated with Execution-
Handle.

65 < Invokes the Invokes the
FreeDescriptor () FreeDescriptor ()
routine with the routine four times
SRDHandle as the | with the SRDHan-
input argument. dle, SPDHandle,

WRDHandle, and
WPDHandle,
respectively, as the
input arguments.

66 Executes the FreeDescriptor () routine as
requested by the foreign-data wrapper.
67 Invokes the FreeFSConnection (FSConnec- | =
tionHandle) routine in the foreign-data
wrapper.
68 Frees resources associated with FSConnec-

tionHandle.

NOTE 28 — Step 67 and Step 68 are optional, if the SQL-server wants to reuse the FSConnectionHandle.

69 Invokes FreeWrapperEnv (WrappergEn- | >
vHandle) routine in the foreign-data wrap-
per.
70 Frees resources associated with WrapperEn-

vHandle.

NOTE 29 — Step 69 and Step 70\ are optional, if the SQL-server wants to reuse the WrapperEnvHandle.

4.17.4 Return codes

The execution of a foreign-data wrapper interface routine causes one or more conditions to be raised. The status
of the execution is indicated by a code that is returned either as the result of invoking a foreign-data wrapper
interface function or as the value of the ReturnCode argument resulting from invoking a foreign-data wrapper
interface procedure. The values and meanings of the return codes are as follows. If more than one return code
is possible, then the one appearing later in the list is the one returned.

Concepts 41

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

NOTE 30 — Foreign-data wrapper functions and foreign-data wrapper procedures are defined in Subclause 22.1, “<foreign-data
wrapper interface routine>".

— A value of 0 (zero) indicates Success. The foreign-data wrapper interface routine executed successfully.

— Avalue of 1 (one) indicates Success with information. The foreign-data wrapper interface routine executed
successfully but a completion condition was raised: warning.

— Avalue of 100 indicates No data found. The foreign-data wrapper interface routine executed successfully
but a completion condition was raised: no data.

— A value of -1 indicates Error. The foreign-data wrapper interface routine did not execute successfully.
An exception condition other than FDW-specific condition — invalid handle was raised.

— Avalue of -2 indicates Invalid handle. The foreign-data wrapper interface routine did not execute suc-
cessfully because an exception condition was raised: FDW-specific condition — invalid handle.

If the foreign-data wrapper interface routine did not execute successfully, then the values of all output arguments
are implementation-dependent unless explicitly defined by this part of ISO/IEC 9075.

In addition to providing the return code, for all foreign-data wrapper interface routines other than GetDiag-
nostics(), the implementation records information about completion conditions and about exception con-
ditions raised other than FDW-specific condition — invalid handle in the diagnostics area associated with the
resource being utilized.

The resource being utilized by a routine is the resource identified by its input handle. In case of routines that
have multiple input handles, the resource being utilized is deemed to be the one identified by the handle that
comes first in the parameter list, with one exception: in the case of Al locWrapperEnv () routine, diagnostics
are returned on the output parameter, WrapperEnvHandle, provided an allocated FDW-environment is success-
fully created; otherwise, no diagnostics are returned.

4.17.5 Foreign-data wrapper diagnostics areas

Each diagnostics area consists of header fields that contain general information relating to the routine that was
executed and zero or more status records containing information about individual conditions that occurred
during the execution of the foreign-data wrapper interface routine. A condition that causes a status record to
be generated is referred to as a status condition.

At the beginning of the execution of any foreign-data wrapper interface routine other than GetDiagnos-
tics(), the diagnostics area for the resource being utilized is emptied. If the execution of such a routine does
not result in the exception condition being raised: FDW-specific condition — invalid handle, then:

— Header information is generated in the diagnostics area.
— If the routine's return code indicates Success, then no status records are generated.

— If the routine's return code indicates Success with information or Error, then one or more status records
are generated.

— If the routine's return code indicates No data found, then no status record is generated corresponding to
SQLSTATE value '02000' but there may be status records generated corresponding to SQLSTATE value
'02nnn’, where 'nnn' is an implementation-defined subclass value.

Status records in the diagnostics area are placed in an order that is implementation-dependent except that:

42 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

— For the purpose of choosing the first status record, status records corresponding to transaction rollback
have precedence over status records corresponding to other exceptions, which in turn have precedence
over status records corresponding to the completion condition no data, which in turn have precedence over

status records corresponding to the completion condition warning.

— Apart from any status records corresponding to an implementation-specified no data, any status record
corresponding to an implementation-specified condition that duplicates, in whole or in part, a condition

defined in this part of ISO/IEC 9075 shall not be the first status record.

The GetDiagnostics() routine retrieves information from a diagnostics area. The SQL-server or foreign-
data wrapper identifies which diagnostics area is to be accessed by providing the handle of the relevant resource
as an input argument. The GetDiagnostics() routine returns a result code but does not modify the identified

diagnostics area.

A foreign-data wrapper diagnostics area consists of the fields specified in Table 3, “Fields used in foreign-data

wrapper diagnostics areas”.

Table 3 — Fields used in foreign-data wrapper diagnostics areas

Field Data type
MORE INTEGER
NUMBER INTEGER
RETURNCODE SMALLINT

Implementation-defined header | Implementation-defined
field

CLASS_ORIGIN CHARACTER VARYING (L1)
MESSAGE_LENGTH INTEGER

MES- INTEGER
SAGE_OCTET_LENGTH

MESSAGE_TEXT CHARACTER VARYING (L1)"
NATIVE_CODE INTEGER

SQLSTATE CHARACTER (5)
SUBCLASS_ORIGIN CHARACTER VARYING (L1)"

Implementation-defined status | Implementation-defined
field

T Where L1 is an implementation-defined integer not less than 254.

Concepts 43

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

All diagnostics area fields in other parts of ISO/IEC 9075 that are not included in this table are not applicable
to foreign-data wrapper interface routines.

4.17.6 Null pointers

If the programming language of the caller of a routine supports pointers, then the caller may provide a zero-
valued pointer, referred to as a null pointer, in the following circumstances:

— In lieu of an output argument that is to receive the length of a returned character string. This indicates that
the caller wishes to prohibit the return of this information.

— Inlieu of other output arguments where specifically allowed by this part of ISO/IEC 9075. This indicates
that the caller wishes to prohibit the return of this information.

— Inlieu of input arguments where specifically allowed by this part of ISO/IEC 9075. The semantics of such
a specification depend on the context.

If the caller provides a null pointer in any other circumstances, then an exception condition is raised: FDW-
specific condition — invalid use of null pointer.

4.17.7 Foreign-data wrapper descriptor areas

A foreign-data wrapper descriptor area provides an interface for a description of values required for the execution
of a foreign server request in either decomposition mode or in pass-through mode by a foreign-data wrapper
and for a description of values resulting from such an execution.

Each foreign-data wrapper descriptor area comprises header fields and zero or more foreign-data wrapper item
descriptor areas. The header and item descriptor area fields are specified in Table 4, “Fields in foreign-data
wrapper descriptor areas”. The header fields include a COUNT field that indicates the number of item
descriptor areas.

Some host languages are able to access host variables whose addresses are stored in an item descriptor field
named DATA_POINTER in a foreign-data wrapper descriptor area. Such languages are called pointer-supporting
languages and include Ada, C, Pascal, and PL/I. Languages that cannot access variables whose addresses are
stored in the DATA_POINTER field of a foreign-data wrapper descriptor are called non-pointer-supporting
languages. Such languages include COBOL, Fortran, and M.

The GetDescriptor () routine enables information to be retrieved from any foreign-data wrapper
descriptor area. The SetDescriptor () routine enables information to be set in any foreign-data wrapper
descriptor area.

The following foreign-data wrapper descriptor areas are either implicitly or explicitly allocated and deallocated:

— Table Reference Descriptor (TRD): This descriptor is allocated automatically by the SQL-server to describe
a foreign table referenced in a foreign server request, and is associated with a TableReferenceHandle created
by the SQL-server. The foreign-data wrapper can obtain the handle of a TRD by invoking the GetTRD-
Handle () routine. It can then retrieve the information in the associated TRD descriptor by invoking the
GetDescriptor() routine.

44 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Wrapper Row Descriptor (WRD): This descriptor is allocated by the SQL-server if a foreign-data wrapper
requests its allocation. It is used to describe the result of a foreign server request to be executed by that
foreign-data wrapper in pass-through mode, and is associated with an ExecutionHandle. The foreign-data
wrapper uses the SetDescriptor () routine to set information in the WRD. The SQL-server can obtain
the handle to a WRD by invoking the GetWRDHand e () routine. It can then retrieve the information in
that WRD by invoking the GetDescriptor () routine.

Server Row Descriptor (SRD): This descriptor is allocated by the SQL-server if a foreign-data wrapper
requests its allocation. It is used by the SQL-server to specify the type and location of data to be provided
by the foreign-data wrapper. SRD is also associated with an ExecutionHandle. The SQL-server can obtain
the handle to a SRD by invoking the GetSRDHand e () routine. It can then set the information in that
SRD by invoking the SetDescriptor () routine.

Wrapper Parameter Descriptor (WPD): This descriptor is allocated by the SQL-server if a foreign-data
wrapper requests its allocation. It is used to describe the input values required for the execution of a foreign
server request by that foreign-data wrapper, and is associated with an ExecutionHandle. The foreign-data
wrapper uses the SetDescriptor () routine to set information in the WPD. The SQL-server can obtain
the handle to a WPD by invoking the GetWPDHand e () routine. It can then retrieve the information in
that WPD by invoking the GetDescriptor () routine.

Server Parameter Descriptor (SPD): This descriptor is allocated by the SQL-server if a foreign-data
wrapper requests its allocation. It is used by the SQL-server to specify the type and location of input values
to be provided by the SQL-server. The SPD is also associated with an ExecutionHandle. The SQL-server
can obtain the handle to an SPD by invoking the GetSPDHand 1 e () routine. It can then set the information
in that SPD by invoking the SetDescriptor () routine.

Value expression descriptor: This descriptor is implicitly allocated by the SQL-server for each value
expression contained in a foreign server request. It is used to describe the most specific type and value of
each value expression in the foreign server request. The foreign-data wrapper can obtain a handle to this
descriptor by invoking the GetValueExpDesc() routine. It can retrieve information in that descriptor
by invoking the GetDescriptor () routine.

Table 4 — Fields in foreign-data wrapper descriptor areas

Field

Data Type

COUNT

SMALLINT

DYNAMIC_FUNCTION

CHARACTER VARYING(LY)

DYNAMIC_FUNCTION_CODE INTEGER
KEY_TYPE SMALLINT
TOP_LEVEL_COUNT SMALLINT

Implementation-defined foreign-data
wrapper descriptor header field

Implementation-defined

CARDINALITY

INTEGER

Concepts 45

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Field

Data Type

CHARACTER_SET_CATALOG

CHARACTER VARYING(LY)

CHARACTER_SET_NAME

CHARACTER VARYING(LY)

CHARACTER_SET_SCHEMA

CHARACTER VARYING(LY)

COLLATION_CATALOG

CHARACTER VARYING(LY)

COLLATION_NAME

CHARACTER VARYING(LY)

COLLATION_SCHEMA

CHARACTER VARYING(LY)

CURRENT_TRANSFORM_GROUP

CHARACTER VARYING(L1%)

DATA

ANY

DATA_POINTER

host variable address

DATETIME_INTERVAL_CODE SMALLINT
DATETIME_INTERVAL_PRECI- | SMALLINT

SION

DEGREE INTEGER

INDICATOR INTEGER

KEY_MEMBER SMALLINT

LENGTH INTEGER

LEVEL INTEGER

NAME CHARACTER VARYING(LY
NULLABLE SMALLINT
OCTET_LENGTH INTEGER
PARAMETER_MODE SMALLINT
PARAMETER_ORDINAL_POSITION | SMALLINT

PARAMETER_SPECIFIC_CATALOG

CHARACTER VARYING(LY)

PARAMETER_SPECIFIC_NAME

CHARACTER VARYING(LY)

46 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
4.17 Foreign-data wrapper interface

Field

Data Type

PARAMETER_SPECIFIC_SCHEMA

CHARACTER VARYING(LY)

PRECISION SMALLINT
RETURNED_CARDINALITY INTEGER
RETURNED_OCTET_LENGTH INTEGER
SCALE SMALLINT

SCOPE_CATALOG

CHARACTER VARYING(LY)

SCOPE_NAME

CHARACTER VARYING(LY)

SCOPE_SCHEMA

CHARACTER VARYING(LY)

SPECIFIC_TYPE_CATALOG

CHARACTER VARYING(LY)

SPECIFIC_TYPE_NAME

CHARACTER VARYING(LY)

SPECIFIC_TYPE_SCHEMA

CHARACTER VARYING(LY)

TYPE

SMALLINT

UNNAMED

SMALLINT

USER_DEFINED_TYPE_CATALOG

CHARACTER VARYING(LY)

USER_DEFINED_TYPE_NAME

CHARACTER VARYING(LY)

USER_DEFINED_TYPE_SCHEMA

CHARACTER VARYING(LY)

Implementation-defined foreign-data
wrapper descriptor item field

Implementation-defined

L\Where L is an implementation-defined integer not less than 128, and L1 is the implementation-defined maximum length for
the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

4.18 Introduction to SQL/CLI

This Subclause modifies Subclause 4.1, “Introduction to SQL/CLI”’, in ISO/IEC 9075-3.

|Insert this paragraph\The Bui ldDataL ink() routine can be used to build a datalink value. The Get-
DataL inkAttr () routine can be used to extract the attributes of a datalink value.

Concepts 47

IWD 9075-9:201?(E)

(Blank page)

48 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
5.1 <token> and <separator>

5 Lexical elements

This Clause modifies Clause 5, “Lexical elements”, in ISO/IEC 9075-2.

5.1 <token>and <separator>

This Subclause modifies Subclause 5.2, “<token> and <separator>"’, in |SO/IEC 9075-2.

Function

Specify lexical units (tokens and separators) that participate in SQL language.

Format

<non-reserved word> ::=

'l Al alternatives from|SQO|EC 9075-2
| BLOCKED

| CONTROL
| DB

| FILE | FS

| INTEGRITY

| LIBRARY | LIMIT | LINK

| MAPPING

| OFF

| PASSTHROUGH | PERMISSION
| RECOVERY | REQUIRING | RESTORE
| SELECTIVE | SERVER

| TOKEN

| UNLINK

| VERSION

| WRAPPER

| YES

Lexical elements 49

IWD 9075-9:201?(E)
5.1 <token> and <separator>

<reserved word> ::=
Il Al alternatives from|SQ|EC 9075-2
| DATALINK | DLNEWCOPY | DLPREVIOUSCOPY | DLURLCOMPLETE | DLURLCOMPLETEWRITE
| DLURLCOMPLETEONLY | DLURLPATH | DLURLPATHWRITE | DLURLPATHONLY
| DLURLSCHEME | DLURLSERVER | DLVALUE

| IMPORT

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

50 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
5.2 Names and identifiers

5.2 Names and identifiers

This Subclause modifies Subclause 5.4, “Names and identifiers”, in 1SO/IEC 9075-2.

Function

Specify names.

Format

<foreign server name> ::=
[<catalog name> <period>] <unqualified foreign server name>

<foreign-data wrapper name> ::=
[<catalog name> <period>] <unqualified foreign-data wrapper name>

<unqualified foreign server name> ::=
<qualified identifier>

<unqualified foreign-data wrapper name> ::=
<qualified identifier>

<option name> ::=
<identifier body>

<routine mapping name> ::=
<identifier>

Syntax Rules
1) |Insert this SR|If a <foreign server name> does not contain a <catalog name>, then

Case:

a) If the <foreign server name> is contained in a <preparable statement> that is prepared in the current
SQL-session by an <execute immediate statement> or a <prepare statement> or in a <direct SQL
statement> that is invoked directly, then the default catalog name for the SQL-session is implicit.

b) Otherwise, the <catalog name> that is specified or implicit for the SQL-client module is implicit.
2) |Insert this SR| If a <foreign-data wrapper name> does not contain a <catalog name>, then
Case:

a) If the <foreign-data wrapper name> is contained in a <preparable statement> that is prepared in the
current SQL-session by an <execute immediate statement> or a <prepare statement> or in a <direct
SQL statement> that is invoked directly, then the default catalog name for the SQL-session is implicit.

b) Otherwise, the <catalog name> that is specified or implicit for the SQL-client module is implicit.
3) |Insert this SR|In an <option name>, the number of <identifier part>s shall be less than 128.

Lexical elements 51

IWD 9075-9:201?(E)
5.2 Names and identifiers

4) |Insert this SR| The case-normal form of the <identifier body> of an <option name> is used for purposes
such as and including determination of option name equivalence, representation in the Definition and
Information Schemas, and representation in the diagnostics areas.

5) Two <option name>s are equivalent if the case-normal forms of their <identifier body>s,
considered as the repetition of a <character string literal> that specifies a <character set specification> of
SQL_IDENTIFIER and a collation IDC that is sensitive to case, compare equal according to the comparison
rules in Subclause 8.2, “<comparison predicate>", in [ISO9075-2].

Access Rules

No additional Access Rules.

General Rules

1) |Insert this GR|A <foreign server name> identifies a foreign server.
2) |Insert this GR|A <foreign-data wrapper name> identifies a foreign-data wrapper.

3) |Insert this GR|A <routine mapping name> identifies a routine mapping.

Conformance Rules

No additional Conformance Rules.

52 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.1 <data type>

6 Scalar expressions

This Clause modifies Clause 6, ““Scalar expressions”, in | SO/IEC 9075-2.

6.1 <data type>

This Subclause modifies Subclause 6.1, “<data type>’, in 1SO/IEC 9075-2.

Function

Specify a data type.

Format

<predefined type> ::=
Il Al alternatives from|SQ |EC 9075-2
| <datalink type>

<datalink type> ::=
DATALINK [<datalink control definition>]

<datalink control definition> ::=
NO LINK CONTROL
| FILE LINK CONTROL <datalink file control option>

<datalink Ffile control option> ::=
<integrity control option> <read permission option> <write permission option>
<recovery option> [<unlink option>]

<integrity control option> ::=
INTEGRITY ALL
| INTEGRITY SELECTIVE

<read permission option> ::=
READ PERMISSION FS
| READ PERMISSION DB

<write permission option> ::=
WRITE PERMISSION FS
| WRITE PERMISSION ADMIN <access token indication>
| WRITE PERMISSION BLOCKED

<access token indication> ::=
REQUIRING TOKEN FOR UPDATE
| NOT REQUIRING TOKEN FOR UPDATE

<recovery option> :I:=
RECOVERY NO

Scalar expressions 53

IWD 9075-9:201?(E)
6.1 <data type>

| RECOVERY YES
<unlink option> ::=

ON UNLINK RESTORE
| ON UNLINK DELETE

Syntax Rules
1) |Insert this SR| DATALINK specifies the datalink type.

2) [Insert this SR| If <data type> specifies DATALINK and <datalink control definition> is not specified,
then NO LINK CONTROL is implicit.

3) |Insert this SR|If FILE LINK CONTROL is specified, then:

a) IfINTEGRITY SELECTIVE is specified, then READ PERMISSION FS, WRITE PERMISSION FS,
and RECOVERY NO shall be specified.

b) If READ PERMISSION DB is specified, then either WRITE PERMISSION BLOCKED or WRITE
PERMISSION ADMIN shall be specified.

c) If either WRITE PERMISSION BLOCKED or WRITE PERMISSION ADMIN is specified, then
INTEGRITY ALL and <unlink option> shall be specified.

d) If WRITE PERMISSION FS is specified, then READ PERMISSION FS and RECOVERY NO shall
be specified and <unlink option> shall not be specified.

e) IfRECOVERY YES s specified, then either WRITE PERMISSION BLOCKED or WRITE PERMIS-
SION ADMIN shall be specified.

f) If UNLINK DELETE is specified, then READ PERMISSION DB shall be specified.

NOTE 31 — Valid combinations of <datalink file control option> resulting from this Syntax Rule are shown in Table 1,
“Valid datalink file control options”.

4) |Insert this SR|If <datalink control definition> is specified, then <data type> shall not be contained in an
<SQL variable declaration>.

Access Rules

No additional Access Rules.

General Rules

1) |Insert this GR| If <data type> is a <datalink type>, then a datalink type descriptor DTD is created. The
link control options of DTD are:

a) The link control, according to whether NO LINK CONTROL or FILE LINK CONTROL is specified.
b) If FILE LINK CONTROL is specified, then:

i) The integrity control option, according to whether INTEGRITY ALL or INTEGRITY
SELECTIVE is specified.

54 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.1 <data type>

i) The read permission option, according to whether READ PERMISSION FS or READ PER-
MISSION DB is specified.

iii) The write permission option, according to whether WRITE PERMISSION FS, WRITE PER-
MISSION ADMIN, or WRITE PERMISSION BLOCKED is specified. If WRITE PERMISSION
ADMIN is specified, then additionally the access token indication, according to whether
REQUIRING TOKEN FOR UPDATE or NOT REQUIRING TOKEN FOR UPDATE is
specified.

iv) The recovery option, according to whether RECOVERY NO or RECOVERY YES is specified.

V) The unlink option, according to whether ON UNLINK RESTORE or ON UNLINK DELETE
is specified.

c) If NO LINK CONTROL is specified, then:
i) The integrity control option is NONE.
i) The read permission option is FS.
iii) The write permission option is FS.
iv) The recovery option is NO.

V) The unlink option is NONE.

Conformance Rules

1) Without Feature M001, “Datalinks”, conforming SQL language shall not contain a <datalink type>.

Scalar expressions 55

IWD 9075-9:201?(E)
6.2 <cast specification>

6.2 <cast specification>

This Subclause maodifies Subclause 6.13, “<cast specification>, in 1SO/IEC 9075-2.

Function

Specify a data conversion.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert before SR 2)| TD shall not contain a <datalink control definition>.

2) If the <cast operand> is a <value expression>, then the valid combinations of TD and SD
in a <cast specification> are given by the following table. “Y” indicates that the combination is syntactically
valid without restriction; “M” indicates that the combination is valid subject to other Syntax Rules in this
Subclause being satisfied; and “N” indicates that the combination is not valid:

SD TD
EN AN C D T TS YM DT BO UDT CL RT CT RW DL

EN Y Y Y N N N M M N M Y M N N N

AN Y Y Y N N N N N N M Y M N N N

C Y Y Y Y Y Y Y Y Y M Y M N N N

D N N Y Y N Y N N N M Y M N N N

T N N Y N Y Y N N N M Y M N N N

TS N N Y Y Y Y N N N M Y M N N N

YM M N Y N N N Y N N M Y M N N N

DT M N Y N N N N Y N M Y M N N N

BO N N Y N N N N N Y M Y M N N N

ubT M M M M M M M M M M M M N N N

B N N N N N N N N N M N M N N N

RT M M M M M M M M M M M M N N N

CT N N N N N N N N N N N N M N N

RW N N N N N N N N N N N N N M N

DL N N N N N N N N N N N N N N Y
Where:

EN = Exact Numeric

AN = Approximate Numeric

C = Character (Fixed- or Variable-Length or Character Large Object)

D = Date

T = Time

TS = Timestamp

YM = Year-Month Interval

DT = Day-Time Interval

BO = Boolean

UDT = User-Defined Type

B = Binary (Fixed- or Variable-Length or Binary Large Object)

RT = Reference type

CT = Collection type

56 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.2 <cast specification>

RW
DL

Row type
Datal ink

** Editor's Note (number 1) **

The preceding table is an inappropriate way to add new data types to the casting table in [ISO9075-2]. A different approach

would be preferable to avoid problems caused by adding data types in multiple incremental parts (e.g., DATALINK in SQL/MED
and XML in SQL/XML). See Possible Problem | MED-065| in the Editor's Notes.

Access Rules

No additional Access Rules.

General Rules

1) [lInsert after GR 20)|If TD and SD are datalink types, then TV is SV.

Conformance Rules

No additional Conformance Rules.

Scalar expressions 57

IWD 9075-9:201?(E)
6.3 <value expression>

6.3 <value expression>

This Subclause modifies Subclause 6.26, “<value expression>"", in |SO/IEC 9075-2.

Function

Specify a value.

Format

<common value expression> ::=
I All alternatives froml|SQO |EC 9075-2
| <datalink value expression>

Syntax Rules

1) |Replace SR 2)|The declared type of a <common value expression> is the declared type of the <numeric
value expression>, <string value expression>, <datetime value expression>, <interval value expression>,

<user-defined type value expression>, <collection value expression>, <reference value expression>, or
<datalink value expression>, respectively.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

58 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.4 <string value function>

6.4 <string value function>

This Subclause modifies Subclause 6.30, “<string value function>"’, in 1SO/IEC 9075-2.

Function

Specify a function yielding a value of type character string or binary string.

Format

<string value function> ::=

I'' Al alternatives fromI|SQ |EC 9075-2
<url complete expression>

<url complete for write expression>
<url complete only expression>

<url path expression>

<url path for write expression>

<url path only expression>

<url scheme expression>

<url server expression>

<url complete expression> ::=
DLURLCOMPLETE <left paren> <datalink value expression> <right paren>

<url complete for write expression> ::=
DLURLCOMPLETEWRITE <left paren> <datalink value expression> <right paren>

<url complete only expression> ::=
DLURLCOMPLETEONLY <left paren> <datalink value expression> <right paren>

<url path expression> ::=
DLURLPATH <left paren> <datalink value expression> <right paren>

<url path for write expression> :I:=
DLURLPATHWRITE <left paren> <datalink value expression> <right paren>

<url path only expression> ::=
DLURLPATHONLY <left paren> <datalink value expression> <right paren>

<url scheme expression> :I:=
DLURLSCHEME <left paren> <datalink value expression> <right paren>

<url server expression> ::=
DLURLSERVER <left paren> <datalink value expression> <right paren>

Syntax Rules

1) |Replace SR 1)| The declared type of <string value function> is the declared type of the immediately con-
tained <character value function>, <binary value function>, <url complete expression>, <url complete for

write expression>, <url complete only expression>, <url path expression>, <url path for write expression>,
<url path only expression>, <url scheme expression>, or <url server expression>.

2) |Insert this SR|Let DLCShbe the <character set name> of the datalink character set.

Scalar expressions 59

IWD 9075-9:201?(E)
6.4 <string value function>

NOTE 32 — “datalink character set” is defined in Subclause 4.8, “Datalinks”.

3) |Insert this SR|Let DVE be the <datalink value expression>.

4) |Insert this SR| The declared type of <url complete expression> is variable-length character string with
character set DLCSand an implementation-defined maximum length.

5) |Insert this SR|The declared type of <url complete for write expression> is variable-length character string
with character set DLCSand an implementation-defined maximum length.

6) |Insert this SR| The declared type of <url complete only expression> is variable-length character string
with character set DLCSand an implementation-defined maximum length.

7) |Insertthis SR| The declared type of <url path expression> is variable-length character string with character
set DLCSand an implementation-defined maximum length.

8) |Insert this SR|The declared type of <url path for write expression> is variable-length character string with
character set DLCSand an implementation-defined maximum length.

9) |Insert this SR| The declared type of <url path only expression> is variable-length character string with
character set DLCSand an implementation-defined maximum length.

10) |Insert this SR| The declared type of <url scheme expression> is variable-length character string with
character set DLCSand an implementation-defined maximum length.

11) |Insert this SR| The declared type of <url server expression> is variable-length character string with char-
acter set DLCSand an implementation-defined maximum length.

Access Rules

No additional Access Rules.

General Rules

1) |Insert this GR|Let DVE be the <datalink value expression> simply contained in <string value function>.
Let DV be the result of DVE. If DV is the null value, then the result of the <string value function> is the
null value.

2) |Insert this GR| If <url complete expression> is specified, then
Case:

a) If DVis SQL-mediated, then the result is the File Reference of DV combined with a read token in an
implementation-dependent manner.

b) Otherwise, the result is the File Reference of DV.
3) |Insert this GR| If <url complete for write expression> is specified, then
Case:

a) If DVis SQL-mediated and the SQL-Mediated Write Access Indication of DV is True, then the result
is the File Reference of DV combined with a write token in an implementation-dependent manner.

b) Otherwise, the result is the File Reference of DV.

60 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.4 <string value function>

4) |Insert this GR|If <url complete only expression> is specified, then the result is the File Reference of DV.

5) [|Insert this GR| If <url path expression> is specified, then the result is

Case:

a)

If the File Reference of DV contains an <http url> that contains an <hpath> HP, then
Case:

i) If DV is SQL-mediated, then HP combined with a read token in an implementation-dependent
manner.

i) Otherwise, HP.

b) If the File Reference of DV contains a <file url>, that contains an <fpath> FP, then
Case:
i) If DV is SQL-mediated, then FP combined with a read token in an implementation-dependent

manner.

i) Otherwise, FP.

¢) If the File Reference of DV conforms to an implementation-defined format, then an implementation-
defined value.

d) Otherwise, a zero-length character string.

6) If <url path for write expression> is specified, then the result is
Case:
a) If the File Reference of DV contains an <http url> that contains an <hpath> HP, then

b)

c)

d)

Case:

)] If DV is SQL-mediated and the SQL-Mediated Write Access Indication of DV is True, then
HP combined with a write token in an implementation-dependent manner.

i) Otherwise, HP.
If the File Reference of DV contains a <file url> that contains an <fpath> FP, then
Case:

i) If DV is SQL-mediated and the SQL-Mediated Write Access Indication of DV is True, then FP
combined with a write token in an implementation-dependent manner.

i) Otherwise, FP.

If the File Reference of DV conforms to an implementation-defined format, then an implementation-
defined value.

Otherwise, a zero-length character string.

7) |Insert this GR| If <url path only expression> is specified, then the result is

Case:

Scalar expressions 61

IWD 9075-9:201?(E)
6.4 <string value function>

8)

9)

a) If the File Reference of DV contains an <http url> that contains an <hpath> HP, then HP, excluding
any access token.

b) If the File Reference of DV contains a <file url>, then the <fpath> contained in that <file url>.

c) If the File Reference of DV conforms to an implementation-defined format, then an implementation-
defined value.

d) Otherwise, a zero-length character string.

If <url scheme expression> is specified, then the result is

Case:

a) If the File Reference of DV contains an <http url>, then the <http> contained in that <http url>.

b) If the File Reference of DV contains a <file url>, then the <file> contained in that <file url>.

c) If the File Reference of DV conforms to an implementation-defined format, then an implementation-
defined value.

d) Otherwise, a zero-length character string.

If <url server expression> is specified, then the result is

Case:

a) If the File Reference of DV contains an <http url>, then the <host> contained in that <http url>.

b) If the File Reference of DV contains a <file url>, then the <host> contained in that <file url>.

c) If the File Reference of DV conforms to an implementation-defined format, then an implementation-
defined value.

d) Otherwise, a zero-length character string.

Conformance Rules

No additional Conformance Rules.

62 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
6.5 <datalink value expression>

6.5 <datalink value expression>

Function

Specify a datalink value.

Format

<datalink value expression> ::=
<datalink value function>
| <value expression primary>

Syntax Rules

1) The declared type of <value expression primary> shall be DATALINK.

Access Rules

None.

General Rules

1) Case:

a) If <datalink value function> DVF is specified, then the result of the <datalink value expression> is
the result of DVF.

b) If <value expression primary> VEP is specified, then the result of the <datalink value expression> is
the result of VEP.

Conformance Rules

1) Without Feature M001, “Datalinks”, conforming SQL language shall not contain a <datalink value
expression>.

Scalar expressions 63

IWD 9075-9:201?(E)
6.6 <datalink value function>

6.6 <datalink value function>

Function

Specify a function yielding a datalink value.

Format

<datalink value function> ::=
<datalink value constructor>

<datalink value constructor> ::=
DLVALUE <left paren> <data location> <right paren>
| DLNEWCOPY <left paren> <data location> <comma> <token indication> <right paren>
| DLPREVIOUSCOPY <left paren> <data location> <comma> <token indication> <right paren>

<data location> ::=
<character value expression>

<token indication> ::=
<unsigned integer>

Syntax Rules

1) The declared type of a <datalink value constructor> DVC is DATALINK.
2) The declared type of a <datalink value function> is the declared type of its <datalink value constructor>.

3) The character set name of the declared type of <data location> shall be equivalent to the character set name
of the datalink character set.

NOTE 33 — “datalink character set” is defined in Subclause 4.8, “Datalinks”.

Access Rules

None.

General Rules

1) Let DLOC be the result of evaluating <data location>.
a) If DLVALUE is specified and DLOC is the null value, then the result of DVC is the null value.
b) If either DLNEWCOPY or DLPREVIOUSCOPY is specified, then:
i) Let TIV the result of evaluating <token indication>.

i) If TIV is neither equal to 0 (zero) nor 1 (one), then an exception condition is raised: data
exception — invalid parameter value.

iii) IfDLOC is the null value, then an exception condition is raised: data exception — null argument
passed to datalink constructor.

64 Management of External Data (SQL/MED)

d)

f)

IWD 9075-9:201?(E)
6.6 <datalink value function>

iv) If TIVisequal to 1 (one) and if the write token included in DLOC does not conform to imple-
mentation-defined requirements, then an exception condition is raised: datalink exception —
invalid write token.

i) If DLVALUE is specified, then let DLOCWOT be DLOC.
i) Otherwise:
1) If TIVis equal to O (zero), then let DLOCWOT be DLOC.

2) IfTIVisequal to 1 (one), then let DLOCWOT be DLOC without the write token included
in DLOC and let WT be the write token included in DLOC.

If DLOCWOT conforms neither to the Format of Subclause 8.1, “URL format”, nor to an implemen-
tation-defined format, then an exception condition is raised: data exception — invalid data specified
for datalink.

If the number of octets occupied by the implementation-defined representation of the results of DVC
exceeds the maximum datalink length, then an exception condition is raised: data exception — datalink
val ue exceeds maximum length.

NOTE 34 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Otherwise, the result of DVC is the datalink value DL such that:
i) The File Reference of DL is DLOCWQOT.
Case:
1) If DLOCWQOT conforms to the Format of Subclause 8.1, “URL format™, then
Case:

A) If DLOCWOT contains an <http url>, then the <http>, <host>, and <hpath> contained
in the <http url> are the scheme of DL, the host of DL, and the path of DL, respectively.

B) If DLOCWOT contains a <file url>, then the <file>, <host>, and <fpath> contained
in the <file url> are the scheme of DL, the host of DL, and the path of DL, respectively.

2) Otherwise, the scheme of DL, the host of DL, and the path of DL are implementation-
defined.

i) The SQL-Mediated Read Access Indication of DL is False.
iii) The SQL-Mediated Write Access Indication of DL is False.
iv) Case:

1) If either DLNEWCOPY or DLPREVIOUSCOPY is specified and TIV is equal to 1 (one),
then the Write Token of DL is WT.

2) Otherwise, the Write Token of DL is the null value.
V) Case:
1) If DLNEWCORPY is specified, then the Construction Indication of DL is NEWCOPY.

Scalar expressions 65

IWD 9075-9:201?(E)
6.6 <datalink value function>

2) If DLPREVIOUSCOPY is specified, then the Construction Indication of DL is PREVI-
OUSCOPY.

3) Otherwise, the Construction Indication of DL is the null value.

2) The result of a <datalink value function> DVF is the result of the <datalink value constructor> contained
in DVF.

Conformance Rules

1) Without Feature M0O1, “Datalinks”, conforming SQL language shall not contain a <datalink value function>.

66 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
7.1 <table reference>

7 Query expressions

This Clause modifies Clause 7, ““Query expressions”, in |SO/IEC 9075-2.

7.1 <table reference>

This Subclause modifies Subclause 7.6, “<table reference>"’, in ISO/IEC 9075-2.

Function

Reference a table.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Replace GR 1)c)| Otherwise, let T be the table specified by the <table name> simply contained in TP.

Case:
a) If Tisaview or a base table, then
Case:

i) If ONLY is specified, then the result of TP is a table that consists of every row in T, except
those rows that have a subrow in a proper subtable of T.

i) Otherwise, the result of TP is a table that consists of every row of T.

** Editor's Note (number 2) **

The preceding rule has not been adapted to the addition of system-versioned tables in SQL/Foundation. See Pos-
sible Problem | MED-073|.

Query expressions 67

IWD 9075-9:201?(E)
7.1 <table reference>
b) If Tisaforeign table with <table name> FTN, then the result of TP is effectively determined as follows:

i) Let FSN be the name of the foreign server included in the table descriptor of the foreign table
identified by FTN. Let WN be the name of the foreign-data wrapper included in the foreign
server descriptor of the foreign server identified by FSN. Let WR be the foreign-data wrapper
identified by WN. Let WRLN be the name of the library identified in the foreign-data wrapper
descriptor of WR.

i) Case:

1) If the current SQL-session context includes a {foreign-data wrapper name : WrapperEn-
vHandle} pair whose foreign-data wrapper name is equivalent to WN, then let WEH be the
WrapperEnvHandle associated with WN.

2) Otherwise:

A) Let WH be the WrapperHandle allocated for the foreign-data wrapper identified by
WN. The resource identified by WH is referred to as an allocated foreign-data wrapper
description.

B) Let WEH be the WrapperEnvHandle returned by invocation of Al locWrap-
perEnv() in the library identified by WRLN, with WH as the argument).

C) The {WN : WEH} pair is included in the current SQL-session context.
D) WH is deallocated and all its resources are freed.
iii) Case:

1) Ifthe current SQL-session context includes a {foreign server name : FSConnectionHandle}
pair whose foreign server name is equivalent to FSN, then let FSCH be the FSConnection-
Handle associated with FSN.

2) Otherwise:

A) Let SH be the ServerHandle allocated for the foreign server identified by FSN. The
resource identified by SH is referred to as an allocated foreign server description.

B) If there is a user mapping identified by the current authorization identifier, then let
UH be the UserHandle allocated for that user mapping; otherwise, let UH be the
UserHandle allocated for the user mapping identified by PUBLIC. The resource
identified by UH is referred to as an allocated user mapping description.

C) Let FSCH be the FSConnectionHandle returned by invocation of the Connect-
Server () inthe library identified by WRLN with WEH, SH, and UH as the arguments.

D) The {FSN: FSCH} pair is included in the current SQL-session context.
E) SHisdeallocated and all its resources are freed.
F) UH is deallocated and all its resources are freed.

iv) Let QCH be the QueryContextHandle returned by invocation of the Al locQueryContext()
in the library identified by WRLN with FSCH as input argument.

V) Let TEMP be either a <query specification> of the form “SELECT * FROM FTN” or a <query
specification> IDQS of the form “SELECT DistinctOrAll exp;, expy, ..., exp, FROM FTN;,

68 Management of External Data (SQL/MED)

vi)

vii)

viii)

Xi)

xii)

IWD 9075-9:201?(E)
7.1 <table reference>

FTNy, ..., FTNy WHERE BVE; AND BVE; AND ... AND BVE,”, where all of the following
are true:

1) DistinctOrAll is either “DISTINCT” or “ALL".
2) n, m, and p are implementation-dependent numeric values.

3) Foralli, 1(one) <i < n, exp; is an implementation-dependent <value expression> that
does not generally contain a <query expression> or a <routine invocation> one of whose
subject routines possibly reads SQL-data.

4) Foralli,1(one) <i<m, FTN,;is a <foreign table>, and at least one of FTN;shall be
equivalent to FTN.

5) Foralli, 1 (one) <i < m, the table descriptor of FTN; shall include a foreign server
descriptor that is equal to FSN.

6) Foralli, 1 (one) <i < p, BVE; is a <boolean value expression> that does not generally

contain a <query expression> or a <routine invocation> one of whose subject routines
possibly reads SQL-data.

Let RQH be the RequestHandle allocated for TEMP.

Let NTR be the number of <table reference>s in TEMP. Let TRH;, 1 (one) <i < NTR, be the
TableReferenceHandle allocated for each <table reference> simply contained in TEMP.

Let N be the number of <value expression>s contained in the <select list> simply contained in
TEMP. Let CN;, 1 (one) <i < N, be the i-th such <value expression>. Let VEH;, 1 (one) <i <
N be the i-th ValueExpressionHandle allocated for CN;.

Let M be the number of <value expression>s contained in the <where clause> simply contained
in TEMP. Let CN;, N+1 <i < N+M, be the i-th such <value expression>. Let VEH;, N+1 <i <
N+M, be the i-th ValueExpressionHandle allocated for CN;.

Foralli, 1 (one) <i < N+M, if CN; identifies an <SQL-invoked routine> whose specific name
is SRN and there exists a routine mapping descriptor that contains a specific routine name that
is equivalent to SRN and a foreign server name that is equivalent to FSN, then let RH; be the

RoutineMappingHandle allocated for that routine mapping. The resource identified by RH; is
referred to as an allocated routine mapping description. RH; is associated with VEH,;.

Foralli, 1 (one) <i =< N+M, if CN; is a <column reference> of a table reference TRH;, then
VEH; is associated with TRH;.

For each CN;, 1 (one) < i < N+M, a value expression descriptor is allocated that describes the
most specific type and value of CN;. The value of the TOP_LEVEL_COUNT header field is

set to 1 (one). The value of each remaining header field and the value of each field in the con-
tained item descriptor area and subordinate item descriptor field, if any, are implementation-
dependent. Let VEDH,; be the ValueExpressionDescriptorHandle associated with the value

expression descriptor allocated for CN;. VEDH; is associated with VEH;.

Query expressions 69

IWD 9075-9:201?(E)
7.1 <table reference>

xiii)

Xiv)

XV)

XVi)
Xvii)
XViii)
XiX)
XX)

XXi)

XXii)

XXiii)

XXiV)

XXV)

XXVi)

A table reference descriptor TRD is automatically allocated. Each of the fields in TRD that have
non-blank entries in Table 34, “Foreign-data wrapper descriptor field default values”, is set to
the specified default value. All other fields in TRD are initially undefined.

The General Rules of Subclause 21.4, “Implicit DESCRIBE OUTPUT USING clause”, are
applied with TEMP and TRD as SOURCE and DESCRIPTOR, respectively.

A wrapper parameter descriptor WPD is automatically allocated. Each of the fields in WPD
that have non-blank entries in Table 34, “Foreign-data wrapper descriptor field default values”,
is set to the specified default value. All other fields in WPD are initially undefined. Let WPDH
be the handle associated with WPD.

The General Rules of Subclause 21.3, “Implicit DESCRIBE INPUT USING clause”, are applied
with TEMP and WPD as SOURCE and DESCRIPTOR, respectively.

Let TRDH be the TableReferenceDescriptorHandle allocated for TRD.

Let RPH and EXH be the ReplyHandle and ExecutionHandle, respectively, returned by the
invocation of Advance InitRequest() in the library identified by WRLN with FSCH and
RQH, QCH as input arguments.

TRD and WPD are associated with EXH.

Let NRTR be the NumberOfTableReferences that would be returned by an invocation of Get-
NumReplyTableRefs() with RPH as the ReplyHandle parameter.

Let TRN;j, 1 (one) < i < NRTR, be the TableReferenceNumber that would be returned by an

invocation of GetReplyTableRef() with RPH as the ReplyHandle parameter and i as the
Index parameter.

Let NSLE be the NumberOfSelectListElements that would be returned by an invocation of
GetNumReplySelectElems() with RPH as the ReplyHandle parameter.

Let SELN;, 1 (one) < i < NSLE, be the SelectListElementNumber that would returned by an

invocation of GetReplySelectElem() with RPH as the ReplyHandle parameter and i as
the Index parameter.

Let NBVE be the NumberOfBoolVVEs that would be returned by an invocation of GetNumRe-
plyBool VE() with RPH as the ReplyHandle parameter.

Let BVEN;, 1 (one) <i < NBVE, be the BoolVENumber that would returned by an invocation

of GetReplyBoolVE() with RPH as the ReplyHandle parameter and i as the Index param-
eter.

Let RCA be the ReplyCardinality that would be returned by an invocation of GetReplyCar-
dinality() with RPH as the ReplyHandle parameter.

xxvii) Let REFC be the ReplyExecFirstCost that would be returned by an invocation of GetReply-

FirstCost() with RPH as the ReplyHandle parameter.

xxviii) Let RTEC be the ReplyTotalExecCost that would be returned by an invocation of GetReplyEx-

XXiX)

ecCost() with RPH as the ReplyHandle parameter.

Let RREC be the ReplyReExecutionCost that would be returned by an invocation of GetRe-
plyReExecCost() with RPH as the ReplyHandle parameter.

70 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
7.1 <table reference>

xxx) It is implementation-dependent whether the NextRep ly () routine with RPH as the Reply-
Handle parameter is invoked. If the NextReply () routine is invoked, then let RPHN and
EXHN be the ReplyHandle and ExecutionHandle, respectively, returned by that invocation;
GR 1)b)xx) through GR 1)b)xxx) of this Subclause are applied with RPHN and EXHN as RPH
and EXH, respectively.

xxxi) The FreeReplyHandle() routine in the library identified by WRLN is invoked with RPH
as the argument.

xxxii) It is implementation-dependent whether GR 1)b)iv) through GR 1)b)xxxii) of this Subclause
are applied once again.

xxxiii) Let NC be the value of the COUNT descriptor field that would be returned by invocation of
GetDescriptor () with TRDH as the DescriptorHandle parameter, O (zero) as the Record-
Number parameter, and the code for COUNT from Table 30, “Codes used for foreign-data
wrapper descriptor fields”, as the Fieldldentifier parameter.

xxxiv) Let DTj be the effective data type of the j-th column, for 1 (one) < j < NC, as represented by

the values of the TYPE, LENGTH, OCTET _LENGTH, PRECISION, SCALE, DATE-
TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISON, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would be returned by separate invocations of GetDescriptor()
with TRDH as the DescriptorHandle parameter, j as the RecordNumber parameter, and the code
for the fields TYPE, LENGTH, OCTET _LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISON, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as
the Fieldldentifier parameter.

xxxv) Let SRD be the SRDHandle that would be returned by an invocation of GetSRDHand e ()
with EXH as the ExecutionHandle parameter.

xxxvi) Let TDT;j be the effective data type of the j-th <target specification>, for 1 (one) < j < NC, as

represented by the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would be set by separate invocations of SetDescriptor () with
SRD as the DescriptorHandle parameter, j as the RecordNumber parameter, and the code for
the fields TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as
the Fieldldentifier parameter. TYPE either indicates ROW or is one of the code values in
Table 15, “Codes used for application data types in SQL/CLI”.

Query expressions 71

IWD 9075-9:201?(E)

7.1 <table reference>

xxxvii) For every DTj and TDTj, 1 (one) <j < NC:

1)

2)

3)

4)

5)

If DTj is an array data type and TDTj is not an array locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

If DTj is a multiset data type and TDTj is not a multiset locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

If DT; is a row data type, then

Case:

A) If TDT; is not a row data type, then an exception condition is raised: FDW-specific
condition — invalid data type descriptors.

B) If TDT; is a row data type and DT; and TDT; do not conform to the Syntax Rules of

Subclause 9.20, “Data type identity”, in [ISO9075-2], then an exception condition is
raised: FDW-specific condition — invalid data type descriptors.

If DT and TDTj are predefined data types, then let HL be the programming language in

which the invoking SQL-server is written. Let operative data type correspondence table
be the data type correspondence table for HL as specified in Subclause 19.5, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspon-
dence table as the “SQL data type column” and the “host data type column”.

Case:

A) If the row that contains the SQL data type corresponding to DTj in the SQL data type

column of the operative data type correspondence table contains “None” in the host
data type column, and TDT; is not a character string type, then an exception condition

is raised: FDW-specific condition — invalid data type descriptors.

B) Otherwise, if DTj and TDT; do not conform to the Syntax Rules of Subclause 9.20,

“Data type identity”, in [ISO9075-2], then an exception condition is raised: FDW-
specific condition — invalid data type descriptors.

If DT; is a user-defined type, then an exception condition is raised: FDW-specific condition
— invalid data type descriptors.

xowii) Let NP be the value of the COUNT descriptor field that would be returned by invocation of
GetDescriptor() with WPDH as the DescriptorHandle parameter, 0 (zero) as the
RecordNumber parameter, and the code for COUNT from Table 30, “Codes used for foreign-
data wrapper descriptor fields”, as the Fieldldentifier parameter.

xxxix) Let PDT; be the effective data type of the j-th column, for 1 (one) < j < NP, as represented by

the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATE-
TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISON, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would be returned by separate invocations of GetDescriptor()
with WPDH as the DescriptorHandle parameter, j as the RecordNumber parameter, and the
code for the fields TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATE-

72 Management of External Data (SQL/MED)

xl)

x1i)

xlii)

IWD 9075-9:201?(E)
7.1 <table reference>

TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISON, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET _SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as
the Fieldldentifier parameter.

Let SPD be the SPDHandle that would be returned by an invocation of GetSPDHandle()
with EXH as the ExecutionHandle parameter.

Let SDT; be the effective data type of the j-th <target specification>, for 1 (one) <j < NP, as
represented by the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would be set by separate invocations of SetDescriptor () with
SPD as the DescriptorHandle parameter, j as the RecordNumber parameter, and the code for
the fields TYPE, LENGTH, OCTET _LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as
the Fieldldentifier parameter. TYPE either indicates ROW or is one of the code values in
Table 15, “Codes used for application data types in SQL/CLI".

For every PDT; and SDTj, 1 (one) <j < NP:

1) If PDT;is an array data type and SDTj is not an array locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

2) If PDTjis a multiset data type and SDTj is not a multiset locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

3) If PDT; is arow data type, then

Case:

A) If SDTj is not a row data type, then an exception condition is raised: FDW-specific
condition — invalid data type descriptors.

B) If SDTj is a row data type and PDT;j and SDT; do not conform to the Syntax Rules of

Subclause 9.20, “Data type identity”, in [ISO9075-2], then an exception condition is
raised: FDW-specific condition — invalid data type descriptors.

4) If PDTj and SDT; are predefined data types, then let HL be the programming language in

which the invoking SQL-server is written. Let operative data type correspondence table
be the data type correspondence table for HL as specified in Subclause 19.5, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspon-
dence table as the “SQL data type column” and the “host data type column”.

Case:

Query expressions 73

IWD 9075-9:201?(E)
7.1 <table reference>

A) If the row that contains the SQL data type corresponding to PDTj in the SQL data

type column of the operative data type correspondence table contains “None” in the
host data type column, and SDT; is not a character string type, then an exception con-

dition is raised: FDW-specific condition — invalid data type descriptors.

B) Otherwise, if PDT; and SDT; do not conform to the Syntax Rules of Subclause 9.20,
“Data type identity”, in [ISO9075-2], then an exception condition is raised: FDW-
specific condition — invalid data type descriptors.

5) If DT isauser-defined type, then an exception condition is raised: FDW-specific condition
— invalid data type descriptors.

xliii) Forall VEH;, 1 (one) <i < N+M, let RH; be the allocated routine mapping description associated
with VEH,;, if any. RH; is deallocated and all its resources are freed.

xliv) VEH;, 1 (one) <i < N+M, is deallocated and all its resources are freed.

xlv) TRH is deallocated and all its resources are freed.
xlvi) RQH is deallocated and all its resources are freed.
xlvii) The Open() routine in the library identified by WRLN is invoked with EXH as the argument.

xlviii) The result of TP is a table that consists of every row returned by the repeated invocation of
I terate() inthe library identified by WRLN with EXH as the argument until the return code

indicates No data found.
xlix) The Close() routine in the library identified by WRLN is invoked with EXH as the argument.

) The FreeExecutionHandle() routine in the library identified by WRLN is invoked with
EXH as the argument.

Conformance Rules

No additional Conformance Rules.

74 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
8.1 URL format

8 URLs

8.1 URL format

Function

Specify the precise format of a URL within a datalink. The specification is a direct translation of the format of
HTTP and FILE URLs specified in [RFC3986], except that “localhost” has been omitted from the format of
FILE URL. [RFC3986] and [RFC2368] specify other URL schemes; URLs formatted according to those other
schemes are not supported within datalinks.

Format

<url> ::=
<http url>
| <File url>

<http url> :-:=
<http> <colon> <solidus> <solidus> <host port> [<solidus> <hpath>]

<http> ::=
{hiH}P{e] T}{t] T}r{plIP}

<host port> ::=
<host> [<colon> <port>]

<host> ::=
<host name>
| <host number>

<host name> ::=
[{ <domain label> <period> }...] <top label>

<domain label> ::=
<letter or digit>
| <letter or digit> <label tail>

<letter or digit> ::=
<simple Latin letter>
| <digit>

<label tail> ::=
[{ <letter or digit> | <minus sign> }...] <letter or digit>

<top label> ::=
<simple Latin letter>
| <simple Latin letter> <label tail>

<host number> ::=

URLs 75

IWD 9075-9:201?(E)
8.1 URL format

<digits> <period> <digits> <period> <digits> <period> <digits>

<digits> ::=
<digit>...

<port> ::=
<digits>

<hpath> ::=
<hsegment> [{ <solidus> <hsegment> }...]

<hsegment> ::=
[<hsegment character>._..]

<hsegment character> ::=
<uchar>

<colon>

<commercial at>
<ampersand>

<equals operator>

<uchar> ::=
<unreserved>
| <escape>

<unreserved> ::=
<simple Latin letter>
| <digit>
| <safe>
| <extra>

<safe> ::=
<dollar sign>
<minus sign>
<underscore>
<period>
<plus sign>

<extra> ::=
<exclamation point>
<asterisk>

<quote>

<left paren>

<right paren>
<comma>

<escape> ::=
<percent> <hexit> <hexit>

<file url> :-:=
<file> <colon> <solidus> <solidus> <host> <solidus> <fpath>

<file> ::=

{fIr}{ipry{rirr{elkE}
<fpath> ::=

<fsegment> [{ <solidus> <fsegment> }...]
<fsegment> ::=

[<fsegment character>._..]

76 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
8.1 URL format

<fsegment character> ::=
<uchar>

<question mark>
<colon>

<commercial at>
<ampersand>

<equals operator>

<commercial at> ::=

@

<dollar sign> ::=

$

<exclamation point> ::=
1

Syntax Rules

1) Inan SQL-environment, a <url> shall reference the same file, regardless of which component in the SQL-
environment is interpreting the <url>.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

URLs 77

IWD 9075-9:201?(E)

(Blank page)

78 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
9.1 Retrieval assignment

9 Additional common rules

This Clause modifies Clause 9, “Additional common rules’, in |SO/IEC 9075-2.

9.1 Retrieval assignment

This Subclause maodifies Subclause 9.1, “Retrieval assignment™, in 1SO/IEC 9075-2.

Function

Specify rules for assignments to targets that do not support null values or that support null values with indicator
parameters (e.g., assigning SQL-data to host parameters or host variables).

Syntax Rules
1) |Insert this SR|If the declared type of T is DATALINK, then the declared type of V shall be DATALINK.

Access Rules

No additional Access Rules.

General Rules

1) |Augment GR 7)] If the declared type of T is DATALINK, then the value of T is set to V.

Conformance Rules

No additional Conformance Rules.

Additional common rules 79

IWD 9075-9:201?(E)
9.2 Store assignment

9.2 Store assignment

This Subclause modifies Subclause 9.2, “Sore assignment™, in 1SO/IEC 9075-2.

Function

Specify rules for assignments where the target permits null without the use of indicator parameters or indicator
variables, such as storing SQL-data or setting the value of SQL parameters.

Syntax Rules
1) |Insert this SR|If the declared type of T is DATALINK, then the declared type of V shall be DATALINK.

Access Rules

No additional Access Rules.

General Rules

1) [Augment GR 3)b)| If the declared type of T is DATALINK, then the value of Tis setto V.

Conformance Rules

No additional Conformance Rules.

80 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
9.3 Result of data type combinations

9.3 Result of data type combinations

This Subclause modifies Subclause 9.5, “Result of data type combinations”, in 1SO/IEC 9075-2.

Function

Specify the result data type of the result of certain combinations of values of compatible data types, such as
<case expression>s, <collection value expression>s, or a column in the result of a <query expression>.

Syntax Rules

1) [Insertafter SR 3)g)|If any data type in DTSis DATALINK, then each data type in DTSshall be DATALINK
and the result data type is DATALINK.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Additional common rules 81

IWD 9075-9:201?(E)
9.4 Type precedence list determination

9.4 Type precedence list determination

This Subclause modifies Subclause 9.7, “Type precedence list determination™, in |SO/IEC 9075-2.

Function

Determine the type precedence list of a given type.

Syntax Rules
1) |Insert this SR|If DT specifies datalink, then TPL is

DATALINK

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

82 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
9.5 Determination of identical values

9.5 Determination of identical values

This Subclause modifies Subclause 9.10, ““Determination of identical values™, in | SO/IEC 9075-2.

Function

Determine whether two instances of values are identical, that is to say, are occurrences of the same value.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) \ Insert before GR 2)d) | If V1and V2 are datalinks, then V1 is identical to V2 if and only if the File Reference
of V1 is identical to the File Reference of V2 and the SQL-Mediated Access Indication of V1 is identical
to the SQL-Mediated Access Indication of V2.

Conformance Rules

No additional Conformance Rules.

Additional common rules 83

IWD 9075-9:201?(E)
9.6 Equality operations

9.6 Equality operations

This Subclause modifies Subclause 9.11, “Equality operations™, in ISO/IEC 9075-2.

Function

Specify the prohibitions and restrictions by data type on operations that involve testing for equality.

Syntax Rules
1) |Insertthis SR| The declared type of an operand of an equality operation shall not be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

84 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
9.7 Grouping operations

9.7 Grouping operations

This Subclause modifies Subclause 9.12, “Grouping operations”, in |SO/IEC 9075-2.

Function

Specify the prohibitions and restrictions by data type on operations that involve grouping of data.

Syntax Rules
1) |Insert this SR| The declared type of an operand of a grouping operation shall not be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Additional common rules 85

IWD 9075-9:201?(E)
9.8 Multiset element grouping operations

9.8 Multiset element grouping operations

This Subclause modifies Subclause 9.13, ““Multiset element grouping operations”, in 1SO/IEC 9075-2.

Function

Specify the prohibitions and restrictions by data type on the declared element type of a multiset for operations
that involve grouping the elements of a multiset.

Format

No additional Format itens.

Syntax Rules

1) |Insert this SR| The declared element type of a multiset operand of a multiset element grouping operation
shall not be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

86 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
9.9 Ordering operations

9.9 Ordering operations

This Subclause modifies Subclause 9.14, “Ordering operations”, in |SO/IEC 9075-2.

Function

Specify the prohibitions and restrictions by data type on operations that involve ordering of data.

Format

No additional Formmt itens.

Syntax Rules
1) |Insertthis SR| The declared type of an operand of an ordering operation shall not be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Additional common rules 87

IWD 9075-9:201?(E)

(Blank page)

88 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
10.1 <generic options>

10 Additional common elements

This Clause modifies Clause 10, ““Additional common elements’, in |SO/IEC 9075-2.

10.1 <generic options>

Function

Specify a list of options identified by keywords.

Format

<generic options> :I:=
OPTIONS <left paren> <generic option list> <right paren>

<generic option list> ::=
<generic option> [{ <comma> <generic option> }...]

<generic option> ::=
<option name> [<option value>]

<option value> ::=
<character string literal>

Syntax Rules

1) Let GOPL be the <generic option list>.

2) No two <generic option>s immediately contained in GOPL shall have the same <option name>.

NOTE 35 — The permissible values of <option name> and <option value> are defined by the foreign-data wrapper that deals
with the object for which these generic options are being specified.

Access Rules

None.

General Rules

1) Ageneric options descriptor GOPD is created as follows. Let n be the number of <generic option>s contained
in <generic option list> GOPL. For i ranging from 1 (one) to n, the i-th <option name> included in GOPD
is the i-th <option name> contained in GOPL and the i-th option value included in GOPD is the i-th <option
value> contained in GOPL, if any.

Additional common elements 89

IWD 9075-9:201?(E)
10.1 <generic options>

Conformance Rules

None.

90 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
10.2 <alter generic options>

10.2 <alter generic options>

Function

Change the contents of a generic options descriptor

Format

<alter generic options> ::=
OPTIONS <left paren> <alter generic option list> <right paren>

<alter generic option list> ::=
<alter generic option> [{ <comma> <alter generic option> }...]

<alter generic option> ::=
[<alter operation>] <option name> [<option value>]

<alter operation> ::=
ADD

| SET
| DROP

Syntax Rules

1) Let GOPD be the applicable generic options descriptor. Let AGOPL be the <alter generic option list>.

2) Let mbe the number of <alter generic option>s immediately contained in AGOPL. For j ranging from 1
(one) to m:

a) Let AGOP; be the j-th <alter generic option> immediately contained in AGOPL.
b) For each AGOP;, if <alter operation> is omitted, then ADD is implicit.

c) Let AOP; and OPN; be the <alter operation> and <option name>, respectively, specified or implied
by AGOP;.

Case:
i) If AOPJ- is ADD, then:

1) <option value> shall be specified and GOPD shall not include an <option name> that is
equivalent to OPN,;.

2) AGOPL shall not immediately contain any other <alter generic option> that immediately
contains an <alter operation> that specifies or implies ADD, and an <option name> that
is equivalent to OPN;.

i) If AOP; is SET, then <option value> shall be specified and GOPD shall include an <option
name> that is equivalent to OPN;.

iii) Otherwise, <option value> shall not be specified and GOPD shall include an <option name>
that is equivalent to OPN;.

Additional common elements 91

IWD 9075-9:201?(E)
10.2 <alter generic options>

Access Rules

None.

General Rules

1) For each <alter generic option> AGOP contained in AGOL, let AOP and OPN be the <alter operation>
and <option name>, respectively, specified or implied by AGOP and let OPV be the result of <option
value> contained in AGOP.

Case:

a) If AOPis ADD, then let n be the number of <option name>s included in GOPD. OPN is added as the
n+1-th <option name> included in GOPD and OPV is added as the n+1-th <option value> included
in GOPD.

b) If AOPis SET, then leti be the ordinal position of OPN in GOPD. The i-th <option value> in GOPD
is replaced by OPV.

c) If AOP is DROP, then let i be the ordinal position of OPN in GOPD. The i-th <option name> and the
i-th <option value> are removed from GOPD. The ordinal positions of all <option name>s and <option
value>s having an ordinal position greater than i are reduced by 1 (one).

Conformance Rules

None.

92 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.1 <schema definition>

11 Schema definition and manipulation

This Clause modifies Clause 11, ““Schema definition and manipulation™, in |SO/IEC 9075-2.

11.1 <schema definition>

This Subclause modifies Subclause 11.1, ““<schema definition>"’, in | SO/IEC 9075-2.

Function

Define a schema.

Format

<schema element> ::=
Il Al alternatives fromlSQ|EC 9075-2
| <foreign table definition>

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 93

IWD 9075-9:201?(E)
11.2 <drop schema statement>

11.2 <drop schema statement>

This Subclause modifies Subclause 11.2, “<drop schema statement>"", in |SO/IEC 9075-2.

Function

Destroy a schema.

Format

No additional Formmt itens.

Syntax Rules
1) |Replace SR 4)|If RESTRICT is specified, then Sshall not contain any persistent base tables, global tem-
porary tables, created local temporary tables, foreign tables, views, domains, assertions, character sets,

collations, transliterations, triggers, user-defined types, SQL-invoked routines, roles, or sequence generators,
and the <schema name> of Sshall not be contained in the SQL routine body of any routine descriptor.

NOTE 36 — If CASCADE is specified, then such objects will be dropped by the effective execution of the SQL schema
manipulation statements specified in the General Rules of this Subclause.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 1)|Let T be the <table name> included in the descriptor of any base table, foreign table, or
temporary table included in S

Case:

a) IfTisabase table or temporary table, then the following <drop table statement> is effectively executed:
DROP TABLE T CASCADE
b) Otherwise, the following <drop foreign table statement> is effectively executed:

DROP FOREIGN TABLE T CASCADE

Conformance Rules

No additional Conformance Rules.

94 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.3 <table definition>

11.3 <table definition>

This Subclause modifies Subclause 11.3, ““<table definition>", in | SO/IEC 9075-2.

Function

Define a persistent base table, a created local temporary table, or a global temporary table.

Format

<column option list> ::=
Il Al options from | SO |EC 9075-2
[<datalink control definition>]

Syntax Rules

1) [Replace SR 11)g)iii)| A <column option list> shall immediately contain either a <scope clause> or a
<default clause>, or at least one <column constraint definition>, or a <datalink control definition>.

2) |Insertafter SR 11)g)vi)|If CO specifies <datalink control definition> DCS then let COLN be the <column
name> contained in RCD followed in turn by the <data type> or <domain name> contained in RCD, the
<default clause> (if any) contained in RCD, every <column constraint definition> contained in RCD, and
DCS RCD is replaced by COLN.

Access Rules

No additional Access Rules.

General Rules

1) \Insert after GR 2)\ For each <column options> CO, if CO contains a <datalink control definition> DCD,
then let CD be the column descriptor identified by the <column name> specified in CO. The link control
options specified in DCD are included in the datalink data type descriptor that is included in CD.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 95

IWD 9075-9:201?(E)
11.4 <unique constraint definition>

11.4 <unique constraint definition>

This Subclause modifies Subclause 11.7, “<unique constraint definition>"’, in | SO/IEC 9075-2.

Function

Specify a uniqueness constraint for a table.

Format

No additional Formmt itens.

Syntax Rules

1) [Insertafter SR 1)| The declared type of no column identified by any <column name> in the <unique column
list> shall be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

96 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.5 <check constraint definition>

11.5 <check constraint definition>

This Subclause modifies Subclause 11.9, ““<check constraint definition>", in | SO/IEC 9075-2.

Function

Specify a condition for the SQL-data.

Format

No additional Formmt itens.

Syntax Rules

1) |Insert this SR| The <search condition> shall not generally contain a <table reference> that references a
foreign table.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 97

IWD 9075-9:201?(E)
11.6 <alter column data type clause>

11.6 <alter column data type clause>

This Subclause maodifies Subclause 11.19, “<alter column data type clause>"’, in |SO/IEC 9075-2.

Function

Change the declared type of a column.

Format

No additional Formmt itens.

Syntax Rules
1) |Insert this GR| D shall not specify DATALINK.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

98 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.7 <drop column definition>

11.7 <drop column definition>

This Subclause modifies Subclause 11.23, “<drop column definition>"’, in ISO/IEC 9075-2.

Function

Destroy a column of a base table.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert after GR 2)| For each row Rof T, if the value of C in Ris not null, then for every site DLC whose
value is a constituent of the value of C and whose declared type is either DATALINK or some distinct
type whose source type is DATALINK, let EF be the external file referenced by the value of DLC. If EF
is linked, then EF is unlinked.

NOTE 37 — The effect of unlinking depends on the unlink control option, RESTORE or DELETE, included in the data type
descriptor of DLC, as specified in Subclause 4.8, “Datalinks”.

NOTE 38 — “constituent” is defined in Subclause 4.9, “Columns, fields, and attributes”.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 99

IWD 9075-9:201?(E)
11.8 <domain definition>

11.8 <domain definition>

This Subclause modifies Subclause 11.34, “<domain definition>"", in | SO/IEC 9075-2.

Function

Define a domain.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert before SR 1)| <data type> shall not contain a <datalink control definition>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

100 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.9 <assertion definition>

11.9 <assertion definition>

This Subclause modifies Subclause 11.47, ““<assertion definition>", in | SO/IEC 9075-2.

Function

Specify an integrity constraint.

Format

No additional Formmt itens.

Syntax Rules

1) |Insert this SR| The <search condition> shall not generally contain a <table reference> that references a
foreign table.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 101

IWD 9075-9:201?(E)
11.10 <user-defined type definition>

11.10 <user-defined type definition>

This Subclause modifies Subclause 11.51, “<user-defined type definition>", in 1SO/IEC 9075-2.

Function

Define a user-defined type.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Replace GR 2)c)i)| If SDT is neither a large object type nor a datalink type, then the following SQL-
statement is executed without further Access Rule checking:

CREATE ORDERING FOR UDTN
ORDER FULL BY

MAP WITH FUNCTION FNSDT(UDTN)
FOR UDTN

Conformance Rules

No additional Conformance Rules.

102 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.11 <SQL-invoked routine>

11.11 <SQL-invoked routine>

This Subclause modifies Subclause 11.60, ““<SQL-invoked routine>", in |SO/IEC 9075-2.

Function

Define an SQL-invoked routine.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert before SR 1)| Neither <returns type> nor <parameter type> shall contain a <datalink control defini-
tion>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 103

IWD 9075-9:201?(E)
11.12 <drop routine statement>

11.12 <drop routine statement>

This Subclause modifies Subclause 11.62, ““<drop routine statement>"", in |ISO/IEC 9075-2.

Function

Destroy an SQL-invoked routine.

Format

No additional Formmt itens.

Syntax Rules

1) |[Insert after SR 4)c)ii)| A routine mapping descriptor.

Access Rules

No additional Access Rules.

General Rules

1) [Insert after GR 2)|Let RM be any routine mapping descriptor that includes a specific routine name that is
equivalent to SN. Let RMN be the routine mapping name included in RM. The following <drop routine
mapping statement> is effectively executed without further Access Rule checking:

DROP ROUTINE MAPPING RWN

Conformance Rules

No additional Conformance Rules.

104 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.13 <user-defined cast definition>

11.13 <user-defined cast definition>

This Subclause modifies Subclause 11.63, “<user-defined cast definition>"’, in 1SO/IEC 9075-2.

Function

Define a user-defined cast.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert before SR 1)| Neither <source data type> nor <target data type> shall contain a <datalink control
definition>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Schema definition and manipulation 105

IWD 9075-9:201?(E)
11.14 <user-defined ordering definition>

11.14 <user-defined ordering definition>

This Subclause modifies Subclause 11.65, ““<user-defined ordering definition>"’, in ISO/IEC 9075-2.

Function

Define a user-defined ordering for a user-defined type.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert after SR 6)a)iii)| The declared type of each attribute of UDT shall not be DATALINK-ordered.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

106 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.15 <foreign table definition>

11.15 <foreign table definition>

Function

Define a foreign table.

Format

<foreign table definition> ::=
CREATE FOREIGN TABLE <table name>
[<left paren> <basic column definition list> <right paren>]
SERVER <foreign server name> [<table generic options>]

<table generic options> ::=
<generic options>

<basic column definition list> ::=
<basic column definition> [{ <comma> <basic column definition> }...]

<basic column definition> ::=
<column name> <data type> [<column generic options>]

<column generic options> :>:=
<generic options>

Syntax Rules

1) If <foreign table definition> is contained in a <schema definition>, and if the <table name> contains a
<schema name>, then that <schema name> shall be equivalent to the specified or implicit <schema name>
of the containing <schema definition>.

2) Let TN be the <table name>. Let Sbe the schema identified by the explicit or implicit schema name of TN.
Sshall not include a table descriptor whose table name is equivalent to TN.

3) If <basic column definition list> is specified, then let n be the cardinality of the <basic column definition
list>. Foralli, 1 (one) <i<n:

a) Forallj, 1 (one) <j < n,if the <column name> contained in the i-th <basic column definition> is
equivalent to the <column name> contained in the j-th <basic column definition>, then i=j.

b) If the <data type> contained in the i-th <basic column definition> specifies a <character string type>
and does not specify a <character set specification>, then the <character set specification> specified
or implicit in the <schema character set specification> of the <schema definition> that created the
schema Sis implicit.

4) Let FSN be the <foreign server name>.

5) The catalog identified by the explicit or implicit catalog name of FSN shall include a foreign server
descriptor whose foreign server name is equivalent to FSN.

6) If the <foreign table definition> is contained in a <schema definition> SD, then let A be the explicit or
implicit <authorization identifier> of SD. Otherwise, let A be the <authorization identifier> that owns the
schema identified by the implicit or explicit <schema name> of TN.

Schema definition and manipulation 107

IWD 9075-9:201?(E)
11.15 <foreign table definition>

Access Rules

1) If <foreign table definition> is contained in an SQL-client module, then the enabled authorization identifiers
shall include A.

2) The applicable privileges shall include the USAGE privilege on the foreign-server identified by <foreign
server name>.

3) Additional privileges, if any, necessary to execute <foreign table definition> are implementation-defined.

General Rules

1) A foreign table descriptor FTD is created in S, FTD includes:

a)
b)
c)

d)

9)
h)

The table name TN.
The foreign server name FSN.

If <table generic options> TGO is specified, then the generic options descriptor created by TGO;
otherwise, an empty generic options descriptor.

Case:

i) If <basic column definition list> BCDL is specified, then n column descriptors. For each <basic
column definition> BCD;, 1 (one) < i < n, the corresponding i-th column descriptor includes:

1) The <column name> contained in BCD;.

2) Anindication that the column name is not an implementation-dependent name.
3) The data type descriptor of the <data type> DT simply contained in BCD;.

4) The ordinal position, i.

5) The implementation-defined nullability characteristic.

6) The implementation-defined <default option>.

7) If <column generic options> CGO is specified, then the generic options descriptor created
by CGO; otherwise, an empty generic options descriptor.

i) Otherwise, the column descriptors included in FTD are implementation-defined.
An indication that the table is not referenceable.

An empty list of direct supertable names.

An empty list of direct subtable names.

An indication that the table is not insertable-into.

An indication that the table is not updatable.

NOTE 39 — This part of ISO/IEC 9075 currently restricts foreign tables such that they are neither insertable-into nor
updatable. Future versions of this part of ISO/IEC 9075 may relax these restrictions.

108 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.15 <foreign table definition>

2) Let T be the table described by FTD. Let m be the number of column descriptors CD;, 1 (one) <i<m,
included in FTD. The row type of T consists of mfields F; such that, for all i, 1 (one) <i < m, the field
name of F; is the column name included in CD; and the declared type of F; is the data type described by
the data type descriptor included in CD;.

3) A setof privilege descriptors is created that define the privilege SELECT on T and SELECT for every
column of T. These privileges are grantable. The grantor for each of these privilege descriptors is set to
the special grantor value “_SYSTEM?”. The grantee is A.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <foreign
table definition>.

Schema definition and manipulation 109

IWD 9075-9:201?(E)
11.16 <alter foreign table statement>

11.16 <alter foreign table statement>

Function

Change the definition of a foreign table.

Format

<alter foreign table statement> ::=
ALTER FOREIGN TABLE <table name> <alter foreign table action>

<alter foreign table action> ::=
<add basic column definition>
| <alter basic column definition>
| <drop basic column definition>
| <alter generic options>

Syntax Rules

1) The schema Sidentified by the explicit or implicit schema name of the <table name> TN shall include a
foreign table descriptor FTD whose table name is equivalent to TN. FTD is the descriptor of the foreign
table being altered.

2) Let Abe the <authorization identifier> that owns the schema identified by the <schema name> of the table
identified by TN.

3) If <alter generic options> AGO is specified, then the Syntax Rules of Subclause 10.2, “<alter generic
options>", are applied to AGO with the generic options descriptor included in FTD as the applicable generic
options descriptor.

Access Rules

1) The enabled authorization identifiers shall include A.

General Rules

1) FTD is modified as specified by <alter foreign table action>.

2) If <alter generic options> AGO is specified, then the General Rules of Subclause 10.2, “<alter generic
options>", are applied to AGO with the generic options descriptor included in FTD as the applicable generic
options descriptor.

3) If <alter generic options> is specified, any effect on FTD, apart from that on its generic options descriptor,
is implementation-defined.

4) Let T be the table described by FTD. Let m be the number of column descriptors CD;, 1 (one) <i <m,
included in FTD. The row type of T consists of mfields F; such that, for all i, 1 (one) <i < m, the field
name of F; is the column name included in CD; and the declared type of F; is the data type described by
the data type descriptor included in CD;.

110 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.16 <alter foreign table statement>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <alter
foreign table statement>.

Schema definition and manipulation 111

IWD 9075-9:201?(E)
11.17 <add basic column definition>

11.17 <add basic column definition>

Function

Add a column to a foreign table.

Format

<add basic column definition> ::=
ADD [COLUMN] <basic column definition>

Syntax Rules

1) Let FTD be the descriptor of the foreign table being altered.

2) FTD shall not include a column descriptor whose column name is equivalent to the <column name> CN
specified in the <basic column definition> BCD.

3) Let Abe the <authorization identifier> that owns the schema that includes FTD.

Access Rules

None.

General Rules

1) Let nbe the number of column descriptors included in FTD.

2) The degree of the table being altered by the containing <alter foreign table statement> is increased by 1
(one).

3) A column descriptor CD is added to FTD. CD includes:

a)
b)
c)
d)
e)
f)
g)

The <column name> CN contained in BCD.

An indication that the column name is not an implementation-dependent name.
The data type descriptor of the <data type> DT simply contained in BCD.

The ordinal position, n+1.

The implementation-defined nullability characteristic.

The implementation-defined <default option>.

If <column generic options> CGO is specified, then the generic options descriptor created by CGO;
otherwise, an empty generic options descriptor.

4) Let T be the table described by FTD. For every table privilege descriptor that specifies T and a privilege
of SELECT, a new column privilege descriptor is created that specifies T, the same action, grantor, and
grantee, and the same grantability, and specifies CN.

112 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.17 <add basic column definition>

Conformance Rules

None.

Schema definition and manipulation 113

IWD 9075-9:201?(E)
11.18 <alter basic column definition>

11.18 <alter basic column definition>

Function

Change the definition of a column of a foreign table.

Format

<alter basic column definition> ::=
ALTER [COLUMN] <column name> <alter basic column action>

<alter basic column action> ::=
<alter generic options>

Syntax Rules

1) Let FTD be the descriptor of the foreign table identified in the containing <alter table statement>.
2) FTD shall include a column descriptor CD whose column name is equivalent to <column name>.

3) Let C be the column described by CD.

Access Rules

None.

General Rules

1) CD is modified as specified by <alter basic column action>.

2) If <alter generic options> is specified, any effect on CD, apart from that on its generic options descriptor,
is implementation-defined.

Conformance Rules

None.

114 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.19 <drop basic column definition>

11.19 <drop basic column definition>

Function

Destroy a column of a foreign table.

Format

<drop basic column definition> ::=
DROP [COLUMN] <column name> <drop behavior>

Syntax Rules

1) Let FTD be the descriptor of the foreign table being altered.
2) FTD shall include a column descriptor CD whose column name is equivalent to the <column name> CN.
3) FTD shall include at least two column descriptors.
4) Let C be the column described by CD.
5) If RESTRICT is specified, then C shall not be referenced in any of the following:
a) The <query expression> of any view descriptor.
b) The <search condition> of any constraint descriptor.
c) The <SQL routine body> of any routine descriptor.

d) Either an explicit trigger column list or a triggered action column set of any trigger descriptor.

NOTE 40 — A <drop basic column definition> that does not specify CASCADE will fail if there are any references to that
column resulting from the use of CORRESPONDING, NATURAL, or SELECT * (except where contained in an exists
predicate>).

NOTE 41 — If CASCADE is specified, then any such dependent object will be dropped by the execution of the <revoke
statement> specified in the General Rules of this Subclause.

NOTE 42 — CN may be contained in an implicit trigger column list of a trigger descriptor.

Access Rules

None.

General Rules

1) Let TR be the trigger name of any trigger descriptor having an explicit trigger column list or a triggered
action column set that contains CN. The following <drop trigger statement> is effectively executed without
further Access Rule checking:

DROP TRIGGER TR

Schema definition and manipulation 115

IWD 9075-9:201?(E)
11.19 <drop basic column definition>

2) Let Abe the <authorization identifier> that owns T. The following <revoke statement> is effectively executed
with a current authorization identifier of “_SYSTEM” and without further Access Rule checking:

REVOKE SELECT(CN) ON TABLE TN FROM A CASCADE

3) Let Rbe any SQL-invoked routine whose routine descriptor contains CN in the <SQL routine body>. Let
SN be the <specific name> of R. The following <drop routine statement> is effectively executed for every
R without further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

4) CD is destroyed and the ordinal position of every column descriptor following CD in FTD is reduced by
1 (one).

5) The degree of the table described by FTD is reduced by 1 (one).

Conformance Rules

None.

116 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
11.20 <drop foreign table statement>

11.20 <drop foreign table statement>

Function

Destroy a foreign table.

Format

<drop foreign table statement> ::=
DROP FOREIGN TABLE <table name> <drop behavior>

Syntax Rules

1) The schema Sidentified by the explicit or implicit schema name of the <table name> TN shall include a
foreign table descriptor FTD whose table name is equivalent to TN. Let T be the table described by FTD.

2) If RESTRICT is specified, then T shall not be referenced in any of the following:
a) The <query expression> of any view descriptor.
b) The <SQL routine body> of any SQL-invoked routine descriptor.

c) The trigger action of any trigger descriptor.

NOTE 43 — If CASCADE is specified, then such referenced objects will be dropped by the execution of the <revoke statement>
specified in the General Rules of this Subclause.

Access Rules

1) The enabled authorization identifiers shall include the <authorization identifier> that owns S

General Rules

1) Every row of Tis effectively deleted at the end of the SQL-statement, prior to the checking of any integrity
constraints.

NOTE 44 — This deletion creates neither a new trigger execution context nor the definition of a new state change in the
current trigger execution context.

2) The following <revoke statement> is effectively executed with a current authorization identifier of
“ SYSTEM” and without further Access Rule checking:

REVOKE ALL PRIVILEGES ON TN FROM
A CASCADE

3) Let Rbe any SQL-invoked routine whose routine descriptor contains TN in the <SQL routine body>. Let
N be the <specific name> of R. The following <drop routine statement> is effectively executed without
further Access Rule checking:

DROP SPECIFIC ROUTINE SN CASCADE

4) FTD is destroyed.

Schema definition and manipulation 117

IWD 9075-9:201?(E)
11.20 <drop foreign table statement>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <drop foreign
table statement>.

118 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.1 <foreign server definition>

12 Catalog manipulation

12.1 <foreign server definition>

Function

Define a foreign server.

Format

<foreign server definition> ::=
CREATE SERVER <foreign server name>
[TYPE <server type>] [VERSION <server version>]
FOREIGN DATA WRAPPER <foreign-data wrapper name> [<generic options>]

<server type> ::=
Il See the Syntax Rul es

<server version> ::=
I'l See the Syntax Rul es

Syntax Rules

1) Let FSN be the <foreign server name>. Let C1 be the catalog identified by the explicit or implicit catalog
name of FSN. C1 shall not include a foreign server descriptor whose foreign server name is equivalent to
FS\.

2) Let WN be the <foreign-data wrapper name>. Let C2 be the catalog identified by the explicit or implicit
catalog name of WN. C2 shall include a foreign-data wrapper descriptor whose foreign-data wrapper name
is WN.

3) The permissible Format and values for <server type> and <server version> are implementation-defined.

Access Rules

1) The applicable privileges shall include the USAGE privilege on the foreign-data wrapper identified by
<foreign-data wrapper name>.

2) Additional privileges, if any, necessary to execute <foreign server definition> are implementation-defined.

General Rules

1) A foreign server descriptor FSD is created. FSD includes:

Catalog manipulation 119

IWD 9075-9:201?(E)

12.1 <foreign server definition>
a) The foreign server name FSN.
b) The foreign-data wrapper name WN.
c) The <server type>, if specified.
d) The <server version>, if specified.
e) The current authorization identifier.

f) If <generic options> GO is specified, then the generic options descriptor created by GO; otherwise,
an empty generic options descriptor.

2) A privilege descriptor is created that defines the USAGE privilege on this foreign server to the current
authorization identifier>. The grantor of the privilege descriptor is set to the special grantor value “_SYS-
TEM?”. This privilege is grantable.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <foreign
server definition>.

120 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.2 <alter foreign server statement>

12.2 <alter foreign server statement>

Function

Change the definition of a foreign server.

Format

<alter foreign server statement> :-:=
ALTER SERVER <foreign server name> [<new version>] [<alter generic options>]

<new version> ::=
VERSION <server version>

Syntax Rules

1) If <new version> is not specified, then <alter generic options> shall be specified.
2) If <alter generic options> is not specified, then <new version> shall be specified.

3) Let FSN be the <foreign server name>. Let C be the catalog identified by the explicit or implicit catalog
name of FSN. C shall include a foreign server descriptor FSD whose foreign server name is equivalent to
FS\.

4) If <alter generic options> AGO is specified, then the Syntax Rules of Subclause 10.2, “<alter generic
options>", are applied to AGO with the generic options descriptor included in FSD as the applicable generic
options descriptor.

5) Let A be the authorization identifier that owns the foreign server descriptor identified by FSN.

Access Rules

1) The enabled authorization identifiers shall include A.

General Rules

1) If <new version> NV is specified, then the <server version> included in FSD is the <server version>
specified in NV.

2) If <alter generic options> AGO is specified, then the General Rules of Subclause 10.2, “<alter generic
options>", are applied to AGO with the generic options descriptor included in FSD as the applicable generic
options descriptor.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <alter
foreign server statement>.

Catalog manipulation 121

IWD 9075-9:201?(E)
12.3 <drop foreign server statement>

12.3 <drop foreign server statement>

Function

Destroy a foreign server descriptor.

Format

<drop foreign server statement> ::=

DROP SERVER <foreign server name> <drop behavior>

Syntax Rules

1)

2)

3)

Let FSN be the <foreign server name>. Let C be the catalog identified by the explicit or implicit catalog
name of FSN. C shall include a foreign server descriptor Swhose foreign server name is equivalent to FSN.

If <drop behavior> specifies RESTRICT, then Sshall not be referenced by any of the following:
a) A foreign table descriptor.

b) A routine mapping descriptor.

¢) A user mapping descriptor.

Let A be the authorization identifier that owns the foreign server descriptor identified by FSN.

Access Rules

1)

The enabled authorization identifiers shall include A.

General Rules

1)

2)

3)

4)

Let UM be any user mapping descriptor that includes a foreign server name that is equivalent to FSN. Let
Al be the authorization identifier included in UM. The following <drop user mapping statement> is effec-
tively executed without further Access Rule checking:

DROP USER MAPPING FOR Al SERVER FSN

Let RM be any routine mapping descriptor that includes a foreign server name that is equivalent to FSN.
Let RMN be the routine mapping name included in RM. The following <drop routine mapping statement>
is effectively executed without further Access Rule checking:

DROP ROUTINE MAPPING RWN

The following <revoke statement> is effectively executed with a current authorization identifier of
“ SYSTEM” and without further Access Rule checking:

REVOKE ALL PRIVILEGES ON FSN FROM A CASCADE

The descriptor Sis destroyed.

122 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.3 <drop foreign server statement>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <drop foreign
server statement>.

Catalog manipulation 123

IWD 9075-9:201?(E)
12.4 <foreign-data wrapper definition>

12.4 <foreign-data wrapper definition>

Function

Define a foreign-data wrapper

Format

<foreign-data wrapper definition> ::=
CREATE FOREIGN DATA WRAPPER <foreign-data wrapper name>
[<library name specification>] <language clause> [<generic options>]

<library name specification> ::=
LIBRARY <library name>

<library name> ::=
<character string literal>

Syntax Rules

1) Let WN be the <foreign-data wrapper name>. Let C be the catalog identified by the explicit or implicit
catalog name of WN. C shall not include a foreign-data wrapper descriptor whose foreign-data wrapper
name is equivalent to VN.

2) If<library name specification> is not specified, then a <library name specification> with an implementation-
dependent <library name> is implicit.

Access Rules

1) The privileges necessary to execute <foreign-data wrapper definition> are implementation-defined.

General Rules

1) A foreign-data wrapper descriptor WD is created. WD includes:
a) The foreign-data wrapper name WN.
b) The current authorization identifier.
¢) The implicit or explicit <library name>.
d) The name of the language specified in <language clause>.

e) If <generic options> GO is specified, then the generic options descriptor created by GO; otherwise,
an empty generic options descriptor.

2) A privilege descriptor is created that defines the USAGE privilege on this foreign-data wrapper to the
current authorization identifier. The grantor of the privilege descriptor is set to the special grantor value
“ SYSTEM?”. This privilege is grantable.

124 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.4 <foreign-data wrapper definition>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <foreign-
data wrapper definition>.

Catalog manipulation 125

IWD 9075-9:201?(E)
12.5 <alter foreign-data wrapper statement>

12.5 <alter foreign-data wrapper statement>

Function

Change the definition of a foreign-data wrapper.

Format

<alter foreign-data wrapper statement> ::=

ALTER FOREIGN DATA WRAPPER <foreign-data wrapper name>

[<library name specification>] [<alter generic options>]

Syntax Rules

1)

2)
3)
4)

5)

Let WN be the <foreign-data wrapper name>. Let C be the catalog identified by the explicit or implicit
catalog name of FSN. C shall include a foreign-data wrapper descriptor W whose foreign-data wrapper
name is equivalent to VN.

If <library name specification> is not specified, then <alter generic options> shall be specified.
If <alter generic options> is not specified, then <library name specification> shall be specified.

If <alter generic options> AGO is specified, then the Syntax Rules of Subclause 10.2, “<alter generic
options>”, are applied to AGO with the generic options descriptor included in W as the applicable generic
options descriptor.

Let A be the authorization identifier that owns the foreign-data wrapper descriptor identified by WN.

Access Rules

1)

The enabled authorization identifiers shall include A.

General Rules

1)

2)

If <library name specification> is specified, then the <library name> is included in W, replacing any
existing <library name>.

If <alter generic options> AGO is specified, then the General Rules of Subclause 10.2, “<alter generic
options>”, are applied to AGO with the generic options descriptor included in W as the applicable generic
options descriptor.

Conformance Rules

1)

Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <alter
foreign-data wrapper statement>.

126 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.6 <drop foreign-data wrapper statement>

12.6 <drop foreign-data wrapper statement>

Function

Destroy a foreign-data wrapper.

Format

<drop foreign-data wrapper statement> ::=
DROP FOREIGN DATA WRAPPER <foreign-data wrapper name> <drop behavior>

Syntax Rules
1) Let WN be the <foreign-data wrapper name>. Let C be the catalog identified by the explicit or implicit

catalog name of FSN. C shall include a foreign-data wrapper descriptor W whose foreign-data wrapper
name is equivalent to VWN.

2) If <drop behavior> specifies RESTRICT, then Wshall not be referenced by the foreign server name included
in any foreign server descriptor.

3) Let Abe the authorization identifier that owns the foreign-data wrapper descriptor identified by WN.

Access Rules

1) The enabled authorization identifiers shall include A.

General Rules

1) The following <revoke statement> is effectively executed with a current authorization identifier of
“ SYSTEM” and without further Access Rule checking:

REVOKE ALL PRIVILEGES ON WN FROM A CASCADE

2) The descriptor of W is destroyed.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <drop foreign-
data wrapper statement>.

Catalog manipulation 127

IWD 9075-9:201?(E)
12.7 <import foreign schema statement>

12.7 <import foreign schema statement>

Function

Acquire information about some or all foreign tables associated with a schema managed by a foreign server.

Format

<import foreign schema statement> ::=
IMPORT FOREIGN SCHEMA <foreign schema name> [<import qualifications>]
FROM SERVER <foreign server name> INTO <local schema name>
<import qualifications> ::=
LIMIT TO <left paren> <table name list> <right paren>
| EXCEPT <left paren> <table name list> <right paren>

<table name list> ::=
<table name> [{ <comma> <table name> }...]

<foreign schema name> ::=
<schema name>

<local schema name> ::=
<schema name>

Syntax Rules

1) Let FSN be <foreign schema name>.

2) For every <table name> TN contained in <table name list>:
a) If TN specifies a <schema name> SN, then SN shall be equivalent to FSN.
b) Otherwise, a <schema name> that is equivalent to FSN is implicit.

3) There shall be an SQL-schema identified by <local schema name> LSN.

Access Rules

None.

General Rules

1) If the foreign server FSVR identified by <foreign server name> FSVRN does not maintain information
analogous to schemas, or if the foreign-data wrapper by which the SQL-server accesses FSVR does not
support schema importation, then an exception condition is raised: FDW-specific condition — no schemas.

2) If FSVRdoes not maintain information about a schema FSwhose name is equivalent to FSN, then an
exception condition is raised: FDW-specific condition — schema not found.

3) Case:

128 Management of External Data (SQL/MED)

4)

5)

IWD 9075-9:201?(E)
12.7 <import foreign schema statement>

a) If <import qualifications> is not specified, then let ITNL be a <table name list> that contains the <table
name> of every table associated with FS

b) If <import qualifications> specifies LIMIT TO, then let ITNL be the explicit <table name list>.

c) If <import qualifications> specifies EXCEPT, then let ITNL be a <table name list> that contains the
<table name> of every table associated with FSexcept the tables whose names are specified in the
explicit <table name list>.

For every <table name> FTN contained in ITNL, if FSdoes not include a descriptor of a table whose <table
name> is equivalent to FTN, then an exception condition is raised: FDW-specific condition — table not
found.

For every <table name> FTN contained in I'TNL:
a) Let n be the number of columns whose descriptors are included in the table identified by FTN.

b) LetBCDj, 1 (one) <i < n, be a <basic column definition> that contains a <column name> equivalent

to the name of the i-th column COL of the table identified by FTN, a <data type> corresponding to
the data type of COL, and implementation-defined <column generic options>.

c) Let FTD be a <foreign table definition> that contains FTN, every BCD;, 1 (one) < i < n, in sequence,
separated by <comma>s, FSVRN, and implementation-defined <table generic options>.

d) FTD is effectively executed.

Conformance Rules

1)

2)

Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <import
foreign schema statement>.

Without Feature M005, “Foreign schema support”, conforming SQL language shall not specify <import
foreign schema statement>.

Catalog manipulation 129

IWD 9075-9:201?(E)
12.8 <routine mapping definition>

12.8 <routine mapping definition>

Function

Define a routine mapping.

Format

<routine mapping definition> ::=

CREATE ROUTINE MAPPING <routine mapping name> FOR <specific routine designator>

SERVER <foreign server name> [<generic options>]

Syntax Rules

1)
2)

3)

4)

5)
6)

Let FSN be the <foreign server name>. Let RMN be the <routine mapping name>.

The catalog identified by the explicit or implicit catalog name of FSN shall include a foreign server
descriptor whose foreign server name is equivalent to FSN.

The SQL-environment shall not include a routine mapping descriptor whose routine mapping name is
RMN.

Let Rbe the SQL-invoked routine identified by the <specific routine designator>. Rshall identify an SQL-
invoked regular function.

Let SRN be the <specific name> of R

The SQL-environment shall not include a routine mapping descriptor whose specific routine name is SRN
and whose foreign server name is FSN.

Access Rules

1)
2)

The applicable privileges shall include the USAGE privilege on the foreign server identified by FSN.

Additional privileges, if any, necessary to execute <routine mapping definition> are implementation-
defined.

General Rules

1)

A routine mapping descriptor RMD is created. RMD includes:
a) The routine mapping name RMN.

b) The specific routine name SRN.

¢) The foreign server name FSN.

d) If <generic options> GO is specified, then the generic options descriptor created by GO; otherwise,
an empty generic options descriptor.

130 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.8 <routine mapping definition>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <routine
mapping definition>.

Catalog manipulation 131

IWD 9075-9:201?(E)
12.9 <alter routine mapping statement>

12.9 <alter routine mapping statement>

Function

Change the definition of a routine mapping.

Format

<alter routine mapping statement> ::=
ALTER ROUTINE MAPPING <routine mapping name> <alter generic options>

Syntax Rules

1) Let RMN be the <routine mapping name> and let AGO be the <alter generic options>.

2) The SQL-environment shall include a routine mapping descriptor RMD whose routine mapping name is
RMN.

3) The Syntax Rules of Subclause 10.2, “<alter generic options>", are applied to AGO with the generic options
descriptor included in RMD as the applicable generic options descriptor.

Access Rules

1) The privileges necessary to execute <alter routine mapping statement> are implementation-defined.

General Rules

1) The General Rules of Subclause 10.2, “<alter generic options>”, are applied to AGO with the generic
options descriptor included in RMD as the applicable generic options descriptor.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <alter
routine mapping statement>.

132 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
12.10 <drop routine mapping statement>

12.10 <drop routine mapping statement>

Function

Destroy a routine mapping.

Format

<drop routine mapping statement> :>:=
DROP ROUTINE MAPPING <routine mapping nhame>

Syntax Rules

1) Let RMN be the <routine mapping name>.

2) The SQL-environment shall include a routine mapping descriptor RMD whose routine mapping name is
RMN.

Access Rules

1) The privileges necessary to execute <drop routine mapping statement> are implementation-defined.

General Rules

1) RMD is destroyed.

Conformance Rules

1) Without Feature M0O04, “Foreign data support”, conforming SQL language shall not contain a <drop routine
mapping statement>.

Catalog manipulation 133

IWD 9075-9:201?(E)

(Blank page)

134 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
13.1 <privileges>

13 Access control

This Clause modifies Clause 12, ““Access control™, in | SO/IEC 9075-2.

13.1 <privileges>

This Subclause modifies Subclause 12.3, “<privileges>"’, in ISO/IEC 9075-2.

Function

Specify privileges.

Format

<object name> ::=
I'' All alternatives froml|SQO IEC 9075-2
| FOREIGN DATA WRAPPER <foreign-data wrapper name>
| FOREIGN SERVER <foreign server name>

Syntax Rules

1) \Augment SR 3)|Add <foreign server name> and <foreign-data wrapper name> to the list of <object
name>s that shall require the specification of USAGE.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

Access control 135

IWD 9075-9:201?(E)
13.2 <revoke statement>

13.2 <revoke statement>

This Subclause modifies Subclause 12.7, ““<revoke statement>"’, in |SO/IEC 9075-2.

Function

Destroy privileges and role authorizations.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert after GR 16)|Let T be any foreign table descriptor included in SL. T is said to be abandoned if the
revoke destruction action would result in A1 no longer having USAGE privilege on the foreign server
associated with the foreign table described by T.

2) |Insert after GR 30)| Let FSbe any foreign server descriptor. FSis said to be abandoned if the revoke
destruction action would result in AL no longer having USAGE privilege on the foreign-data wrapper
associated with the foreign server described by FS

3) \Augment GR 31) \Add abandoned foreign server descriptor and abandoned foreign table descriptor to the
list of objects whose existence would cause an exception condition to be raised: dependent privilege
descriptors till exist.

4) |Insert this GR|For every abandoned foreign server descriptor FS, let FSN be the <foreign server name>
of FS The following <drop foreign server statement> is effectively executed without further Access Rule
checking:

DROP SERVER FSN CASCADE

5) |Insert this GR|For every abandoned foreign table descriptor FT, let FTN be the <table name> of FT. The
following <drop foreign table statement> is effectively executed without further Access Rule checking:

DROP FOREIGN TABLE S1.FTN CASCADE

Conformance Rules

No additional Conformance Rules.

136 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
13.3 <user mapping definition>

13.3 <user mapping definition>

Function

Define the mapping of an authorization identifier to a foreign server.

Format

<user mapping definition> ::=
CREATE USER MAPPING FOR <specific or generic authorization identifier>
SERVER <foreign server name> [<generic options>]
<specific or generic authorization identifier> ::=
<authorization identifier>
| USER
| CURRENT_USER
| PUBLIC

Syntax Rules

1) Let FSN be the <foreign server name>. If <authorization identifier> is specified, then let U be the
<authorization identifier>; if PUBLIC is specified, then let U be PUBLIC; otherwise, let U be the current
authorization identifier.

2) The SQL-environment shall not include a user mapping descriptor whose authorization identifier is U and
whose foreign server name is equivalent to FSN.

3) The catalog identified by the explicit or implicit catalog name of FSN shall include a foreign server
descriptor whose foreign server name is equivalent to FS\.

Access Rules

1) The applicable privileges shall include the USAGE privilege on the foreign server identified by FS\.

2) Additional privileges, if any, necessary to execute <user mapping definition> are implementation-defined.

General Rules

1) A user mapping descriptor UMD is created. UMD includes:
a) Case:
i) If <specific or generic authorization identifier> specifies PUBLIC, then PUBLIC.
i) Otherwise, the authorization identifier U.
b) The foreign server name FSN.

c) If <generic options> GO is specified, then the generic options descriptor created by GO; otherwise,
an empty generic options descriptor.

Access control 137

IWD 9075-9:201?(E)
13.3 <user mapping definition>

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <user
mapping definition>.

138 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
13.4 <alter user mapping statement>

13.4 <alter user mapping statement>

Function

Change the definition of a user mapping.

Format

<alter user mapping statement> ::=
ALTER USER MAPPING <specific or generic authorization identifier>
SERVER <foreign server name> <alter generic options>

Syntax Rules
1) Let FSN be the <foreign server name> and let AGO be the <alter generic options>. If <authorization

identifier> is specified, then let U be the <authorization identifier>; if PUBLIC is specified, then let U be
PUBLIC; otherwise, let U be the current authorization identifier.

2) The SQL-environment shall include a user mapping descriptor UMD whose authorization identifier is U
and whose foreign server name is equivalent to FSN.

3) The Syntax Rules of Subclause 10.2, “<alter generic options>”, are applied to AGO with the generic options
descriptor included in UMD as the applicable generic options descriptor.

Access Rules

1) The privileges necessary to execute <alter user mapping statement> are implementation-defined.

General Rules

1) The General Rules of Subclause 10.2, “<alter generic options>", are applied to AGO with the generic
options descriptor included in UMD as the applicable generic options descriptor.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain an <alter user
mapping statement>.

Access control 139

IWD 9075-9:201?(E)
13.5 <drop user mapping statement>

13.5 <drop user mapping statement>

Function

Destroy a user mapping.

Format

<drop user mapping statement> ::=
DROP USER MAPPING FOR <specific or generic authorization identifier>
SERVER <foreign server name>

Syntax Rules
1) Let FSN be the <foreign server name>. If <authorization identifier> is specified, then let U be the

<authorization identifier>; if PUBLIC is specified, then let U be PUBLIC; otherwise, let U be the current
authorization identifier.

2) The SQL-environment shall include a user mapping descriptor UMD whose authorization identifier is U
and whose foreign server name is equivalent to FSN.

Access Rules

1) The privileges necessary to execute <drop user mapping statement> are implementation-defined.

General Rules

1) UMD is destroyed.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <drop user
mapping statement>.

140 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
14.1 <SQL-client module definition>

14 SQL-client modules

This Clause modifies Clause 13, ““SQL-client modules”, in ISO/IEC 9075-2.

14.1 <SQL-client module definition>

This Subclause modifies Subclause 13.1, “< SQL-client module definition>"’, in 1SO/IEC 9075-2.

Function

Define an SQL-client module.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insertafter GR 4)a)| If the SQL-session context of any of the SQL-sessions associated with the SQL-agent
include {foreign server name : FSConnectionHandle} pairs, then for each such pair:

a) Let CH be the FSConnectionHandle.

b) The FreeFSConnection() routine is invoked with CH as the argument.

2) \ Insert after GR 4)a)| If the SQL-session context of any of the SQL-sessions associated with the SQL-agent
include {foreign-data wrapper name : WrapperEnvHandle} pairs, then for each such pair:

a) Let EH be the WrapperEnvHandle.

b) The FreeWrapperEnv() routine is invoked with EH as the argument.

SQL-client modules 141

IWD 9075-9:201?(E)
14.1 <SQL-client module definition>

Conformance Rules

No additional Conformance Rules.

142 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
14.2 <externally-invoked procedure>

14.2 <externally-invoked procedure>

This Subclause modifies Subclause 13.3, “<externally-invoked procedure>, in 1SO/IEC 9075-2.

Function

Define an externally-invoked procedure.

Format

No additional Formmt itens.

Syntax Rules

1) [Insert before SR 1)| <host parameter data type> shall not contain a <datalink control definition>.

2) |Insertinto SR 10)e)|

DATA_EXCEPTION_DATALINK_VALUE_EXCEEDS_MAXIMUM_LENGTH:

constant SQLSTATE_TYPE := ''2201D";
DATA_EXCEPTION_INVALID_DATA_ SPECIFIED_FOR_DATALINK:

constant SQLSTATE_TYPE := ''22017";
DATA_EXCEPTION_NULL_ARGUMENT_PASSED_TO_DATALINK_CONSTRUCTOR:

constant SQLSTATE_TYPE := "'2201A";
DATALINK_EXCEPTION_NO_SUBCLASS:

constant SQLSTATE_TYPE := "HWOO00';
DATALINK_EXCEPTION_EXTERNAL_FILE_NOT_LINKED:

constant SQLSTATE_TYPE := "HWOO1";
DATALINK_EXCEPTION_EXTERNAL_FILE_ALREADY_LINKED:

constant SQLSTATE_TYPE := "HW002'";
DATALINK_EXCEPTION_INVALID_WRITE_TOKEN:

constant SQLSTATE_TYPE := "HW004'";
DATALINK_EXCEPTION_INVALID_DATALINK_CONSTRUCTION:

constant SQLSTATE_TYPE := "HWOO05';
DATALINK_EXCEPTION_INVALID_WRITE_PERMISSION_FOR_UPDATE:

constant SQLSTATE_TYPE := "'HWO06';
DATALINK_EXCEPTION_REFERENCED_FILE_DOES_NOT_EXIST:

constant SQLSTATE_TYPE := "HWOO03'";
DATALINK_EXCEPTION_REFERENCED_FILE_NOT VALID:

constant SQLSTATE_TYPE := "HWOO7'';
FDW_SPECIFIC_CONDITION_NO_SUBCLASS:

constant SQLSTATE_TYPE := "HVOO0O';
FDW_SPECIFIC_CONDITION_COLUMN_NAME_NOT_FOUND:

constant SQLSTATE_TYPE := "HVOO5'";
FDW_SPECIFIC_CONDITION_DYNAMIC_PARAMETER_VALUE_NEEDED:

constant SQLSTATE_TYPE := "HV002'";
FDW_SPECIFIC_CONDITION_FUNCTION_SEQUENCE_ERROR:

constant SQLSTATE_TYPE := "HVO10";
FDW_SPECIFIC_CONDITION_INCONSISTENT DESCRIPTOR_INFORMATION:

constant SQLSTATE_TYPE := "HvV021'";
FDW_SPECIFIC_CONDITION_INVALID_ATTRIBUTE_VALUE:

constant SQLSTATE_TYPE := "HvV024'";

FDW_SPECIFIC_CONDITION_INVALID_COLUMN_NAME:

SQL-client modules 143

IWD 9075-9:201?(E)
14.2 <externally-invoked procedure>

constant SQLSTATE_TYPE := "HVOO7";
FDW_SPECIFIC_CONDITION_INVALID_COLUMN_NUMBER:

constant SQLSTATE_TYPE := "HV008";
FDW_SPECIFIC_CONDITION_INVALID_DATA_TYPE:

constant SQLSTATE_TYPE := "HV004";
FDW_SPECIFIC_CONDITION_INVALID_DATA_TYPE_DESCRIPTORS:

constant SQLSTATE_TYPE := "HV006";
FDW_SPECIFIC_CONDITION_INVALID_DESCRIPTOR_FIELD_IDENTIFIER:

constant SQLSTATE_TYPE := "HV091";
FDW_SPECIFIC_CONDITION_INVALID_HANDLE:

constant SQLSTATE_TYPE := "HVOOB™;
FDW_SPECIFIC_CONDITION_INVALID_OPTION_INDEX:

constant SQLSTATE_TYPE := "HVOOC";
FDW_SPECIFIC_CONDITION_INVALID_OPTION_NAME:

constant SQLSTATE_TYPE := "HVOOD";
FDW_SPECIFIC_CONDITION_INVALID_STRING_FORMAT:

constant SQLSTATE_TYPE := "HVOOA™;
FDW_SPECIFIC_CONDITION_INVALID_STRING_LENGTH_OR_BUFFER_LENGTH:

constant SQLSTATE_TYPE := "HV090";
FDW_SPECIFIC_CONDITION_INVALID_USE_OF_NULL_POINTER:

constant SQLSTATE_TYPE := "HV009";
FDW_SPECIFIC_CONDITION_LIMIT_ON_NUMBER_OF_HANDLES_EXCEEDED:

constant SQLSTATE_TYPE := "HV014";
FDW_SPECIFIC_CONDITION_MEMORY_ALLOCATION_ERROR:

constant SQLSTATE_TYPE := "HVOO1";
FDW_SPECIFIC_CONDITION_NO_SCHEMAS:

constant SQLSTATE_TYPE := "HVOOP™;
FDW_SPECIFIC_CONDITION_OPTION_NAME_NOT_FOUND:

constant SQLSTATE_TYPE := "HV00J";
FDW_SPECIFIC_CONDITION_REPLY_HANDLE:

constant SQLSTATE_TYPE := "HYOOK";
FDW_SPECIFIC_CONDITION_SCHEMA_NOT_FOUND:

constant SQLSTATE_TYPE := "HVO0Q";
FDW_SPECIFIC_CONDITION_TABLE_NOT_FOUND:

constant SQLSTATE_TYPE := "HVOOR";
FDW_SPECIFIC_CONDITION_UNABLE_TO_CREATE_EXECUTION:

constant SQLSTATE_TYPE := "HVOOL";
FDW_SPECIFIC_CONDITION_UNABLE_TO_CREATE_REPLY:

constant SQLSTATE_TYPE := "HVOOM";
FDW_SPECIFIC_CONDITION_UNABLE_TO_ESTABLISH_CONNECTION:

constant SQLSTATE_TYPE := "HVOON";
INVALID_FOREIGN_SERVER_SPECIFICATION_NO_SUBCLASS:

constant SQLSTATE_TYPE := "0X000";
PASSTHROUGH_SPECIFIC_CONDITION_NO_SUBCLASS:

constant SQLSTATE_TYPE := "0Y000";
PASSTHROUGH_SPECIFIC_CONDITION_INVALID_CURSOR_OPTION:

constant SQLSTATE_TYPE := "0YO0O1";
PASSTHROUGH_SPECIFIC_CONDITION_INVALID_CURSOR_ALLOCATION:

constant SQLSTATE_TYPE := "0Y002";

Access Rules

No additional Access Rules.

144 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
14.2 <externally-invoked procedure>

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

SQL-client modules 145

IWD 9075-9:201?(E)
14.3 <SQL procedure statement>

14.3 <SQL procedure statement>

This Subclause modifies Subclause 13.4, ““<SQL procedure statement>", in 1SO/IEC 9075-2.

Function

Define all of the SQL-statements that are <SQL procedure statement>s.

Format

<SQL schema definition statement> ::=

I'' Al alternatives fromI|SQ |EC 9075-2
<foreign table definition>

<foreign server definition>
<foreign-data wrapper definition>
<user mapping definition>

<routine mapping definition>

<SQL schema manipulation statement> ::=

I All alternatives froml|SQO |EC 9075-2
<alter foreign table statement>

<drop foreign table statement>

<alter foreign server statement>

<drop foreign server statement>

<alter foreign-data wrapper statement>
<drop foreign-data wrapper statement>
<alter user mapping statement>

<drop user mapping statement>

<alter routine mapping statement>
<drop routine mapping statement>

<SQL session statement> ::=
Il Al alternatives fromI|SQ|EC 9075-2
| <set passthrough statement>

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

146 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
14.3 <SQL procedure statement>

Conformance Rules

No additional Conformance Rules.

SQL-client modules 147

IWD 9075-9:201?(E)
14.4 Data type correspondences

14.4 Data type correspondences
This Subclause modifies Subclause 13.5, “Data type correspondences”, in | SO/IEC 9075-2.

Function

Specify the data type correspondences for SQL data types and host language types.

Tables

Table 5, “‘Data type correspondences for Ada”, modifies Table 16, “Data type correspondences for Ada™, in
[1S09075-2].

Table 5 — Data type correspondences for Ada

SQL Data Type Ada Data Type

All alternatives from |SO/IEC

9075-2

DATALINK SQL_STANDARD.CHAR, with P'LENGTH of LD*

1 The length LD of the Ada character type corresponding with SQL data type DATALINK is the smallest integer not less than
the quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of octets
contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks™.)

Table 6, ““Data type correspondences for C”’, modifies Table 17, ““Data type correspondences for C”, in
[1S09075-2].

Table 6 — Data type correspondences for C

SQL Data Type C Data Type

All alternatives from |SO/IEC

9075-2

DATALINK char, with length LD®

5 The length LD of the C character type corresponding with SQL data type DATALINK is the smallest integer not less than the
quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of octets
contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.)

Table 7, ““Data type correspondences for COBOL”, modifies Table 18, ““Data type correspondences for
COBOL™, in[1S09075-2].

148 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
14.4 Data type correspondences

Table 7 — Data type correspondences for COBOL

SQL Data Type

COBOL Data Type

All alternatives from |SO/IEC
9075-2

DATALINK

alphanumeric, with length LD?

4 The length LD of the COBOL character type corresponding with SQL data type DATALINK is the smallest integer not less
than the quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of
octets contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks™.)

Table 8, ““Data type correspondences for Fortran’, modifies Table 19, ““Data type correspondencesfor Fortran™,

in [1S09075-2].

Table 8 — Data type correspondences for Fortran

SQL Data Type

Fortran Data Type

All alternatives from |SO/IEC
9075-2

DATALINK

CHARACTER with length LD*

4 The length LD of the Fortran character type corresponding with SQL data type DATALINK is the smallest integer not less
than the quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of
octets contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.)

Table 9, “Data type correspondences for M, modifies Table 20, ““Data type correspondences for M”, in

[1S09075-2].

Table 9 — Data type correspondences for M

SQL Data Type

MUMPS Data Type

All alternatives from |SO/IEC
9075-2

DATALINK

character

Table 10, “Data type correspondences for Pascal””, modifies Table 21, ““Data type correspondences for Pascal ™,

in [1S09075-2].

SQL-client modules 149

IWD 9075-9:201?(E)
14.4 Data type correspondences

Table 10 — Data type correspondences for Pascal

SQL Data Type Pascal Data Type

All alternatives from |SO/IEC

9075-2

DATALINK PACKED ARRAY[1..LD?] OF CHAR

2 The length LD of the Pascal character type corresponding with SQL data type DATALINK is the smallest integer not less than
the quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of octets
contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks™.)

Table 11, “Data type correspondences for PL/I””, modifies Table 22, ““Data type correspondences for PL/I”,
in[1S09075-2].

Table 11 — Data type correspondences for PL/I

SQL Data Type PL/I Data Type

All alternatives from 1SO/IEC

9075-2

DATALINK CHARACTER VARYING(LD?)

2 The length LD of the PL/I character type corresponding with SQL data type DATALINK is the smallest integer not less than
the quotient of the division N/B, where N is the maximum datalink length and B is the implementation-defined number of octets
contained in a character of the host language. (The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.)

Conformance Rules

No additional Conformance Rules.

150 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
15.1 Effect of deleting rows from base tables

15 Additional data manipulation rules

This Clause modifies Clause 15, “Additional data manipulation rules”, in ISO/IEC 9075-2.

15.1 Effect of deleting rows from base tables

This Subclause modifies Subclause 15.7, ““Effect of deleting rows from base tables™, in ISO/IEC 9075-2.

Function

Specify the effect of deleting rows from one or more base tables.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert after GR 7)| For each row Rthat is marked for deletion from T, for each site DLC whose value is a
constituent of the value of Rsuch that the declared type of DLC is DATALINK or some distinct type whose
source data type is DATALINK, and such that the data type descriptor of the declared type of DLC is or
includes a datalink data type descriptor with link control option FILE LINK CONTROL, let DLCV be the
value of DLC.

NOTE 45 — “constituent” is defined in Subclause 4.9, “Columns, fields, and attributes”.

2) [Insert after GR 7)] If DLCV is not the null value, then let EF be the external file referenced by DLCV.

Case:

a) If EF is not linked and the integrity control option included in the descriptor of DLC specifies
INTEGRITY ALL, then an exception condition is raised: datalink exception — external file not linked.

b) If EF is linked, then EF is unlinked.

NOTE 46 — The effect of unlinking depends on the unlink control option, RESTORE or DELETE, included in the
column descriptor of C, as specified in Subclause 4.8, “Datalinks”.

Additional data manipulation rules 151

IWD 9075-9:201?(E)
15.1 Effect of deleting rows from base tables

Conformance Rules

No additional Conformance Rules.

152 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
15.2 Effect of inserting tables into base tables

15.2 Effect of inserting tables into base tables

This Subclause modifies Subclause 15.10, “Effect of inserting tables into base tables™, in ISO/IEC 9075-2.

Function

Specify the effect of inserting each of one or more given tables into its associated base table.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) \ Insert after GR 5)c)| For each row Rinserted into T, for each site DLC whose value is a constituent of the

value of R such that the declared type of DLC is DATALINK or some distinct type whose source type is
DATALINK, and such that the data type descriptor of the declared type of DLC is or includes a datalink
data type descriptor with link control options FILE LINK CONTROL and either INTEGRITY ALL or
INTEGRITY SELECTIVE, let DLCV be the value of DLC.

a)

b)

NOTE 47 — “constituent” is defined in Subclause 4.9, “Columns, fields, and attributes”.

If DLCV is not the null value, then

Case:

Case:

If DLCV does not reference a file, then an exception condition is raised: datalink exception —
referenced file does not exist.

Otherwise, let EF be the external file referenced by DLCV.

If the Construction Indication of DLCV is not the null value, then an exception condition is
raised: datalink exception — invalid datalink construction.

If EF is linked, then an exception condition is raised: datalink exception — external file already
linked.

If INTEGRITY ALL is specified, then EF is linked according to the <datalink file control
option> READ PERMISSION and WRITE PERMISSION of DLC.

If INTEGRITY SELECTIVE is specified, then EF may be linked in an implementation-defined
manner according to the <datalink file control option> READ PERMISSION and WRITE
PERMISSION of DLC.

Additional data manipulation rules 153

IWD 9075-9:201?(E)
15.2 Effect of inserting tables into base tables

)] If the read permission option included in the descriptor of DLC is DB, then the SQL-Mediated
Read Access Indication of DLCV is set to True.
i) Otherwise, the SQL-Mediated Read Access Indication of DLCV is set to False.

d) Case:

i) If the write permission option included in the descriptor of DLC is either ADMIN REQUIRING
TOKEN FOR UPDATE or ADMIN NOT REQUIRING TOKEN FOR UPDATE, then the
SQL-Mediated Write Access Indication of DLCV is set to True.

i) Otherwise, the SQL-Mediated Write Access Indication of DLCV is set to False.
e) The Write Token of DLCV is set to the null value.

f) The Construction Indication of DLCV is set to the null value.

Conformance Rules

No additional Conformance Rules.

154 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
15.3 Effect of replacing rows in base tables

15.3 Effect of replacing rows in base tables

This Subclause modifies Subclause 15.13, ““Effect of replacing rows in base tables”, in ISO/IEC 9075-2.

Function

Specify the effect of replacing some of the rows in one or more base tables.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) |Insert after GR 9)| For each replaced row R, for each site DLC whose value is a constituent of the value

of Rsuch that the declared type of DLC is DATALINK or some distinct type source type is DATALINK,
and such that the data type descriptor of the declared type of DLC is or includes a datalink data type
descriptor with link control options FILE LINK CONTROL and either INTEGRITY ALL or INTEGRITY
SELECTIVE, let DLCV1 be the value of DLC and let DLCV2 be the value of the site in the new transition
variable that corresponds to DLC.

a)

b)

NOTE 48 — “constituent” is defined in Subclause 4.9, “Columns, fields, and attributes”.

If DLCV1 is not the null value, then let EF1 be the external file referenced by DLCV1.

Case:

i)

If EF1is not linked and the integrity control option included in the descriptor of DLC specifies
INTEGRITY ALL, then an exception condition is raised: datalink exception — external file
not linked.

If EF1is linked, EF1 is unlinked.

NOTE 49 — The effect of unlinking depends on the unlink control option, RESTORE or DELETE, included
in the column descriptor of C, as specified in Subclause 4.8, “Datalinks”.

If DLCV2 is not the null value, then

i)

Case:

1) If DLCV2does not reference a file, then an exception condition is raised: datalink exception
— referenced file does not exist.

2) Otherwise, let EF2 be the external file referenced by DLCV2.
Case:

1) If EF2is linked, then an exception condition is raised: datalink exception — external file
already linked.

Additional data manipulation rules 155

IWD 9075-9:201?(E)
15.3 Effect of replacing rows in base tables
2) Ifthe Construction Indication of DLCV2 is either NEWCOPY or PREVIOUSCOPY, then:

A) If the write permission option included in the descriptor of DLC is ADMIN
REQUIRING TOKEN FOR UPDATE, then

Case:

1) If the Write Token of DLCV2 is the null value, then an exception condition is
raised: datalink exception — invalid write token.

1)) If the Write Token of DLCV2 is not valid according to implementation-defined
rules, then an exception condition is raised: datalink exception — invalid write
token.

B) If the write permission option included in the descriptor of DLC is BLOCKED, then
an exception condition is raised: datalink exception — invalid write permission for
update.

C) If the File Reference of DLCV1 and the File Reference of DLCV2 are not identical,
then an exception condition is raised: datalink exception — referenced file not valid.

D) EF2is linked according to the read permission option and write permission option
included in the descriptor of DLC.

3) IfINTEGRITY ALL is specified, then EF2is linked according to the <datalink file control
option> of READ PERMISSION and WRITE PERMISSION of DLC.

4) IfINTEGRITY SELECTIVE is specified, then EF2 may be linked in an implementation-
defined manner according to the <datalink file control option> of READ PERMISSION
and WRITE PERMISSION of DLC.

iii) Case:

1) If the read permission option included in the descriptor of DLC is DB, then the SQL-
Mediated Read Access Indication of DLCV2 is set to True.

2) Otherwise, the SQL-Mediated Read Access Indication of DLCV2 is set to False.
iv) Case:

1) If the write permission option included in the descriptor of DLC is either ADMIN
REQUIRING TOKEN FOR UPDATE or ADMIN NOT REQUIRING TOKEN FOR
UPDATE, then the SQL-Mediated Write Access Indication of DLCV2 is set to True.

2) Otherwise, the SQL-Mediated Write Access Indication of DLCV2 is set to False.
V) The Write Token of DLCV2 is set to the null value.

vi) The Construction Indication of DLCV2 is set to the null value.

Conformance Rules

No additional Conformance Rules.

156 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
16.1 <set passthrough statement>

16 Session management

This Clause modifies Clause 19, ““Session management™, in |SO/IEC 9075-2.

16.1 <set passthrough statement>

Function

Set the pass-through flag to True or False for the current SQL-session context.

Format

<set passthrough statement> ::=
SET PASSTHROUGH <passthrough specification>

<passthrough specification> ::=

<value specification>
| OFF

Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) If there is a pass-through foreign server name included in the current SQL-session context, then let FSN
be that pass-through foreign server name, let WN be the name of the foreign-data wrapper included in the
foreign server descriptor of the foreign server identified by FSN, let WR be the foreign-data wrapper
identified by WN, and let WRLN be the name of the library identified in the foreign-data wrapper descriptor
of WR.

2) For each execution handle EXH; that is part of an {<SQL statement name> : ExecutionHandle} pair that

is present in the current SQL-session context, the FreeExecutionHandle() routine in the library
identified by WRLN is invoked with EXH; as the argument.

3) All {<SQL statement name> : ExecutionHandle} pairs present in the current SQL-session context are
removed from the current SQL-session context.

4) Case:

Session management 157

IWD 9075-9:201?(E)
16.1 <set passthrough statement>

a)

b)

If <value specification> is specified, then:

i)

Let Sbe <value specification> and let V be the character string that is the value of
TRIM (BOTH = * FROM S)

If V does not conform to the Format and Syntax Rules of a <foreign server name>, then an
exception condition is raised: invalid foreign server specification.

If a foreign server descriptor that includes V as the foreign server name exists, then let FSbe
that foreign server. Otherwise, an exception condition is raised: invalid foreign server specifi-
cation.

If the current privileges do not include USAGE privilege on FS then an exception condition
is raised: invalid foreign server specification.

The pass-through flag of the current SQL-session context is set to True.

The pass-through foreign server name included in the current SQL-session context is set to the
foreign server name of FS

Otherwise:

i)
i)

The pass-through flag of the current SQL-session context is set to False.

The pass-through foreign server name included in the current SQL-session context is deleted.

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a <set
passthrough statement>.

158 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.1 Description of SQL descriptor areas

17 Dynamic SQL

This Clause modifies Clause 20, “Dynamic SQL™, in ISO/IEC 9075-2.

17.1 Description of SQL descriptor areas

This Subclause modifies Subclause 20.1, “Description of SQL descriptor areas”, in 1SO/IEC 9075-2.

Function

Specify the identifiers, data types, and codes used in SQL item descriptor areas.

Syntax Rules

1) [Insert before SR 6)q)| TYPE indicates DATALINK.
2) |Insert before SR 7)x)| TYPE indicates DATALINK and T is specified by DATALINK.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 1)|Table 12, “Codes used for SQL data types in Dynamic SQL”, specifies the codes associated
with the SQL data types.

Table 12, “Codes used for QL data types in Dynamic SQL”’, modifies Table 25, “Codes used for SQL
data typesin Dynamic SQL”, in [1S09075-2].

Table 12 — Codes used for SQL data types in Dynamic SQL

Data Type Code

All alternatives from All alternatives from ISO/IEC 9075-2
ISO/IEC 9075-2

DATALINK 70

Dynamic SQL 159

IWD 9075-9:201?(E)
17.1 Description of SQL descriptor areas

Conformance Rules

No additional Conformance Rules.

160 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.2 <prepare statement>

17.2 <prepare statement>

This Subclause modifies Subclause 20.6, “<prepare statement>", in 1SO/IEC 9075-2.

Function

Prepare a statement for execution.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)|If the pass-through flag of the current SQL-session context is True and if <SQL
statement variable> conforms to the Format and Syntax Rules of a <preparable statement> other than <set
passthrough statement>, then:

a) Let FSN be the pass-through foreign server name included in the current SQL-session context. Let
WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR.

b) Case:

i) If the current SQL-session context includes a {foreign-data wrapper name : Wrapper-
EnvHandle} pair whose foreign-data wrapper name is equivalent to WN, then let WEH be the
WrapperEnvHandle associated with WN.

i) Otherwise:

1) Let WH be the WrapperHandle allocated for the foreign-data wrapper identified by WN.
The resource identified by WHis referred to as an allocated foreign-data wrapper
description.

2) Let WEH be the WrapperEnvHandle returned by the invocation of Al locWrapperEnv()
in the library identified by WRLN, with WH as the argument.

3) The { WN : WEH} pair is included in the current SQL-session context.

4) WH is deallocated and all its resources are freed.

Dynamic SQL 161

IWD 9075-9:201?(E)

17.2 <prepare statement>

c) Case:

i) If the current SQL-session context includes a {foreign server name : FSConnection-Handle}
pair whose foreign server name is equivalent to FSN, then let FSCH be the FSConnectionHandle
associated with FSN.

i) Otherwise:

1)

2)

3)

4)
5)
6)

Let SH be the ServerHandle allocated for the foreign server identified by FSN. The resource
identified by SH is referred to as an allocated foreign server description.

If there is a user mapping identified by the current authorization identifier, then let UH be
the UserHandle allocated for that user mapping; otherwise, let UH be the UserHandle
allocated for the user mapping identified by PUBLIC. The resource identified by UH is
referred to as an allocated user mapping description.

Let FSCH be the FSConnectionHandle returned by the invocation of ConnectServer ()
in the library identified by WRLN with WEH, SH, and UH as the arguments.

The {FSN : FSCH} pair is included in the current SQL-session context.
SH is deallocated and all its resources are freed.

UH is deallocated and all its resources are freed.

d) Let STV be the contents of <SQL statement variable>. Let STVL be the length of STV. Let EXH be
the ExecutionHandle returned by the invocation of TransmitRequest() in the library identified
by WRLN with FSCH, STV, and STVL as arguments.

e) Ifthe current SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose
SQL statement name is equivalent to <SQL statement name>, then let OEXH be the ExecutionHandle
associated with <SQL statement name>.

) The

FreeExecutionHandle() routine in the library identified by WRLN is invoked with

OEXH as the argument.

i) The

{SQL statement name : ExecutionHandle} pair whose SQL statement name is equivalent

to <SQL statement name> is removed from the current SQL-session context.

f) The {<SQL statement name> : EXH} pair is included in the current SQL-session context.

g) No further

General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

162 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.3 <deallocate prepared statement>

17.3 <deallocate prepared statement>

This Subclause maodifies Subclause 20.8, “<deallocate prepared statement>"’, in | SO/IEC 9075-2.

Function

Deallocate SQL-statements that have been prepared with a <prepare statement>.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)]If the pass-through flag of the current SQL-session context is True, and the current
SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a) Let FSN be the pass-through foreign server name included in the current SQL-session context. Let
WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR. Let EXH be the Execution-
Handle associated with <SQL statement name>.

b) The FreeExecutionHandle() routine in the library identified by WRLN is invoked with EXH
as the argument.

¢) The {SQL statement name : ExecutionHandle} pair whose SQL statement name is equivalent to <SQL
statement name> is removed from the current SQL-session context.

d) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 163

IWD 9075-9:201?(E)
17.4 <describe statement>

17.4 <describe statement>

This Subclause modifies Subclause 20.9, ““<describe statement>"’, in 1SO/IEC 9075-2.

Function

Obtain information about the <select list> columns or <dynamic parameter specification>s contained in a prepared
statement or about the columns of the result set associated with a cursor.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) \Insert before GR 1)| If the pass-through flag of the current SQL-session context is True, and the current

SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a)

b)

d)

Let EXH be the ExecutionHandle associated with <SQL statement name>. Let WPD and WRD be the
wrapper parameter descriptor and wrapper row descriptor, respectively, associated with the
WPDHandle and WRDHandle, respectively, that would be returned by the invocation of GetWPDHan-
dle() and GetWRDHand e () with EXH as the ExecutionHandle parameter.

An SQL system descriptor area shall have been allocated and not yet deallocated whose name is the
value of the <descriptor name>'s <simple value specification> and whose scope is that specified by
the <scope option>. Otherwise, an exception condition is raised: invalid SQL descriptor name.

Let DA be the descriptor area identified by the <descriptor name>. Let N be the <occurrences> specified
when DA was allocated.

DA is set as follows:
i) If the statement being executed is a <describe output statement>, then:
1) Let TD be the value of the COUNT field in WRD.

2) If TDis greater than N, then a completion condition is raised: warning — insufficient item
descriptor areas.

3) All header fields are set to the values of the header fields of WRD with the same name.

164 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.4 <describe statement>

4) If TDis 0 (zero) or TD is greater than N, then no item descriptor areas are set. Otherwise,
the first TD item descriptor areas are set with values from the corresponding item
descriptor areas and, optionally, subordinate descriptors from WRD.

i) If the statement being executed is a <describe input statement>, then:
1) Let TD be the value of the COUNT field in WPD.

2) If TD s greater than N, then a completion condition is raised: warning — insufficient item
descriptor areas.

3) All header fields are set to the values of the header fields of WPD with the same name.

4) If TDis 0 (zero) or TD is greater than N, then no item descriptor areas are set. Otherwise,
the first TD item descriptor areas are set with values from the corresponding item
descriptor areas and, optionally, subordinate descriptors from WPD.

e) No further General Rules of this Subclause are applied.

2) |Insert after GR 7)d)x)| If TYPE indicates DATALINK, then LENGTH and OCTET_LENGTH are set to
the maximum datalink length.

NOTE 50 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 165

IWD 9075-9:201?(E)
17.5 <input using clause>

17.5 <input using clause>

This Subclause modifies Subclause 20.10, “<input using clause>"", in ISO/IEC 9075-2.

Function

Supply input values for an <SQL dynamic statement>.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [lInsert after GR 1)] If the pass-through flag of the current SQL-session context is True, then:

a)

b)

f)

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in
which the foreign-data wrapper is written.

Case:

i) If an <input using clause> is used in a <dynamic open statement>, then let SN be the <statement
name> of the associated <dynamic declare cursor>.

i) Otherwise, let SN be the <SQL statement name> of the <execute statement>.

Let EXH be the ExecutionHandle associated with SN. Let WPD and SPD be the wrapper parameter
descriptor and server parameter descriptor, respectively, associated with the WPDHandle and
SPDHandle, respectively, that would be returned be the invocation of GetWPDHandle () and
GetSPDHandle () with EXH as the ExecutionHandle parameter.

Let D be the value of COUNT in WPD.

If <using arguments> is specified and the number of <using argument>s is not D, then an exception
condition is raised: dynamic SQL error — using clause does not match dynamic parameter specifica-
tions.

If <using input descriptor> is specified, then:
i) Let DA be the descriptor area identified by <descriptor name>.

i) Let N be the value of COUNT in DA.

166 Management of External Data (SQL/MED)

i)

IWD 9075-9:201?(E)
17.5 <input using clause>

If N is greater than the value of <occurrences> specified when the SQL descriptor area identified
by <descriptor name> was allocated or is less than zero, then an exception condition is raised:
dynamic SQL error — invalid descriptor count.

If the first N item descriptor areas in DA are not valid as specified in Subclause 17.1,
“Description of SQL descriptor areas”, then an exception condition is raised: dynamic SQL
error — using clause does not match dynamic parameter specifications.

In the first N item descriptor areas in DA:

1) If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D,
then an exception condition is raised: dynamic SQL error — using clause does not match
dynamic parameter specifications.

2) If the value of INDICATOR is not negative, TYPE does not indicate ROW, and the item
descriptor area is not subordinate to an item descriptor area whose INDICATOR value is
negative or whose TYPE field indicates ARRAY, ARRAY LOCATOR, MULTISET, or
MULTISET LOCATOR, and if the value of DATA is not a valid value of the data type
represented by the item descriptor area, then an exception condition is raised: dynamic
QL error — using clause does not match dynamic parameter specifications.

g) Forl(one)<i<D:

i)

i)

Let TDT be the effective declared type of the i-th input <dynamic parameter specification>
defined by the type representation of the corresponding item descriptor area and its subordinate
descriptor areas in WPD.

Case:
1) If <using input descriptor> is specified, then:
A) Let IDA be the i-th item descriptor area in DA whose LEVEL value is O (zero).
B) Let SDT be the effective declared type represented by IDA.
C) Let SV be the associated value of IDA, which is defined to be
Case:
1) If the value of INDICATOR is negative, then SV is the null value.
1)) Otherwise,
Case:

1) If TYPE indicates ROW, then SV is a row whose type is SDT and whose
field values are the associated values of the immediately subordinate
descriptor areas of IDA.

2) Otherwise, SV is the value of DATA with data type SDT.

2) If <using arguments> is specified, then let SDT and SV be the declared type and value,
respectively, of the i-th <using argument>.

Case:

1) If SDTis a locator type, then

Dynamic SQL 167

IWD 9075-9:201?(E)
17.5 <input using clause>
Case:

A) If SVis not the null value, then let the value TV; of the i-th dynamic parameter be the
value of SV.

B) Otherwise, let the value TV; of the i-th dynamic parameter be the null value.

2) If DT and TDT are predefined data types, then
Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[1ISO9075-2], and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed,

converting SV to type TDT, and the result is the value TV; of the i-th input dynamic

parameter.
B) Otherwise:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>”,
in [ISO9075-2], then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

1)) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.13, “<cast specification>",
in [1SO9075-2], then an exception condition is raised in accordance with the
General Rules of Subclause 6.13, “<cast specification>", in [ISO9075-2].

1) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV, of the i-th input dynamic
parameter.

iv) Case:

1) If <using input descriptor> is specified, then all fields, except DATA and DATA_POINTER,
in the i-th item descriptor area of SPD, that can be set according to Table 33, “Ability to
set foreign-data wrapper descriptor fields”, are set with values from the corresponding
fields of the item descriptor area and, optionally, subordinate descriptors of DA.

2) If <using arguments> is specified, then all fields, except DATA and DATA_POINTER,
in the i-th item descriptor area of SPD, that can be set according to Table 33, “Ability to
set foreign-data wrapper descriptor fields”, are set to implementation-dependent values.

168 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.5 <input using clause>

V) Case:

1) If HL1 and HL2 are both pointer-supporting languages, then the DATA_POINTER field
in the i-th item descriptor area of SPD is set to the address of the buffer that contains the
value TV;.

2) Otherwise, the DATA field in the i-th item descriptor area of SPD is set to TV;.

h) All header fields in SPD, that can be set according to Table 33, “Ability to set foreign-data wrapper
descriptor fields”, are set to the values of the header fields of WPD with equivalent names.

i) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 169

IWD 9075-9:201?(E)
17.6 <output using clause>

17.6 <output using clause>

This Subclause modifies Subclause 20.11, “<output using clause>", in 1SO/IEC 9075-2.

Function

Supply output variables for an <SQL dynamic statement>.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)|If the pass-through flag of the current SQL-session context is True, then:

a)

b)

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in
which the foreign-data wrapper is written.

Case:

i) If an <output using clause> is used in a <dynamic fetch statement>, then let SN be the <statement
name> of the associated <dynamic declare cursor>.

i) Otherwise, let SN be the <SQL statement name> of the <execute statement>.

Let EXH be the ExecutionHandle associated with SN. Let WRD and SRD be the wrapper row
descriptor and server row descriptor, respectively, associated with the WRDHandle and SRDHandle,
respectively, that would be returned by the invocation of GetWRDHand e () and GetSRDHandle()
with EXH as the ExecutionHandle parameter.

Let D be the value of COUNT in WRD.

If <into arguments> is specified and the number of <into argument>s is not D, then an exception
condition is raised: dynamic SQL error — using clause does not match target specifications.

If <into descriptor> is specified, then:
i) Let DA be the descriptor area identified by <descriptor name>.

i) Let N be the value of COUNT in DA.

170 Management of External Data (SQL/MED)

9)

i)

IWD 9075-9:201?(E)
17.6 <output using clause>

If N is greater than the value of <occurrences> specified when the SQL descriptor area identified
by <descriptor name> was allocated or is less than zero, then an exception condition is raised:
dynamic SQL error — invalid descriptor count.

If the first N item descriptor areas in DA are not valid as specified in Subclause 17.1,
“Description of SQL descriptor areas”, then an exception condition is raised: dynamic SQL
error — using clause does not match target specifications.

In the first N item descriptor areas in DA, if the number of item descriptor areas in which the
value of LEVEL is 0 (zero) is not D, then an exception condition is raised: dynamic SQL error
— using clause does not match target specifications.

For1 (one) <i<D:

i)

i)

Let SDT be the effective declared type of i-th descriptor area whose LEVEL value is 0 (zero)
and its subordinate descriptor areas in WRD.

Case:

1) If HL1 and HLZ2 are both pointer-supporting languages, then let SV be the value of the
buffer addressed by the DATA_POINTER field in the corresponding item descriptor area
of SRD, with data type SDT.

2) Otherwise, let SV be the value of the DATA field in the corresponding item descriptor area
of SRD, with data type SDT.

Case:
1) If <into descriptor> is specified, then:
A) Let IDA be the i-th item descriptor area in DA whose LEVEL value is 0 (zero).
B) Let TDT be the declared type represented by IDA.
2) If <into arguments> is specified, then let TDT be the data type of the i-th <into argument>.

If the <output using clause> is used in a <dynamic fetch statement>, then let CR be the dynamic
cursor identified by the <dynamic fetch statement>, and let LTDT be the most specific type of
the i-th <target specification> or <into argument> on the most recently executed <dynamic
fetch statement> prior to the current execution, if any, for CR. It is implementation-defined
whether or not an exception condition is raised: dynamic SQL error — restricted data type
attribute violation if any of the following are true:

1) LTDT and TDT both identify a binary large object type and only one of LTDT and TDT is
a binary large object locator.

2) LTDTand TDT both identify a character large object type and only one of LTDT and TDT
is a character large object locator.

3) LTDT and TDT both identify an array type and only one of LTDT and TDT is an array
locator.

4) LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a multiset
locator.

5) LTDTand TDT both identify a user-defined type and only one of LTDT and TDT is a user-
defined type locator.

Dynamic SQL 171

IWD 9075-9:201?(E)
17.6 <output using clause>
iv) Case:
1) If TDTis a locator type, then
Case:

A) If SVisnot the null value, then a locator L that uniquely identifies SV is generated and
is the value TV; of the i-th <target specification>.

B) Otherwise, the value TV, of the i-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then
Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[ISO9075-2], and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed,
converting SV to type TDT, and the result is the value TV; of the i-th <target specifica-

tion>.
B) Otherwise:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>”",
in [1SO9075-2], then an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

1)) If the <cast specification>

CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.13, “<cast specification>",
in [ISO9075-2], then an exception condition is raised in accordance with the
General Rules of Subclause 6.13, “<cast specification>", in [ISO9075-2].

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV; of the i-th <target spec-
ification>.

V) Case:

1) If <into descriptor> is specified, then all fields in IDA are set with values from the corre-
sponding fields of the item descriptor area and, optionally, subordinate descriptors of SRD.

2) If <into arguments> is specified, then the Rules in Subclause 9.1, “Retrieval assignment”,
are applied to TV; and the i-th <into argument> as VALUE and TARGET, respectively.

172 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.6 <output using clause>

h) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 173

IWD 9075-9:201?(E)
17.7 <execute statement>

17.7 <execute statement>

This Subclause modifies Subclause 20.12, ““< execute statement>"’, in |SO/IEC 9075-2.

Function

Associate input SQL parameters and output targets with a prepared statement and execute the statement.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)]If the pass-through flag of the current SQL-session context is True, and the current
SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a) Let FSN be the pass-through foreign server name included in the current SQL-session context. Let
WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR. Let EXH be the Execution-
Handle associated with <SQL statement name>.

b) If a<parameter using clause> is specified, then the General Rules specified in Subclause 17.5, “<input
using clause>", for a <parameter using clause> in an <execute statement> are applied.

¢) The Open() routine in the library identified by WRLN is invoked with EXH as argument.

d) If a <result using clause> is specified, then the General Rules specified in Subclause 17.6, “<output
using clause>", for a <result using clause> in an <execute statement> are applied.

e) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

174 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.8 <dynamic declare cursor>

17.8 <dynamic declare cursor>

This Subclause modifies Subclause 20.14, “<dynamic declare cursor>", in | SO/IEC 9075-2.

Function

Declare a declared dynamic cursor to be associated with a <statement name>, which may in turn be associated
with a <cursor specification>.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) \Insert before GR 1)| If the pass-through flag of the current SQL-session context is True, then:

a) If <cursor sensitivity> is specified, then an exception condition is raised: pass-through specific condition
— invalid cursor option.

b) If <cursor scrollability> is specified, then an exception condition is raised: pass-through specific
condition — invalid cursor option.

¢) If <cursor holdability> is specified, then an exception condition is raised: pass-through specific con-
dition — invalid cursor option.

d) If <cursor returnability> is specified, then an exception condition is raised: pass-through specific
condition — invalid cursor option.

e) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 175

IWD 9075-9:201?(E)
17.9 <allocate extended dynamic cursor statement>

17.9 <allocate extended dynamic cursor statement>

This Subclause modifies Subclause 20.15, ““<allocate extended dynamic cursor statement>"’, in |SO/IEC 9075-2.

Function

Define a cursor based on a prepared statement for a <cursor specification>.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)]If the pass-through flag of the current SQL-session context is True, then an exception
condition is raised: pass-through specific condition — invalid cursor allocation.

Conformance Rules

No additional Conformance Rules.

176 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.10 <allocate received cursor statement>

17.10 <allocate received cursor statement>

This Subclause modifies Subclause 20.16, “<allocate received cursor statement>"’, in |SO/IEC 9075-2.

Function

Assign a cursor to the ordered set of result sets returned from an SQL-invoked procedure.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)]If the pass-through flag of the current SQL-session context is True, then an exception
condition is raised: pass-through specific condition — invalid cursor allocation.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 177

IWD 9075-9:201?(E)
17.11 <dynamic open statement>

17.11 <dynamic open statement>

This Subclause modifies Subclause 20.17, ““<dynamic open statement>", in 1SO/IEC 9075-2.

Function

Associate input dynamic parameters with a <cursor specification> and open the dynamic cursor.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)a)| If the pass-through flag of the current SQL-session context is True, and the current
SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a) Let FSN be the name of the pass-through foreign server included in the current SQL-session context.
Let WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR. Let EXH be the Execution-
Handle associated with <SQL statement name>.

b) If an <input using clause> is specified, then the General Rules specified in Subclause 17.5, “<input
using clause>", for <dynamic open statement> are applied.

¢) The Open() routine in the library identified by WRLN is invoked with EXH as argument.

d) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

178 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
17.12 <dynamic fetch statement>

17.12 <dynamic fetch statement>

This Subclause modifies Subclause 20.18, ““<dynamic fetch statement>, in 1SO/IEC 9075-2.

Function

Fetch a row for a dynamic cursor.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)]If the pass-through flag of the current SQL-session context is True, and the current
SQL-session context includes a {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a) Let FSN be the pass-through foreign server name included in the current SQL-session context. Let
WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR. Let EXH be the Execution-
Handle associated with <SQL statement name>.

b) The I'terate() routine in the library identified by WRLN is invoked with EXH as argument.

¢) The General Rules of Subclause 17.6, “<output using clause>”, are applied to the <dynamic fetch
statement> and the current row of CR as the retrieved row.

d) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

Dynamic SQL 179

IWD 9075-9:201?(E)
17.13 <dynamic close statement>

17.13 <dynamic close statement>

This Subclause modifies Subclause 20.20, “<dynamic close statement>"", in | SO/IEC 9075-2.

Function

Close a dynamic cursor.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 3)]If the pass-through flag of the current SQL-session context is True, and the current
SQL-session context includes an {SQL statement name : ExecutionHandle} pair whose SQL statement
name is equivalent to <SQL statement name>, then:

a) Let FSN be the pass-through foreign server name included in the current SQL-session context. Let
WN be the name of the foreign-data wrapper included in the foreign server descriptor of the foreign
server identified by FSN. Let WR be the foreign-data wrapper identified by WN. Let WRLN be the
name of the library identified in the foreign-data wrapper descriptor of WR. Let EXH be the Execution-
Handle associated with <SQL statement name>.

b) The Close() routine in the library identified by WRLN is invoked with EXH as argument.

¢) No further General Rules of this Subclause are applied.

Conformance Rules

No additional Conformance Rules.

180 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
18.1 <embedded SQL Ada program>

18 Embedded SQL

This Clause modifies Clause 21, “Embedded SQL™, in ISO/IEC 9075-2.

** Editor's Note (number 3) **

The semantics of data link variables in the embedded languages (<Ada datalink variable>, etc.) is not specified. The <host parameter
data type> of these variables is not clear (is it <datalink type>? is it VARCHAR?) If these function like SQL TYPE IS UDT AS PT,
where UDT is a <path-resolved user-defined type name> and PT is a <predefined type>, then the answer would be VARCHAR. But
in that case, there are no rules specifying how the contents of the character string in the host program relates to a data link. See Possible

Problem .

18.1 <embedded SQL Ada program>

This Subclause modifies Subclause 21.3, “<embedded SQL Ada program>"’, in ISO/IEC 9075-2.

Function

Specify an <embedded SQL Ada program>.

Format

<Ada derived type specification> ::=
Il All alternatives froml|SQO I|EC 9075-2
| <Ada DATALINK variable>

<Ada DATALINK variable> ::=
SQL TYPE IS <datalink type>

Syntax Rules

1) [Insert after SR 5)n)| The syntax

SQL TYPE IS
<datalink type>

shall be replaced by

Interfaces.SQL.CHAR(1..MDL)

where MDL is the maximum datalink length, in any <Ada DATALINK variable>.
NOTE 51 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.

Embedded SQL 181

IWD 9075-9:201?(E)
18.1 <embedded SQL Ada program>

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain an
<Ada DATALINK variable>.

2) Without Feature M011, “Datalinks via Ada”, conforming SQL language shall not contain an <Ada
DATALINK variable>.

182 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
18.2 <embedded SQL C program>

18.2 <embedded SQL C program>

This Subclause modifies Subclause 21.4, “<embedded SQL C program>"’, in ISO/IEC 9075-2.

Function

Specify an <embedded SQL C program>.

Format

<C derived variable> ::=
Il Al alternatives from|SQ|EC 9075-2
| <C DATALINK variable>

<C DATALINK variable> ::=
SQL TYPE 1S <datalink type> <C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [<C initial value>] }...]

Syntax Rules

1) |[Insert after SR 5)p)| The syntax

SQL TYPE 1S <datalink type>

shall be replaced by

char[MDL]

where MDL is the maximum datalink length, in any <C DATALINK variable>.
NOTE 52 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<C DATALINK variable>.

2) Without Feature M012, “Datalinks via C”, conforming SQL language shall not contain a <C DATALINK
variable>.

Embedded SQL 183

IWD 9075-9:201?(E)
18.3 <embedded SQL COBOL program>

18.3 <embedded SQL COBOL program>

This Subclause modifies Subclause 21.5, “<embedded SQL COBOL program>"’, in | SO/IEC 9075-2.

Function

Specify an <embedded SQL COBOL program>.

Format

<COBOL derived type specification> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <COBOL DATALINK variable>

<COBOL DATALINK variable> ::=
[USAGE [IS]] SQL TYPE IS <datalink type>

Syntax Rules

1) |Insert after SR 5)m)| The syntax

SQL TYPE 1S <datalink type>

shall be replaced by

PIC X(MDL).
where MDL is the maximum datalink length, in any <COBOL DATALINK variable>.

NOTE 53 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<COBOL DATALINK variable>.

2) Without Feature M013, “Datalinks via COBOL ”, conforming SQL language shall not contain a<COBOL
DATALINK variable>.

184 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
18.4 <embedded SQL Fortran program>

18.4 <embedded SQL Fortran program>

This Subclause modifies Subclause 21.6, “<embedded SQL Fortran program>"", in |SO/IEC 9075-2.

Function

Specify an <embedded SQL Fortran program>.

Format

<Fortran derived type specification> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <Fortran DATALINK variable>

<Fortran DATALINK variable> ::=
SQL TYPE IS <datalink type>

Syntax Rules

1) |[Insert after SR 6)n)| The syntax

SQL TYPE 1S <datalink type>

for a given <Fortran host identifier> fhi shall be replaced by

CHARACTER f hi * MDL

where MDL is the maximum datalink length, in any <Fortran DATALINK variable>.
NOTE 54 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<Fortran DATALINK variable>.

2) Without Feature M014, “Datalinks via Fortran”, conforming SQL language shall not contain a <Fortran
DATALINK variable>.

Embedded SQL 185

IWD 9075-9:201?(E)
18.5 <embedded SQL MUMPS program>

18.5 <embedded SQL MUMPS program>

This Subclause modifies Subclause 21.7, “<embedded SQL MUMPS program>, in |SO/IEC 9075-2.

Function

Specify an <embedded SQL MUMPS program>.

Format

<MUMPS derived type specification> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <MUMPS DATALINK variable>

<MUMPS DATALINK variable> ::=
SQL TYPE IS <datalink type>

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<MUMPS DATALINK variable>.

2) Without Feature M015, “Datalinks via M ”, conforming SQL language shall not contain a <MUMPS
DATALINK variable>.

186 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
18.6 <embedded SQL Pascal program>

18.6 <embedded SQL Pascal program>

This Subclause modifies Subclause 21.8, “<embedded SQL Pascal program>’, in ISO/IEC 9075-2.

Function

Specify an <embedded SQL Pascal program>.

Format

<Pascal derived type specification> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <Pascal DATALINK variable>

<Pascal DATALINK variable> ::=
SQL TYPE IS <datalink type>

Syntax Rules

1) |[Insert after SR 5)n)| The syntax

SQL TYPE 1S <datalink type>

shall be replaced by

PACKED ARRAY [1..MDL] OF CHAR

where MDL is the maximum datalink length, in any <Pascal DATALINK variable>.
NOTE 55 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<Pascal DATALINK variable>.

2) Without Feature M016, “Datalinks via Pascal”, conforming SQL language shall not contain a <Pascal
DATALINK variable>.

Embedded SQL 187

IWD 9075-9:201?(E)
18.7 <embedded SQL PL/I program>

18.7 <embedded SQL PL/I program>

This Subclause modifies Subclause 21.9, “<embedded SQL PL/I program>"’, in ISO/IEC 9075-2.

Function

Specify an <embedded SQL PL/I program>.

Format

<PL/1 derived type specification> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <PL/1 DATALINK variable>

<PL/1 DATALINK variable> ::=
SQL TYPE IS <datalink type>

Syntax Rules

1) |[Insert after SR 5)n)| The syntax

SQL TYPE 1S <datalink type>

shall be replaced by

CHARACTER(MDL)
where MDL is the maximum datalink length, in any <PL/I DATALINK variable>.

NOTE 56 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.
Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not contain a
<PL/I DATALINK variable>.

2) Without Feature M017, “Datalinks via PL/I”, conforming SQL language shall not contain a <PL/I
DATALINK variable>.

188 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
19.1 <CLlI routine>

19 Call-Level Interface specifications

This Clause modifies Clause 5, ““Call-Level Interface specifications”, in ISO/IEC 9075-3.

19.1 <CLI routine>

This Subclause modifies Subclause 5.1, “<CLI routine>"", in 1SO/IEC 9075-3.

Function

Describe a generic SQL/CLI routine.

Format
<CLI routine> ::=
Il Al alternatives fromlISQ|EC 9075-3

| BuildDatalLink
| GetDatalLinkAttr

Syntax Rules

1) Table 13, “Abbreviated SQL/CLI generic names”, modifies Table 4, *““Abbreviated SQL/CLI generic
names”, in ISO/IEC 9075-3.

Table 13 — Abbreviated SQL/CLI generic names

Generic Name Abbreviation

All alternatives from I1SO/IEC 9075-3

BuildDataLink BDL

GetDataLinkAttr GDL

Access Rules

No additional Access Rules.

Call-Level Interface specifications 189

IWD 9075-9:201?(E)
19.1 <CLlI routine>

General Rules

No additional General Rules.

19.2 Implicit DESCRIBE USING clause

This Subclause modifies Subclause 5.9, “Implicit DESCRIBE USNG clause”, in I1SO/IEC 9075-3.

Function

Specify the rules for an implicit DESCRIBE USING clause.

General Rules

1) [Insert after GR 5)c)iv)10)| If TYPE indicates DATALINK, then LENGTH and OCTET_LENGTH are
set to the maximum possible length in octets of the datalink.

2) |Insert after GR 8)d)vi)10)| If TYPE indicates DATALINK, then LENGTH and OCTET_LENGTH are
set to the maximum possible length in octets of the datalink.

19.3 Description of CLI item descriptor areas

This Subclause maodifies Subclause 5.18, “Description of CLI item descriptor areas”, in 1SO/IEC 9075-3.

Function

Specify the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1) [Insert after SR 5)c)xiii)| TYPE indicates DATALINK.

2) [Replace SR 7)c)iv) TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT,
CHARACTER LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE
OBJECT, BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE
PRECISION, USER-DEFINED TYPE LOCATOR, REF, or DATALINK.

3) \Insert after SR 12)c)ix) \ TYPE indicates DATALINK and one of the following is true:
a) NULL is true.
b) DEFERRED is true.

4) [Replace SR 13)c)iv)| TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT,
CHARACTER LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE

190 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
19.3 Description of CLI item descriptor areas

OBJECT, BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE
PRECISION, USER-DEFINED TYPE LOCATOR, REF, or DATALINK.

General Rules

1) Table 14, “Codes used for implementation data typesin SQL/CLI"’, modifies Table 7, ““Codes used for
implementation data typesin SQL/CLI”, in ISO/IEC 9075-3.

Table 14 — Codes used for implementation data types in SQL/CLI

Data Type Code

All alternatives from | SO/IEC 9075-3

DATALINK 70

2) Table 15, ““Codes used for application data typesin SQL/CLI”’, modifies Table 8, ““Codes used for appli-
cation data typesin SQL/CLI™, in ISO/IEC 9075-3.

Table 15 — Codes used for application data types in SQL/CLI

Data Type Code

All alternatives from | SO/IEC 9075-3

DATALINK 70

19.4 Other tables associated with CLI

This Subclause modifies Subclause 5.19, “Other tables associated with CLI™, in |SO/IEC 9075-3.

Table 16, ““Codes used to identify SQL/CLI routines, modifies Table 28, ““Codes used to identify SQL/CLI
routines”, in 1SO/IEC 9075-3.

Table 16 — Codes used to identify SQL/CLI routines

Generic Name Code

All alternatives from | SO/IEC 9075-3

BuildDataLink 1029

GetDataLinkAttr 1034

Call-Level Interface specifications 191

IWD 9075-9:201?(E)
19.4 Other tables associated with CLI

Table 17, “Codes and data types for implementation information”, modifies Table 29, “Codes and data types
for implementation information™, in 1SO/IEC 9075-3.

Table 17 — Codes and data types for implementation information

Information Type Code Data Type
QI | alternatives from 1 SO/IEC 9075-
MAXIMUM DATALINK LENGTH | 20004 INTEGER
Table 18 — Codes used for datalink attributes
Attribute Code

URL COMPLETE 3

URL PATH 4

URL PATH ONLY 5

URL SCHEME 6
URL SERVER 7
Implementation- <0
defined datalink

attribute

Table 19, “Data types of attributes’”, modifies Table 20, ““Data types of attributes”, in |SO/IEC 9075-3.

Table 19 — Data types of attributes

Attribute Data type Values

All alternatives from |SO/IEC
9075-3

URL COMPLETE CHARACTERVARY'NG(L)]' Datalink complete URL

URL PATH ONLY CHARACTERVARY'NG(L)l Datalink URL path only

URL SCHEME CHARACTERVARY'NG(L)]' Datalink URL scheme

192 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
19.4 Other tables associated with CLI

Attribute Data type Values

URL SERVER CHARACTERVARY'NG(L)]' Datalink URL server

Implementation- Implementation-defined data | Implementation-defined value

defined datalink type

attribute

LWhere L isan implementation-defined integer not less than the maximum datalink length. (The term “maximum datalink length”
is defined in Subclause 4.8, “Datalinks”.)

Conformance Rules

No additional Conformance Rules.

Call-Level Interface specifications 193

IWD 9075-9:201?(E)
19.5 SQL/CLI data type correspondences

19.5 SQL/CLI data type correspondences

This Subclause modifies Subclause 5.20, “SQL/CLI data type correspondences”, in | SO/IEC 9075-3.

Function

|Replace first paragraph| Specify the SQL/CLI data type correspondences for SQL data types and host language
types associated with the required parameter mechanisms, as shown in Table 3, “Supported calling conventions
of SQL/CLI routines by language”, in [ISO9075-3].

Tables

Table 20, “SQL/CLI data type correspondences for Ada”, modifies Table 40, ““SQL/CLI data type correspon-
dencesfor Ada™, in ISO/IEC 9075-3.

Table 20 — SQL/CLI data type correspondences for Ada

SQL Data Type Ada Data Type

All alternatives from |SO/IEC 9075-3 | All alternatives from | SO/IEC 9075-3

DATALINK SQL_STANDARD.CHAR, with P'Length of LD*

1 The length LD of the Ada character type corresponding with SQL data type DATALINK is implementation-defined.

Table 21, “SQL/CLI data type correspondencesfor C”, modifies Table 41, “SQL/CLI data type correspondences
for C”, in ISO/IEC 9075-3.

Table 21 — SQL/CLI data type correspondences for C

SQL Data Type C Data Type

All alternatives from ISO/IEC 9075-3 | All alternatives from | SO/IEC 9075-3

DATALINK char, with length LD®

3 The length LD of the C character type corresponding with SQL data type DATALINK is implementation-defined.

Table 22, “SQL/CLI data type correspondences for COBOL”, modifies Table 42, “SQL/CLI data type corre-
spondences for COBOL”, in | SO/IEC 9075-3.

194 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
19.5 SQL/CLI data type correspondences

Table 22 — SQL/CLI data type correspondences for COBOL

SQL Data Type

COBOL Data Type

All alternatives from | SO/IEC 9075-3

All alternatives from | SO/IEC 9075-3

DATALINK

alphanumeric, with length LD®

3 The length LD of the COBOL character type corresponding with SQL data type DATALINK is implementation-defined.

Table 23, “SQL/CLI data type correspondences for Fortran™, modifies Table 43, “SQL/CLI data type corre-
spondences for Fortran™, in ISO/IEC 9075-3.

Table 23 — SQL/CLI data type correspondences for Fortran

SQL Data Type

Fortran Data Type

All alternatives from |SO/IEC 9075-3

All alternatives from |SO/IEC 9075-3

DATALINK

CHARACTER with length LD?

2 The length LD of the Fortran character type corresponding with SQL data type DATALINK is implementation-defined.

Table 24, “SQL/CLI data type correspondencesfor M”’, modifies Table 44, “SQL/CLI data type correspondences

for M”, in ISO/IEC 9075-3.

Table 24 — SQL/CLI data type correspondences for M

SQL Data Type

MUMPS Data Type

All alternatives from | SO/IEC 9075-3

All alternatives from | SO/IEC 9075-3

DATALINK

character

Table 25, “SQL/CLI data type correspondencesfor Pascal””, modifies Table 45, ““SQL/CLI data type correspon-

dences for Pascal”, in ISO/IEC 9075-3.

Table 25 — SQL/CLI data type correspondences for Pascal

SQL Data Type

Pascal Data Type

All alternatives from I1SO/IEC 9075-3

All alternatives from I1SO/IEC 9075-3

DATALINK

PACKED ARRAY[1..LD?] OF CHAR

Call-Level Interface specifications 195

IWD 9075-9:201?(E)
19.5 SQL/CLI data type correspondences

SQL Data Type Pascal Data Type

2 The length LD of the Pascal character type corresponding with SQL data type DATALINK is implementation-defined.

Table 26, “SQL/CLI data type correspondences for PL/I”’, modifies Table 46, ““SQL/CLI data type correspon-
dences for PL/1”, in ISO/IEC 9075-3.

Table 26 — SQL/CLI data type correspondences for PL/I

SQL Data Type PL/I Data Type

All alternatives from ISO/IEC 9075-3 | All alternatives from |SO/IEC 9075-3

DATALINK CHARACTER VARYING(LD), where LD is implementation-
defined

196 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
20.1 BuildDataLink

20 SQL/CLI routines

This Clause modifies Clause 6, “SQL/CLI routines”, in ISO/IEC 9075-3.

20.1 BuildDataLink

Function

Build a datalink value.
Definition

Bui ldDataLink (

StatementHandle IN INTEGER,
DatalLocation IN CHARACTER(L1),
DatalLocationLength IN INTEGER,
DatalLink OUT CHARACTER(L2),
BufferLength IN INTEGER,
StringLength OUT INTEGER)

RETURNS SMALLINT

where L1 has a maximum value equal to the implementation-defined maximum length of a variable-length
character string and L2 has a maximum value equal to the implementation-defined maximum length of a datalink.

General Rules

1) Let SH be the value of StatementHandle.

NOTE 57 — SH is used only if BuildDataLink issues a completion or exception condition.

2) Let DL be the datalink value whose File Reference is DatalLocation.
NOTE 58 — File Reference is defined in Subclause 4.8, “Datalinks”.

3) Let DLL be the length in octets of DL.

4) If DLL is greater than the maximum datalink length, then an exception condition is raised: CLI-specific
condition — invalid datalink value.

NOTE 59 — The term “maximum datalink length” is defined in Subclause 4.8, “Datalinks”.

5) Apply the General Rules of Subclause 5.14, “Character string retrieval”, in [1ISO9075-3] with DataL.ink,
DL, BufferLength, and StringLength as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

SQL/CLI routines 197

IWD 9075-9:201?(E)
20.1 BuildDataLink

Conformance Rules

1) Without Feature M002, “Datalinks via SQL/CLI”, conforming SQL language shall not contain Bui 1d-
DataLink().

198 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
20.2 GetDataLinkAttr

20.2 GetDataLinkAttr

Function

Retrieve the value of a datalink attribute.

Definition

GetDatalLinkAttr (

StatementHandle IN INTEGER,
Attribute IN SMALLINT,
DataLink IN CHARACTER(L),
DatalLinkLength IN INTEGER,
Value OUT ANY,
BufferLength IN INTEGER,
StringLength OUT INTEGER)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a datalink.

General Rules

1)

2)
3)

4)
5)

6)
7)

8)
9)

Let SH be the value of StatementHandle.

NOTE 60 — SH is used only if GetDataLinkAttr issues a completion or exception condition.
Let A be the value of Attribute.

If A'is not one of the code values in Table 18, “Codes used for datalink attributes”, then an exception
condition is raised: CLI-specific condition — invalid attribute identifier.

Let DLL be the value of DataLinkLength.
Case:
a) If DLL is not negative, then let DL be the first DLL octets of Datalink.

b) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let ML be the implementation-defined maximum length in characters of a datalink value.

If DL is not a valid datalink value, then an exception condition is raised: CLI-specific condition — invalid
datalink value.

Let BL be the value of BufferLength.
If A specifies an implementation-defined datalink attribute, then
Case:

a) Ifthe data type for the datalink attribute is specified as INTEGER in Table 19, “Data types of attributes”,
then Value is set to the value of the implementation-defined datalink attribute and no further General
Rules of this Subclause are applied.

SQL/CLI routines 199

IWD 9075-9:201?(E)
20.2 GetDatalLinkAttr
b) Otherwise:
i) Let AV be the value of the implementation-defined datalink attribute.

i) The General Rules of Subclause 5.14, “Character string retrieval”, in [ISO9075-3] are applied
with Value, AV, BL, and StringLength as TARGET, VALUE, OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

10) Case:
a) If Aindicates URL COMPLETE, then AV is set to the value of the File Reference of DL.

b) If Aindicates URL PATH, then AV is set to the value of the path of DL, possibly combined with an
access token under the General Rules of Subclause 6.4, “<string value function>”.

¢) If Aindicates URL PATH ONLY, then AV is set to the value of the path of DL.
d) If Aindicates URL SCHEME, then AV is set to the value of the scheme of DL.
e) If Aindicates URL SERVER, then AV is set to the value of the host of DL.

NOTE 61 — “host”, “scheme”, and “path” are defined in Subclause 6.6, “<datalink value function>".

11) The General Rules of Subclause 5.14, “Character string retrieval”, in [ISO9075-3] are applied with Value,
AV, BL, and StringLength as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules

1) Without Feature M002, “Datalinks via SQL/CLI”, conforming SQL language shall not contain Get-
DataLinkAttr().

200 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
20.3 GetlInfo

20.3 Getlnfo

This Subclause modifies Subclause 6.38, “GetInfo”, in ISO/IEC 9075-3.

Function

Get information about the implementation.

Definition

No additional Definition.

General Rules

1) [Insertinto the dashed list in GR 10)]
— MAXIMUM DATALINK LENGTH

Conformance Rules

1) Without Feature M002, “Datalinks via SQL/CLI”, in conforming SQL language, the value of InfoType
shall not indicate MAXIMUM DATALINK LENGTH.

SQL/CLI routines 201

IWD 9075-9:201?(E)

(Blank page)

202 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.1 Description of foreign-data wrapper item descriptor areas

21 SQL/MED common specifications

21.1 Description of foreign-data wrapper item descriptor areas

Function

Specify the identifiers, data types and codes for fields used in foreign-data wrapper item descriptor areas.

Syntax Rules

1)

2)

3)

4)

5)

6)

A foreign-data wrapper item descriptor area consists of the fields specified in Table 4, “Fields in foreign-
data wrapper descriptor areas”.

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in which
the foreign-data wrapper is written.

Given a foreign-data wrapper item descriptor area DA in which the value of LEVEL is some value N, the
immediately subordinate descriptor areas of IDA are those foreign-data wrapper item descriptor areas in
which the value of LEVEL is N+1 and whose position in the foreign-data wrapper descriptor area follows
that of IDA and precedes that of any foreign-data wrapper item descriptor area in which the value of LEVEL
is less than N+1. The subordinate descriptor areas of IDA are those foreign-data wrapper item descriptor
areas that are immediately subordinate descriptor areas of IDA or that are subordinate descriptor areas of
a foreign-data wrapper item descriptor area that is immediately subordinate to IDA.

Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are defined to
be

Case:

a) If DT is ROW, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) IfDTis ARRAY or MULTISET, then the descriptor of the associated element type of DT. The subor-
dinate descriptors of DE are those descriptors that are immediately subordinate descriptors of DE or
that are subordinate descriptors of a descriptor that is immediately subordinate to DE.

Given a descriptor DE, let SDE; represent its j-th immediately subordinate descriptor. There is an implied
ordering of the subordinate descriptors of DE, such that:

a) SDE; is in the first ordinal position.

b) The ordinal position of SDEj. is K+NS+1, where K is the ordinal position of SDE; and NSis the
number of subordinate descriptors of SDE;. The implicitly ordered subordinate descriptors of SDE;
occupy contiguous ordinal positions starting at position K+1.

Let HL be the programming language of the invoking SQL-server. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 19.5, “SQL/CLI data type

SQL/MED common specifications 203

IWD 9075-9:201?(E)
21.1 Description of foreign-data wrapper item descriptor areas

correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

7) A foreign-data wrapper item descriptor area IDA in a foreign-data wrapper descriptor area that is a server
row descriptor or a server parameter descriptor is consistent if and only if all of the following are true:

a) TYPE indicates ROW or is one of the code values in Table 15, “Codes used for application data types
in SQL/CLI”.

b) Exactly one of the following is true:

i) TYPE indicates NUMERIC, and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

i) TYPE indicates DECIMAL, and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

iii) TYPEindicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, CHARACTER
LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT,
BINARY LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE
PRECISION, BOOLEAN, USER-DEFINED TYPE LOCATOR, REF, or DATALINK.

iv) TYPE indicates FLOAT, and PRECISION is a valid precision value for the FLOAT data type.

V) TYPE indicates ROW and, where N is the value of the DEGREE field, there are exactly N
immediately subordinate descriptor areas of IDA, and those item descriptor areas are valid.

vi) TYPE indicates ARRAY LOCATOR or MULTISET LOCATOR, there is exactly 1 (one)
immediately subordinate descriptor area of IDA, and that item descriptor area is valid.

vii) TYPE indicates an implementation-defined data type.
8) Let IDA be a foreign-data wrapper item descriptor area in a server parameter descriptor.

9) If the value of INDICATOR is the appropriate 'Code’ for SQL NULL DATA in Table 27, “Miscellaneous
codes used in CLI”, in [ISO9075-3], then NULL is true for IDA. Otherwise, NULL is false for IDA.

10) IDA s valid if and only if:

a) TYPE is one of the code values in Table 15, “Codes used for application data types in SQL/CLI”, or
TYPE indicates ROW.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the server
parameter descriptor associated with IDA. DA shall be one of exactly TLC item descriptor areas in
the server parameter descriptor.

c) One of the following is true:
Case:

i) TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, and the value V of OCTET_LENGTH is greater
than zero, and

Case:

1) If HL1 and HL2 are both pointer-supporting languages, then the number of characters
wholly contained in the first V octets of the host variable addressed by DATA POINTER

204 Management of External Data (SQL/MED)

d)

Xi)

Case:

i)

IWD 9075-9:201?(E)
21.1 Description of foreign-data wrapper item descriptor areas

is a valid length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

2) Otherwise, the number of characters wholly contained in the first V octets of DATA is a
valid length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, or BINARY LARGE OBJECT data type, as indicated by TYPE.

TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, or USER-DEFINED TYPE LOCATOR.

TYPE indicates NUMERIC, and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

TYPE indicates DECIMAL, and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.
TYPE indicates FLOAT, and PRECISION is a valid precision value for the FLOAT data type.
TYPE indicates REF.

TYPE indicates DATALINK.

TYPE indicates ROW and, where N is the value of the DEGREE field, there are exactly N
immediately subordinate foreign-data wrapper descriptor areas of IDA, and those foreign-data
wrapper item descriptor areas are valid.

TYPE indicates ARRAY LOCATOR or MULTISET LOCATOR, there is exactly 1 (one)
immediately subordinate descriptor area of IDA, and that subordinate descriptor area is valid.

TYPE indicates an implementation-defined data type.

If HL1 and HL2 are both pointer-supporting languages, then one of the following is true:
1) DATA_POINTER is zero and NULL is true.

2) DATA _POINTER is not zero and the value of the host variable addressed by
DATA_POINTER is a valid value of the data type indicated by TYPE.

Otherwise, DATA is a valid value of the data type indicated by TYPE.

11) A foreign-data wrapper item descriptor area IDA in a server row descriptor is valid if and only if:

a) TYPE is one of the code values in Table 15, “Codes used for application data types in SQL/CLI”, or
TYPE indicates ROW.

If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the server row
descriptor associated with IDA. IDA shall be one of exactly TLC foreign-data wrapper item descriptor
areas in the server row descriptor.

b)

c)

One of the following is true:

Case:

i)

TYPE indicates NUMERIC, and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

SQL/MED common specifications 205

IWD 9075-9:201?(E)
21.1 Description of foreign-data wrapper item descriptor areas

vi)

vii)

TYPE indicates DECIMAL, and PRECISION and SCALE are valid precision and scale values
for the DECIMAL data type.

TYPE indicates FLOAT, and PRECISION is a valid precision value for the FLOAT data type.

TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, CHARACTER LARGE
OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT, BINARY
LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECI-
SION, BOOLEAN, USER-DEFINED TYPE LOCATOR, REF, or DATALINK.

TYPE indicates ROW and, where N is the value of the DEGREE field, there are exactly N
immediately subordinate descriptor areas of IDA, and those subordinate descriptor areas are
valid.

TYPE indicates ARRAY LOCATOR or MULTISET LOCATOR, there is exactly 1 (one)
immediately subordinate descriptor area of IDA, and that subordinate descriptor area is valid.

TYPE indicates an implementation-defined data type.

General Rules

None.

Conformance Rules

None.

206 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.2 Implicit foreign-data wrapper cursor

21.2 Implicit foreign-data wrapper cursor

Function

Declare and open a foreign-data wrapper cursor.

General Rules

1) Let AE be an ALLOCATED FDW-EXECUTION specified in an application of this Subclause.
2) Let SShe the SQL-statement that is effectively associated with AE.

3) If there is no cursor effectively associated with AE, then:

a) A cursor declaration descriptor CDD is created, as follows:

i)

i)
iii)
iv)

v)

The kind of cursor is a foreign-data wrapper cursor.

The provenance of the cursor is the SQL-session identifier of AE.
The name of the cursor is implementation-dependent.

The cursor's origin is SS

The cursor's declared properties are:

1) The cursor's declared scrollability is 'NO SCROLL".

2) The cursor's declared sensitivity is 'ASENSITIVE'".

3) The cursor's declared holdability is ' WITHOUT HOLD'.

4) The cursor's declared returnability is ' WITHOUT RETURN'.

b) A cursor instance descriptor CID is created, as follows:

)
i)
i)

The cursor declaration descriptor is CDD.
The SQL-session identifier is the SQL-session identifier of AE.

The cursor's state is closed.

4) Cursor CID is effectively opened in the following steps:

a) A copy CSof SSis effectively created in which:

i)

i)

Each <dynamic parameter specification> is replaced by the value of the corresponding dynamic
parameter.

Each <value specification> generally contained in SSthat is CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or
CURRENT_TRANSFORM_GROUP_FOR_TYPE <path-resolved user-defined type name>
is effectively replaced by the value resulting from evaluation of CURRENT_USER, CUR-
RENT_ROLE, SESSION_USER, SYSTEM_USER, CURRENT_CATALOG, CUR-
RENT_SCHEMA, CURRENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or

SQL/MED common specifications 207

IWD 9075-9:201?(E)
21.2 Implicit foreign-data wrapper cursor

i)

CURRENT_TRANSFORM_GROUP_FOR_TYPE <path-resolved user-defined type name>,
respectively, with all such evaluations effectively done at the same instant in time.

Each <datetime value function> generally contained in SSis effectively replaced by the value
resulting from evaluation of that <datetime value function>, with all such evaluations effectively
done at the same instant in time.

** Editor's Note (number 4) **

WG3:LCY-025 took no action on the preceding instance of general containment. This rule is related to
SQL/Foundation Subclause 6.32, “<datetime value function>", General Rule 3), and Subclause 15.1, “Effect of
opening a cursor”, General Rule 5)a)ii), which also contain unaddressed instances of general containment. When
those rules are addressed, this one should be as well. See Possible Problem .

b) Let T be the sequence of rows specified by CS

¢) Avresult set descriptor for RSD is effectively created as follows:

i)
i)
i)

iv)

The <cursor specification> is CS
The sequence of rows is T.
The position is before the first row of T.

The operational properties are the same as the declared properties in CID.

d) Cursor CN is effectively placed in the open state with RSD as its result set descriptor.

Conformance Rules

None.

208 Management of External Data (SQL/MED)

21.3

IWD 9075-9:201?(E)
21.3 Implicit DESCRIBE INPUT USING clause

Implicit DESCRIBE INPUT USING clause

Function

Populate a specified descriptor area with information about the input values required to execute a foreign server

request.

General Rules

1) Let Sand DESC be a SOURCE and a DESCRIPTOR specified in the rules of this Subclause.

2)
3)

4)

Let HL be the programming language of the invoking SQL-server.

The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE in DESC are respectively a
character string representation of the foreign server request and a numeric code that identifies the foreign
server request, and are set to the value of the 'ldentifier' and 'Code' columns, respectively, of the row in

Table 36, “SQL-statement codes”, that identifies in the 'SQL-statement’ column the foreign server request.

A descriptor for the <dynamic parameter specification>s for the foreign server request is stored in DESC
as follows:

a)

b)

d)

Let D be the number of <dynamic parameter specification>s in S Let NS, 1 (one) <i < D, be the
number of subordinate descriptors of the descriptor for the i-th input dynamic parameter.

TOP_LEVEL_COUNT issetto D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let TD be D +
D (NS). COUNT is set to TD.
NOTE 62 — The KEY_TYPE field is not relevant in this case.

If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains a descriptor of the j-th <dynamic parameter specifica-
tion> such that:

i) The descriptor for the first such <dynamic parameter specification> is assigned to the first
descriptor area.

i) The descriptor for the j+1-th <dynamic parameter specification> is assigned to the i+NS+1-th
item descriptor area.

iii) The implicitly ordered subordinate descriptors for the j-th <dynamic parameter specification>,
if any, are assigned to contiguous item descriptor areas starting at the i+1-th item descriptor
area.

The descriptor of a <dynamic parameter specification> consists of values for LEVEL, TYPE, NUL-
LABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION,
PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPE-
CIFIC_NAME, and other fields depending on the value of TYPE as described below. Those fields
and fields that are not applicable for a particular value of TYPE are set to implementation-dependent
values. The DATA, DATA_POINTER, INDICATOR, OCTET _LENGTH, RETURNED_CARDI-
NALITY, and KEY_MEMBER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to 0 (zero).

SQL/MED common specifications 209

IWD 9075-9:201?(E)

21.3 Implicit DESCRIBE INPUT USING clause

i) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, in [ISO9075-3], indicating the data type of the <dynamic parameter specification>
or subordinate descriptor.

iii) NULLABLE is setto 1 (one).

NOTE 63 — This indicates that the <dynamic parameter specification> can have the null value.

iv) KEY_MEMBER is set to 0 (zero).

V) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.

vi) Case:

1)

2)

3)

4)

5)

6)

7)

8)

If TYPE indicates a <character string type>, then: LENGTH is set to the length or maximum
length in characters of the character string and OCTET_LENGTH is set to the maximum
possible length in octets of the character string; CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, and CHARACTER_SET NAME are set to the <character
set name> of the character string's character set; COLLATION_CATALOG, COLLA-
TION_SCHEMA, and COLLATION_NAME are set to the <collation name> of the char-
acter string's collation.

If TYPE indicates a <binary string type>, then LENGTH and OCTET LENGTH are both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, in [ISO9075-3], to indicate the
specific datetime data type and PRECISION is set to the <time precision> or <timestamp
precision> if either is applicable.

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10,
“Codes associated with <interval qualifier> in SQL/CLI”, in [ISO9075-3], to indicate the
specific <interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the <interval
leading field precision>, and PRECISION is set to the <interval fractional seconds preci-
sion>, if applicable.

If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length in
octets of the <reference type>, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined

210 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.3 Implicit DESCRIBE INPUT USING clause

type name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to
the CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type name>.

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of
the array type.

11) If TYPE indicates DATALINK, then LENGTH and OCTET _LENGTH are set to the
maximum possible length in octets of the datalink.

Conformance Rules

None.

SQL/MED common specifications 211

IWD 9075-9:201?(E)
21.4 Implicit DESCRIBE OUTPUT USING clause

21.4 Implicit DESCRIBE OUTPUT USING clause

Function

Populate a specified descriptor area with information about the values returned by an execution of a foreign
server request.

General Rules

1) Let Sand DESC be a SOURCE and a DESCRIPTOR specified in the rules of this Subclause.
2) Let HL be the programming language of the invoking SQL-server.

3) The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE in DESC are respectively a
character string representation of the foreign server request and a numeric code that identifies the foreign
server request, and are set to the value of the 'ldentifier' and 'Code' columns, respectively, of the row in
Table 36, “SQL-statement codes”, that identifies in the 'SQL-statement’ column the foreign server request.

4) A representation of the column descriptors of the <select list> columns for the foreign server request is
stored in DESC as follows:

a) Case:
i) If there is a select source associated with DESC, then:

1) Let TBL be the table defined by Sand let D be the degree of TBL. Let NS, 1 (one) <i <
D, be the number of subordinate descriptors of the descriptor for the i-th column of T.

2) TOP_LEVEL_COUNT issetto D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let
TD be D + 2, (NS). COUNT is set to TD.

3) Case:
A) If some subset of S is the primary key of TBL, then KEY_TYPE is set to 1 (one).
B) If some subset of 9 is the preferred key of TBL, then KEY_TYPE is set to 2.
C) Otherwise, KEY_TYPE is set to 0 (zero).

i) Otherwise:
1) Let D be 0 (zero). Let TD be 0 (zero).
2) KEY_TYPE is set to 0 (zero).

b) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains a descriptor of the j-th column such that:

i) The descriptor for the first such column is assigned to the first descriptor area.

i) The descriptor for the j+1-th column is assigned to the i+NS+1-th item descriptor area.

iii) The implicitly ordered subordinate descriptors for the j-th column, if any, are assigned to con-
tiguous item descriptor areas starting at the i+1-th item descriptor area.

212 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.4 Implicit DESCRIBE OUTPUT USING clause

¢) Thedescriptor of a column consists of values for LEVEL, TYPE, NULLABLE, NAME, UNNAMED,
KEY_MEMBER, and other fields depending on the value of TYPE as described below. Those fields
and fields that are not applicable for a particular value of TYPE are set to implementation-dependent
values. The DATA, DATA_POINTER, INDICATOR, and OCTET_LENGTH fields are not relevant
in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to 0 (zero).

i) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, in [ISO9075-3], indicating the data type of the column or subordinate descriptor.

iii) Case:
1) If the value of LEVEL is O (zero), then:

A) If the resulting column is possibly nullable, then NULLABLE is set to 1 (one); other-
wise NULLABLE is set to 0 (zero).

B) If the column name is implementation-dependent, then NAME is set to the implemen-
tation-dependent name of the column and UNNAMED is set to 1 (one); otherwise,
NAME is set to the <derived column> name for the column and UNNAMED is set

to 0 (zero).
C) Case:
)] If a <select list> column C is a member of a primary or preferred key of TBL,

then KEY_MEMBER is set to 1 (one).
I1) Otherwise, KEY_MEMBER is set to O (zero).
2) Otherwise:
A) NULLABLE is setto 1 (one).
B) Case:
)i If the item descriptor area describes a field of a row, then
Case:

1) If the name of the field is implementation-dependent, then NAME is set
to the implementation-dependent name of the field and UNNAMED is set
to 1 (one).

2) Otherwise, NAME is set to the name of the field and UNNAMED is set
to 0 (zero).

I1) Otherwise, UNNAMED is setto 1 (one) and NAME is set to an implementation-
dependent value.

C) KEY_MEMBER is set to 0 (zero).
iv) Case:

1) If TYPE indicates a <character string type>, then: LENGTH is set to the length or maximum
length in characters of the character string and OCTET_LENGTH is set to the maximum
possible length in octets of the character string; CHARACTER_SET_CATALOG,

SQL/MED common specifications 213

IWD 9075-9:201?(E)

21.4 Implicit DESCRIBE OUTPUT USING clause

2)

3)

4)

5)

6)

7)

8)

9)
10)

11)

CHARACTER_SET_SCHEMA, and CHARACTER_SET NAME are set to the <character
set name> of the character string's character set; COLLATION_CATALOG, COLLA-
TION_SCHEMA, and COLLATION_NAME are set to the <collation name> of the char-
acter string's collation.

If TYPE indicates a <binary string type>, then LENGTH and OCTET LENGTH are both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision
of the approximate numeric.

If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with datetime data types in SQL/CLI”, in [ISO9075-3], to indicate the
specific datetime data type and PRECISION is set to the <time precision> or <timestamp
precision> if either is applicable.

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 10,
“Codes associated with <interval qualifier> in SQL/CLI”, in [ISO9075-3], to indicate the
specific <interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the <interval
leading field precision>, and PRECISION is set to the <interval fractional seconds preci-
sion>, if applicable.

If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length in
octets of the <reference type>, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined
type name> of the user-defined type and CURRENT_TRANSFORM_GROURP is set to
the CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type hame>.

If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of
the array type.

If TYPE indicates DATALINK, then LENGTH and OCTET_LENGTH are set to the
maximum possible length in octets of the datalink.

Conformance Rules

None.

214 Management of External Data (SQL/MED)

21.5

Function

IWD 9075-9:201?(E)
21.5 Implicit EXECUTE USING and OPEN USING clauses

Implicit EXECUTE USING and OPEN USING clauses

Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

General Rules

1) Let Tand AE be a TYPE and ALLOCATED FWD-EXECUTION specified in the rules of this Subclause.

2) LetHL1be the host language in which the SQL-server is written and let HL2 be the host language in which
the foreign-data wrapper is written.

3)

4)

Let WPD and SPD be the wrapper parameter descriptor and server parameter descriptor, respectively, for

AE.

WPD and SPD describe the <dynamic parameter specification>s and <dynamic parameter specification>
values, respectively, for the foreign server request being executed. Let NSPD be the value of COUNT for
SPD and let NWPD be the value of COUNT for WPD.

a)

b)
c)

d)

If NSPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

Let AD be the minimum of NSPD and NWPD.
For each of the first AD item descriptor areas of SPD, if TYPE indicates DEFAULT, then:

i)

i)

Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the corresponding item descriptor area of WPD.

The data type, precision, and scale of the described <dynamic parameter specification> value
(or part thereof, if the item descriptor area is a subordinate descriptor) are set to TP, P, and SC,
respectively, for the purposes of this invocation only.

If the first AD item descriptor areas of SPD are not valid as specified in Subclause 21.1, “Description
of foreign-data wrapper item descriptor areas”, then an exception condition is raised: dynamic SQL
error — using clause does not match dynamic parameter specifications.

For the first AD item descriptor areas in SPD:

i)

If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not NWPD,
then an exception condition is raised: dynamic SQL error — using clause does not match
dynamic parameter specifications.

If all of the following are true, then an exception condition is raised: dynamic SQL error —
using clause does not match dynamic parameter specifications.

1) The value of INDICATOR is not negative.
2) Either of the following is true:

A) TYPE does not indicate ROW and the item descriptor area is not subordinate to an
item descriptor area for which the value of INDICATOR is not negative.

SQL/MED common specifications 215

IWD 9075-9:201?(E)
21.5 Implicit EXECUTE USING and OPEN USING clauses

f)

9)

h)

B) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET
LOCATOR.

C) Case:

1) If HL1 and HL2 are both pointer-supporting languages, then the value of the
host variable addressed by DATA_POINTER is not a valid value of the data
type represented by the item descriptor area.

I1) Otherwise, the value of DATA is not a valid value of the data type represented
by the item descriptor area.

Let IDA be the i-th item descriptor area of SPD whose LEVEL value is 0 (zero). Let SDT be the data
type represented by IDA. The associated value of IDA, denoted by SV, is defined as follows.

Case:
i) If NULL is true for IDA, then SV is the null value.

i) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are the
associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:
1) Case:

A) If HL1 and HL2 are both pointer-supporting languages, then let V be the value of the
host variable addressed by DATA_POINTER.

B) Otherwise, let V be the value of DATA.
2) Case:

A) If TYPE indicates CHARACTER, then let Q be the value of OCTET_LENGTH and
let L be the number of characters wholly contained in the first Q octets of V.

B) Otherwise, let L be zero.

3) Let SV be V with effective data type SDT, as represented by the length value L and by the
values of the TYPE, PRECISION, and SCALE fields.

Let TDT be the effective data type of the i-th parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of WPD for which the LEVEL value is 0 (zero), and all its sub-
ordinate descriptor areas.

If SDT is an array locator data type or multiset locator data type, then let TV be the value SV.
If SDT and TDT are predefined data types, then
Case:

i) If SDT and TDT are binary string types, then the <cast specification>

216 Management of External Data (SQL/MED)

i)

IWD 9075-9:201?(E)
21.5 Implicit EXECUTE USING and OPEN USING clauses

CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th parameter.

If SDT and TDT are numeric data types, then the <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th parameter.
Otherwise, the <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th parameter.

Conformance Rules

None.

SQL/MED common specifications 217

IWD 9075-9:201?(E)
21.6 Implicit FETCH USING clause

21.6 Implicit FETCH USING clause

Function

Specify the rules for an implicit FETCH USING clause.

General Rules

1)
2)

3)

4)
5)

Let OE be an OPENED FDW-EXECUTION specified in the rules of this Subclause.

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in which
the foreign-data wrapper is written.

Case:

a) If the PASSTHROUGH flag associated with OE is True, then let RD be the wrapper row descriptor
associated with OE.

b) Otherwise, let RD be the table reference descriptor associated with OE.
Let SRD be the server row descriptor associated with OE.

RD and SRD describe the <select list> columns and <target specification>s, respectively, for the column
values that are to be retrieved.

a) Let AD be the value of the COUNT field of SRD. If AD is less than zero, then an exception condition
is raised: dynamic SQL error — invalid descriptor count.

b) Case:

i) If HL1 and HL2 are both pointer-supporting languages, then for each item descriptor area in
SRD whose LEVEL is 0 (zero) in the first AD item descriptor areas of SRD, and for all of their
subordinate descriptor areas, refer to a <target specification> whose corresponding item
descriptor areas have a non-zero DATA_POINTER as a bound target and refer to the corre-
sponding <select list> column as a bound column.

i) Otherwise, for each item descriptor area in SRD whose LEVEL is 0 (zero) in the first AD item
descriptor areas of SRD, and for all of their subordinate descriptor areas, refer to a <target
specification> as a bound target and refer to the corresponding <select list> column as a bound
column.

¢) Ifany item descriptor area corresponding to a bound target in the first AD item descriptor areas of
SRD is not valid as specified in Subclause 21.1, “Description of foreign-data wrapper item descriptor
areas”, then an exception condition is raised: dynamic SQL error — using clause does not match target
specifications.

d) Let SDT be the effective data type of the i-th bound column as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_ SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descriptor area of RD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

218 Management of External Data (SQL/MED)

f)
9)

h)

)

IWD 9075-9:201?(E)
21.6 Implicit FETCH USING clause

Let TYPE, OL, D, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA,
DATA_POINTER, INDICATOR, and OCTET_LENGTH fields, respectively, in the item descriptor
area of SRD corresponding to the i-th bound target (or part thereof, if the item descriptor area is a
subordinate descriptor).

Let SV be the value of the <select list> column, with data type SDT.
Case:
i) If TYPE indicates CHARACTER, then:

1) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, “Codes used for implementation data types in SQL/CLI”, in [ISO9075-3].

2) Let LV be the implementation-defined maximum length for a CHARACTER VARYING
data type.

i) Otherwise, let UT be TYPE and let LV be 0 (zero).

Let TDT be the effective data type of the i-th bound target as represented by the type UT, the length
value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAMIE fields in the item descriptor area of SRD whose LEVEL is
0 (zero) and all of its subordinate descriptor areas.

If TDT is an array locator data type or a multiset locator data type, then

Case:

i) If SV is not the null value, then a locator L that uniquely identifies SV is generated and the value
TV of the i-th bound target is set to an implementation-dependent four-octet value that represents
L.

i) Otherwise, the value TV of the i-th bound target is the null value.
If SDT and TDT are predefined data types, then
Case:
i) If SDT and TDT are binary string types, then the <cast specification>
CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th parameter.
i) If SDT and TDT are numeric data types, then the <cast specification>
CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th parameter.

iii) Otherwise, the <transcoding>

SQL/MED common specifications 219

IWD 9075-9:201?(E)
21.6 Implicit FETCH USING clause

CONVERT (CAST (SV AS
CHARACTER VARYING (M)) USING UTF16)

is effectively performed, where M is the implementation-defined maximum length of a variable-
length character string, and the result is the value TV of the i-th parameter.

k) Let IDA be the top-level item descriptor area corresponding to the i-th bound column.
I) Case:
)] If TYPE indicates ROW, then
Case:

1) If TVis the null value, then the value of IP for IDA and that in all subordinate descriptor
areas of |DA that are not subordinate to an item descriptor area whose TYPE indicates
ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, is set to the
appropriate 'Code' for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”,
in [1ISO9075-3] and the value of the host variable addressed by DP and the values of D
and LP are implementation-dependent.

2) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the i-th
field of TV by applying GR 5)I) to the i-th subordinate descriptor area of IDA as IDA, the
value of i-th field of TV as TV, the value of the i-th field of SV as SV, and the data type of
the i-th field of SV as SDT.

i) Otherwise,
Case:

1) If TVis the null value, then the value of IP is set to the appropriate 'Code' for SQL NULL
DATA in Table 27, “Miscellaneous codes used in CLI”, in [ISO9075-3], and the value of
the host variable addressed by DP and the value of D and the value of LP are implementa-
tion-dependent.

2) Otherwise:
A) The value of IP is set to 0 (zero).
B) Case:
1) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TVis a zero-length character string, then it is implementation-defined
whether or not an exception condition is raised: data exception — zero-
length character string.

2) Case:

a) IfHL1and HL2 are both pointer-supporting languages, then the
General Rules of Subclause 21.7, “Character string retrieval”, are
applied with DP, TV, OL, and LP as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

b) Otherwise, the General Rules of Subclause 21.7, “Character string
retrieval”, are applied with D, TV, OL, and LP, as TARGET, VALUE,

220 Management of External Data (SQL/MED)

1)

1)

V)

Conformance Rules

None.

IWD 9075-9:201?(E)
21.6 Implicit FETCH USING clause

TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

If TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE
OBJECT, then

Case:

1)

2)

If HL1 and HL2 are both pointer-supporting languages, then the General
Rules of Subclause 21.8, “Binary string retrieval”, are applied with DP,
TV, OL, and LP as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

Otherwise, the General Rules of Subclause 21.8, “Binary string retrieval”,
are applied with D, TV, OL, and LP as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET
LOCATOR, then the value of RETURNED_CARDINALITY is set to the car-
dinality of TV.

Otherwise,

Case:

1)

2)

If HL1 and HL2 are both pointer-supporting languages, then the value of
the host variable addressed by DP is set to TV and the value of LP is
implementation-dependent.

Otherwise, the value of D is set to TV and the value of LP is implementa-
tion-dependent.

SQL/MED common specifications 221

IWD 9075-9:201?(E)
21.7 Character string retrieval

21.7 Character string retrieval

Function

Specify the rules for retrieving character string values.

General Rules

1) LetT,V,TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH specified in an application of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: FDW-specific condition — invalid
string length or buffer length.

3) Let L be the length in octets of V.
4) If RLis not a null pointer, then RL is set to L.
5) Case:

a) IfLisnot greater than TL, then the first L octets of T are set to V and the values of the remaining octets
of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning — string
data, right truncation.

Conformance Rules

None.

222 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.8 Binary string retrieval

21.8 Binary string retrieval

Function

Specify the rules for retrieving binary string values.

General Rules

1)

2)

3)
4)
5)

Let T, V, TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH specified in an application of this Subclause.

If TL is not greater than zero, then an exception condition is raised: FDW-specific condition — invalid
string length or buffer length.

Let L be the length in octets of V.
If RL is not a null pointer, then RL is set to L.
Case:

a) IfLisnot greater than TL, then the first L octets of T are set to V and the values of the remaining octets
of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised: warning — string
data, right truncation.

Conformance Rules

None.

SQL/MED common specifications 223

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

21.9 Tables used with SQL/MED

The tables contained in this Subclause are used to specify the codes used by the various foreign-data wrapper
interface routines.

Table 27 — Codes used for <table reference> types

<table reference> type Code

TABLE_NAME 1

Table 28 — Codes used for <value expression> kinds

<value expression> kind Code
COLUMN_NAME 1
CONSTANT 2
OPERATOR 3
PARAMETER 4

Table 29 — Codes used for foreign-data wrapper diagnostic fields

Field Code | Type
CLASS_ORIGIN 1 Status
MESSAGE_LENGTH 2 Status
MESSAGE_OCTET_LENGTH 3 Status
MESSAGE_TEXT 4 Status
MORE 5 Header
NATIVE_CODE 6 Status
NUMBER 7 Header
RETURNCODE 8 Header
SQLSTATE 9 Status
SUBCLASS_ORIGIN 10 Status

224 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Field Code | Type
Implementation-defined diagnostics <0 Header
header field

Implementation-defined diagnostics <0 Status
status field

Table 30 — Codes used for foreign-data wrapper descriptor fields

Field Code SQL Item Descriptor Name Type
CARDINALITY 1040 CARDINALITY Item
CHARACTER_SET_CATALOG 1018 CHARACTER_SET_CATALOG Item
CHARACTER_SET_NAME 1020 CHARACTER_SET_NAME Item
CHARACTER_SET_SCHEMA 1019 CHARACTER_SET_SCHEMA Item
COLLATION_CATALOG 1015 COLLATION_CATALOG Item
COLLATION_NAME 1017 COLLATION_NAME Item
COLLATION_SCHEMA 1016 COLLATION_SCHEMA Item
COUNT 1001 COUNT Header
CURRENT_TRANSFORM_GROUP 1039 (Not applicable) Item
DATA 1050 DATA Item
DATA_POINTER 1010 DATA Item
DATETIME_INTERVAL_CODE 1007 DATETIME_INTERVAL_CODE Item
DATETIME_INTERVAL_PRECISION | 26 DATETIME_INTERVAL_PRECISION | Item
DEGREE 1041 DEGREE Item
DYNAMIC_FUNCTION 1031 DYNAMIC_FUNCTION Header
DYNAMIC_FUNCTION_CODE 1032 DYNAMIC_FUNCTION_CODE Header
INDICATOR 1051 INDICATOR Item
KEY_MEMBER 1030 KEY_MEMBER Item
KEY_TYPE 1029 KEY_TYPE Header
LENGTH 1003 LENGTH Item

SQL/MED common specifications 225

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Field Code SQL Item Descriptor Name Type
LEVEL 1042 LEVEL Item
NAME 1011 NAME Item
NULLABLE 1008 NULLABLE Item
OCTET_LENGTH 1013 OCTET_LENGTH Item
PARAMETER_MODE 1021 PARAMETER_MODE Item
PARAMETER_ORDINAL_POSITION | 1022 PARAMETER_ORDINAL_POSITION | Item
PARAMETER_SPECIFIC_CATALOG | 1023 PARAMETER_SPECIFIC_CATALOG | Item
PARAMETER_SPECIFIC_NAME 1025 PARAMETER_SPECIFIC_NAME Item
PARAMETER_SPECIFIC_SCHEMA | 1024 PARAMETER_SPECIFIC_SCHEMA | Item
PRECISION 1005 PRECISION Item
RETURNED_CARDINALITY 1052 RETURNED_CARDINALITY Item
RETURNED OCTET_LENGTH 1053 Both OCTET_LENGTH (input) and Item
RETURNED_OCTET_LENGTH (out-
put)
SCALE 1006 SCALE Item
SCOPE_CATALOG 1033 SCOPE_CATALOG Item
SCOPE_NAME 1034 SCOPE_NAME Item
SCOPE_SCHEMA 1035 SCOPE_SCHEMA Item
SPECIFIC_TYPE_CATALOG 1036 (Not applicable) Item
SPECIFIC_TYPE_NAME 1038 (Not applicable) Item
SPECIFIC_TYPE_SCHEMA 1037 (Not applicable) Item
TOP_LEVEL_COUNT 1044 TOP_LEVEL_COUNT Header
TYPE 1002 TYPE Item
UNNAMED 1012 UNNAMED Item
USER_DEFINED_TYPE_CATALOG | 1026 USER_DEFINED_TYPE_CATALOG Item
USER_DEFINED_TYPE_NAME 1028 USER_DEFINED_TYPE_NAME Item

226 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Field Code SQL Item Descriptor Name Type

USER_DEFINED_TYPE_SCHEMA 1027 USER_DEFINED_TYPE_SCHEMA Item

Implementation-defined foreign-data 0 (zero) | Implementation-defined foreign-data Header
wrapper descriptor header field through | wrapper descriptor header field
999, or 2
1200,
exclud-
ing val-
ues
defined
in this
table

Implementation-defined foreign-data 0 (zero) | Implementation-defined foreign-data Item
wrapper descriptor item field through | wrapper descriptor item field
999, or 2
1200,
exclud-
ing val-
ues
defined
in this
table

Table 31 — Codes used for foreign-data wrapper handle types

Handle type Code
ExecutionHandle 1
FSConnectionHandle 2
ReplyHandle 3
RequestHandle 4
ServerHandle 6
TableReferenceHandle 7
UserHandle 8
ValueExpressionHandle 9
WrapperHandle 10
WrapperEnvHandle 11

SQL/MED common specifications 227

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Handle type Code

DescriptorHandle 12

Table 32 — Ability to retrieve foreign-data wrapper descriptor fields

May be retrieved

Field SRD WRD or SPD WPD
TRD

CARDINALITY No No

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

COUNT

CURRENT_TRANSFORM_GROUP

DATA No No

DATA_POINTER No No

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECI-

SION

DEGREE No No
DYNAMIC_FUNCTION No No
DYNAMIC_FUNCTION_CODE No No

INDICATOR No No
KEY_MEMBER No No No
KEY_TYPE No No No
LENGTH

228 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

May be retrieved

Field SRD WRD or SPD WPD
TRD

LEVEL

NAME

NULLABLE

OCTET_LENGTH

PARAMETER_MODE No No

PARAMETER_ORDINAL_POSITION | No No

PARAMETER_SPECIFIC_CATALOG | No No

PARAMETER_SPECIFIC_NAME No No

PARAMETER_SPECIFIC_SCHEMA | No No

PRECISION

RETURNED_CARDINALITY No No

RETURNED_OCTET_LENGTH No No

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

SPECIFIC_TYPE_NAME

SPECIFIC_TYPE_SCHEMA

TOP_LEVEL_COUNT

TYPE

UNNAMED

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME

SQL/MED common specifications 229

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

May be retrieved

Field SRD WRD or SPD WPD
TRD

USER_DEFINED_TYPE_SCHEMA

Implementation-defined foreign-data | ID ID ID ID
wrapper descriptor header field

Implementation-defined foreign-data | ID ID ID ID
wrapper descriptor item field

T Where “No” means that the descriptor field is not retrievable, PS means that the descriptor field is retrievable from the IRD
only when a prepared or executed statement is associated with the IRD, the absence of any notation means that the descriptor
field is retrievable, and “ID” means that it is implementation-defined whether or not the descriptor field is retrievable.

Table 33 — Ability to set foreign-data wrapper descriptor fields

May be set

Field SRD WRD or SPD WPD
TRD

CARDINALITY No No No
CHARACTER_SET_CATALOG No
CHARACTER_SET_NAME No
CHARACTER_SET_SCHEMA No
COLLATION_CATALOG No
COLLATION_NAME No
COLLATION_SCHEMA No
COUNT No
CURRENT_TRANSFORM_GROUP | No No No No
DATA No
DATA_POINTER No
DATETIME_INTERVAL_CODE No
DATETIME_INTERVAL_PRECI- No
SION

230 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

May be set

Field SRD WRD or SPD WPD
TRD

DEGREE No No No
DYNAMIC_FUNCTION No No No No
DYNAMIC_FUNCTION_CODE No No No No
INDICATOR No No
KEY_MEMBER No No No No
KEY_TYPE No No No No
LENGTH No
LEVEL No
NAME No
NULLABLE No
OCTET_LENGTH No
PARAMETER_MODE No No No
PARAMETER_ORDINAL_POSITION | No No No
PARAMETER_SPECIFIC_CATALOG | No No No
PARAMETER_SPECIFIC_NAME No No No
PARAMETER_SPECIFIC_SCHEMA | No No No
PRECISION No
RETURNED_CARDINALITY No No
RETURNED_OCTET_LENGTH No No
SCALE No
SCOPE_CATALOG No
SCOPE_NAME No
SCOPE_SCHEMA No
SPECIFIC_TYPE_CATALOG No No No No

SQL/MED common specifications 231

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

May be set

Field SRD WRD or SPD WPD
TRD

SPECIFIC_TYPE_NAME No No No No
SPECIFIC_TYPE_SCHEMA No No No No
TOP_LEVEL_COUNT No
TYPE No
UNNAMED No
USER_DEFINED_TYPE_CATALOG No
USER_DEFINED_TYPE_NAME No
USER_DEFINED_TYPE_SCHEMA No
Implementation-defined foreign-data | ID ID ID ID
wrapper descriptor header field
Implementation-defined foreign-data | ID ID ID ID
wrapper descriptor item field

T Where “No” means that the descriptor field is not settable, “ID” means that it is implementation-defined whether or not the
descriptor field is settable, and the absence of any notation means that the descriptor field is settable.

Table 34 — Foreign-data wrapper descriptor field default values

Default values

Field SRD WRD or APD WPD
TRD

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

232 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Default values

Field

SRD

WRD or
TRD

APD WPD

COUNT

0 (zero)

0 (zero)

CURRENT_TRANSFORM_GROUP

DATA

DATA_POINTER

Null

Null

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECI-
SION

DEGREE

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

INDICATOR

KEY_MEMBER

KEY_TYPE

LENGTH

LEVEL

0 (zero)

NAME

NULLABLE

OCTET_LENGTH

PARAMETER_MODE

PARAMETER_ORDINAL_POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA

PRECISION

SQL/MED common specifications 233

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Default values

Field

SRD

WRD or
TRD

APD

WPD

RETURNED_CARDINALITY

RETURNED_OCTET_LENGTH

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

SPECIFIC_TYPE_NAME

SPECIFIC_TYPE_SCHEMA

TOP_LEVEL_COUNT

0 (zero)

0 (zero)

TYPE

UNNAMED

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA

Implementation-defined foreign-data
wrapper descriptor header field

Implementation-defined foreign-data
wrapper descriptor item field

ID

ID

ID

ID

T Where “Null” means that the descriptor field's default value is a null pointer, the absence of any notation means that the
descriptor field's default value is initially undefined, “ID” means that the descriptor field's default value is implementation-defined,
and any other value specifies the descriptor field's default value.

Table 35 — Codes used for the format of the character string transmitted by GetSQLString()

Format Code

SQL-string format 1

234 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
21.9 Tables used with SQL/MED

Format

Code

Implementation-defined formats

Xl

L An implementation-defined negative number different from the value associated with any other format.

SQL/MED common specifications 235

IWD 9075-9:201?(E)

(Blank page)

236 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

22.1 <foreign-data wrapper interface routine>

22 Foreign-data wrapper interface routines

22.1 <foreign-data wrapper interface routine>

Function

Describe a generic foreign-data wrapper interface routine.

Format

<foreign-data wrapper interface routine> ::=
<foreign-data wrapper interface routine prefix>
<foreign-data wrapper interface routine generic>

<foreign-data wrapper interface routine prefix> ::=
MED

<foreign-data wrapper interface routine generic> ::=
<foreign-data wrapper interface routine name>
<foreign-data wrapper parameter list>
[<foreign-data wrapper returns clause>]

<foreign-data wrapper interface routine name> ::=
AdvancelnitRequest
AllocDescriptor
AllocQueryContext
AllocWrapperEnv
Close

ConnectServer
FreeDescriptor
FreeExecutionHandle
FreeFSConnection
FreeQueryContext
FreeReplyHandle
FreeWrapperEnv
GetAuthorizationld
GetBoolVE
GetDescriptor
GetDiagnostics
GetDistinct
GetNextReply
GetNumBoolVE
GetNumChi ldren
GetNumOrderByElems
GetNumReplyBoolVE
GetNumReplyOrderBy
GetNumReplySelectElems
GetNumReplyTableRefs
GetNumRoutMapOpts

Foreign-data wrapper interface routines 237

IWD 9075-9:201?(E)
22.1 <foreign-data wrapper interface routine>

GetNumSelectElems
GetNumServerOpts
GetNumTableColOpts
GetNumTableOpts
GetNumTableRefElems
GetNumUserOpts
GetNumWrapperOpts
GetOpts
GetOrderByElem
GetReplyBoolVE
GetReplyCardinality
GetReplyDistinct
GetReplyExecCost
GetReplyFirstCost
GetReplyOrderElem
GetReplyReExecCost
GetReplySelectElem
GetReplyTableRef
GetRoutineMapping
GetRoutMapOpt
GetRoutMapOptName
GetSelectElem
GetSelectElemType
GetServerName
GetServerOpt
GetServerOptByName
GetServerType
GetServerVersion
GetSPDHandle
GetSQLString
GetSRDHandle
GetStatistics
GetTableColOpt
GetTableColOptByName
GetTableOpt
GetTableOptByName
GetTableRefElem
GetTableRefElemType
GetTableRefTableName
GetTableServerName
GetTRDHandle
GetUserOpt
GetUserOptByName
GetValExprColName
GetValueExpDesc
GetValueExpKind
GetValueExpName
GetValueExpTable
GetVEChild
GetWPDHandle
GetWrapperLibraryName
GetWrapperName
GetWrapperOpt
GetWrapperOptByName
GetWRDHandle
InitRequest

Iterate

238 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.1 <foreign-data wrapper interface routine>

| Open

| ReOpen

| SetDescriptor

| TransmitRequest

<foreign-data wrapper parameter list> ::=
<left paren> <foreign-data wrapper parameter declaration>
[{ <comma> <foreign-data wrapper parameter declaration> }...] <right paren>

<foreign-data wrapper parameter declaration> ::=
<foreign-data wrapper parameter name>
<foreign-data wrapper parameter mode>
<foreign-data wrapper parameter data type>

<foreign-data wrapper parameter name> ::=
I'l See the individual foreign-data wapper interface routine definitions

<foreign-data wrapper parameter mode> ::=
IN
| ouT
| INOUT

<foreign-data wrapper parameter data type> :5:=
INTEGER
| SMALLINT
| ANY
| CHARACTER <left paren> <length> <right paren>

<foreign-data wrapper returns clause> ::=
RETURNS SMALLINT

Syntax Rules

1) A <foreign-data wrapper interface routine> defines a predefined routine written in a programming language
that is invoked by a compilation unit of the same programming language. Let HL be that programming
language. HL shall be one of Ada, C, COBOL, Fortran, M, Pascal, or PL/I.

2) A <foreign-data wrapper interface routine> that contains a <foreign-data wrapper returns clause> is called
a foreign-data wrapper interface function. A <foreign-data wrapper interface routine> that does not contain
a <foreign-data wrapper returns clause> is called a foreign-data wrapper interface procedure.

3) Foreach foreign-data wrapper interface function W, there is a corresponding foreign-data wrapper interface
procedure WP, with the same <foreign-data wrapper interface routine name>. The <foreign-data wrapper
parameter list> for WP is the same as the <foreign-data wrapper parameter list> for WF but with the fol-
lowing additional <foreign-data wrapper parameter declaration>:

ReturnCode OUT SMALLINT

4) HL shall support either the invocation of WF or the invocation of WP. It is implementation-defined which
is supported.

5) Case:
a) If <foreign-data wrapper parameter mode> is IN, then the parameter is an input parameter.

b) If <foreign-data wrapper parameter mode> is OUT, then the parameter is an output parameter.

Foreign-data wrapper interface routines 239

IWD 9075-9:201?(E)
22.1 <foreign-data wrapper interface routine>

6)

7)

8)

9)

c) If <foreign-data wrapper parameter mode> is INOUT, then the parameter is both an input parameter
and an output parameter.

NOTE 64 — An output parameter is either a non-pointer host variable passed by reference or a pointer host variable passed
by value.

There shall be no <separator> between the <foreign-data wrapper interface routine prefix>and the <foreign-
data wrapper interface routine generic> in a <foreign-data wrapper interface routine name>.

Let WR be a <foreign-data wrapper interface routine> and let RN be its <foreign-data wrapper interface
routine name>. Let RNU be the value of UPPER(RN).

Case:
a) If HL supports case sensitive routine names, then the name used for the invocation of WR shall be RN.

b) If HL does not support <simple Latin lower case letter>s, then the name used for the invocation of
WR shall be RNU.

¢) If HL does not support case sensitive routine names, then the name used for the invocation of WR
shall be RN or RNU.

Let operative data type correspondence table be the data type correspondence table for HL as specified
in Subclause 19.5, “SQL/CLI data type correspondences”. Refer to the two columns of the operative data
type correspondence table as the “SQL data type column” and the “host data type column”.

Let TI, TS TC, and TV be the types listed in the host data type column for the rows that contains INTEGER,
SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively, in the SQL data type
column.

a) If TSis “None”, then let TS=TI.
b) If TCis “None”, then let TC=TV.
¢) Foreach parameter P,

Case:

)] If the foreign-data wrapper parameter data type is INTEGER, then the type of the corresponding
argument shall be TI.

i) If the foreign-data wrapper parameter data type is SMALLINT, then the type of the correspond-
ing argument shall be TS

iii) If the foreign-data wrapper parameter data type is CHARACTER(L), then the type of the cor-
responding argument shall be TC.

iv) If the foreign-data wrapper parameter data type is ANY, then
Case:
1) [If HL is C, then the type of the corresponding argument shall be "void *".

2) Otherwise, the type of the corresponding argument shall be any type (other than 'None')
listed in the host data type column.

d) If the foreign-data wrapper interface routine is a foreign-data wrapper interface function, then the type
of the returned value is TS

240 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.1 <foreign-data wrapper interface routine>

Access Rules

None.

General Rules

1) The rules for invocation of the <foreign-data wrapper interface routine> are specified in Subclause 22.2,
“<foreign-data wrapper interface routine> invocation”.

Conformance Rules

1) Without Feature M018, “Foreign-data wrapper interface routines in Ada”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in Ada.

2) Without Feature M019, “Foreign-data wrapper interface routines in C”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> written in C.

3) Without Feature M020, “Foreign-data wrapper interface routines in COBOL ”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in COBOL.

4) Without Feature M021, “Foreign-data wrapper interface routines in Fortran”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in Fortran.

5) Without Feature M022, “Foreign-data wrapper interface routines in MUMPS ", a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in M.

6) Without Feature M023, “Foreign-data wrapper interface routines in Pascal”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in Pascal.

7) Without Feature M024, “Foreign-data wrapper interface routines in PL/I”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> written in PL/I.

8) Without Feature M018, “Foreign-data wrapper interface routines in Ada”, a conforming SQLserver shall
not contain an invocation of a <foreign-data wrapper interface routine> written in Ada.

9) Without Feature M019, “Foreign-data wrapper interface routines in C”, a conforming SQLserver shall not
contain an invocation of a <foreign-data wrapper interface routine> written in C.

10) Without Feature M020, “Foreign-data wrapper interface routines in COBOL ”, a conforming SQL-server
shall not contain an invocation of a <foreign-data wrapper interface routine> written in COBOL.

11) Without Feature M021, “Foreign-data wrapper interface routines in Fortran”, a conforming SQL-server
shall not contain an invocation of a <foreign-data wrapper interface routine> written in Fortran.

12) Without Feature M022, “Foreign-data wrapper interface routines in MUMPS ”, a conforming SQL-server
shall not contain an invocation of a <foreign-data wrapper interface routine> written in M.

13) Without Feature M023, “Foreign-data wrapper interface routines in Pascal”, a conforming SQL-server
shall not contain an invocation of a <foreign-data wrapper interface routine> written in Pascal.

14) Without Feature M024, “Foreign-data wrapper interface routines in PL/I”, a conforming SQLserver shall
not contain an invocation of a <foreign-data wrapper interface routine> written in PL/I.

Foreign-data wrapper interface routines 241

IWD 9075-9:201?(E)
22.2 <foreign-data wrapper interface routine> invocation

22.2 <foreign-data wrapper interface routine> invocation

Function

Specify the rules for invocation of a <foreign-data wrapper interface routine>.

Syntax Rules

1)
2)

3)

4)

5)

Let HL be the programming language of CP, the caller of a <foreign-data wrapper interface routine>.

A foreign-data wrapper interface function or foreign-data wrapper interface procedure is invoked by the
HL mechanism for invoking functions or procedures, respectively.

Let RN be the <foreign-data wrapper interface routine name> of the <foreign-data wrapper interface routine>
invoked by CP. The number of arguments provided in the invocation shall be the same as the number of
<foreign-data wrapper parameter declaration>s for RN.

Let DA be the data type of the i-th argument in the invocation and let DP be the <foreign-data wrapper
parameter data type> of the i-th <foreign-data wrapper parameter declaration> of RN. DA shall be the HL
equivalent of DP as specified by the rules of Subclause 22.1, “<foreign-data wrapper interface routine>".

Each argument to a <foreign-data wrapper interface routine> that is of type CHARACTER(n) shall be
passed by reference, according to the mechanisms of HL.

Case:

a) OfHL s C, then each input argument to a <foreign-data wrapper interface routine> that is not of type
CHARACTER(n) shall be passed by value. Each output argument to a <foreign-data wrapper interface
routine> that is not of type CHARACTER(n) that identifies a non-pointer host variable shall be passed
by reference; each output argument to a <foreign-data wrapper interface routine> that is not of type
CHARACTER(n) that identifies a pointer host variable shall be passed by value.

b) Otherwise, each input or output argument to a <foreign-data wrapper interface routine> that is not of
type CHARACTER(n) shall be passed by reference.

Access Rules

None.

General Rules

1)

2)

If the value of any input argument provided by CP falls outside the set of allowed values of the data type
of the parameter, or if the value of any output argument resulting from the execution of the <foreign-data
wrapper interface routine> falls outside the set of values supported by CP for that parameter, then the effect
is implementation-defined.

When the <foreign-data wrapper interface routine> is called by CP:
a) The values of all input arguments to RN are established.

b) RN is invoked.

242 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.2 <foreign-data wrapper interface routine> invocation

3) Case:

4)

a)

If the <foreign-data wrapper interface routine> is a foreign-data wrapper interface function, then:
i) The values of all output arguments are established.

i) Let RC be the return value.

b) If the <foreign-data wrapper interface routine> is a foreign-data wrapper interface procedure, then:
i) The values of all output arguments are established except for the argument associated with the
ReturnCode parameter.
i) Let RC be the argument associated with the ReturnCode parameter.
Case:
a) If RN executed successfully, then:
i) Either a completion condition is raised: successful completion, or a completion condition is
raised: no data.
i) Case:
1) Ifacompletion condition is raised: successful completion, then RC is set to indicate Success.
2) If a completion condition is raised: warning, then RC is set to indicate Success with
information.
3) If acompletion condition is raised: no data, then RC is set to indicate No data found.
b) If RN did not execute successfully, then:

i) All changes made to SQL-data or schemas by the execution of RN are canceled.

i) One or more exception conditions are raised as determined by the General Rules of this and
other Subclauses of this part of ISO/IEC 9075 or by implementation-defined rules.

iii) Case:

1) If an exception condition is raised: FDW-specific condition — invalid handle, then RC is
set to indicate Invalid handle.

2) Otherwise, RC is set to indicate Error.

iv) If RNisaforeign-data wrapper interface wrapper routine, then the actions of invoking the SQL-
server in response to the failed execution of RN are implementation-dependent.

Conformance Rules

None.

Foreign-data wrapper interface routines 243

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3 Foreign-data wrapper interface wrapper routines

22.3.1 AdvancelnitRequest

Function

Determine whether a foreign-data wrapper can execute a foreign server request and gather multiple different
FDW-replies and FDW-executions.

Definition

AdvancelnitRequest (

FSConnectionHandle IN INTEGER,
RequestHandle IN INTEGER,
ReplyHandle ouT INTEGER,
ExecutionHandle ouT INTEGER,
QueryContextHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)

5)
6)

7

8)
9)

Let FSCH be the value of FSConnectionHandle.

If FSCH does not identify an allocated FSconnection, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let QCH be the value of QueryContextHandle.

If QCH does not identify an allocated query context, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let RQH be the value of RequestHandle.
A set SRH of pairs of reply handles and corresponding execution handles is created as follows:

a) Let RPH; and EXH; be the ReplyHandle and ExecutionHandle, respectively, that would be returned
by an invocation of InitRequest() with FSCH and RQH as input arguments.

b) RPH; and EXH; are the i-th pair included in SRH.

Let RPH and EXH be a pair of reply handle and execution handle included in SRH, chosen in a foreign-
data wrapper implementation-dependent way.

ReplyHandle is set to RPH.

ExecutionHandle is set to EXH.

244 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains AdvancelnitRequest.

Foreign-data wrapper interface routines 245

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.2 AllocQueryContext

Function

Allocate a query context and assign a handle to it.

Definition

AllocQueryContext (
FSConnectionHandle IN INTEGER,
QueryContextHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let FSCH be the value of FSConnectionHandle.

2) If FSCH does not identify an allocated FSConnection, then an exception condition is raised: FDW-specific

condition — invalid handle.

3) If the foreign-data wrapper implementation-dependent maximum number of query contexts that can be
allocated at one time has already been reached, then an exception condition is raised: FDW-specific condition
— limit on number of handles exceeded. A skeleton query context is allocated and is assigned a unique

value that is returned in QueryContextHandle.

4) Case:

a) If the memory requirements to manage a query context cannot be satisfied, then QueryContextHandle
is set to 0 (zero) and an exception condition is raised: FDW-specific condition — memory allocation

error.

NOTE 65 — No diagnostic information is generated in this case, as there is no valid QueryContextHandle that can be

used to obtain diagnostics information.

b) If the resources to manage a query context cannot be allocated for foreign-data wrapper implementation-
defined reasons, then an implementation-defined exception condition is raised. A skeleton query
context is allocated and is assigned a unique value that is returned in QueryContextHandle.

c) Otherwise, the resources to manage a query context are allocated and are referred to as an allocated
guery context. The allocated query context is assigned a unique value that is returned in QueryContex-

tHandle.

Conformance Rules

1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface

routine name> that contains AllocQueryContext.

246 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.3 AllocWrapperEnv

Function

Allocate a foreign-data wrapper environment and assign a handle to it.

Definition

AllocWrapperEnv (
WrapperHandle IN INTEGER,
WrapperEnvHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let WH be the value of WrapperHandle.

2) If WH does not identify an allocated foreign-wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Ifthe implementation-defined maximum number of foreign-data wrapper environments that can be allocated
at one time has already been reached, then an exception condition is raised: FDW-specific condition —
limit on number of handles exceeded. A skeleton FDW-environment is allocated and is assigned a unique
value that is returned in WrapperEnvHandle.

4) Case:

a) If the memory requirements to manage an foreign-data wrapper environment cannot be satisfied, then
WrapperEnvHandle is set to zero and an exception condition is raised: FDW-specific condition —
memory allocation error.

NOTE 66 — No diagnostic information is generated in this case, as there is no valid WrapperEnvHandle that can be
used to obtain diagnostics information.

b) If the resources to manage an foreign-data wrapper environment cannot be allocated for implementation-
defined reasons, then an implementation-defined exception condition is raised. A skeleton FDW-
environment is allocated and is assigned a unique value that is returned in WrapperEnvHandle.

c) Otherwise, the resources to manage an foreign-data wrapper environment are allocated and are referred
to as an allocated FDW-environment. The allocated FDW-environment is assigned a unique value
that is returned in WrapperEnvHandle.

5) If an exception condition is raised in any of the routines invoked in any of the following General Rules,
then the diagnostics records returned by the invoked routines are transferred to the diagnostics area associated
with the WrapperEnvHandle and further processing of this routine is terminated as if the exception condition
had been raised in this routine.

6) Let WN be the WrapperName that would be returned by an invocation of GetWrapperName() with
WH as the WrapperHandle parameter.

7) Let WL be the WrapperLibraryName that would be returned by an invocation of GetWrapperLibrary-
Name () with WH as the WrapperHandle parameter.

Foreign-data wrapper interface routines 247

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

8) Itis implementation-dependent what use the Al locWrapperEnv () routine makes of the values of WN
and WL.
Conformance Rules

1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains AllocWrapperEnv.

248 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.4 Close

Function

Close an FDW-execution.

Definition

Close (
ExecutionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an opened FDW-execution, then an exception condition is raised: FDW-specific
condition — function sequence error.

3) Let E be the opened FDW-execution identified by EH.

4) Case:
a) Ifthere is no open cursor associated with E, then an exception condition is raised: invalid cursor state.
b) Otherwise:

i) The open cursor associated with E is placed in the closed state and its result set descriptor is
destroyed.

i) Any fetched row associated with E is removed from association with E.

5) EH is reset to be an allocated FDW-execution.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains Close.

Foreign-data wrapper interface routines 249

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.5 ConnectServer

Function

Establish a connection to a foreign server and assign a handle to it.

Definition

ConnectServer (

WrapperEnvHandle IN INTEGER,
ServerHandle IN INTEGER,
UserHandle IN INTEGER,
FSConnectionHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) If WrapperEnvHandle does not identify an allocated FDW-environment, then an exception condition is
raised: FDW-specific condition — invalid handle.

2) Let SH be the value of ServerHandle.

3) If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

4) Let UH be the value of UserHandle.

5) If UH does not identify an allocated user mapping description, then an exception condition is raised: FDW-
specific condition — invalid handle.

6) If an exception condition is raised in any of the routines invoked in any of the following General Rules,
then the diagnostics records returned by the invoked routines are transferred to the foreign-data wrapper
diagnostics area associated with the WrapperEnvHandle and further processing of this routine is terminated
as if the exception condition had been raised in this routine.

7) Let UN be the Authorizationld that would be returned by an invocation of GetAuthorizationld()
with UH as the UserHandle parameter.

8) Let SN be the ServerName that would be returned by an invocation of GetServerName() with SH as
the ServerHandle parameter.

9) Let ST be the ServerType that would be returned by an invocation of GetServerType() with SH as
the ServerHandle parameter.

10) Let SV be the Server\Version that would be returned by an invocation of GetServerVersion() with
SH as the ServerHandle parameter.

11) Let E be the FDW-environment identified by WrapperEnvHandle.

12) The foreign-data wrapper diagnostics area associated with E is emptied.

250 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

13) If the implementation-defined maximum number of FS-connections that can be allocated at one time has
already been reached, then FSConnectionHandle is set to zero and an exception condition is raised: FDW-
specific condition — limit on number of handles exceeded.

14) Case:

a) Ifthe memory requirements to manage an FS-connection cannot be satisfied, then FSConnectionHandle
is set to zero and an exception condition is raised: FDW-specific condition— memory allocation error.

b) If the resources to manage an FS-connection cannot be allocated for implementation-defined reasons,
then FSConnectionHandle is set to zero and an implementation-defined exception condition is raised.

¢) Otherwise, the resources to manage an FS-connection are allocated and are referred to as an allocated
FS-connection. The allocated FS-connection is assigned a unique value that is returned in FSConnec-
tionHandle.

15) Case:

a) If a connection to FScannot be made, then an exception condition is raised: FDW-specific condition
— unable to establish connection.

b) Otherwise, the connection to FSis established.

16) Itis implementation-dependent what use the foreign-data wrapper makes of the values of UN, SN, ST, and
SV.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains ConnectServer.

Foreign-data wrapper interface routines 251

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.6 FreeExecutionHandle

Function

Deallocate an FDW-execution.
Definition

FreeExecutionHandle (
ExecutionHandle 1IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let E be the FDW-execution identified by EH.
4) The foreign-data wrapper diagnostics area associated with E is emptied.
5) If there is a foreign-data wrapper cursor CR associated with E, then:
a) If CRis open, then:
i) CRis placed in the closed state and its result set descriptor is destroyed.
i) Any fetched row associated with E is removed from association with E.
b) The cursor declaration descriptor and cursor instance descriptor of CR are destroyed.
6) Case:
a) If the PASSTHROUGH flag associated with EH is False, then:

)] Let SRD be the server row descriptor associated with E and let SRDHandle be the descriptor
handle that identifies SRD. The FreeDescriptor () routine is invoked with SRDHandle
as the DescriptorHandle parameter.

i) Let SPD be the server parameter descriptor associated with E and let SPDHandle be the
descriptor handle that identifies SPD. The FreeDescriptor () routine is invoked with
SPDHandle as the DescriptorHandle parameter.

b) Otherwise:

i) Let SRD be the server row descriptor associated with E and let SRDHandle be the descriptor
handle that identifies SRD. The FreeDescriptor () routine is invoked with SRDHandle
as the DescriptorHandle parameter.

252 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

i) Let SPD be the server parameter descriptor associated with E and let SPDHandle be the
descriptor handle that identifies SPD. The FreeDescriptor () routine is invoked with
SPDHandle as the DescriptorHandle parameter.

iii) Let WRD be the wrapper row descriptor associated with E and let WRDHandle be the descriptor
handle that identifies WRD. The FreeDescriptor () routine is invoked with WRDHandle
as the DescriptorHandle parameter.

iv) Let WPD be the wrapper parameter descriptor associated with E and let WPDHandle be the
descriptor handle that identifies WPD. The FreeDescriptor() routine is invoked with
WPDHandle as the DescriptorHandle parameter.

7) Eis deallocated and all its resources are freed.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains FreeExecutionHandle.

Foreign-data wrapper interface routines 253

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.7 FreeFSConnection

Function

Deallocate a FS-connection.

Definition

FreeFSConnection (
FSConnectionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let FSCH be the value of FSConnectionHandle.

2) If FSCH does not identify an allocated FS-connection, then an exception condition is raised: FDW-specific

condition — invalid handle.

3) Let C be the allocated FS-connection identified by FSCH.

4) The foreign-data wrapper diagnostics area associated with C is emptied.

5) If an allocated query context is associated with C, then an exception condition is raised: FDW-specific

condition — function sequence error.

6) Cis deallocated and all its resources are freed.

Conformance Rules

1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface

routine name> that contains FreeFSConnection.

254 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.8 FreeQueryContext

Function

Deallocate a query context.

Definition

FreeQueryContext (

QueryContextHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)
5)

6)

Let QCH be the value of QueryContextHandle.

If QCH does not identify an allocated query context, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let Q be the allocated query context identified by QCH.
The foreign-data wrapper diagnostics area associated with Q is emptied.

If an allocated reply description or FDW-execution is associated with Q, then an exception condition is
raised: FDW-specific condition — function sequence error.

Q is deallocated and all its resources are freed.

Conformance Rules

1)

Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains FreeQueryContext.

Foreign-data wrapper interface routines 255

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.9 FreeReplyHandle

Function

Deallocate an FDW-reply.
Definition

FreeReplyHandle (
ReplyHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Rbe the FDW-reply identified by RH.
4) The foreign-data wrapper diagnostics area associated with R is emptied.

5) Ris deallocated and all its resources are freed.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains FreeReplyHandle.

256 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.10FreeWrapperEnv

Function

Deallocate a FDW-environment.

Definition

FreeWrapperEnv (

WrapperEnvHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)
5)

6)

Let WEH be the value of WrapperEnvHandle.

If WEH does not identify an allocated FDW-environment, then an exception condition is raised: FDW-
specific condition — invalid handle.

Let E be the allocated FDW-environment identified by WEH.
The foreign-data wrapper diagnostics area associated with E is emptied.

If an allocated FS-connection is associated with E, then an exception condition is raised: FDW-specific
condition — function sequence error.

E is deallocated and all its resources are freed.

Conformance Rules

1)

Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains FreeWrapperEnv.

Foreign-data wrapper interface routines 257

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.11GetNextReply

Function

Get a new reply handle and execution handle for a foreign server request.
Definition

GetNextReply (

ReplyHandle IN INTEGER,
NextReplyHandle ouT INTEGER,
NextExecutionHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let SRH be the set of reply handles that was allocated during the execution of the Advance InitRe-
quest() routine during which RH was allocated.

4) Let NRH be a handle referencing an allocated reply description included in SRH.
5) Let NEH be the handle referencing an FDW-execution that corresponds to NRH.
6) NextReplyHandle is set to NRH.

7) NextExecutionHandle is set to NEH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetNextReply.

258 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.12GetNumReplyBoolVE

Function

Get the number of <boolean value expression>s simply contained in the <where clause> of a query that the
foreign-data wrapper is capable of handling.

Definition

GetNumReplyBoolVE (
ReplyHandle IN INTEGER,
NumberOfBoolVEs ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) Let N be the number of <boolean value expression> elements simply contained in the <where clause> of
Q that the foreign-data wrapper is capable of handling.

5) NumberOfBoolVEs is set to N.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetNumReplyBoolVE.

Foreign-data wrapper interface routines 259

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.13GetNumReplyOrderBy

Function

Get the number of columns that are used to order the result that the foreign-data wrapper is capable of handling.
Definition

GetNumReplyOrderBy (
ReplyHandle IN INTEGER,
NumberOfOrderByElems OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let NOE be the number of <value expression>s used to order the result of the query associated with RH
that the foreign-data wrapper is capable of handling.

4) NumberOfOrderByElems is set to NOE.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetNumReplyOrderBy.

260 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.14GetNumReplySelectElems

Function

Get the number of <value expressions>s in the <select list> of a query that the foreign-data wrapper is capable
of handling.

Definition

GetNumReplySelectElems (
ReplyHandle IN INTEGER,
NumberOfSelectListElements ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) Let N be the number of <value expression> elements simply contained in the <select list> of Q that the
foreign-data wrapper is capable of handling.

5) NumberOfSelectListElements is set to N.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetNumReplySelectElems.

Foreign-data wrapper interface routines 261

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.15GetNumReplyTableRefs

Function

Get the number of <table reference>s in the <from clause> of a query that can be processed by the foreign-data
wrapper.

Definition

GetNumReplyTableRefs (
ReplyHandle IN INTEGER,
NumberOfTableReferences ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) Let N be the number of <table reference> elements simply contained in the <from clause> of Q that the
foreign-data wrapper is capable of handling.

5) NumberOfTableReferences is set to N.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetNumReplyTableRefs.

262 Management of External Data (SQL/MED)

22.3.16 GetOpts

Function

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

Request the foreign-data wrapper to supply information about the capabilities of a given object, and other

information pertaining to that object.

Definition

GetOpts (
InputHandle
HandleType
ReturnFormat
Options
BufferLength
StringlLength

RETURNS SMALLINT

IN
IN
ouT
ouT
IN
ouT

INTEGER,
SMALLINT,

INTEGER,

CHARACTER VARYING(L2),
INTEGER,

INTEGER)

where: L2 is determined by the value of StringLength and has a maximum value equal to the implementation-
defined maximum length of a variable-length character string.

General Rules

1) LetIH be the value of InputHandle and let HT be the value of HandleType.

2) If HT is not one of the code values in Table 31, “Codes used for foreign-data wrapper handle types”, then
an exception condition is raised: FDW-specific exception — invalid handle.

3) If IH does not identify a handle of the type indicated by HT, then an exception condition is raised: FDW-
specific exception — invalid handle.

4) Case:
a) If HT indicates WRAPPER HANDLE, then
Case:
i) If the foreign-data wrapper FDW described by IH cannot return a report of its capabilities and

other information, then a completion condition is raised: no data.

i) Otherwise, a description CD of the capabilities of FDW is created.
b) If HT indicates SERVER HANDLE, then

Case:

i) If the foreign server FSdescribed by IH cannot return a report of its capabilities and other
information, then a completion condition is raised: no data.

i) Otherwise, a description CD of the capabilities of FSis created.

If CD is an XML document, then it shall be a valid XML document according to the following

DTD:

Foreign-data wrapper interface routines 263

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

<?xml version="1.0" encoding=""charencodi ng" ?>
<I—- SQL/MED GetOpts Document —>
<I- UTF-8 and UTF-16 are the only required encodings —>
<IELEMENT SQLMEDGenericOptions (SQLMEDGenericOption)+ >
<IELEMENT SQLMEDGenericOption (#PCDATA)>
<IATTLIST SQLMEDGenericOption SQLMEDOptionName CDATA #REQUIRED>
<IATTLIST SQLMEDGenericOption
SQLMEDOptionType (INTEGER | CHARACTER) #REQUIRED>

where char encodi ng is either UTF-8 or UTF-16.

NOTE 67 — The CDATA value of the SQLMEDOptionName attribute and the PCDATA text of the
SQLMEDGenericOption tag are implementation-defined.

NOTE 68 — The DTD can be internal to the XML document or it can be an external DTD referenced by a
URI as specified in the XML specification. The way in which the foreign-data wrapper knows the URI to
specify in the XML document is implementation-defined.

5) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to Options, CD, LO, and
StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

6) Case:
a) If CD is an XML document, then the value of ReturnFormat is set to one (1).

b) If CD is in a format defined by the foreign-data wrapper, then the value of ReturnFormat is set to a
value, defined by the foreign-data wrapper, that corresponds to that format.

NOTE 69 — All negative values are reserved for use by foreign-data wrappers. All non-negative values are reserved
for use by this International Standard.

Conformance Rules
1) Without Feature M009, “GetOpts and GetStatistics routinesGetOpts and GetStatistics routines”, a conforming

SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetOpts.

264 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.17GetReplyBoolVE

Function

Get the ordinal position, within the <where clause> of a query, of a <boolean value expression> element that
the foreign-data wrapper is capable of handling.

Definition

GetReplyBoolVE (

ReplyHandle IN INTEGER,
Index IN SMALLINT,
BoolVENumber ouT SMALLINT)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)

5)

6)

7)

8)

Let RH be the value of ReplyHandle.

If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let | be the value of Index.

If I is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

Let Q be the query associated with RH. Let WCQ be the <where clause> of Q.

Let N be the number of <boolean value expression> elements simply contained in WCQ that the foreign-
data wrapper is capable of handling. Let BVEH be a list containing only those N <boolean value expression>
elements, in the same relative positions in which they appear in WCQ.

If | is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

BoolVENumber is set to the ordinal position in WCQ of the <boolean value expression> element that is
[-th within BVEH.

Conformance Rules

1)

Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyBoolVE.

Foreign-data wrapper interface routines 265

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.18 GetReplyCardinality

Function

Get an estimate of the cardinality of the result set associated with a given reply.
Definition

GetReplyCardinality (
ReplyHandle IN INTEGER,
ReplyCardinality ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let C be the estimated cardinality of the result set associated with RH.

NOTE 70 — If the foreign-data wrapper has no means to estimate the cardinality of the result set associated with RH, then
C is a foreign-data wrapper implementation-dependent default value.

4) ReplyCardinality is set to C.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyCardinality.

266 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.19GetReplyDistinct

Function

Get information as to whether the foreign-data wrapper is capable of providing distinct rows in the result set.
Definition

GetReplyDistinct (
ReplyHandle IN INTEGER,
IsDistinct ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Case:

a) If the foreign-data wrapper is capable of providing distinct rows in the result set, then IsDistinct is set
to 1 (one).

b) Otherwise, IsDistinct is set to O (zero).

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyDistinct.

Foreign-data wrapper interface routines 267

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.20GetReplyExecCost

Function

Get a value that represents the estimated “cost” to retrieve the result set associated with the reply. Larger values
represent greater costs.

Definition

GetReplyExecCost (
ReplyHandle IN INTEGER,
ReplyTotalExecCost ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Cbe the estimated cost to retrieve the result set associated with RH.

NOTE 71 — If the foreign-data wrapper has no means to estimate the cost to retrieve the result set associated with RH, then
C is a foreign-data wrapper implementation-dependent default value.

4) ReplyTotalExecCost is set to C.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyExecCost.

268 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.21 GetReplyFirstCost

Function

Get a value that represents the estimated “cost” to retrieve the first row of the result set associated with the
reply. Larger values represent greater costs.

Definition

GetReplyFirstCost (
ReplyHandle IN INTEGER,
ReplyExecFirstCost ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Cbe the estimated cost to retrieve the first row of the result set associated with RH.

NOTE 72 — If the foreign-data wrapper has no means to estimate the cost to retrieve the first row of the result set associated
with RH, then C is a foreign-data wrapper implementation-dependent default value.

4) ReplyExecFirstCost is set to C.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyFirstCost.

Foreign-data wrapper interface routines 269

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.22GetReplyOrderElem

Function

Get the ordinal position, within the <select list>, of a <value expression> element that the foreign-data wrapper
is capable of handling and that is used to order the result of a query.

Definition

GetReplyOrderElem (

ReplyHandle IN INTEGER,
Index IN SMALLINT,
OrderByNumber ouT SMALLINT)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)

5)

6)

7)

8)

Let RH be the value of ReplyHandle.

If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let | be the value of Index.

If I is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

Let Q be the query associated with RH. Let S.Q be the <select list> of Q.

Let N be the number of <value expression> elements simply contained in SLQ that the foreign-data wrapper
is capable of handling. Let VEH be a list containing only those N <value expression> elements, in the same
relative positions in which they appear in SLQ.

If | is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

OrderByNumber is set to the ordinal position in SLQ of the <value expression> element that is I-th within
VEH.

Conformance Rules

1)

Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyOrderElem.

270 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.23GetReplyReExecCost

Function

Get a value that represents the estimated “cost” to re-execute the reply identified by the provided reply handle.
Larger values represent greater costs.

Definition

GetReplyReExecCost (
ReplyHandle IN INTEGER,
ReplyReExecutionCost OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let C be the estimated cost to re-execute the reply identified by RH.

NOTE 73 — If the foreign-data wrapper has no means to estimate the cost to re-execute RH, the C is a foreign-data wrapper
implementation-dependent default value.

4) ReExecutionCost is set to C.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyReExecCost.

Foreign-data wrapper interface routines 271

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.24 GetReplySelectElem

Function

Get the ordinal position, within the <select list> of a query, of a <value expression> element that the foreign-
data wrapper is capable of handling.

Definition

GetReplySelectElem (

ReplyHandle IN INTEGER,
Index IN SMALLINT,
SelectListElementNumber ouT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let | be the value of Index.

4) Iflis less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

5) Let Q be the query associated with RH. Let S_Q be the <select list> of Q.

6) Let N be the number of <value expression>s simply contained in SLQ that the foreign-data wrapper is
capable of handling. Let VEH be a list containing only those N <value expression> elements, in the same
relative positions in which they appear in SLQ.

7) If 1 is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

8) SelectListElementNumber is set to the ordinal position in SLQ of the <value expression> element that is
[-th within VEH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplySelectElem.

272 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.25GetReplyTableRef

Function

Get the ordinal position, within the <from clause> of a query, of a <table reference> element that the foreign-
data wrapper is capable of handling.

Definition

GetReplyTableRef (

ReplyHandle IN INTEGER,
Index IN SMALLINT,
TableReferenceNumber ouT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let RH be the value of ReplyHandle.

2) If RH does not identify an allocated reply description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let | be the value of Index.

4) Iflis less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

5) Let Q be the query associated with RH. Let FCQ be the <from clause> of Q.

6) Let N be the number of <table reference>s simply contained in FCQ that the foreign-data wrapper is
capable of handling. Let TRH be a list containing only those N <table reference>s, in the same relative
positions in which they appear in FCQ.

7) If 1 is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

8) TableReferenceNumber is set to the ordinal position in FCQ of the <table reference> element that is I-th
within TRH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetReplyTableRef.

Foreign-data wrapper interface routines 273

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.26 GetSPDHandle

Function

Get the descriptor handle of the server parameter descriptor associated with a given ExecutionHandle.
Definition

GetSPDHandle (
ExecutionHandle IN INTEGER,
SPDHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) SPDHandle is set to the descriptor handle of the server parameter descriptor associated with EH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetSPDHandle.

274 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.27GetSRDHandle

Function

Get the descriptor handle of the server row descriptor associated with a given execution handle.

Definition

GetSRDHandle (
ExecutionHandle IN INTEGER,
SRDHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) SRDHandle is set to the descriptor handle of the server row descriptor associated with EH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetSRDHandle.

Foreign-data wrapper interface routines 275

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.28 GetStatistics

Function

Retrieve implementation-defined statistics associated with a foreign server request.

Definition

GetStatistics (

ExecutionHandle IN INTEGER,
ReturnFormat ouT INTEGER,

Statistics ouT CHARACTER VARYING(L),
BufferLength IN INTEGER,

StringLength ouT INTEGER)

RETURNS SMALLINT

where: L is equal to the value of StringLength and has a maximum value equal to the implementation-defined
maximum length of a variable-length character string.

General Rules

1)
2)

3)

Let EH be the value of ExecutionHandle.

If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

Case:

a)

If the foreign-data wrapper is able to report statistics associated with the foreign server request associ-
ated with EH, then a report of those statistics is created. If the report is in the form of an XML document,
then it shall be a valid XML document according to the following DTD.

<?xml version="1.0" encoding="charencodi ng" ?>
<I- SQL/MED GetStatistics Document —>
<I- UTF-8 and UTF-16 are the only required encodings —>
<IELEMENT SQLMEDStatisticsSet (SQLMEDStatistics)+ >
<IELEMENT SQLMEDStatistics (#PCDATA)>
<IATTLIST SQLMEDStatistics SQLMEDStatisticName CDATA #REQUIRED>
<IATTLIST SQLMEDStatistics
SQLMEDStatisticType (INTEGER | CHARACTER) #REQUIRED>

where char encodi ng is either UTF-8 or UTF-16.

NOTE 74 — The CDATA values of the SQLMEDStatisticName attribute and the PCDATA text of the SQLMEDStatistics
tag are implementation-defined.

NOTE 75 — The DTD can be internal to the XML document or it can be an external DTD referenced by a URI as
specified in the XML specification. The way in which the foreign-data wrapper knows the URI to specify in the XML
document is implementation-defined.

b) Otherwise, a completion condition is raised: no data.

276 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

4) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to Statistics, 9, LOS and
StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

5) Case:
a) If 9 isan XML document, then the value of ReturnFormat is set to one (1).

b) If 9 isinaformat defined by the foreign-data wrapper, then the value of ReturnFormat is set to a
value defined by the foreign-data wrapper that corresponds to that format.

NOTE 76 — All negative values are reserved for use by foreign-data wrappers. All non-negative values are reserved
for use by this part of ISO/IEC 9075.

Conformance Rules
1) Without Feature M009, “GetOpts and GetStatistics routinesGetOpts and GetStatistics routines”, a conforming

SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetStatistics.

Foreign-data wrapper interface routines 277

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.29GetWPDHandle

Function

Get the descriptor handle of the wrapper parameter descriptor associated with a given execution handle.
Definition

GetWPDHandle (
ExecutionHandle IN INTEGER,
WPDHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) WPDHandle is set to the descriptor handle of the wrapper parameter descriptor associated with EH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetWPDHandle.

278 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.30GetWRDHandle

Function

Get the descriptor handle of the wrapper row descriptor associated with a given execution handle.

Definition

GetWRDHandle (
ExecutionHandle IN INTEGER,
WRDHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) WRDHandle is set to the descriptor handle of the wrapper row descriptor associated with EH.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetWRDHandle.

Foreign-data wrapper interface routines 279

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.31InitRequest

Function

Determine whether a foreign-data wrapper can execute a given foreign server request.

Definition

InitRequest (

FSConnectionHandle IN INTEGER,
RequestHandle IN INTEGER,
ReplyHandle ouT INTEGER,
ExecutionHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)

4)
5)

6)

Let FSCH be the value of FSConnectionHandle.

If FSCH does not identify an allocated FSconnection, then an exception condition is raised: FDW-specific
condition — invalid handle.

If an exception condition is raised in any of the routines invoked in any of the following General Rules,
then the diagnostics records returned by the invoked routines are transferred to the foreign-data wrapper
diagnostics area associated with the FSConnectionHandle and further processing of this routine is terminated
as if the exception condition had been raised in this routine.

Let RH be the value of RequestHandle.

Let IG be the indication of whether GetSQLString() will be invoked or not. It is foreign-data wrapper
implementation-dependent whether |G is True or False.

NOTE 77 — The only possible values for |G are True and False.
Case:

a) IfIGis True, then let SShe the SQLString value returned by an invocation of GetSQLString()
with RH as the RequestHandle parameter.

b) Otherwise:

i) Let NTRE be the NumberOfTableReferenceElement values that would be returned by an
invocation of GetNumTableRefElems () with RH as the RequestHandle parameter.
i) For 1 (one) <i < NTRE:

1) Let TRH; be the TableReferenceHandle that would be returned by invocation of Get-

TableRefElem() with RH as the RequestHandle parameter and i as the TableRefer-
enceElementNumber parameter.

2) Let TRDH; be the TableReferenceDescriptorHandle that would be returned by invocation
of GetTRDHand le() with TRH; as the TableReferenceHandle parameter.

280 Management of External Data (SQL/MED)

7)

8)

i)

vi)

vii)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

3) Let NC; be the value of the COUNT descriptor field that would be returned by invocation
of GetDescriptor () with TRDH; as the DescriptorHandle parameter, O (zero) as the

RecordNumber parameter, and the code for COUNT from Table 30, “Codes used for for-
eign-data wrapper descriptor fields”, as the Fieldldentifier parameter.

4) For 1 (one) =j = NG, let DTj; be the effective data type of the j-th column, as represented
by the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET CATALOG, CHARACTER _SET _SCHEMA, CHARACTER_SET NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would be returned by separate invocations of GetDescrip-
tor () with TRDH; as the DescriptorHandle parameter, j as the RecordNumber parameter,
and the code for the fields TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper descriptor fields”,
as the Fieldldentifier parameter.

5) Let TRT; be the TableReferenceType that would be returned by an invocation of Get-
TableRefElemType () with TRH; as the TableReferenceHandle parameter.

6) Let TN; be the TableName that would be returned by invocation of GetTableRefTable-
Name () with TRH; as the TableReferenceHandle parameter.

Let NSLE be the NumberOfSelectListElements that would be returned by an invocation of
GetNumSelectElems() with RH as the RequestHandle parameter.

For 1 (one) < k< NSLE, let VEH be the ValueExpressionHandle that would be returned by

invocation of GetSelectElem() with RH as the RequestHandle parameter and k as the
SelectListElementNumber parameter.

Let NBVE be the NumberOfBoolVE values that would be returned by invocation of GetNum-
BoolVE() with RH as the RequestHandle parameter.

For 1 (one) < k< NBVE, let VEHyNg E be the ValueExpressionHandle that would be returned

by an invocation of GetBoolVE() with RH as the RequestHandle parameter, and k as the
BoolVENumber parameter.

For 1 (one) < m< NSLE+NBVE, let VET,, be the ValueExpressionKind that would be returned
by an invocation of GetValueExpKind () with VEH, as the ValueExpressionHandle
parameter, and let CN,,, be the ColumnName that would be returned by invocation of GetVal -
ExprColName () with VEH,as the ValueExpressionHandle parameter.

If the implementation-defined maximum number of FDW-replies that can be allocated at one time has
already been reached, then ReplyHandle is set to zero and an exception condition is raised: FDW-specific
condition — limit on number of handles exceeded.

Case:

Foreign-data wrapper interface routines 281

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

9

10)

11)

12)

a)

b)

c)

If the memory requirements to manage an FDW-reply cannot be satisfied, then ReplyHandle is set to
zero and an exception condition is raised: FDW-specific condition — memory allocation error.

If the resources to manage an FDW-reply cannot be allocated for implementation-defined reasons,
then ReplyHandle is set to zero and an implementation-defined exception condition is raised.

Otherwise, the resources to manage an FDW-reply are allocated and are referred to as an allocated
reply description. The allocated reply description is assigned a unigue value that is returned in
ReplyHandle.

Case:

a)

b)

c)

If IGis Falseand, for any reason, the foreign-data wrapper cannot create an FDW-reply that corresponds
to RH as described by NTRE, (TRH;, TRDH;, NC;, TRT;, and TN;, for 1 (one) < i < NTRE), (DTiJ-, for
1 (one) =i = NTREand 1 (one) <j < NGC;j), NSLE, and (VEH, VETy, and CNy, for 1 (one) <k <
NSLE+NBVE), then an exception condition is raised: FDW-specific condition — unable to create
reply.

NOTE 78 — One reason for raising this exception could be an Access Rule violation at the foreign server.

If IGis Trueand, for any reason, the foreign-data wrapper cannot create an FDW-reply that corresponds
to RH as described by SS then an exception condition is raised: FDW-specific condition — unable to
create reply.

Otherwise, the FDW-reply corresponding to RH is created.

If the implementation-defined maximum number of FDW-executions that can be allocated at one time has
already been reached, then ExecutionHandle is set to zero and an exception condition is raised: FDW-
specific condition — limit on number of handles exceeded.

Case:

a)

If the memory requirements to manage an FDW-execution cannot be satisfied, then ExecutionHandle
is set to zero and an exception condition is raised: FDW-specific condition— memory allocation error.

b) Ifthe resources to manage an FDW-execution cannot be allocated for implementation-defined reasons,
then ExecutionHandle is set to zero and an implementation-defined exception condition is raised.

c) Otherwise, the resources to manage an FDW-execution are allocated and are referred to as an allocated
execution description. The allocated execution description is assigned a unique value that is returned
in ExecutionHandle.

Case:

a) If1Gis Falseand the foreign-data wrapper cannot create an FDW-execution that corresponds to RH
as described by NTRE, (TRH;, TRDH;, NC;, TRT;, and TN;, for 1 (one) <i < NTRE), (DT; ji for 1 (one)
<i<NTREand 1 (one) £j £ NG;), NSLE, and (VEH, VET, and CN, for 1 (one) < k< NSLE+NBVE),
then an exception condition is raised: FDW-specific condition — unable to create execution.

b) If IGis False and the foreign-data wrapper cannot create an FDW-execution that corresponds to RH
as described by SS then an exception condition is raised: FDW-specific condition — unable to create
execution.

c) Otherwise, the FDW-execution corresponding to RH is created.

13) The PASSTHROUGH flag associated with the allocated FDW-execution is set to False.

282 Management of External Data (SQL/MED)

14)

15)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

Let NIDA be the number of item descriptor areas that are set up for the server row descriptor. Let SRDHandle
be the DescriptorHandle that is returned by an invocation of the Al locDescriptor () routine with
NIDA as the MaxDetailAreas parameter. Let SRD be the server row descriptor identified by SRDHandle.
SRD is associated with the allocated FDW-execution.

For this descriptor area, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field
default values”, are set to the specified default values by the invocation of the SetDescriptor () routine
with SRDHandle as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) <r <
NIDA, and to the codes for the fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor
field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Field-
Identifier parameter. All other fields in the item descriptor areas of SRD are initially undefined.

Let NIDAP be the number of item descriptor areas that are set up for the server parameter descriptor. Let
SPDHandle be the DescriptorHandle that is returned by an invocation of the Al locDescriptor()
routine with NIDAP as the MaxDetail Areas parameter. Let SPD be the server parameter descriptor identified
by SPDHandle. SPD is associated with the allocated FDW-execution.

For this descriptor area, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field
default values”, are set to the specified default values by the invocation of the SetDescriptor () routine
with SPDHandle as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) <r <
NIDAP, and to the codes for the fields with non-blank entries in Table 34, “Foreign-data wrapper
descriptor field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”,
as the Fieldldentifier parameter. All other fields in the item descriptor areas of SPD are initially undefined.

Conformance Rules

1)

Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains InitRequest.

Foreign-data wrapper interface routines 283

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.32Iterate

Function

Retrieve the next row from an FDW-execution.

Definition

Iterate (

ExecutionHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1)
2)

3)

4)
5)

6)

7)

8)
9)

Let EH be the value of ExecutionHandle.

If EH does not identify an opened FDW-execution, then an exception condition is raised: FDW-specific
condition — function sequence error.

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in which
the foreign-data wrapper is written.

Let Sbe the opened FDW-execution identified by ExecutionHandle.

Let CR be the open foreign-data wrapper cursor effectively associated with Sand let T be the sequence of
rows included in the result set descriptor of CR.

Let SRD be the server row descriptor for Sand let N be the value of the TOP_LEVEL_COUNT field of
SRD.

Case:

a) IfHL1 and HL2 are both pointer-supporting languages, then for each item descriptor area in SRD
whose LEVEL is 0 (zero) in the first AD item descriptor areas of SRD, and for all of their subordinate
descriptor areas, refer to a <target specification> whose corresponding item descriptor area has a non-
zero value of DATA_POINTER as a bound target and refer to the corresponding <select list> column
as a bound column.

b) Otherwise, for each item descriptor area in SRD whose LEVEL is 0 (zero) in the first AD item
descriptor areas of SRD, and for all of their subordinate descriptor areas, refer to a <target specification>
as a bound target and refer to the corresponding <select list> column as a bound column.

Let BC be the number of the bound targets.
Fori, 1 (one) <i <BC:

a) Let IDA be the item descriptor area of SRD corresponding to the i-th bound target and let TT be the
value of the TYPE field of IDA.

b) If TT indicates DEFAULT, then:

i) Case:

284 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

1) If the PASSTHROUGH flag associated with EH is True, then let RD be the wrapper row
descriptor associated with S

2) Otherwise, let RD be the table reference descriptor associated with S

i) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the item descriptor area of RD corresponding to the i-th bound column.

iii) The data type, precision, and scale of the <target specification> described by IDA are effectively
set to CT, P, and SC, respectively, for the purposes of this invocation of Iterate() only.

10) If T is empty, or if CRis positioned after the end of the result set, then:

a) CRis positioned after the last row of T.

b) No values are assigned to bound targets.

c) A completion condition is raised: no data and no further rules of this Subclause are applied.
11) Case:

a) If the position of CRis before a row NR, then CRis positioned on row NR.

b) If the position of CRis on a row OR other than the last row, then CR is positioned on the row imme-
diately after OR. Let NR be the row immediately after OR.

12) NRbecomes the current row of CR.
13) Case:

a) If an exception condition is raised during derivation of any <derived column> associated with NR,
then there is no fetched row associated with S, but NR remains the current row of CR.

b) Otherwise:
i) NR becomes the fetched row associated with S
i) Let SShe the select source associated with S

iii) The General Rules of Subclause 21.6, “Implicit FETCH USING clause”, are applied with Sas
OPENED FDW-EXECUTION.

iv) If an exception condition is raised during the derivation of any target value, then the values of
all the bound targets are implementation-dependent and CR remains positioned on the current
row.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains lterate.

Foreign-data wrapper interface routines 285

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.330pen

Function

Open an FDW-execution.

Definition

Open (

ExecutionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1)
2)

3)

4)
5)

Let EH be the value of ExecutionHandle.

If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

If EH identifies an opened FDW-execution, then an exception condition is raised: FDW-specific condition
— function sequence error.

Let Sbe the allocated FDW-execution identified by ExecutionHandle.
If the PASSTHROUGH flag associated with EH is True, then:

a)

b)

Let SRD be the SRDHandle that would be returned by an invocation of the GetSRDHand e () routine
with EH as the ExecutionHandle parameter. Let SPD be the SPDHandle that would be returned by an
invocation of the GetSPDHand e () routine with EH as the ExecutionHandle parameter. Let WRD
be the WRDHandle that would be returned by an invocation of the GetWRDHand le () routine with
EH as the ExecutionHandle parameter. Let WPD be the WPDHandle that would be returned by an
invocation of the GetWPDHand 1 e () routine with EH as the ExecutionHandle parameter.

Let NCR be the value of the COUNT descriptor field that would be returned by invocation of the
GetDescriptor () routine with WRD as the DescriptorHandle parameter, O (zero) as the Record-
Number parameter, and the code for COUNT from Table 30, “Codes used for foreign-data wrapper
descriptor fields”, as the Fieldldentifier parameter.

Let DT; be the effective data type of the j-th column, for 1 (one) < j < NCR as represented by the

values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET SCHEMA, CHARACTER_SET NAME, USER_DEFINED TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields that would be returned by separate invocations of the
GetDescriptor () routine with WRD as the DescriptorHandle parameter, j as the RecordNumber
parameter, and the code for the fields TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME

286 Management of External Data (SQL/MED)

d)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Fieldldentifier param-
eter. TYPE is one of the code values in Table 14, “Codes used for implementation data types in
SQL/CLI™.

Let TDT; be the effective data type of the j-th <target specification>, for 1 (one) <j < NCR, as repre-

sented by the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATE-
TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATA-
LOG, CHARACTER_SET _SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields that would be set by separate invocations of the GetDescriptor () routine with SRD as the
DescriptorHandle parameter, j as the RecordNumber parameter, and the code for the fields TYPE,
LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATE-
TIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper
descriptor fields”, as the Fieldldentifier parameter. TYPE either indicates ROW or is one of the code
values in Table 15, “Codes used for application data types in SQL/CLI”.

For every DTj and TDTj, 1 (one) <j < NCR:

i) If DTj is an array type and TDT; is not an array locator type, then an exception condition is
raised: FDW-specific condition — invalid data type descriptors.

i) If DTj is a multiset type and TDTj is not a multiset locator data type, then an exception condition
is raised: FDW-specific condition — invalid data type descriptors.

iii) If DTjis a row type, then
Case:

1) If TDTj is not a row type, then an exception condition is raised: FDW-specific condition
— invalid data type descriptors.

2) If TDTjis a row type and DTj and TDT; do not conform to the Syntax Rules of

Subclause 9.20, “Data type identity”, in [ISO9075-2], then an exception condition is raised:
FDW-specific condition — invalid data type descriptors.

iv) If DTjand TDT; are predefined types, then let HL be the programming language in which the

invoking SQL-server is written. Let operative data type correspondence table be the data type
correspondence table for HL as specified in Subclause 19.5, “SQL/CLI data type correspon-
dences”. Refer to the two columns of the operative data type correspondence table as the “SQL
data type column” and the “host data type column”.

Case:

1) Ifthe row that contains the SQL data type corresponding to DT; in the SQL data type column

of the operative data type correspondence table contains “None” in the host data type col-
umn, and TDT; is not a character string type, then an exception condition is raised: FDW-

specific condition — invalid data type descriptors.

Foreign-data wrapper interface routines 287

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

f)

9)

h)

2) Otherwise, if DTJ- and TDTj do not conform to the Syntax Rules of Subclause 9.20, “Data

type identity”, in [ISO9075-2], then an exception condition is raised: FDW-specific condition
— invalid data type descriptors.

V) If DT; is a user-defined type, then an exception condition is raised: FDW-specific condition —
invalid data type descriptors.

Let NCP be the value of the COUNT descriptor field that would be returned by invocation of the
GetDescriptor () routine with WPD as the DescriptorHandle parameter, O (zero) as the Record-
Number parameter, and the code for COUNT from Table 30, “Codes used for foreign-data wrapper
descriptor fields”, as the Fieldldentifier parameter.

Let PDT; be the effective data type of the j-th parameter, for 1 (one) < j < NCP, as represented by the

values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTER-
VAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields that would be returned by separate invocations of the
GetDescriptor () routine with WPD as the DescriptorHandle parameter, j as the RecordNumber
parameter, and the code for the fields TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE,
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL PRECISION, CHARACTER_SET CAT-
ALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Fieldldentifier param-
eter. TYPE is one of the code values in Table 14, “Codes used for implementation data types in
SQL/CLI™.

Let PTDT; be the effective data type of the j-th <target specification>, for 1 (one) <j < NCP, as rep-
resented by the values of the TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATE-
TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATA-
LOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields that would be returned by separate invocations of the GetDescriptor () routine with SPD
as the DescriptorHandle parameter, j as the RecordNumber parameter, and the code for the fields
TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME from Table 30, “Codes used for foreign-data wrapper
descriptor fields”, as the Fieldldentifier parameter. TYPE either indicates ROW or is one of the code
values in Table 15, “Codes used for application data types in SQL/CLI”.

For every PDT; and PTDTj, 1 (one) < j < NCP:

i) If PDT; is an array data type and PTDTj is not an array locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

i) If PDTj is a multiset data type and PTDT; is not a multiset locator data type, then an exception
condition is raised: FDW-specific condition — invalid data type descriptors.

288 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

iii) 1f PDT; is a row data type, then

Case:

1) If PTDT; is not a row data type, then an exception condition is raised: FDW-specific con-
dition — invalid data type descriptors.

2) If PTDTj is a row data type and PDTj and PTDT; do not conform to the Syntax Rules of

Subclause 9.20, “Data type identity”, in [ISO9075-2], then an exception condition is raised:
FDW-specific condition — invalid data type descriptors.

iv) If PDT; and PTDT; are predefined data types, then let HL be the programming language in

which the invoking SQL-server is written. Let operative data type correspondence table be the
data type correspondence table for HL as specified in Subclause 19.5, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondence table
as the “SQL data type column” and the “host data type column”.

Case:

1) If the row that contains the SQL data type corresponding to PDT; in the SQL data type
column of the operative data type correspondence table contains “None” in the host data
type column, and PTDT; is not a character string type, then an exception condition is raised:

FDW-specific condition — invalid data type descriptors.

2) Otherwise, if PDTj and PTDT; do not conform to the Syntax Rules of Subclause 9.20,
“Data type identity”, in [ISO9075-2], then an exception condition is raised: FDW-specific
condition — invalid data type descriptors.

V) If PDT; is a user-defined type, then an exception condition is raised: FDW-specific condition
— invalid data type descriptors.

6) Case:
a) If the foreign server request associated with EH returns a set of rows, then:

i) The General Rules of Subclause 21.5, “Implicit EXECUTE USING and OPEN USING clauses”,
are applied to 'OPEN' and Sas TYPE and ALLOCATED FDW-EXECUTION, respectively.

i) The General Rules of Subclause 21.2, “Implicit foreign-data wrapper cursor”, are applied to S
as ALLOCATED FDW-EXECUTION.

b) Otherwise, the General Rules of Subclause 21.5, “Implicit EXECUTE USING and OPEN USING
clauses”, are applied to 'EXECUTE' and S as TYPE and ALLOCATED FDW-EXECUTION, respec-

tively.
7) EH is said to be an opened FDW-execution.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains Open.

Foreign-data wrapper interface routines 289

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.34ReOpen

Function

Reopen an FDW-execution.
Definition

ReOpen (
ExecutionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value of ExecutionHandle.

2) If EH does not identify an allocated FDW-execution, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) The General Rules of Subclause 22.3.33, “Open”, are applied with EH as the ExecutionHandle parameter.

Conformance Rules
1) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not contain an

invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains ReOpen.

290 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

22.3.35 TransmitRequest

Function

Transmit a foreign server request to be analyzed by the foreign server.

Definition

TransmitRequest (

FSConnectionHandle IN INTEGER,

RequestString IN CHARACTER VARYING (L),
StringLength IN INTEGER,
ExecutionHandle ouT INTEGER)

RETURNS SMALLINT

where: L is equal to the value of StringLength and has a maximum value equal to the implementation-defined
maximum length of a variable-length character string.

General Rules

1)
2)

3)
4)
5)
6)

7)

8)

Let FSCH be the value of FSConnectionHandle.

If FSCH does not identify an allocated FS-connection, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let C be the allocated FS-connection identified by FSCH.
The foreign-data wrapper diagnostics area associated with C is emptied.
Let FR be the foreign server request associated with the RequestString.

If the implementation-defined maximum number of FDW-executions that can be allocated at one time has
already been reached, then ExecutionHandle is set to zero and an exception condition is raised: FDW-
specific condition — limit on number of handles exceeded.

Case:

a) If the memory requirements to manage an FDW-execution cannot be satisfied, then ReplyHandle is
set to zero and an exception condition is raised: FDW-specific condition — memory allocation error.

b) Ifthe resources to manage an FDW-execution cannot be allocated for implementation-defined reasons,
then ReplyHandle is set to zero and an implementation-defined exception condition is raised.

¢) Otherwise, the resources to manage an FDW-execution are allocated and are referred to as an allocated
FDW-execution. The allocated FDW-execution is assigned a unique value RHV that is returned in
ExecutionHandle.

Case:

a) Ifthe foreign-data wrapper cannot create an FDW-execution that corresponds to FR, then an exception
condition is raised: FDW-specific condition — unable to create reply.

b) Otherwise, the FDW-execution corresponding to FRis created.

Foreign-data wrapper interface routines 291

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

9)
10)

11)

12)

13)

14)

The PASSTHROUGH flag associated with the allocated FDW-execution is set to True.

Let SRDItemDescriptor Areas be the number of item descriptor areas that need to be set up for the server
row descriptor. Let SRDHandle be the DescriptorHandle that is returned by invocation of the Al locDe-
scriptor () with SRDItemDescriptor Areas as the MaxDetail Areas parameter. Let SRD be the server
row descriptor identified by SRDHandle. SRD is associated with the allocated FDW-execution.

For this descriptor, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field default
values”, are set to the specified default values by invocation of the SetDescr iptor () with SRDHandle
as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) < r < SRDItemDescrip-
torAreas, and the code for the fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor
field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Field-
Identifier parameter. All other fields in the item descriptor areas of SRD are initially undefined.

Let SPDItemDescriptor Areas be the number of item descriptor areas that need to be set up for the server
parameter descriptor. Let SPDHandle be the DescriptorHandle that is returned by invocation of the

Al locDescriptor () with SPDItemDescriptor Areas as the MaxDetail Areas parameter. Let SPD be
the server parameter descriptor identified by SPDHandle. SPD is associated with the allocated FDW-exe-
cution.

For this descriptor, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field default
values”, are set to the specified default values by invocation of the SetDescriptor () with SPDHandle
as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) < r < SPDItemDescrip-
torAreas, and the code for the fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor
field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Field-
Identifier parameter. All other fields in the item descriptor areas of SPD are initially undefined.

Let WRDItemDescriptor Areas be the number of item descriptor areas that need to be set up for the wrapper
row descriptor. Let WRDHandle be the DescriptorHandle that is returned by invocation of the

AllocDescriptor () with WRDItemDescriptor Areas as the MaxDetail Areas parameter. Let WRD be
the wrapper row descriptor identified by WRDHandle. WRD is associated with the allocated FDW-execution.

For this descriptor, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field default
values”, are set to the specified default values by invocation of the SetDescriptor () with WRDHandle
as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) < r < WRDItemDescrip-
torAreas, and the code for the fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor
field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Field-
Identifier parameter. All other fields in the item descriptor areas of WRD are initially undefined.

Let WPDItemDescriptor Areas be the number of item descriptor areas that need to be set up for the wrapper
parameter descriptor. Let WPDHandle be the DescriptorHandle that is returned by invocation of the
AllocDescriptor() with WPDItemDescriptor Areas as the MaxDetail Areas parameter. Let WPD be
the wrapper parameter descriptor identified by WPDHandle. WPD is associated with the allocated FDW-
execution.

For this descriptor, fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor field default
values”, are set to the specified default values by invocation of the SetDescr iptor () with WPDHandle
as the DescriptorHandle parameter and r as the RecordNumber parameter, 1 (one) <r < WPDItemDescrip-
torAreas, and the code for the fields with non-blank entries in Table 34, “Foreign-data wrapper descriptor
field default values”, from Table 30, “Codes used for foreign-data wrapper descriptor fields”, as the Field-
Identifier parameter. All other fields in the item descriptor areas of WPD are initially undefined.

The General Rules of Subclause 21.4, “Implicit DESCRIBE OUTPUT USING clause”, are applied with
RequestString and WRD as SOURCE and DESCRIPTOR, respectively.

292 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.3 Foreign-data wrapper interface wrapper routines

15) The General Rules of Subclause 21.3, “Implicit DESCRIBE INPUT USING clause”, are applied with
RequestString and WPD as SOURCE and DESCRIPTOR, respectively.

Conformance Rules
1) Without Feature M0O07, “TransmitRequest”, a conforming SQL-server shall not contain an invocation of

a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface routine name>
that contains TransmitRequest.

Foreign-data wrapper interface routines 293

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4 Foreign-data wrapper interface SQL-server routines

22.4.1 AllocDescriptor

Function

Allocate a foreign-data wrapper descriptor area and assign a handle to it.
Definition

AllocDescriptor (
MaxDetai lAreas IN SMALLINT,
DescriptorHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let MDA be the value of MaxDetailAreas.

2) If the implementation-defined maximum number of foreign-data wrapper descriptor areas that can be
allocated at one time has already been reached, then DescriptorHandle is set to 0 (zero) and an exception
condition is raised: FDW-specific condition — limit on number of handles exceeded.

3) Case:

a) If the memory requirements to manage a foreign-data wrapper descriptor area having MDA item
descriptor areas cannot be satisfied, then DescriptorHandle is set to 0 (zero) and an exception condition

is raised: FDW-specific condition — memory allocation error.

b) If the resources to manage a foreign-data wrapper descriptor area cannot be allocated for implementa-
tion-defined reasons, then DescriptorHandle is set to 0 (zero) and an implementation-defined exception

condition is raised.

c) Otherwise, the resources to manage a foreign-data wrapper descriptor area are allocated and are referred
to as an allocated foreign-data wrapper descriptor area. The allocated foreign-data wrapper descriptor

area is assigned a unique value that is returned in DescriptorHandle.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains AllocDescriptor.

294 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.2 FreeDescriptor

Function

Release resources associated with a foreign-data wrapper descriptor area.

Definition

FreeDescriptor (
DescriptorHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let DH be the value of DescriptorHandle.

2) If DH does not identify an allocated foreign-data wrapper descriptor area, then an exception condition is
raised: FDW-specific condition — invalid handle.

3) Let D be the allocated foreign-data wrapper descriptor area identified by DH.

4) D is deallocated and all its resources are freed.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains FreeDescriptor.

Foreign-data wrapper interface routines 295

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.3 GetAuthorizationld

Function

Get the authorization identifier associated with a user mapping.

Definition

GetAuthorizationld (

UserHandle IN INTEGER,
Authorizationld ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of an <identifier>.

General Rules

1)
2)

3)
4)
5)

Let UH be the value of UserHandle.

If UH does not identify an allocated user mapping description, then an exception condition is raised: FDW-
specific condition — invalid handle.

Let AID be the authorization identifier associated with UH.
Let BL be the value of BufferLength.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to Authorizationld, AID,
BL, StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules

1)

Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetAuthorizationld.

296 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.4 GetBoolVE

Function

Get a handle for a <boolean value expression> from the <where clause> of a query.

Definition

GetBoolVE (

RequestHandle IN INTEGER,
BoolVENumber IN SMALLINT,
ValueExpressionHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let BVEN be the value of BoolVENumber.

4) If BVEN s less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid
option index.

5) Let Q be the query associated with RH.
6) Let N be the number of <boolean value expression>s simply contained in the <where clause> of Q.

7) 1f BVEN is greater than N, then a completion condition is raised: no data, and no further rules of this
Subclause are applied.

8) ValueExpressionHandle is set to the value expression handle associated with the BVEN-th <boolean value
expression>.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetBoolVE.

Foreign-data wrapper interface routines 297

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.5 GetDescriptor

Function

Get the value of a field from a foreign-data wrapper descriptor area.

Definition

GetDescriptor (

DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Fieldldentifier |IN SMALLINT,
Value ouT ANY,
BufferLength IN INTEGER,
StringLength ouT INTEGER)

RETURNS SMALLINT

General Rules

1)

2)
3)

4)
5)

6)

7)

8)
9)

Let D be the allocated foreign-data wrapper descriptor area identified by DescriptorHandle and let N be
the value of the COUNT field of D.

Let FI be the value of Fieldldentifier.

If FI is not one of the code values in Table 30, “Codes used for foreign-data wrapper descriptor fields”,
then an exception condition is raised: FDW-specific condition — invalid descriptor field identifier.

Let RN be the value of RecordNumber.

Let TYPE be the value of the Type column in the row of Table 30, “Codes used for foreign-data wrapper
descriptor fields”, that contains FI.

If TYPE is 'ITEM', then:

a) IfRNis lessthan 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

b) If RN is greater than N, then a completion condition is raised: no data.

If FI indicates a descriptor field whose value is the initially undefined value created when the descriptor
was created, then an exception condition is raised: FDW-specific condition — invalid descriptor field
identifier.

Let IDA be the foreign-data wrapper item descriptor area of D specified by RN.

If TYPE is 'HEADER', then header information from the descriptor area D is retrieved as follows.

NOTE 79 — In the row of Table 32, “Ability to retrieve foreign-data wrapper descriptor fields”, that contains FI, let MBR
be the value in the column that contains the descriptor type of D. If MBRis 'No', then the effect on the retrieved value is
implementation-dependent.

Case:

a) If Fl indicates COUNT, then the value retrieved is N.

298 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

b) If Fl indicates an implementation-defined descriptor header field, then the value retrieved is the value
of the implementation-defined descriptor header field identified by FI.

c) Otherwise, if FI indicates a descriptor header field defined in Table 30, “Codes used for foreign-data
wrapper descriptor fields”, then the value retrieved is the value of the descriptor header field identified

by FI.

10) If TYPE is'ITEM', then item information from the descriptor area D is retrieved as follows.

NOTE 80 — Let MBR be the value of the May Be Retrieved column in the row of Table 32, “Ability to retrieve foreign-data
wrapper descriptor fields”, that contains FI and the column that contains the descriptor type D. If MBR s 'No', then the effect
on the retrieved value is implementation-dependent.

Case:

a) If Fl indicates an implementation-defined descriptor item field, then the value retrieved is the value
of the implementation-defined descriptor item field of IDA identified by FI.

b) Otherwise, if FI indicates a descriptor item field defined in Table 30, “Codes used for foreign-data
wrapper descriptor fields”, then the value retrieved is the value of the descriptor item field identified
by FI.

11) Let V be the value retrieved.

12) If Fl indicates a descriptor field whose row in Table 4, “Fields in foreign-data wrapper descriptor areas”,
contains a Data Type that is not CHARACTER VARYING, then Value is set to V and no further rules of
this Subclause are applied.

13) Let BL be the value of BufferLength.

14) If Fl indicates a descriptor field whose row in Table 4, “Fields in foreign-data wrapper descriptor areas”,
contains a Data Type that is CHARACTER VARYING, then the General Rules of Subclause 21.7,
“Character string retrieval”, are applied with Value, V, BL, and StringLength as TARGET, VALUE, TARGET
OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetDescriptor.

Foreign-data wrapper interface routines 299

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.6 GetDistinct

Function

Determine whether the supplied query specifies DISTINCT.

Definition

GetDistinct (
RequestHandle IN INTEGER,
IsDistinct ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.
4) Case:

a) If the <select list> of Q specifies a <set quantifier> that specifies DISTINCT, then IsDistinct is set to
1 (one).

b) Otherwise, IsDistinct is set to 0 (zero).

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetDistinct.

300 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.7 GetNumBoolVE

Function

Get the number of <boolean value expression>s simply contained in the <where clause> of a query.

Definition

GetNumBoolVE (
RequestHandle IN INTEGER,
NumberOfBoolVEs ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) NumberOfBoolVEs is set to the number of <boolean value expression> elements simply contained in the
<where clause> of Q.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumBooIVE.

Foreign-data wrapper interface routines 301

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.8 GetNumChildren

Function

Get the number of <value expression>s simply contained in the containing <value expression>.
Definition

GetNumChildren (
ValueExpressionHandle IN INTEGER,
NumberOfChildren ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) NumberOfChildren is set to the number of <value expression>s simply contained in the <value expression>
to which VEH refers.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumChildren.

302 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.9 GetNumOrderByElems

Function

Get the number of <value expression>s that are used to order the rows of the result of the query identified by
the request handle provided.

Definition

GetNumOrderByElems (
RequestHandle IN INTEGER,
NumberOfOrderByElems OUT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) NumberOfOrderByElems is set to the number of <value expression>s required to order the rows of the
result of the query associated with RH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumOrderByElems.

Foreign-data wrapper interface routines 303

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.10GetNumRoutMapOpts

Function

Get the number of generic options of a routine mapping.
Definition

GetNumRoutMapOpts (
RoutineMappingHandle IN INTEGER,
OptionCount ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RoutineMappingHandle.

2) If RH does not identify an allocated routine mapping description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) OptionCount is set to the number of generic options of the routine mapping described by RH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumRoutMapOpts.

304 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.11 GetNumSelectElems

Function

Get the number of <value expressions>s in the <select list> of a query.

Definition

GetNumSelectElems (
RequestHandle IN INTEGER,
NumberOfSelectListElements ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) NumberOfSelectListElements is set to the number of <value expression> elements simply contained in
the <select list> of Q.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumSelectElems.

Foreign-data wrapper interface routines 305

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.12 GetNumServerOpts

Function

Get the number of generic options associated with the foreign server.
Definition

GetNumServerOpts (
ServerHandle IN INTEGER,
OptionCount ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let SH be the value of ServerHandle.

2) If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) OptionCount is set to the number of generic options associated with SH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumServerOpts.

306 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.13GetNumTableColOpts

Function

Get the number of generic options of a column of a foreign table.

Definition

GetNumTableColOpts (

TableReferenceHandle IN INTEGER,
ColumnName IN CHARACTER(L),
NameLength IN SMALLINT,
OptionCount ouT INTEGER)

RETURNS SMALLINT

where L and has a maximum value equal to the implementation-defined length of a variable-length character
string.

General Rules

1)
2)

3)
4)

5)

Let TRH be the value of TableReferenceHandle.

If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

Let NL be the value of NameLength.
Case:
a) If NL is not negative, then let L be NL.

b) Otherwise, an exception condition is raised: FDW-specific condition — invalid string length or buffer
length.

Case:

a) If Lis zero, then an exception condition is raised: FDW-specific condition — invalid string length or
buffer length.

b) Otherwise, let N be the number of whole characters in the first L octets of ColumnName and let NO
be the number of octets occupied by those N characters.

Case:

i) If NO % L, then an exception condition is raised: FDW-specific condition — invalid column
name.

i) Otherwise, let CN be the first L octets of ColumnName and let TCN be the value of

TRIM (BOTH * * FROM "CN")

6) Let NC be the number of columns of the foreign table referenced by TRH.

Foreign-data wrapper interface routines 307

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

7) Case:

a) If TCNis not equivalent to the name of a column of the foreign table referenced by TRH, then an
exception condition is raised: FDW-specific condition — column name not found.

b) Otherwise, OptionCount is set to the number of generic options of the column of the foreign table
referenced by TRH whose name is TCN.
Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumTableColOpts.

308 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.14GetNumTableOpts

Function

Get the number of generic options of a foreign table.
Definition

GetNumTableOpts (
TableReferenceHandle IN INTEGER,
OptionCount ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) OptionCount is set to the number of generic options of the foreign table referenced by TRH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumTableOpts.

Foreign-data wrapper interface routines 309

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.15GetNumTableRefElems

Function

Get the number of <table reference>s contained in the <from clause> of a query.

Definition

GetNumTableRefElems (
RequestHandle IN INTEGER,
NumberOfTableReferences ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let Q be the query associated with RH.

4) NumberOfTableReferenceElements is set to the number of <table reference> elements simply contained
in the <from clause> of Q.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumTableRefElems.

310 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.16 GetNumUserOpts

Function

Get the number of generic options of a user mapping.

Definition

GetNumUserOpts (
UserHandle IN INTEGER,
OptionCount ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let UH be the value of UserHandle.

2) If UH does not identify an allocated user mapping description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) OptionCount is set to the number of generic options of the user mapping described by UH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumUserOpts.

Foreign-data wrapper interface routines 311

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.17 GetNumWrapperOpts

Function

Get the number of generic options of a foreign-data wrapper.
Definition

GetNumWrapperOpts (
WrapperHandle IN INTEGER,
OptionCount ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let WH be the value of WrapperHandle.

2) If WH does not identify an allocated foreign-data wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) OptionCount is set to the number of generic options of the foreign-data wrapper described by WH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetNumWrapperOpts.

312 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.18 GetOrderByElem

Function

Get the handle for a <value expression> used to order the result of a query.

Definition

GetOrderByElem (

RequestHandle IN INTEGER,
OrderByNumber IN SMALLINT,
ValueExpressionHandle OUT INTEGER,
OrderingSpec ouT SMALLINT)

RETURNS SMALLINT

General Rules

1)
2)

3)
4)

5)
6)
7)

8)
9)
10)

Let RH be the value of RequestHandle.

If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let ON be the value of OrderByNumber.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

Let Q be the query associated with RH.
Let N be the number of <value expression>s required to order the result of Q.

If ON is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

Let VEH be the value expression handle associated with the ON-th <value expression> associated with Q.
ValueExpressionHandle is set to VEH.

Let OSbe the <ordering specification> associated with VEH.

Case:

a) If OSspecifies ASC, then set OrderingSpec to -1 (one).

b) Otherwise, set OrderingSpec to 1 (one).

Conformance Rules

1)

Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetOrderByElem.

Foreign-data wrapper interface routines 313

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.19GetRoutMapOpt

Function

Get the name and value of a specified generic option associated with a given routine mapping, given the option
number.

Definition

GetRoutMapOpt (

RoutineMappingHandle
OptionNumber
OptionName
BufferLengthl
StringlLengthl
OptionValue
BufferLength2
StringlLength2

RETURNS SMALLINT

IN
IN
ouT
IN
ouT
ouT
IN
ouT

INTEGER,
INTEGER,
CHARACTER(L1),
SMALLINT,
SMALLINT,
CHARACTER(L2),
SMALLINT,
SMALLINT)

where each of L1 and L2 have a value equal to the implementation-defined maximum length of a variable-
length character string.

General Rules

1)
2)

3)
4)
5)

6)

7)

Let RH be the value of RoutineMappingHandle.

If RH does not identify an allocated routine mapping description, then an exception condition is raised:
FDW-specific condition — invalid handle.

Let ON be the value of OptionNumber.

Let N be the number of generic options associated with RH.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option

index.

If ON is greater than N, then a completion condition is raised: no data and no further rules of this Subclause

are applied.

Information from the ON-th generic option associated with RH is retrieved.

a) Let NAME be the name of the generic option.

b) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName, NAME,
BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED

OCTET LENGTH, respectively.

c) Let OPTIONVALUE be the value of the generic option.

d) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

314 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetRoutMapOpt.

Foreign-data wrapper interface routines 315

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.20GetRoutMapOptName

Function

Get the value of a generic option associated with a given routine mapping, given the option name.
Definition

GetRoutMapOptName (

RoutineMappingHandle IN INTEGER,
OptionName IN CHARACTER(L1),
BufferLengthl IN SMALLINT,
Optionvalue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 have a value equal to the implementation-defined maximum length of a variable-
length character string.

General Rules

1) Let RH be the value of RoutineMappingHandle.

2) If RH does not identify an allocated routine mapping description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let NL be the value of BufferLengthl.
4) Case:
a) If NL is not negative, then let L be NL.

b) Otherwise, an exception condition is raised: FDW-specific condition — invalid string length or buffer

length.
5) Case:
a) If Lis zero, then an exception condition is raised: FDW-specific condition — invalid string length or
buffer length.

b) Otherwise, let N be the number of whole characters in the first L octets of OptionName and let NO be
the number of octets occupied by those N characters.

Case:

i) If NO % L, then an exception condition is raised: FDW-specific condition — invalid option
name.

i) Otherwise, let ON be the first N characters of OptionName and let TON be the value of:

TRIM (BOTH * * FROM "ON")

316 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

6) Case:
a) If TON is equivalent to the name of a generic option associated with RH, then:
i) Let OPTIONVALUE be the value of the generic option associated with RH whose name is
equivalent to TON.

i) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET

LENGTH, and RETURNED OCTET LENGTH, respectively.
b) Otherwise, an exception condition is raised: FDW-specific condition — option name not found.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetRoutMapOptName.

Foreign-data wrapper interface routines 317

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.21 GetRoutineMapping

Function

Get the routine mapping handle for an allocated routine mapping description.
Definition

GetRoutineMapping (
ValueExpressionHandle IN INTEGER,
RoutineMappingHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let RMH be the handle for the allocated routine mapping description that is associated with VEH.
4) RoutineMappingHandle is set to RMH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetRoutineMapping.

318 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.22 GetSelectElem

Function

Get the handle of a <value expression> simply contained in the <select list> of a query.

Definition

GetSelectElem (

RequestHandle IN INTEGER,
SelectListElementNumber IN SMALLINT,
ValueExpressionHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let S_EN be the value of SelectListElementNumber.

4) IfSLENIs lessthan 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

5) Let Q be the query associated with RH.
6) Let N be the number of <value expression> elements simply contained in the <select list> of Q.

7) If SLEN s greater than N, then a completion condition is raised: no data, and no further rules of this Sub-
clause are applied.

8) \alueExpressionHandle is set to the value expression handle associated with the S_LEN-th <value expression>
associated with Q.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetSelectElem.

Foreign-data wrapper interface routines 319

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.23GetSelectElemType

Function

Get the kind of a <value expression> in the <select list> of a query.
Definition

GetSelectElemType (
ValueExpressionHandle IN INTEGER,
ValueExpressionType ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:

FDW-specific condition — invalid handle.

3) ValueExpressionType is set to the value of ValueExpressionKind that would be returned by invocation of
GetValueExpKind() with VEH as the ValueExpressionHandle parameter.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetSelectElemType.

320 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.24 GetServerName

Function

Get the name of the foreign server associated with the provided server handle.

Definition

GetServerName (

ServerHandle IN INTEGER,
ServerName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to (2n+1), where nis the implementation-defined length of an <identifier>.

NOTE 81 — The length (2n+1) supports the syntax of <foreign server name>, which is “<identifier><period><identifier>".

General Rules

1)
2)

3)
4)
5)

Let SH be the value of ServerHandle.

If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

Let SN be the server name associated with SH.
Let BL be the value of BufferLength.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to ServerName, SN, BL,
and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules

1)

Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetServerName.

Foreign-data wrapper interface routines 321

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.25GetServerOpt

Function

Get the value of a generic option associated with a foreign server.

Definition

GetServerOpt (

ServerHandle IN INTEGER,
OptionNumber IN INTEGER,
OptionName ouT CHARACTER(L1),
BufferLengthl IN SMALLINT,
StringlLengthl ouT SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength?2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 has a maximum value of equal to the implementation-defined length of a variable-
length character string.

General Rules

1)
2)

3)
4)
5)

6)

7)

Let SH be the value of ServerHandle.

If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

Let ON be the value of OptionNumber.
Let N be the number of generic options associated with SH.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

If ON is greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

Information from the ON-th generic option associated with the SH is retrieved.
a) Let NAME be the name of the generic option.

b) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName, NAME,
BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

c) Let OPTIONVALUE be the value of the generic option.

d) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

322 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetServerOpt.

Foreign-data wrapper interface routines 323

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.26 GetServerOptByName

Function

Get the value of a generic option associated with a foreign server.

Definition

GetServerOptByName (

ServerHandle IN INTEGER,
OptionName IN CHARACTER(L1),
BufferLengthl IN SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 has a maximum value of equal to the implementation-defined length of a variable-
length character string.

General Rules

1) Let SH be the value of ServerHandle.

2) If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) Let BL be the value of Bufferlengthl.
4) Case:

a) If BL is not positive, then an exception condition is raised: FDW-specific condition — invalid string
length or buffer length.

b) Otherwise, let L be BL, let N be the number of whole characters in the first L octets of OptionName
and let NO be the number of octets occupied by those N characters.

Case:

)] If NO # L, then an exception condition is raised: FDW-specific condition — invalid option
name.

i) Otherwise, let ON be the first L octets of OptionName and let TON be the value of:
TRIM (BOTH " * FROM "ON")

5) Let N be the number of generic options associated with SH.

6) Case:

a) If TON is equivalent to the name of a generic option associated with SH, then:

324 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

)] Let OPTIONVALUE be the value of the generic option associated with SH whose name is
equivalent to TON.

i) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET

LENGTH, and RETURNED OCTET LENGTH, respectively.
b) Otherwise, an exception condition is raised: FDW-specific condition — option hame not found.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetServerOptByName.

Foreign-data wrapper interface routines 325

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.27GetServerType

Function

Get the type of a foreign server.

Definition

GetServerType (

ServerHandle IN INTEGER,
ServerType ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value of equal to the implementation-defined length of a variable-length character
string.

General Rules

1) Let SH be the value of ServerHandle.

2) If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) Let ST be the server type associated with SH.
4) Let BL be the value of BufferLength.

5) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to ServerType, ST, BL, and
StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetServerType.

326 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.28 GetServer\ersion

Function

Get the version of a foreign server.

Definition

GetServerVersion (

ServerHandle IN INTEGER,
ServerVersion ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value of equal to the implementation-defined length of a variable-length character
string.

General Rules

1) Let SH be the value of ServerHandle.

2) If SH does not identify an allocated foreign server description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) Let SV be the server version associated with SH.
4) Let BL be the value of BufferLength.

5) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to Server\ersion, SV, BL,
and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,

respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetServer\ersion.

Foreign-data wrapper interface routines 327

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.29GetSQLString

Function

Get a character string representation of the query that is associated with a given request handle.

Definition

GetSQLString (

RequestHandle IN INTEGER,
StringFormat IN INTEGER,

SQLString ouT CHARACTER VARYING(L),
BufferLength IN INTEGER,

StringLength ouT INTEGER)

RETURNS SMALLINT

where L is greater than or equal to the StringLength value returned, with a maximum value equal to the
implementation-defined maximum length of a variable-length character string.

General Rules

1)
2)

3)
4)
5)

6)

7)

Let RH be the value of RequestHandle.

If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

Let Q be the query associated with RH.
Let SF be the value of StringFormat.

If SF does not identify a value that is equal to any value in Table 35, “Codes used for the format of the
character string transmitted by GetSQLString()”, then an exception condition is raised: FDW-specific
condition — invalid string format.

Case:

a) If SFidentifies an implementation-defined value, then let QueryString be the implementation-defined
character string representation of Q.

b) Otherwise, let QueryString be a character string conforming to the Format and Syntax Rules of
Subclause 14.3, “<SQL procedure statement>".

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to SQLString, QueryString,
BufferLength, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

Conformance Rules

1)

Without Feature M006, “GetSQLString routine”, a conforming foreign-data wrapper shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetSQLString.

328 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.30GetTableColOpt

Function

Get the name and value of a generic option associated with a column of the foreign table reference by the supplied
table reference handle, given an option number.

Definition

GetTableColOpt (

TableReferenceHandle IN INTEGER,
ColumnName IN CHARACTER(L),
NameLength IN SMALLINT,
OptionNumber IN INTEGER,
OptionName ouT CHARACTER(L1),
BufferLengthl IN SMALLINT,
StringlLengthl ouT SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L, L1, and L2 has a maximum value equal to the implementation-defined length of a variable-
length character string.

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let NL be the value of NameLength.
4) Case:

a) If NL is not positive, then an exception condition is raised: FDW-specific condition — invalid string
length or buffer length.

b) Otherwise, let L be NL, let N be the number of whole characters in the first L octets of ColumnName,
and let NO be the number of octets occupied by those N characters.

Case:

i) If NO # L, then an exception condition is raised: FDW-specific condition — invalid column
name.

i) Otherwise, let CN be the first L octets of ColumnName and let TCN be the value of
TRIM (BOTH " * FROM "CN")

5) Case:

Foreign-data wrapper interface routines 329

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

a)

b)

If TCN is not equivalent to the name of a column of the foreign table referenced by TRH, then an
exception condition is raised: FDW-specific condition — column name not found.

Otherwise:

i)

vi)

vii)

viii)

Let ON be the value of OptionNumber.
Let N be the number of generic options associated with the column identified by TCN.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition —
invalid option index.

If ON is greater than N, then a completion condition is raised: no data and no further rules of
this Subclause are applied.

Let NAME be the name of the ON-th generic option associated with the column identified by
TCN.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName,
NAME, BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

Let VALUE be the value of the ON-th generic option associated with the column identified by
TCN.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
VALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTableColOpt.

330 Management of External Data (SQL/MED)

22.4.31 GetTableColOptByName

Function

IWD 9075-9:201?(E)

22.4 Foreign-data wrapper interface SQL-server routines

Get the value of a generic option associated with a column of the foreign table referenced by the specified table
reference handle, given the option name.

Definition

GetTableColOptByName (

TableReferenceHandle IN

ColumnName
NameLength
OptionName
BufferLengthl
OptionValue
BufferLength2
StringlLength2

RETURNS SMALLINT

IN
IN
IN
IN
ouT
IN
ouT

INTEGER,
CHARACTER(L),
SMALLINT,

CHARACTER(L1),

SMALLINT,

CHARACTER(L2),

SMALLINT,
SMALLINT)

where each of L, L1, and L2 has a maximum value equal to the implementation-defined length of a variable-

length character string.

General Rules

1)
2)

3)
4)

5)

Let TRH be the value of TableReferenceHandle.

If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

Let NL be the value of NameLength.

Case:

a) If NL is not positive, then an exception condition is raised: FDW-specific condition — invalid string
length or buffer length.

b) Otherwise, let L be NL, let N be the number of whole characters in the first L octets of ColumnName,
and let NO be the number of octets occupied by those N characters.

Case:

i) If NO # L, then an exception condition is raised: FDW-specific condition — invalid column

name.

i) Otherwise, let CN be the first L octets of ColumnName and let TCN be the value of

TRIM (BOTH * * FROM "CN")

Case:

a) If TCNis not equivalent to the name of a column of the foreign table referenced by TRH, then an
exception condition is raised: FDW-specific condition — column name not found.

Foreign-data wrapper interface routines 331

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

b) Otherwise:
i) Let BL be the value of BufferLengthl.
i) Case:

1) If BL is not positive, then an exception condition is raised: FDW-specific condition —
invalid string length or buffer length.

2) Otherwise, let BL1 be BL, let BN be the number of whole characters in the first BL1 octets
of OptionName, and let BNO be the number of octets occupied by those BN characters.

Case:

A) If BNO # BL1, then an exception condition is raised: FDW-specific condition — invalid
option name.

B) Otherwise, let ON be the first BL1 octets of OptionName and let TON be the value of
TRIM (BOTH * * FROM "ON")
iii) Case:

1) If TON is not equivalent to the name of a generic option associated with TRH, then an
exception condition is raised: FDW-specific condition — option name not found.

2) Otherwise:

A) Let VALUE be the value of the generic option associated with TRH whose name is
TON.

B) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to
OptionValue, VALUE, BufferLength2, and StringLength2 as TARGET, VALUE,
TARGET OCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetTableColOptByName.

332 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.32 GetTableOpt

Function

Get the name and value of a generic option associated with the foreign table identified by the given table reference
handle, given an option number.

Definition

GetTableOpt (

TableReferenceHandle IN INTEGER,
OptionNumber IN INTEGER,
OptionName ouT CHARACTER(L1),
BufferLengthl IN SMALLINT,
StringlLengthl ouT SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length
character string.

General Rules

1)
2)

3)
4)
5)

6)
7)

8)

9)
10)

Let TRH be the value of TableReferenceHandle.

If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

Let ON be the value of OptionNumber.
Let N be the number of generic options associated with TRH.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

If ON is greater than N, then a completion condition is raised: no data and no further rules of this Subclause
are applied.

Let NAME be the name of the ON-th generic option associated with TRH.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName, NAME,
BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

Let VALUE be the value of the ON-th generic option associated with TRH.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue, VALUE,
BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

Foreign-data wrapper interface routines 333

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetTableOpt.

334 Management of External Data (SQL/MED)

22.4.33GetTableOptByName

Function

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Get the value of a generic option associated with the foreign table identified by the specified table reference

handle, given the option name.

Definition

GetTableOptByName (
TableReferenceHandle IN

OptionName IN
BufferLengthl IN
OptionValue ouT
BufferLength2 IN
StringlLength2 ouT

RETURNS SMALLINT

INTEGER,
CHARACTER(L1),
SMALLINT,
CHARACTER(L2),
SMALLINT,
SMALLINT)

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length

character string.

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let NL be the value of BufferLengthl.

4) Case:

a) If NL is not positive, then an exception condition is raised: FDW-specific condition — invalid string

length or buffer length.

b) Otherwise, let L be NL, let N be the number of whole characters in the first L octets of OptionName,
and let NO be the number of octets occupied by those N characters.

Case:

i) If NO # L, then an exception condition is raised: FDW-specific condition — invalid option

name.

i) Otherwise, let ON be the first L octets of OptionName and let TON be the value of

TRIM (BOTH * * FROM "ON")

5) Case:

a) If TON is not equivalent to the name of a generic option associated with TRH, then an exception
condition is raised: FDW-specific condition — option name not found.

b) Otherwise:

Foreign-data wrapper interface routines 335

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Let VALUE be the value of the generic option associated with TRH whose name is TON.

i)
i) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
VALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,

and RETURNED OCTET LENGTH, respectively.

Conformance Rules

1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper

interface routine name> that contains GetTableOptByName.

336 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.34GetTableRefElem

Function

Get a <table reference> element from the <from clause> of a query, given a request handle and a table reference
element number.

Definition

GetTableRefElem (

RequestHandle IN INTEGER,
TableReferenceElementNumber IN INTEGER,
TableReferenceHandle ouT INTEGER)

RETURNS SMALLINT

General Rules

1) Let RH be the value of RequestHandle.

2) If RH does not identify an allocated request description, then an exception condition is raised: FDW-specific
condition — invalid handle.

3) Let TREN be the value of TableReferenceElementNumber.

4) If TREN s less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid
option index.

5) Let Q be the query associated with RH.
6) Let N be the number of <table reference> elements in the <from clause> of Q.

7) If TREN is greater than N, then a completion condition is raised: no data, and no further rules of this Sub-
clause are applied.

8) TableReferenceHandle is set to the table reference handle associated with the TREN-th <table reference>
associated with Q.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTableRefElem.

Foreign-data wrapper interface routines 337

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.35GetTableRefElemType

Function

Get the type of a <table reference>, given its table reference handle.
Definition

GetTableRefElemType (
TableReferenceHandle IN INTEGER,
TableReferenceType ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let TRT be the type of the <table reference> associated with TRH.
4) TableReferenceType is set to TRT.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTableRefElemType.

338 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.36 GetTableRefTableName

Function

Get the table name of a TABLE_NAME <table reference> identified by the given table reference handle.

Definition

GetTableRefTableName (

TableReferenceHandle IN INTEGER,
TableName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value of equal to the implementation-defined length of a variable-length character
string.

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) If TRH does not identify a <table reference> with a type of TABLE_NAME, then an exception condition
is raised: FDW-specific condition — invalid handle.

4) Let NAME be the value of the table name of the <table reference> identified by TRH.
5) Let BL be the value of BufferLength.

6) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to TableName, NAME, BL,
and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTableRefTableName.

Foreign-data wrapper interface routines 339

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.37 GetTableServerName

Function

Get the name of the foreign server associated with the foreign table identified by the given table reference
handle.

Definition

GetTableServerName (

TableReferenceHandle IN INTEGER,
ServerName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined length of an <identifier>.

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let SN be the server name associated with the foreign table identified by TRH.
4) Let BL be the value of BufferLength.

5) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to ServerName, SN, BL,
and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTableServerName.

340 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.38GetTRDHandle

Function

Get the descriptor handle of the table reference descriptor associated with a given table reference handle.

Definition

GetTRDHandle (
TableReferenceHandle IN INTEGER,
TRDHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let TRH be the value of TableReferenceHandle.

2) If TRH does not identify an allocated table reference description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) TRDHandle is set to the descriptor handle of the table reference descriptor associated with TRH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetTRDHandle.

Foreign-data wrapper interface routines 341

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.39GetUserOpt

Function

Get the name and value of a generic option associated with the user mapping identified by the specified user
handle, given an option number.

Definition

GetUserOpt (

UserHandle IN INTEGER,
OptionNumber IN INTEGER,
OptionName ouT CHARACTER(L1),
BufferLengthl IN SMALLINT,
StringlLengthl ouT SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length
character string.

General Rules

1)
2)

3)
4)
5)

6)

7)

Let UH be the value of UserHandle.

If UH does not identify an allocated user mapping description, then an exception condition is raised: FDW-
specific condition — invalid handle.

Let ON be the value of OptionNumber.
Let N be the number of generic options associated with UH.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

If ON is greater than N, then a completion condition is raised: no data and no further rules of this Subclause
are applied.

Information from the ON-th generic option associated with UH is retrieved.
a) Let NAME be the name of the generic option.

b) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName, NAME,
BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

c) Let OPTIONVALUE be the value of the generic option.

d) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

342 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetUserOpt.

Foreign-data wrapper interface routines 343

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.40GetUserOptByName

Function

Get the value of a generic option associated with the user mapping associated with the specified user handle,
given the option name.

Definition

GetUserOptByName (

UserHandle IN INTEGER,
OptionName IN CHARACTER(L1),
BufferLengthl IN SMALLINT,
OptionValue ouT CHARACTER(L2),
BufferLength2 IN SMALLINT,
StringlLength2 ouT SMALLINT)

RETURNS SMALLINT

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length
character string.

General Rules

1) Let UH be the value of UserHandle.

2) If UH does not identify an allocated user mapping description, then an exception condition is raised: FDW-
specific condition — invalid handle.

3) Let NL be the value of BufferLengthl.
4) Case:

a) If NL is not positive, then an exception condition is raised: FDW-specific condition — invalid string
length or buffer length.

b) Otherwise, let L be NL, let N be the number of whole characters in the first L octets of OptionName,
and let NO be the number of octets occupied by those N characters.

Case:

i) If NO # L, then an exception condition is raised: FDW-specific condition — invalid option
name.

i) Otherwise, let ON be the first L octets of OptionName and let TON be the value of
TRIM (BOTH * * FROM "ON")

5) Case:
a) If TON is equivalent to the name of a generic option associated with UH, then:

i) Let OPTIONVALUE be the value of the generic option associated with UH whose name is
equivalent to TON.

344 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

i) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

b) Otherwise, an exception condition is raised: FDW-specific condition — option name not found.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetUserOptByName.

Foreign-data wrapper interface routines 345

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.41 GetValExprColName

Function

Get the column name of a COLUMN_NAME <value expression>, given its value expression handle.

Definition

GetValExprColName (

ValueExpressionHandle IN INTEGER,
ColumnName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined length of a variable-length character string.

General Rules

1)
2)

3)

4)
5)
6)

Let VEH be the value of ValueExpressionHandle.

If VEH does not identify an allocated value expression description, then an exception condition is raised:
FDW-specific condition — invalid handle.

If VEH does not identify a <value expression> with a type of COLUMN_NAME, then an exception con-
dition is raised: FDW-specific condition — invalid handle.

Let NAME be the value of the column name of the <value expression>.
Let BL be the value of BufferLength.

The General Rules of Subclause 21.7, “Character string retrieval”, are applied to ColumnName, NAME,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
respectively.

Conformance Rules

1)

Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetValExprColName.

346 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.42 GetValueExpDesc

Function

Get the handle for a value expression descriptor describing a <value expression>, given its value expression
handle.

Definition

GetValueExpDesc (
ValueExpressionHandle IN INTEGER,
ValueExpDescriptorHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let VEDH be the value expression descriptor handle associated with the value expression descriptor that
describes the <value expression> identified by VEH.

4) ValueExpDescriptorHandle is set to VEDH.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetValueExpDesc.

Foreign-data wrapper interface routines 347

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.43 GetValueExpKind

Function

Get the kind of a <value expression>, given its value expression handle.
Definition

GetValueExpKind (
ValueExpressionHandle IN INTEGER,
ValueExpressionKind ouT SMALLINT)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let VEK be the kind of the <value expression> associated with VEH.

NOTE 82 — The permissible values of the kind of a <value expression> are listed in Table 28, “Codes used for <value
expression> kinds”.

4) ValueExpressionKind is set to VEK.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetValueExpKind.

348 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.44 GetValueExpName

Function

Get the name associated with a <value expression>.

Definition

GetValueExpName (

ReplyHandle IN INTEGER,
ValueExpressionHandle IN INTEGER,
BufferLength IN INTEGER,
ValueExpressionNamelLength OUT INTEGER,
ValueExpressionName OUT CHARACTER(L))

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined length of a variable-length character string.

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let VEN be the name associated with VEH.

4) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to ValueExpressionName,
VEN, BufferLength, and ValueExpressionNameLength as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetValueExpName.

Foreign-data wrapper interface routines 349

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.45GetValueExpTable

Function

Get the table reference handle with which the table associated with the <value expression> identified by the
specified value expression handle is associated.

Definition

GetValueExpTable (
ValueExpressionHandle IN INTEGER,
TableReferenceHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let TBL be the table associated with the allocated <value expression> identified by VEH. TableReference-
Handle is set to the table reference handle that identifies the table reference descriptor that describes T.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetValueExpTable.

350 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.46 GetVEChild

Function

Get a handle for the <value expression>, identified by an ordinal position, simply contained in the <value
expression> identified by the specified value expression handle.

Definition

GetVEChild (
ValueExpressionHandle IN INTEGER,
Index IN SMALLINT,
ChildvValueExpressionHandle OUT INTEGER)
RETURNS SMALLINT

General Rules

1) Let VEH be the value of ValueExpressionHandle.

2) If VEH does not identify an allocated <value expression> description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let NOC be the number of <value expression>s immediately contained in the <value expression>to which
VEH refers.

4) Let| be the value of Index.

5) If I isless than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option
index.

6) If I is greater than NOC, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

7) ChildValueExpressionHandle is set to the value expression handle associated with the I-th simply contained
<value expression>.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetVECHhild.

Foreign-data wrapper interface routines 351

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.47GetWrapperLibraryName

Function

Get the library name associated with the foreign-data wrapper identified by the specified wrapper handle.
Definition

GetWrapperLibraryName (

WrapperHandle IN INTEGER,
WrapperLibraryName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to the implementation-defined maximum length of a variable-length
character string.

General Rules

1) Let WH be the value of WrapperHandle.

2) If WH does not identify an allocated foreign-data wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let WL be the name of the library included in the foreign-data wrapper descriptor of the foreign-data
wrapper associated with WH.

4) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to WrapperLibraryName,
WL, BufferLength, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetWrapperLibraryName.

352 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.48 GetWrapperName

Function

Get the name of the foreign-data wrapper identified by a specified wrapper handle.

Definition

GetWrapperName (

WrapperHandle IN INTEGER,
WrapperName ouT CHARACTER(L),
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

where L has a maximum value equal to (2n+1), where nis the implementation-defined length of an <identifier>.

NOTE 83 — The length (2n+1) supports the syntax of <foreign server name>, which is “<identifier><period><identifier>".

General Rules

1) Let WH be the value of WrapperHandle.

2) If WH does not identify an allocated foreign-data wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let WN be the foreign-data wrapper name included in the foreign-data wrapper descriptor of the foreign-
data wrapper associated with WH.

4) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to WrapperName, WN,
BufferLength, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetWrapperName.

Foreign-data wrapper interface routines 353

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.49GetWrapperOpt

Function

Get the name and value of a generic option associated with the foreign-data wrapper identified by the specified

wrapper handle, given an option number.

Definition

GetWrapperOpt (

WrapperHandle
OptionNumber
OptionName
BufferLengthl
StringlLengthl
OptionValue
BufferLength2
StringlLength2

RETURNS SMALLINT

IN
IN
ouT
IN
ouT
ouT
IN
ouT

INTEGER,
INTEGER,
CHARACTER(L1),
SMALLINT,
SMALLINT,
CHARACTER(L2),
SMALLINT,
SMALLINT)

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length
character string.

General Rules

1)
2)

3)
4)
5)

6)

7)

Let WH be the value of WrapperHandle.

If WH does not identify an allocated foreign-data wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

Let ON be the value of OptionNumber.

Let N be the number of generic options associated with WH.

If ON is less than 1 (one), then an exception condition is raised: FDW-specific condition — invalid option

index.

If ON is greater than N, then a completion condition is raised: no data and no further rules of this Subclause

are applied.

Information from the ON-th generic option associated with WH is retrieved.

a) Let NAME be the name of the generic option.

b) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionName, NAME,
BufferLengthl, and StringLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED

OCTET LENGTH, respectively.

c) Let OPTIONVALUE be the value of the generic option.

d) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

354 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetWrapperOpt.

Foreign-data wrapper interface routines 355

IWD 9075-9:201?(E)

22.4 Foreign-data wrapper interface SQL-server routines

22.4.50 GetWrapperOptByName

Function

Get the value of a generic option associated with the foreign-data wrapper identified by the specified wrapper

handle, given the option name.

Definition

GetWrapperOptByName (
WrapperHandle
OptionName
BufferLengthl
OptionValue
BufferLength2
StringlLength2

RETURNS SMALLINT

IN
IN
IN
ouT
IN
ouT

INTEGER,
CHARACTER(L1),
SMALLINT,
CHARACTER(L2),
SMALLINT,
SMALLINT)

where each of L1 and L2 has a maximum value equal to the implementation-defined length of a variable-length

character string.

General Rules

1) Let WH be the value of WrapperHandle.

2) If WH does not identify an allocated foreign-data wrapper description, then an exception condition is raised:
FDW-specific condition — invalid handle.

3) Let NL be the value of BufferLengthl.

4) Case:

a) If NL is not positive, then an exception condition is raised: FDW-specific condition — invalid string

length or buffer length.

b) Otherwise, let L be NL, let N be the number of whole characters in the first L octets of OptionName,
and let NO be the number of octets occupied by those N characters.

Case:

i) If NO # L, then an exception condition is raised: FDW-specific condition — invalid option

name.

i) Otherwise, let ON be the first L octets of OptionName and let TON be the value of

TRIM (BOTH * * FROM "ON")

5) Case:

a) If TON is equivalent to the name of a generic option associated with WH, then:

i) Let OPTIONVALUE be the value of the generic option associated with WH whose name is
equivalent to TON.

356 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

i) The General Rules of Subclause 21.7, “Character string retrieval”, are applied to OptionValue,
OPTIONVALUE, BufferLength2, and StringLength2 as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

b) Otherwise, an exception condition is raised: FDW-specific condition — option name not found.

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains GetWrapperOptByName.

Foreign-data wrapper interface routines 357

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

22.4.51 SetDescriptor

Function

Set a field in the foreign-data wrapper descriptor area identified by the specified descriptor handle.

Definition

SetDescriptor (

DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Fieldldentifier IN SMALLINT,
Value IN ANY,
BufferLength IN INTEGER)

RETURNS SMALLINT

General Rules

1)

2)

3)
4)

5)
6)

7)
8)

9)

10)

Let D be the allocated foreign-data wrapper descriptor area identified by DescriptorHandle and let N be
the value of the COUNT field of D.

Let HL1 be the host language in which the SQL-server is written and let HL2 be the host language in which
the foreign-data wrapper is written.

Let FI be the value of Fieldldentifier.

If FI is not one of the code values in Table 30, “Codes used for foreign-data wrapper descriptor fields”,
then an exception condition is raised: FDW-specific condition — invalid descriptor field identifier.

Let RN be the value of RecordNumber.

Let TYPE be the value of the Type column in the row of Table 30, “Codes used for foreign-data wrapper
descriptor fields”, that contains FI.

If TYPE is 'ITEM' and RN is less than 1 (one), then an exception condition is raised: dynamic SQL error
— invalid descriptor index.

Let IDA be the item descriptor area of D specified by RN.

If an exception condition is raised in any of the following General Rules, then all fields of IDA for which
specific values were provided in the invocation of SetDescField () are set to implementation-dependent
values and the value of COUNT for D is unchanged.

Information is set in D.

NOTE 84 — Let MBShbe the value of the May Be Set column in the row of Table 33, “Ability to set foreign-data wrapper
descriptor fields”, that contains FI in the column that contains the descriptor type DT. If MBSis 'No', then the effect on the
field is implementation-dependent.

Case:

a) If Fl indicates COUNT, then

Case:

358 Management of External Data (SQL/MED)

f)

9)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

)] If the memory requirements to manage the foreign-data wrapper descriptor area cannot be sat-
isfied, then an exception condition is raised: FDW-specific condition — memory allocation
error.

i) Otherwise, the count of the number of foreign-data wrapper item descriptor areas is set to the
value of Value.

If FI indicates OCTET_LENGTH, then the value of the OCTET_LENGTH field of IDA is set to the
value of Value.

If FI indicates DATA_POINTER, then the value of the DATA_POINTER field of IDA is set to the
address of Value. If Value is a null pointer, then the address is set to 0 (zero).

If FI indicates DATA, then the value of the DATA field of IDA is set to the value of Value.

If FI indicates INDICATOR, then the value of the INDICATOR field of IDA is set to the value of
Value.

If Fl indicates RETURNED_CARDINALITY, then the value of the RETURNED_ CARDINALITY
field of IDA is set to the value of Value.

If FI indicates CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, or CHARAC-
TER_SET_NAME, then:

i) Let BL be the value of BufferLength.
i) Case:

1) If BL is not positive, then an exception condition is raised: FDW-specific condition —
invalid string length or buffer length.

2) Otherwise, let L be BL, let FV be the first L octets of Value, and let TFV be the value of
TRIM (BOTH ™ " FROM "FV")

iii) Let ML be the maximum length in characters allowed for an <identifier> as specified in the
Syntax Rules of Subclause 5.4, “Names and identifiers”, in [ISO9075-2], and let TFVL be the
length in characters of TFV.

iv) Case:

1) If TFVL is greater than ML, then FV is set to the first ML characters of TFV and a completion
condition is raised: warning — string data, right truncation.

2) Otherwise, FVissetto TFV.
V) Case:

1) If Fl indicates CHARACTER_SET_CATALOG and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid catalog
name.

2) If Fl indicates CHARACTER_SET_SCHEMA and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid schema
name.

Foreign-data wrapper interface routines 359

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

3) If Fl indicates CHARACTER_SET_NAME and FV does not conform to the Format and
Syntax Rules of an <identifier>, then an exception condition is raised: invalid character
set name.

vi) The value of the field of IDA identified by FI is set to the value of FV.

h) Otherwise, the value of the field of IDA identified by FI is set to the value of Value.
11) If Fl indicates LEVEL, then:
a) IfRlis 1 (one)and Value is not 0 (zero), then an exception condition is raised: dynamic SQL error

— invalid LEVEL value.

b) If Rl is greater than 1 (one), then let PIDA be IDA's immediately preceding foreign-data wrapper item
descriptor area and let K be its LEVEL value.

)] If Value is K+1 and TYPE in PIDA does not indicate ROW, ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR, then an exception condition is raised: dynamic SQL
error — invalid LEVEL value.

i) If Value is greater than K+1, then an exception condition is raised: dynamic SQL error — invalid
LEVEL value.

iii) If value is less than K+1, then let OIDA; be the i-th foreign-data wrapper item descriptor area
to which PIDA is subordinate and whose TYPE field indicates ROW. Let NS be the number
of immediately subordinate descriptor areas of OIDA; between OIDA; and IDA, and let D; be
the value of DEGREE of OIDA;.

1) For each OIDA; whose LEVEL value is greater than V, if D; is not equal to NS, then an
exception condition is raised: dynamic SQL error — invalid LEVEL value.
2) IfKisnot 0 (zero), then let OIDA; be the OIDA; whose LEVEL value is K. If there exists
no such OIDA; or D;j is not greater than NS, then an exception condition is raised: dynamic
QL error — invalid LEVEL value.
¢) The value of LEVEL in IDA is set to Value.
12) If TYPE is 'ITEM' and RN is greater than N, then the COUNT field of D is set to RN.
13) Case:
a) If HL1 and HL2 are both pointer-supporting languages, and if FI indicates TYPE, LENGTH,

b)

OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION, PARAME-
TER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPE-
CIFIC_NAME, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, or SCOPE_NAME,
then the DATA_POINTER field of IDA is set to O (zero).

Otherwise, if Fl indicates TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATE-
TIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISON, PARAMETER_MODE,
PARAMETER_ORDINAL_POSITION, PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPE-
CIFIC_SCHEMA, PARAMETER_SPECIFIC_NAME, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,

360 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, or SCOPE_NAME, then the value of the DATA field of IDA is set to O (zero).

14) If Fl indicates DATA or if FI indicates DATA_POINTER, and Value is not a null pointer, and IDA is not
consistent as specified in Subclause 21.1, “Description of foreign-data wrapper item descriptor areas”,
then an exception condition is raised: FDW-specific condition — inconsistent descriptor information.

15) Let V be the value of Value.
16) If FI indicates TYPE, then:

a) All the other fields of IDA are set to implementation-dependent values.

b) Case:
i)

vi)

vii)

viii)

iX)

X)

If Vindicates CHARACTER, CHARACTER VARYING or CHARACTER LARGE OBJECT
then the CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME fields of IDA are set to the values for the default character set name for the
SQL-session and the LENGTH field of IDAis set to the maximum possible length in characters
of the indicated data type.

If Vindicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the
LENGTH field of IDA is set to the maximum possible length in octets of the indicated data

type.
If Vindicates a <datetime type>, then the PRECISION field of IDA is set to 0 (zero).

If V indicates INTERVAL, then the DATETIME_INTERVAL_PRECISION field of IDA is
set to 2.

If Vindicates NUMERIC or DECIMAL, then the SCALE field of IDA is set to 0 (zero) and
the PRECISION field of IDA is set to the implementation-defined default value for the precision
of the NUMERIC or DECIMAL data types, respectively.

If Vindicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of IDAis setto 0
(zero) and the PRECISION field of IDA is set to the implementation-defined value for the
precision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

If Vindicates FLOAT, then the PRECISION field of IDA is set to the implementation-defined
default value for the precision of the FLOAT data type.

If Vindicates REAL or DOUBLE PRECISION, then the PRECISION field of IDA is set to the
implementation-defined value for the precision of the REAL or DOUBLE PRECISION data
types, respectively.

If Vindicates an implementation-defined data type, then an implementation-defined set of fields
of IDA are set to implementation-defined default values.

Otherwise, an exception condition is raised: FDW-specific condition — invalid data type.

17) If Fl indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime type>,

then:

a) Allthefields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to implementation-
dependent values.

b) Case:

Foreign-data wrapper interface routines 361

IWD 9075-9:201?(E)
22.4 Foreign-data wrapper interface SQL-server routines

)] If V indicates DATE, TIME, or TIME WITH TIME ZONE, then the PRECISION field of IDA
is set to O (zero).

i) If Vindicates TIMESTAMP or TIMESTAMP WITH TIME ZONE, then the PRECISION field
of IDA is set to 6.

18) If Fl indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates INTERVAL, then
the DATETIME_INTERVAL_PRECISION field of IDA is set to 2 and

Case:

a) If Vindicates DAY TO SECOND, HOUR TO SECOND, MINUTE TO SECOND, or SECOND, then
the PRECISION field of IDA is set to 6.

b) Otherwise, the PRECISION field of IDAis set to O (zero).

Conformance Rules
1) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper shall not

contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains SetDescriptor.

362 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
22.5 Foreign-data wrapper interface general routines

22.5 Foreign-data wrapper interface general routines

22.5.1 GetDiagnostics

Function

Get information from a foreign-data wrapper diagnostics area.

Definition

GetDiagnostics (

HandleType IN SMALLINT,
Handle IN INTEGER,
RecordNumber IN SMALLINT,
Diagldentifier IN SMALLINT,
DiagInfo ouT ANY,
BufferLength IN SMALLINT,
StringLength ouT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType.

2)

3)

If HT is not one of the code values in Table 31, “Codes used for foreign-data wrapper handle types”, then
an exception condition is raised: FDW-specific condition — invalid handle.

Case:

a) If HT indicates EXECUTION HANDLE and Handle does not identify an allocated execution
description, then an exception condition is raised: FDW-specific condition — invalid handle.

b) IfHTindicates FSCONNECTION HANDLE and Handle does not identify an allocated FS-connection,
then an exception condition is raised: FDW-specific condition — invalid handle.

¢) IfHT indicates REPLY HANDLE and Handle does not identify an allocated reply description, then
an exception condition is raised: FDW-specific condition — invalid handle.

d) If HT indicates REQUEST HANDLE and Handle does not identify an allocated request description,
then an exception condition is raised: FDW-specific condition — invalid handle.

e) If HT indicates SERVER HANDLE and Handle does not identify an allocated foreign-server
description, then an exception condition is raised: FDW-specific condition — invalid handle.

f) If HT indicates TABLEREFERENCE HANDLE and Handle does not identify an allocated table ref-
erence description, then an exception condition is raised: FDW-specific condition — invalid handle.

g) IfHTindicates USER HANDLE and Handle does not identify an allocated user mapping description,

then an exception condition is raised: FDW-specific condition — invalid handle.

Foreign-data wrapper interface routines 363

IWD 9075-9:201?(E)
22.5 Foreign-data wrapper interface general routines

4)
5)

6)

7)
8)

9

h) If HT indicates VALUEEXPRESSION HANDLE and Handle does not identify an allocated value
expression description, then an exception condition is raised: FDW-specific condition — invalid handle.

i) IfHT indicates WRAPPER HANDLE and Handle does not identify an allocated foreign-data wrapper
description, then an exception condition is raised: FDW-specific condition — invalid handle.

j) IfHT indicates WRAPPERENYV HANDLE and Handle does not identify an allocated FDW-environ-
ment, then an exception condition is raised: FDW-specific condition — invalid handle.

Let DI be the value of Diagldentifier.

If DI is not one of the code values in Table 29, “Codes used for foreign-data wrapper diagnostic fields”,
then an exception condition is raised: FDW-specific condition — invalid attribute value.

Let TYPE be the value of the Type column in the row that contains DI in Table 29, “Codes used for foreign-
data wrapper diagnostic fields”

Let RN be the value of RecordNumber.

Let R be the most recently executed foreign-data wrapper interface routine, other than GetDiagnhos-
tics(), for which Handle was passed as the value of an input handle and let N be the number of status
records generated by the execution of R.

NOTE 85 — The GetDiagnostics() routine may cause exception or completion conditions to be raised, but it does not
cause diagnostic information to be generated.

If TYPE is 'STATUS', then:
a) If RNis less than 1 (one), then an exception condition is raised: invalid condition humber.

b) If RN is greater than N, then a completion condition is raised: no data, and no further rules of this
Subclause are applied.

10) If TYPE is 'HEADER', then header information from the diagnostics area associated with the resource

identified by Handle is retrieved.
a) If DI indicates NUMBER, then the value retrieved is N.

b) If DI indicates RETURNCODE, then the value retrieved is the code indicating the basic result of the
execution of R. Subclause 4.17.4, “Return codes”, specifies the code values and their meanings.

NOTE 86 — The value retrieved will never indicate Invalid handle or Data needed, since no diagnostic information
is generated if this is the basic result of the execution of R

¢) If DI indicates MORE, then the value retrieved is
Case:

i) If more conditions were raised during execution of R than have been stored in the diagnostics
area, then 1 (one).

i) If all the conditions that were raised during execution of R have been stored in the diagnostics
area, then 0 (zero).

d) If DI indicates an implementation-defined diagnostics header field, then the value retrieved is the
value of the implementation-defined diagnostics header field.

11) If TYPEis'STATUS', then information from the RN-th status record in the foreign-data wrapper diagnostics

area associated with the resource identified by Handle is retrieved.

364 Management of External Data (SQL/MED)

12)
13)

14)
15)

16)
17)
18)

IWD 9075-9:201?(E)
22.5 Foreign-data wrapper interface general routines

a) If DI indicates SQLSTATE, then the value retrieved is the SQLSTATE value corresponding to the
status condition.

b) If DI indicates NATIVE_CODE, then the value retrieved is the implementation-defined native error
code corresponding to the status condition.

¢) If DI indicates MESSAGE_TEXT, then the value retrieved is an implementation-defined character
string.

NOTE 87 — An implementation may provide <space>s or a zero-length string or a character string that describes the
status condition.

d) If DI indicates MESSAGE_LENGTH, then the value retrieved is the length in characters of the char-
acter string value of MESSAGE_TEXT corresponding to the status condition.

e) If DI indicates MESSAGE_OCTET_LENGTH, then the value retrieved is the length in octets of the
character string value of MESSAGE_TEXT corresponding to the status condition.

f) If Dl indicates CLASS_ORIGIN, then the value retrieved is the identification of the naming authority
that defined the class value of the SQLSTATE value corresponding to the status condition. That value
shall be 'ISO 9075' if the class value is fully defined in Subclause 26.1, “SQLSTATE”, and shall be
an implementation-defined character string other than '1SO 9075' for any implementation-defined
class value.

g) If DI indicates SUBCLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the subclass value of the SQLSTATE value corresponding to the status condition.
That value shall be 'ISO 9075' if the class value is fully defined in Subclause 26.1, “SQLSTATE”,
and shall be an implementation-defined character string other than 'ISO 9075' for any implementation-
defined subclass value.

h) If DI indicates an implementation-defined diagnostics status field, then the value retrieved is the value
of the implementation-defined diagnostics status field.

Let V be the value retrieved.

If DI indicates a diagnostics field whose row in Table 3, “Fields used in foreign-data wrapper diagnostics
areas”, contains a Data Type that is neither CHARACTER nor CHARACTER VARYING, then Diaginfo
is set to V and no further rules of this Subclause are applied.

Let BL be the value of BufferLength.

If BL is not greater than zero, then an exception condition is raised: FDW-specific condition — invalid
string length or buffer length.

Let L be the length in octets of V.
If StringLength is not a null pointer, then StringLength is set to L.
Case:

a) If Lis not greater than BL, then the first L octets of Diaginfo are set to V and the values of the
remaining octets of DiagInfo are implementation-dependent.

b) Otherwise, Diaglnfo is set to the first BL octets of V.

Foreign-data wrapper interface routines 365

IWD 9075-9:201?(E)
22.5 Foreign-data wrapper interface general routines

Conformance Rules

1) Without Feature M031, “Foreign-data wrapper general routines”, a conforming foreign-data wrapper shall
not contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data
wrapper interface routine name> that contains AllocQueryContext.

2) Without Feature M031, “Foreign-data wrapper general routines”, a conforming SQL-server shall not contain
an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper interface
routine name> that contains GetDiagnostics.

366 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
23.1 <get diagnostics statement>

23 Diagnostics management

This Clause modifies Clause 23, ““Diagnostics management™, in | SO/IEC 9075-2.

23.1 <get diagnostics statement>

This Subclause maodifies Subclause 23.1, “<get diagnostics statement>"", in |SO/IEC 9075-2.

Function

Get exception or completion condition information from the diagnostics area.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) Table 36, “QL-statement codes”, modifies Table 32, ““QL-statement codes”, in [1S09075-2].

Table 36 — SQL-statement codes

SQL-statement Identifier Code

All alternatives from | SO/IEC 9075-2

<alter foreign-data wrapper statement> ALTER FOREIGN DATA WRAPPER | 120
<alter routine mapping statement> ALTER ROUTINE MAPPING 130
<alter foreign server statement> ALTER SERVER 108

Diagnostics management 367

IWD 9075-9:201?(E)
23.1 <get diagnostics statement>

foreign-data wrapper different from the
value associated with any other SQL-
statement

SQL-statement Identifier Code
<alter foreign table statement> ALTER FOREIGN TABLE 104
<alter user mapping statement> ALTER USER MAPPING 123
<drop foreign-data wrapper statement> DROP FOREIGN DATA WRAPPER | 121
<drop foreign server statement> DROP SERVER 110
<drop foreign table statement> DROP FOREIGN TABLE 105
<drop routine mapping statement> DROP ROUTINE MAPPING 131
<drop user mapping statement> DROP USER MAPPING 124
<foreign-data wrapper definition> CREATE FOREIGN DATA WRAP- 119
PER

<foreign server definition> CREATE SERVER 107
<foreign table definition> CREATE FOREIGN TABLE 103
<import foreign schema statement> IMPORT FOREIGN SCHEMA 125
<routine mapping definition> CREATE ROUTINE MAPPING 132
<set passthrough statement> SET PASSTHROUGH 126
<user mapping definition> CREATE USER MAPPING 122
Statements that are defined by a foreign-data wrapper | A character string value defined by a | ,1

LAn implementation-defined negative number different from the value associated with any other SQL-statement.

Conformance Rules

No additional Conformance Rules.

368 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.1 ATTRIBUTES view

24 Information Schema

This Clause modifies Clause 5, ““Information Schema’, in |SO/IEC 9075-11.

241 ATTRIBUTES view

This Subclause modifies Subclause 5.11, “ATTRIBUTESview”, in ISO/IEC 9075-11.

Function

Identify the attributes of user-defined types defined in this catalog that are accessible to a given user.

Definition

|Add the following columns to the end of outermost select list of the view definition:]

, D1._DATALINK_LINK_CONTROL, D1.DATALINK_INTEGRITY, D1.DATALINK_READ_PERMISSION,
D1.DATALINK_WRITE_PERMISSION, D1.DATALINK_RECOVERY, D1.DATALINK_UNLINK

Conformance Rules

1) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_INTEGRITY.

2) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_LINK_CONTROL.

3) [Insert this CR|Without Feature M0O01, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_READ_PERMISSION.

4) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_RECOVERY.

5) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_UNLINK.

6) |Insert this CR|Without Feature M0O01, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES . DATALINK_WRITE_PERMISSION.

Information Schema 369

IWD 9075-9:201?(E)
24.2 COLUMN_OPTIONS view

24.2 COLUMN_OPTIONS view

Function

Identify the generic options specified for columns that are defined in this catalog.
Definition

CREATE VIEW COLUMN_OPTIONS AS
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, OPTION_NAME, OPTION_VALUE
FROM DEFINITION_SCHEMA.COLUMN_OPTIONS CO
WHERE (CO.TABLE_CATALOG, CO.TABLE_SCHEMA, CO.TABLE_NAME, CO.COLUMN_NAME)
IN (SELECT CP.TABLE_CATALOG, CP.TABLE_SCHEMA, CP.TABLE_NAME,
CP.COLUMN_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES AS CP
WHERE (CP.GRANTEE IN
("PUBLIC", CURRENT USER)
OR
CP_GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED ROLES)))
AND
CO.TABLE_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;
GRANT SELECT ON TABLE COLUMN_OPTIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMN_OPTIONS.

370 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.3 COLUMNS view

24.3 COLUMNS view

This Subclause modifies Subclause 5.21, “COLUMNSview”, in ISO/IEC 9075-11.

Function

Identify the columns of tables defined in this catalog that are accessible to a given user.

Definition

|Add the following columns to the end of outermost select list of the view definition:|

, DATALINK_LINK_CONTROL, DATALINK_INTEGRITY, DATALINK_READ_PERMISSION,
DATALINK_WRITE_PERMISSION, DATALINK_RECOVERY, DATALINK_UNLINK

Conformance Rules

1) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_INTEGRITY.

2) |Insert this CR|Without Feature M0O01, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_LINK_CONTROL.

3) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_READ_PERMISSION.

4) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_RECOVERY.

5) |Insert this CR|Without Feature M001, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_UNLINK.

6) |Insert this CR|Without Feature M0O01, “Datalinks”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS . DATALINK_WRITE_PERMISSION.

Information Schema 371

IWD 9075-9:201?(E)
24.4 FOREIGN_DATA_WRAPPER_OPTIONS view

24.4 FOREIGN_DATA_WRAPPER_OPTIONS view

Function

Identify the options specified for foreign-data wrappers that are defined in this catalog.
Definition

CREATE VIEW FOREIGN_DATA_WRAPPER_OPTIONS AS
SELECT FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA WRAPPER_NAME,
OPTION_NAME, OPTION_VALUE
FROM DEFINITION_SCHEMA.FOREIGN_DATA_WRAPPER_OPTIONS WO
WHERE (WO.FOREIGN_DATA WRAPPER _CATALOG, "*, WO.FOREIGN_DATA_ WRAPPER_NAME)
IN (SELECT UP.OBJECT CATALOG, UP.OBJECT SCHEMA, UP.OBJECT NAME
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES AS UP
WHERE (UP_GRANTEE IN
("PUBLIC", CURRENT USER)
OR
UP.GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED ROLES)))
AND
WO .FOREIGN_DATA_WRAPPER_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;
GRANT SELECT ON TABLE FOREIGN_DATA_WRAPPER_OPTIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_DATA_WRAPPER_OPTIONS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_DATA_WRAPPER_OPTIONS.

372 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.5 FOREIGN_DATA_WRAPPERS view

245 FOREIGN_DATA_WRAPPERS view

Function

Identify the foreign-data wrappers that are defined in this catalog.
Definition

CREATE VIEW FOREIGN_DATA_WRAPPERS AS
SELECT FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA WRAPPER_NAME,
AUTHORIZATION_IDENTIFIER, LIBRARY_NAME, FOREIGN_DATA WRAPPER_LANGUAGE
FROM DEFINITION_SCHEMA.FOREIGN_DATA_WRAPPERS W
WHERE (W.FOREIGN_DATA_WRAPPER_CATALOG, "*, W.FOREIGN_DATA WRAPPER_NAME)
IN (SELECT UP.OBJECT CATALOG, UP.OBJECT SCHEMA, UP.OBJECT NAME
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES AS UP
WHERE (UP_GRANTEE IN
("PUBLIC", CURRENT USER)
OR
UP.GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED ROLES)))
AND
W.FOREIGN_DATA_WRAPPER_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;
GRANT SELECT ON TABLE FOREIGN_DATA WRAPPERS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_DATA_WRAPPERS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_DATA_WRAPPERS.

Information Schema 373

IWD 9075-9:201?(E)
24.6 FOREIGN_SERVER_OPTIONS view

24.6 FOREIGN_SERVER_OPTIONS view

Function

Identify the options specified for foreign servers that are defined in this catalog.

Definition

CREATE VIEW FOREIGN_SERVER_OPTIONS AS

SELECT FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME,
OPTION_NAME, OPTION_VALUE
FROM DEFINITION_SCHEMA.FOREIGN_SERVER_OPTIONS SO
WHERE (SO.FOREIGN_SERVER_CATALOG, "*, SO.FOREIGN_SERVER_NAME)
IN (SELECT UP.OBJECT CATALOG, UP.OBJECT SCHEMA, UP.OBJECT NAME
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES AS UP
WHERE (UP_GRANTEE IN
("PUBLIC", CURRENT USER)
OR
UP.GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED ROLES)))
AND
SO.FOREIGN_SERVER_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;

GRANT SELECT ON TABLE FOREIGN_SERVER_OPTIONS

TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1)

2)

Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_SERVER_OPTIONS.

Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_SERVER_OPTIONS.

374 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.7 FOREIGN_SERVERS view

24.7 FOREIGN_SERVERS view

Function

Identify the foreign servers defined in this catalog.

Definition

CREATE VIEW FOREIGN_SERVERS AS

SELECT FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME,
FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA WRAPPER_NAME,
FOREIGN_SERVER_TYPE, FOREIGN_SERVER_VERSION,
AUTHORIZATION_IDENTIFIER

FROM DEFINITION_SCHEMA.FOREIGN_SERVERS FS

WHERE (FS.FOREIGN_SERVER _CATALOG, "", FS.FOREIGN_SERVER_NAME)

IN (SELECT UP.OBJECT CATALOG, UP.OBJECT SCHEMA, UP.OBJECT NAME
FROM DEFINITION_SCHEMA.USAGE_PRIVILEGES AS UP
WHERE (UP_GRANTEE IN

("PUBLIC", CURRENT USER)
OR
UP.GRANTEE IN
(SELECT ROLE_NAME
FROM ENABLED ROLES)))
AND
FS.FOREIGN_SERVER_CATALOG

= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME) ;

GRANT SELECT ON TABLE FOREIGN_SERVERS

TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1)

2)

Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_SERVERS.

Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_SERVERS.

Information Schema 375

IWD 9075-9:201?(E)
24.8 FOREIGN_TABLE_OPTIONS view

24.8 FOREIGN_TABLE_OPTIONS view

Function

Identify the options specified for foreign tables that are defined in this catalog.

Definition

CREATE VIEW FOREIGN_TABLE_OPTIONS AS

SELECT FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA, FOREIGN_TABLE_NAME,
OPTION_NAME, OPTION_VALUE
FROM DEFINITION_SCHEMA.FOREIGN_TABLE_OPTIONS
WHERE (FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA, FOREIGN_TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE GRANTEE IN
(TPUBLICT", CURRENT_USER)
UNION
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE GRANTEE IN
("PUBLICT", CURRENT_USER))
AND
FOREIGN_TABLE_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;

GRANT SELECT ON TABLE FOREIGN_TABLE_OPTIONS

TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1)

2)

Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_TABLE_OPTIONS.

Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_TABLE_OPTIONS.

376 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
249 FOREIGN_TABLES view

249 FOREIGN_TABLES view

Function

Identify the foreign tables that are defined in this catalog.
Definition

CREATE VIEW FOREIGN_TABLES AS
SELECT FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA, FOREIGN_TABLE_NAME,
FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME
FROM DEFINITION_SCHEMA.FOREIGN_TABLES
WHERE (FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA, FOREIGN_TABLE_NAME) IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE GRANTEE IN
(TPUBLICT", CURRENT_USER)
UNION
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE GRANTEE IN
("PUBLICT", CURRENT_USER))
AND
FOREIGN_TABLE_CATALOG
= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME) ;
GRANT SELECT ON TABLE FOREIGN_TABLES
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_TABLES.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_TABLES.

Information Schema 377

IWD 9075-9:201?(E)
24.10 ROUTINE_MAPPING_OPTIONS view

24.10 ROUTINE_MAPPING_OPTIONS view

Function

Identify the options specified for routine mappings that are defined in this catalog.
Definition

CREATE VIEW ROUTINE_MAPPING_OPTIONS AS
SELECT RMO.ROUTINE_MAPPING_NAME, RMO.OPTION_NAME, RMO.OPTION_VALUE
FROM DEFINITION_SCHEMA.ROUTINE_MAPPING_OPTIONS AS RMO
WHERE RMO.ROUTINE_MAPPING_NAME IN
(SELECT RM.ROUTINE_MAPPING_NAME
FROM INFORMATION_SCHEMA _ROUTINE_MAPPINGS AS RM);

GRANT SELECT ON TABLE ROUTINE_MAPPING_OPTIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUTINE_MAPPING_OPTIONS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUTINE_MAPPING_OPTIONS.

378 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.11 ROUTINE_MAPPINGS view

24.11 ROUTINE_MAPPINGS view

Function

Identify the routine mappings that are defined in this catalog.
Definition

CREATE VIEW ROUTINE_MAPPINGS AS

SELECT RM.ROUTINE_MAPPING_NAME, RM.SPECIFIC_CATALOG,
RM.SPECIFIC_SCHEMA, RM.SPECIFIC_NAME,
RM.FOREIGN_SERVER_CATALOG, RM.FOREIGN_SERVER_NAME

FROM DEFINITION_SCHEMA.ROUTINE_MAPPINGS AS RM

WHERE RM.FOREIGN_SERVER_CATALOG, RM.FOREIGN_SERVER_NAME IN
(SELECT FS.FOREIGN_SERVER_CATALOG, FS.FOREIGN_SERVER_NAME

FROM INFORMATION_SCHEMA_FOREIGN_SERVERS AS FS);

GRANT SELECT ON TABLE ROUTINE_MAPPINGS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUTINE_MAPPINGS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUTINE_MAPPINGS.

Information Schema 379

IWD 9075-9:201?(E)
24.12 USER_MAPPING_OPTIONS view

24.12 USER_MAPPING_OPTIONS view

Function

Identify the options specified for user mappings that are defined in this catalog.
Definition

CREATE VIEW USER_MAPPING_OPTIONS AS

SELECT UMO.AUTHORIZATION_IDENTIFIER,
UMO.FOREIGN_SERVER_CATALOG, UMO.FOREIGN_SERVER_NAME,
UMO.OPTION_NAME, UMO.OPTION_VALUE

FROM DEFINITION_SCHEMA.USER_MAPPING_OPTIONS AS UMO

WHERE UMO.AUTHORIZATION_IDENTIFIER,
UMO.FOREIGN_SERVER_CATALOG, UMO.FOREIGN_SERVER_NAME IN
(SELECT UM.AUTHORIZATION_IDENTIFIER,
UM.FOREIGN_SERVER_CATALOG, UM.FOREIGN_SERVER_NAME

FROM INFORMATION_SCHEMA _USER_MAPPINGS AS UM);

GRANT SELECT ON TABLE USER_MAPPING_OPTIONS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAPPING_OPTIONS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAPPING_OPTIONS.

380 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.13 USER_MAPPINGS view

24.13 USER_MAPPINGS view

Function

Identify the user mappings that are defined in this catalog.
Definition

CREATE VIEW USER_MAPPINGS AS
SELECT UM.AUTHORIZATION_IDENTIFIER,
UM.FOREIGN_SERVER_CATALOG, UM.FOREIGN_SERVER_NAME
FROM DEFINITION_SCHEMA.USER_MAPPINGS AS UM
WHERE UM.FOREIGN_SERVER_CATALOG
= (SELECT ISCN.CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME AS ISCN);

GRANT SELECT ON TABLE USER_MAPPINGS
TO PUBLIC WITH GRANT OPTION;

Conformance Rules

1) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAPPINGS.

2) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAPPINGS.

Information Schema 381

IWD 9075-9:201?(E)
24.14 Short name views

24.14 Short name views

This Subclause modifies Subclause 5.81, ““Short name views”, in I1SO/IEC 9075-11.

Function

Provide alternative views that use only identifiers that do not require Feature F391, “Long identifiers”.

Definition

|Replace ATTRIBUTES_S with the fo

llowing|

CREATE VIEW ATTRIBUTES_S
(UDT_CATALOG,

ATTRIBUTE_NAME,
I1S_NULLABLE,
CHAR_OCTET_LENGTH,
CHARACTER_SET_NAME,
COLLATION_NAME,
NUMERIC_SCALE,
INTERVAL_PRECISION,
DOMAIN_NAME,
ATT_UDT_NAME,
SCOPE_NAME,
IS_DERIVED_REF_ATT,
DL_R_PERMISSION,
DATALINK_UNLINK) AS

SELECT UDT_CATALOG, UDT_SCH

UDT_SCHEMA,
ORDINAL_POSITION,
DATA_TYPE,
CHAR_SET_CATALOG,
COLLATION_CATALOG,
NUMERIC_PRECISION,
DATETIME_PRECISION,
DOMAIN_CATALOG,
ATT_UDT_CAT,
SCOPE_CATALOG,
MAX_CARDINALITY,
DL_LINK_CONTROL,
DL_W_PERMISSION,

EMA, UDT_NAME,

UDT_NAME,
ATTRIBUTE_DEFAULT,
CHAR_MAX_LENGTH,
CHAR_SET_SCHEMA,
COLLATION_SCHEMA,
NUMERIC_PREC_RADIX,
INTERVAL_TYPE,
DOMAIN_SCHEMA,
ATT_UDT_SCHEMA,
SCOPE_SCHEMA,
DTD_IDENTIFIER,
DL_INTEGRITY,
DL_RECOVERY,

ATTRIBUTE_NAME, ORDINAL_POSITION, COLUMN_DEFAULT,

IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,

NUMERIC_SCALE, DATET

IME_PRECISION,

INTERVAL_TYPE,

INTERVAL_PRECISION, DOMAIN_CATALOG, DOMAIN_SCHEMA,

DOMAIN_NAME, ATTRIBUTE_UDT_CATALOG, ATTRIBUTE_UDT_SCHEMA,
ATTRIBUTE_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,

SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER, CHECK_REFERENCES,

I1S_DERIVED_REFERENCE_ATTRIBUTE, DATALINK_LINK_CONTROL, DATALINK_INTEGRITY,
DATALINK_READ_PERMISSION, DATALINK_WRITE_PERMISSION, DATALINK_RECOVERY,

DATAL INK_UNLINK

FROM INFORMATION_SCHEMA.ATTRIBUTES;

GRANT SELECT ON TABLE ATTRIBUTES_S
TO PUBLIC WITH GRANT OPTION;

|Replace COLUMNS_S with the following|

CREATE VIEW COLUMNS_S
(TABLE_CATALOG,
COLUMN_NAME,
IS_NULLABLE,
CHAR_OCTET_LENGTH,
NUMERIC_SCALE,
INTERVAL_PRECISION,

TABLE_SCHEMA,
ORDINAL_POSITION,
DATA_TYPE,
NUMERIC_PRECISION,
DATETIME_PRECISION,
CHAR_SET_CATALOG,

382 Management of External Data (SQL/MED)

TABLE_NAME,
COLUMN_DEFAULT,
CHAR_MAX_LENGTH,
NUMERIC_PREC_RADIX,
INTERVAL_TYPE,
CHAR_SET_SCHEMA,

IWD 9075-9:201?(E)
24.14 Short name views

CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,

COLLATION_NAME, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDINALITY, DTD_IDENTIFIER,
IS_SELF_REF, IS_IDENTITY, ID_GENERATION,
ID_START, I1D_INCREMENT, DL_LINK_CONTROL,
DL_INTEGRITY, DL_R_PERMISSION, DL_W_PERMISSION,
DL_RECOVERY, DL_UNLINK) AS

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, ORDINAL_POSITION, COLUMN_DEFAULT,
IS_NULLABLE, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH,
CHARACTER_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX,
NUMERIC_SCALE, DATETIME_PRECISION, INTERVAL_TYPE,
INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, COLLATION_CATALOG, COLLATION_SCHEMA,
COLLATION_NAME, DOMAIN_CATALOG, DOMAIN_SCHEMA,
DOMAIN_NAME, UDT_CATALOG, UDT_SCHEMA,
UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXIMUM_CARDINALITY, DTD_IDENTIFIER,
IS_SELF_REFERENCING, IS_IDENTITY, IDENTITY_GENERATION,
IDENTITY_START, IDENTITY_INCREMENT,
DATALINK_LINK_CONTROL, DATALINK_INTEGRITY, DATALINK_READ_PERMISSION,
DATALINK_WRITE_PERMISSION, DATALINK_RECOVERY, DATALINK_UNLINK

FROM INFORMATION_SCHEMA.COLUMNS ;

GRANT SELECT ON TABLE COLUMNS_S
TO PUBLIC WITH GRANT OPTION ;

[Insert the following new short-name views

CREATE VIEW FDW_OPTIONS_S
(FDW_CATALOG, FDW_NAME, OPTION_NAME,
OPTION_VALUE) AS
SELECT FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME,
OPTION_NAME, OPTION_VALUE
FROM INFORMATION_SCHEMA.FOREIGN_DATA_WRAPPER_OPTIONS ;
GRANT SELECT ON TABLE FDW_OPTIONS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW FD_WRAPPERS_S
(FDW_CATALOG, FDW_NAME, AUTHORIZATION_ID,
LI1BRARY_NAME, FDW_LANGUAGE) AS
SELECT FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME,
AUTHORIZATION_IDENTIFIER, LIBRARY_NAME,
FOREIGN_DATA_WRAPPER_LANGUAGE
FROM INFORMATION_SCHEMA.FOREIGN_DATA_WRAPPERS ;
GRANT SELECT ON TABLE FD_WRAPPERS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW FS_OPTIONS_S
(FS_CATALOG, FS_NAME, OPTION_NAME,
OPTION_VALUE) AS
SELECT FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME,
OPTION_NAME, OPTION_VALUE
FROM INFORMATION_SCHEMA.FOREIGN_SERVER_OPTIONS ;
GRANT SELECT ON TABLE FS_OPTIONS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW FT_OPTIONS_S
(FT_CATALOG, FT_SCHEMA, FOREIGN_TABLE_NAME,

Information Schema 383

IWD 9075-9:201?(E)
24.14 Short name views

OPTION_NAME, OPTION_VALUE) AS
SELECT FOREIGN_TABLE_CATALOG, FOREIGN TABLE_SCHEMA, FOREIGN_TABLE_NAME,
OPTION_NAME, OPTION_VALUE
FROM INFORMATION_SCHEMA_FOREIGN_TABLE_OPTIONS
GRANT SELECT ON TABLE FT_OPTIONS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW FOREIGN_SERVERS_S
(FS_CATALOG, FS_NAME, FDW_CATALOG,
FDW_NAME, FS_TYPE, FS_VERSION,
AUTHORIZATION_ID) AS
SELECT FOREIGN_SERVER CATALOG, FOREIGN_SERVER_NAME, FOREIGN_DATA_WRAPPER_CATALOG,
FOREIGN_DATA_WRAPPER_NAME, FOREIGN_SERVER_TYPE, FOREIGN_SERVER VERSION,
AUTHORIZATION_IDENTIFIER
FROM INFORMATION_SCHEMA_FOREIGN_SERVERS ;
GRANT SELECT ON TABLE FOREIGN_SERVERS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW FOREIGN_TABLES_S
(FT_CATALOG, FT_SCHEMA, FOREIGN_TABLE_NAME,
FS_CATALOG, FS_NAME) AS
SELECT FOREIGN_TABLE_CATALOG, FOREIGN TABLE_SCHEMA, FOREIGN_TABLE_NAME,
FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME
FROM INFORMATION_SCHEMA_FOREIGN_TABLES ;
GRANT SELECT ON TABLE FOREIGN_TABLES_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW ROUT_MAP_OPTIONS_S
(RM_NAME, OPTION_NAME, OPTION_VALUE) AS
SELECT ROUTINE_MAPPING_NAME, OPTION_NAME, OPTION_VALUE
FROM INFORMATION_SCHEMA_ROUT INE_MAPP ING_OPTIONS ;
GRANT SELECT ON TABLE ROUT_MAP_OPTIONS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW ROUTINE_MAPPINGS_S
(RM_NAME, SPECIFIC_CATALOG, SPECIFIC_SCHEMA,
SPECIFIC_NAME, FS_CATALOG, FS_NAME) AS
SELECT ROUTINE_MAPPING_NAME, SPECIFIC_CATALOG,
SPECIFIC_SCHEMA, SPECIFIC_NAME,
FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME
FROM INFORMATION_SCHEMA_ROUTINE_MAPPINGS ;
GRANT SELECT ON TABLE ROUTINE_MAPPINGS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW USER_MAP_OPTIONS_S
(AUTH_ID, FS_CATALOG, FS_NAME,
OPTION_NAME, OPTION_VALUE) AS
SELECT AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER_CATALOG, FOREIGN_SERVER NAME,
OPTION_NAME, OPTION_VALUE
FROM INFORMATION_SCHEMA_USER_MAPPING_OPTIONS ;
GRANT SELECT ON TABLE USER_MAP_OPTIONS_S
TO PUBLIC WITH GRANT OPTION ;
CREATE VIEW USER_MAPPINGS_S
(AUTH_ID, FS_CATALOG, FS_NAME) AS
SELECT AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER_CATALOG, FOREIGN_SERVER NAME
FROM INFORMATION_SCHEMA.USER_MAPPINGS ;

384 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
24.14 Short name views

GRANT SELECT ON TABLE USER_MAPPINGS_S
TO PUBLIC WITH GRANT OPTION ;

Conformance Rules

1) Without Feature M0O01, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DATALINK_CONTROL.

2) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_INTEGRITY.

3) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_R_PERMISSION.

4) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_RECOVERY.

5) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_W_PERMISSION.

6) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DATALINK_UNLINK.

7) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DATALINK_CONTROL.

8) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_INTEGRITY.

9) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_R_PERMISSION.

10) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_RECOVERY.

11) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_W_PERMISSION.

12) Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DATALINK_UNLINK.

13) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S.

14) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS _S.

15) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FDW_OPTIONS_S.

16) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FD_WRAPPERS _S.

17) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FS_OPTIONS_S.

Information Schema 385

IWD 9075-9:201?(E)
24.14 Short name views

18) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FT_OPTIONS_S.

19) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_SERVERS_S.

20) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . FOREIGN_TABLES_S.

21) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUT_MAP_OPTIONS_S.

22) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ROUTINE_MAPPINGS_S.

23) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAP_OPTIONS_S.

24) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . USER_MAPPINGS_S.

386 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.1 COLUMN_OPTIONS base table

25 Definition Schema

This Clause modifies Clause 6, “Definition Schema™, in |SO/IEC 9075-11.

25.1 COLUMN_OPTIONS base table

Function

The COLUMN_OPTIONS base table has one row for each option specified for each column.
Definition

CREATE TABLE COLUMN_OPTIONS (

TABLE_CATALOG INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
TABLE_SCHEMA INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA _SQL_IDENTIFIER,
COLUMN_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTI0ON_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTION_VALUE INFORMAT I1ON_SCHEMA . CHARACTER_DATA,

CONSTRAINT COLUMN_OPTIONS_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, OPTION_NAME),
CONSTRAINT COLUMN_OPTIONS_FOREIGN_KEY_COLUMNS
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME)
REFERENCES COLUMNS

Description

1) The values of TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME are
the catalog name, unqualified schema name, qualified identifier, and identifier of the <column name> of
the column whose option is being described.

2) The value of OPTION_NAME identifies the option being described.

3) The value of OPTION_VALUE is the value specified for the option being described. The value of
OPTION_VALUE is the null value if no value for the option being described was specified.

Definition Schema 387

IWD 9075-9:201?(E)
25.2 DATA_TYPE_DESCRIPTOR base table

25.2 DATA_TYPE_DESCRIPTOR base table

This Subclause modifies Subclause 6.22, “DATA_TYPE_DESCRIPTOR base table™, in ISO/IEC 9075-11.

Function

The DATA_TYPE_DESCRIPTOR table has one row for each usage of a data type as identified by ISO/IEC
9075. It effectively contains a representation of the data type descriptors.

Definition

|Add the following <column definition>s to the end of <column definition>s in the <table definition>:]|

DATALINK_LINK_CONTROL INFORMAT ION_SCHEMA.YES_OR_NO,
DATALINK_INTEGRITY INFORMAT ION_SCHEMA.CHARACTER_DATA,
DATALINK_READ_PERMISSION INFORMAT ION_SCHEMA.CHARACTER_DATA,
DATALINK_WRITE_PERMISSION INFORMAT ION_SCHEMA.CHARACTER_DATA,
DATALINK_RECOVERY INFORMAT ION_SCHEMA.YES_OR_NO,
DATALINK_UNLINK INFORMAT ION_SCHEMA.CHARACTER_DATA,

[Augment constraint DATA_TYPE_DESCRIPTOR_DATA_TYPE_CHECK_COMBINATIONS:]|

|Add the following predicate to each OR clause excepting the final OR clause of the constraint:|

AND
(DATALINK_LINK_CONTROL, DATALINK_INTEGRITY,
DATALINK_READ_PERMISSION,DATALINK_WRITE_PERMISSION,
DATALINK_RECOVERY, DATALINK_UNLINK) 1S NULL

|Add the following OR clause to the end of the constraint:]

OR
(DATA_TYPE = T"DATALINK*®
AND
(CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
CHARACTER_OCTET_LENGTH, CHARACTER_MAXIMUM_LENGTH,
COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME)
IS NULL
AND
(NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DECLARED_NUMERIC_PRECISION, DECLARED_NUMERIC_SCALE)
IS NULL
AND
DATETIME_PRECISION IS NULL
AND
(INTERVAL_TYPE, INTERVAL_PRECISION)
IS NULL
AND
(USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME) IS NULL
AND
(SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME) IS NULL

388 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.2 DATA_TYPE_DESCRIPTOR base table

AND
MAXIMUM_CARDINALITY 1S NULL)

|Add 'DATALINK' to the IN list of the final OR clause of the constraint

[Insert these constraints|

CONSTRAINT DATA_TYPE_DESCRIPTOR_DATALINK_INTEGRITY
CHECK (DATALINK_INTEGRITY IN ("ALL", “SELECTIVE®, °"NONE®")),
CONSTRAINT DATA_TYPE_DESCRIPTOR_DATALINK_READ_PERMISSION
CHECK (DATALINK_READ_PERMISSION IN ("FS®, "DBT)),
CONSTRAINT DATA_TYPE_DESCRIPTOR_DATALINK_WRITE_PERMISSION
CHECK (DATALINK_WRITE_PERMISSION IN
("FS*, T"BLOCKED"®,
"ADMIN REQUIRING TOKEN FOR UPDATE",
“ADMIN NOT REQUIRING TOKEN FOR UPDATE®)),
CONSTRAINT DATA_TYPE_DESCRIPTOR_DATALINK_UNLINK
CHECK (DATALINK_UNLINK IN
("DELETE®, "RESTORE®", “NONE")),
CONSTRAINT DATA_TYPE_DESCRIPTOR_DATALINK_VALID_COMBINATIONS
CHECK (DATALINK_LINK_CONTROL = "NO*
OR
((DATALINK_INTEGRITY <> "SELECTIVE~"
OR
(DATALINK_READ_PERMISSION = "FS*
AND
DATALINK_WRITE_PERMISSION = "FS*
AND
DATALINK_RECOVERY = "NO*))
AND
(DATALINK_READ_PERMISSION <> "DB*
OR
DATALINK_WRITE_PERMISSION <> "FS®)
AND
(DATALINK_WRITE_PERMISSION = "FS*
OR
(DATALINK_INTEGRITY = “ALL"
AND
DATALINK_UNLINK <> "NONE®))
AND
(DATALINK_WRITE_PERMISSION <> *FS*
OR
(DATALINK_READ_PERMISSION = "FS*
AND
DATALINK_RECOVERY = "NO*
AND
DATALINK_UNLINK = "NONE™"))
AND
(DATALINK_RECOVERY <> *"YES*
OR
DATALINK_WRITE_PERMISSION <> "FS®)
AND
(DATALINK_UNLINK <> "DELETE"

Definition Schema 389

IWD 9075-9:201?(E)
25.2 DATA_TYPE_DESCRIPTOR base table

OR
DATALINK_READ_PERMISSION = "DB")))

Description

1) [Insert this Description| If DATA_TYPE is 'DATALINK, then the data type being described is the datalink
type.

2) |Insert this Description|If DATA_TYPE is not DATALINK, or if OBJECT_TYPE is not'USER-DEFINED
TYPE' or 'TABLE', then the values of DATALINK_LINK_CONTROL, DATALINK_INTEGRITY,
DATALINK_READ_PERMISSION, DATALINK_WRITE_PERMISSION, DATALINK_RECOVERY,
and DATALINK_UNLINK are the null value; otherwise, the values of DATALINK_LINK_CONTROL,
DATALINK_INTEGRITY, DATALINK_READ_PERMISSION, DATALINK_WRITE_PERMISSION,
DATALINK_RECOVERY, and DATALINK _UNLINK are the link control, integrity control option, read
permission option, write permission option, recovery option, and unlink option, respectively, of the site
being described.

3) \Insert this Description \ The values of DATALINK_LINK_CONTROL have the following meanings:

YES The datalink value at the site is under file link control.
NO The datalink value at the site is not under file link control.
null This option is not applicable for the data type being described.

4) |Insert this Description| The values of DATALINK_INTEGRITY have the following meanings:

ALL The external file corresponding to the datalink value at the site is under the control
of the SQL-implementation.

SELECTIVE The external file corresponding to the datalink value at the site is under the control
of the SQL-implementation in an implementation-dependent manner.

NONE The external file corresponding to the datalink value at the site is not under the
control of the SQL-implementation.

null This option is not applicable for the data type being described.

5) |Insert this Description| The values of DATALINK_READ_PERMISSION have the following meanings:

FS The external file corresponding to the datalink value at the site is under the operating
system's file programming permissions for read access.

DB The external file corresponding to the datalink value at the site is under the SQL-
implementation's control for read access.

null This option is not applicable for the data type being described.

6) |Insert this Description] The values of DATALINK_WRITE_PERMISSION have the following meanings:

390 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.2 DATA_TYPE_DESCRIPTOR base table

FS The external file corresponding to the datalink value at the site is under the operating
system's file programming permissions for write access.

BLOCKED Write access to the external file corresponding to the datalink value at the site is
blocked.

ADMIN REQUIR- | Write access to the external file corresponding to the datalink value at the site is

ING TOKEN FOR | under the control of the SQL-server and the datalinker. A write token is needed to

UPDATE update the external file and the site containing the datalink value.

ADMIN NOT Write access to the external file corresponding to the datalink value at the site is

REQUIRING under the control of the SQL-server and the datalinker. A write token is needed to

TOKEN FOR update the external file, but it is not needed to update the site containing the datalink

UPDATE value.

null This option is not applicable for the data type being described.

7) \Insert this Description\The values of DATALINK_RECOVERY have the following meanings:

YES The coordinated recovery of SQL-implementation data and external files is supported.

NO The coordinated recovery of SQL-implementation data and external files is not
supported.

null This option is not applicable for the data type being described.

8) \Insert this Description\The values of DATALINK_UNLINK have the following meanings:

DELETE On unlink, the external file corresponding to the datalink value at the site is deleted.

RESTORE On unlink, the file attributes of the external file corresponding to the datalink value
at the site are restored to those at the time when the file was linked.

NONE The external file corresponding to the datalink value at the site is not under SQL-
implementation control.

null This option is not applicable for the data type being described.

Definition Schema 391

IWD 9075-9:201?(E)
25.3 FOREIGN_DATA_WRAPPER_OPTIONS base table

25.3 FOREIGN_DATA_WRAPPER_OPTIONS base table

Function

The FOREIGN_DATA WRAPPER_OPTIONS base table has one row for each option specified for each foreign-

data wrapper.

Definition

CREATE TABLE FOREIGN_DATA_WRAPPER_OPTIONS (

FOREIGN_DATA_WRAPPER_CATALOG INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
FOREIGN_DATA_WRAPPER_NAME INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
OPTION_NAME INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
OPTION_VALUE INFORMAT ION_SCHEMA . SQL_CHARACTER_DATA,

CONSTRAINT FOREIGN_DATA_WRAPPER_OPTIONS_PRIMARY_KEY
PRIMARY KEY (FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME,
OPTION_NAME),
CONSTRAINT FOREIGN_DATA_ WRAPPER_OPTIONS_FOREIGN_KEY_FOREIGN_DATA WRAPPERS
FOREIGN KEY (FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME)
REFERENCES FOREIGN_DATA_WRAPPERS

Description

1)

2)
3)

The values of FOREIGN_DATA_WRAPPER_CATALOG and FOREIGN_DATA_WRAPPER_NAME
are the catalog name and qualified identifier, respectively, of the foreign-data wrapper for which the option

being described is specified.

The value of OPTION_NAME identifies the option being described.

The value of OPTION_VALUE is the value specified for the option being described. The value of

OPTION_VALUE is the null value if no value for the option being described was specified.

392 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.4 FOREIGN_DATA_WRAPPERS base table

25.4 FOREIGN_DATA_WRAPPERS base table

Function

The FOREIGN_DATA WRAPPERS bhase table has one row for each foreign-data wrapper.

Definition

CREATE TABLE FOREIGN_DATA_WRAPPERS (

FOREIGN_DATA_WRAPPER_CATALOG INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_DATA_WRAPPER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
AUTHORIZATION_IDENTIFIER INFORMAT ION_SCHEMA .SQL_IDENTIFIER
LIBRARY_NAME INFORMAT ION_SCHEMA . SQL_CHARACTER_DATA
CONSTRAINT FOREIGN_DATA_WRAPPER_LIBRARY_NAME_NOT_NULL NOT NULL,
FOREIGN_DATA_WRAPPER_LANGUAGE INFORMAT ION_SCHEMA . SQL_CHARACTER_DATA

CONSTRAINT FOREIGN_DATA_WRAPPERS_PRIMARY_KEY
PRIMARY KEY (FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME),
CONSTRAINT FOREIGN_DATA_WRAPPERS_LANGUAGE_CHECK
CHECK (FOREIGN_DATA_WRAPPER_LANGUAGE IN
(TADAT", "CT", T"COBOL", "FORTRAN-",
"MUMPS*®, "PASCAL", "PLI1")),

CONSTRAINT FOREIGN_DATA_WRAPPERS_FOREIGN_KEY_AUTHORIZATIONS
FOREIGN KEY (AUTHORIZATION_IDENTIFIER)
REFERENCES AUTHORIZATIONS,

CONSTRAINT FOREIGN_DATA_WRAPPERS_FOREIGN_KEY_CATALOG_NAMES
FOREIGN KEY (CATALOG_NAME)
REFERENCES CATALOG_NAMES

Description

1)

2)

3)

4)

The value of FOREIGN_DATA_WRAPPER_CATALOG and FOREIGN_DATA_WRAPPER_NAME
are the catalog name and qualified identifier, respectively, of the foreign-data wrapper being described.

The value of AUTHORIZATION_IDENTIFIER is the <authorization identifier> that owns the foreign-
data wrapper being described.

The value of LIBRARY_NAME is the name of the library that contains the foreign-data wrapper interface
routines of the foreign-data wrapper being described.

The value of the FOREIGN_DATA WRAPPER_LANGUAGE is the language of the routines of the foreign-
data wrapper being described.

Definition Schema 393

IWD 9075-9:201?(E)
25.5 FOREIGN_SERVER_OPTIONS base table

25.5 FOREIGN_SERVER_OPTIONS base table

Function

The FOREIGN_SERVER_OPTIONS base table has one row for each option specified for each foreign server.

Definition

CREATE TABLE FOREIGN_SERVER_OPTIONS (

FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTION_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTION_VALUE INFORMAT I0ON_SCHEMA . SQL_CHARACTER_DATA,

CONSTRAINT FOREIGN_SERVERS_PRIMARY_KEY
PRIMARY KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME, OPTION_NAME),
CONSTRAINT FOREIGN_SERVER_OPTIONS_FOREIGN_KEY_FOREIGN_SERVERS
FOREIGN KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME)
REFERENCES FOREIGN_SERVERS

Description

1)

2)
3)

The values of FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME are the catalog name
and qualified identifier, respectively, of the foreign server for which the option being described is specified.

The value of OPTION_NAME identifies the option being described.

The value of OPTION_VALUE is the value specified for the option being described. The value of
OPTION_VALUE is the null value if no value for the option being described was specified.

394 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.6 FOREIGN_SERVERS base table

25.6 FOREIGN_SERVERS base table

Function

The FOREIGN_SERVERS base table has one row for each foreign server.

Definition

CREATE TABLE FOREIGN_SERVERS (

FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_DATA_WRAPPER_CATALOG INFORMAT ION_SCHEMA _SQL_IDENTIFIER
CONSTRAINT FOREIGN_SERVER_FOREIGN_DATA_WRAPPER_CATALOG_NOT_NULL NOT NULL,
FOREIGN_DATA_WRAPPER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER
CONSTRAINT FOREIGN_SERVER_FOREIGN_DATA_WRAPPER_NAME_NOT_NULL NOT NULL,
FOREIGN_SERVER_TYPE INFORMAT ION_SCHEMA.CHARACTER_DATA,
FOREIGN_SERVER_VERSION INFORMAT ION_SCHEMA.CHARACTER_DATA,
AUTHORIZATION_IDENTIFIER INFORMAT ION_SCHEMA _SQL_IDENTIFIER

CONSTRAINT AUTHORIZATION_IDENTIFIER_NOT_NULL NOT NULL,
CONSTRAINT FOREIGN_SERVERS_PRIMARY_KEY
PRIMARY KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER_NAME),
CONSTRAINT FOREIGN_SERVERS_FOREIGN_KEY_FOREIGN_DATA_WRAPPERS
FOREIGN KEY (FOREIGN_DATA_WRAPPER_CATALOG, FOREIGN_DATA_WRAPPER_NAME)
REFERENCES FOREIGN_DATA_WRAPPERS,

CONSTRAINT FOREIGN_SERVERS_FOREIGN_KEY_AUTHORIZATIONS
FOREIGN KEY (AUTHORIZATION_IDENTIFIER)
REFERENCES AUTHORIZATIONS,

CONSTRAINT FOREIGN_SERVERS_FOREIGN_KEY_CATALOG_NAMES
FOREIGN KEY (CATALOG_NAME)
REFERENCES CATALOG_NAMES

Description

1)

2)

3)

4)

5)

The value of FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME are the catalog name
and qualified identifier, respectively, of the foreign server being described.

The value of FOREIGN_DATA_WRAPPER_CATALOG and FOREIGN_DATA_WRAPPER_NAME
are the catalog name and qualified identifier, respectively, of the foreign-data wrapper used when the foreign
server being described is accessed.

If the value of FOREIGN_SERVER_TYPE is not the null value, then it identifies the type of the foreign
server being described.

If the value of FOREIGN_SERVER_VERSION is not the null value, then it identifies the version of the
type of the foreign server being described.

The value of AUTHORIZATION_IDENTIFIER is the authorization identifier that owns the foreign server
being described.

Definition Schema 395

IWD 9075-9:201?(E)
25.7 FOREIGN_TABLE_OPTIONS base table

25.7 FOREIGN_TABLE_OPTIONS base table

Function

The FOREIGN_TABLE_OPTIONS base table has one row for each option specified for each foreign table.
Definition

CREATE TABLE FOREIGN_TABLE_OPTIONS (

FOREIGN_TABLE_CATALOG INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_TABLE_SCHEMA INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_TABLE_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPT ION_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTION_VALUE INFORMAT I0ON_SCHEMA . SQL_CHARACTER_DATA,

CONSTRAINT FOREIGN_TABLE_OPTIONS_PRIMARY_KEY
PRIMARY KEY (FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA,
FOREIGN_TABLE_NAME, OPTION_NAME),
CONSTRAINT FOREIGN_TABLE_OPTIONS_FOREIGN_KEY_FOREIGN_TABLES
FOREIGN KEY (FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA, FOREIGN_TABLE_NAME)
REFERENCES FOREIGN_TABLES

Description

1) The values of FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA and FOR-
EIGN_TABLE_NAME are the catalog name and qualified identifier, respectively, of the foreign table for
which the option being described is specified.

2) The value of OPTION_NAME identifies the option being described.

3) The value of OPTION_VALUE is the value specified for the option being described. The value of
OPTION_VALUE is the null value if no value for the option being described was specified.

396 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.8 FOREIGN_TABLES base table

25.8 FOREIGN_TABLES base table

Function

The FOREIGN_TABLES base table has one row for each foreign table.
Definition

CREATE TABLE FOREIGN_TABLES (

FOREIGN_TABLE_CATALOG INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_TABLE_SCHEMA INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA. SQL_IDENTIFIER
CONSTRAINT FOREIGN_SERVER_CATALOG_NOT_NULL NOT NULL,

FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER

CONSTRAINT FOREIGN_TABLES_PRIMARY_KEY

PRIMARY KEY (FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA,
FOREIGN_TABLE_NAME),

CONSTRAINT FOREIGN_TABLES_FOREIGN_KEY_FOREIGN_SERVERS

FOREIGN KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER NAME)
REFERENCES FOREIGN_SERVERS,

CONSTRAINT FOREIGN_TABLES_IN_TABLES_CHECK

CHECK ((FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA,
FOREIGN_TABLE_NAME)

IN
(SELECT TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = "FOREIGN"))
)
Description

1) The values of FOREIGN_TABLE_CATALOG, FOREIGN_TABLE_SCHEMA and FOR-
EIGN_TABLE_NAME are the catalog name, unqualified schema name, and qualified identifier, respectively,
of the foreign table being described.

2) The values of FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME are the catalog name
and qualified identifier, respectively, of the foreign server that is the source of the foreign table being
described.

Definition Schema 397

IWD 9075-9:201?(E)
25.9 ROUTINE_MAPPING_OPTIONS base table

25.9 ROUTINE_MAPPING_OPTIONS base table

Function

The ROUTINE_MAPPING_OPTIONS base table has one row for each option specified for each routine
mapping.

Definition

CREATE TABLE ROUTINE_MAPPING_OPTIONS (

ROUT INE_MAPP ING_NAME INFORMAT ION_SCHEMA . SQL_IDENTIFIER,
OPTION_NAME INFORMAT ION_SCHEMA . SQL_IDENTIFIER,
OPTION_VALUE INFORMAT ION_SCHEMA . SQL_CHARACTER_DATA,

CONSTRAINT ROUTINE_MAPPING_OPTIONS_PRIMARY_KEY
PRIMARY KEY (ROUTINE_MAPPING_NAME, OPTION_NAME),
CONSTRAINT ROUTINE_MAPPING_OPTIONS_FOREIGN_KEY_ROUTINE_MAPPINGS
FOREIGN KEY (ROUTINE_MAPPING_NAME)
REFERENCES ROUTINE_MAPPINGS

Description

1)

2)
3)

The value of ROUTINE_MAPPING_NAME is the identifier of the routine mapping for which the option
being described is specified.

The value of OPTION_NAME identifies the option being described.

The value of OPTION_VALUE is the value specified for the option being described. The value of
OPTION_VALUE is the null value if no value for the option being described was specified.

398 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.10 ROUTINE_MAPPINGS base table

25.10 ROUTINE_MAPPINGS base table

Function

The ROUTINE_MAPPINGS base table has one row for each routine mapping.

Definition

CREATE TABLE ROUTINE_MAPPINGS (

ROUT INE_MAPP ING_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,

SPECIFIC_CATALOG INFORMAT ION_SCHEMA. SQL_IDENTIFIER
CONSTRAINT SPECIFIC_CATALOG_NOT_NULL NOT NULL,

SPECIFIC_SCHEMA INFORMAT ION_SCHEMA _SQL_IDENTIFIER
CONSTRAINT SPECIFIC_SCHEMA_NOT_NULL NOT NULL,

SPECIFIC_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER
CONSTRAINT SPECIFIC_NAME_NOT_NULL NOT NULL,

FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA. SQL_IDENTIFIER
CONSTRAINT FOREIGN_SERVER_CATALOG_NOT_NULL NOT NULL,

FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER

CONSTRAINT ROUTINE_MAPPINGS_PRIMARY_ KEY
PRIMARY KEY (ROUTINE_MAPPING_NAME),
CONSTRAINT ROUTINE_MAPPINGS_FOREIGN_KEY FOREIGN_SERVERS
FOREIGN KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER NAME)
REFERENCES FOREIGN_SERVERS,
CONSTRAINT ROUTINE_MAPPINGS_FOREIGN_KEY_ ROUTINES
FOREIGN KEY (SPECIFIC_CATALOG, SPECIFIC_SCHEMA, SPECIFIC_NAME)
REFERENCES ROUTINES,
CONSTRAINT ROUTINE_MAPPINGS_UNIQUE_MAPPING_ROUTINE_SERVER
UNIQUE (SPECIFIC_CATALOG, SPECIFIC_SCHEMA,
SPECIFIC_NAME, FOREIGN_SERVER CATALOG,
FOREIGN_SERVER_NAME)

Description

1)
2)

3)

The value of ROUTINE_MAPPING_NAME identifies the routine mapping being described.

The values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME, are the catalog
name, ungualified schema name, and qualified identifier, respectively, of the specific routine name of the
routine mapping being described.

The values of FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME are the catalog name
and qualified identifier, respectively, of the foreign server of the routine mapping being described.

Definition Schema 399

IWD 9075-9:201?(E)
25.11 SQL_SIZING base table

25.11 SQL_SIZING base table

This Subclause modifies Subclause 9.2, “SQL_SZING base table”, in ISO/IEC 9075-3.

Function

The SQL_SIZING base table has one row for each sizing item defined by ISO/IEC 9075.

Definition

No additional Definition.

Description

No additional Descriptions.

Table Population

|Add the following item to the list of INSERT values|

(20004, *"MAXIMUM DATALINK LENGTH®,
"Length in octets”),

400 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.12 TABLES base table

25.12 TABLES base table

This Subclause modifies Subclause 6.53, “TABLES base table™, in | SO/IEC 9075-11.

Function

The TABLES base table contains one row for each table, including views and foreign tables. It effectively
contains a representation of the table descriptors.

Definition

| Augment the column constraint TABLE_TYPE_CHECK|Add “, *FOREIGN" " to the <in value list> of valid
TABLE_TYPE values.

|Add the following constraint|

CONSTRAINT TABLES_CHECK_NOT_FOREIGN
CHECK (NOT EXISTS (
(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = "FOREIGN"
EXCEPT
SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME
FROM FOREIGN_TABLES))

Description

1) [Augment Description 2)]

FOREIGN The table being described is a foreign table.

Definition Schema 401

IWD 9075-9:201?(E)
25.13 USAGE_PRIVILEGES base table

25.13 USAGE_PRIVILEGES base table

This Subclause modifies Subclause 6.63, “USAGE_PRIVILEGESbase table™, in 1ISO/IEC 9075-11.

Function

The USAGE_PRIVILEGES table has one row for each usage privilege descriptor. It effectively contains a
representation of the usage privilege descriptors.

Definition

| Augment the column constraint USAGE_PRIVILEGES_OBJECT_TYPE_CHECK|Add “, "FOREIGN
DATA WRAPPER, FOREIGN SERVER * ” to the <in value list> of valid OBJECT_TYPE values.

| Augment the constraint USAGE_PRIVILEGES_CHECK_REFERENCES_OBJECT|Add the following to the
end of <query expression> contained in the <in predicate> :

UNION
SELECT FOREIGN_DATA_WRAPPER_CATALOG, *", FOREIGN_DATA_WRAPPER, "FOREIGN DATA WRAPPER"

FROM FOREIGN_DATA_WRAPPERS

UNION
SELECT FOREIGN_SERVER_CATALOG, "", FOREIGN_SERVER, "FOREIGN SERVER*
FROM FOREIGN_SERVERS

Description

1) [Replace Desc. 3)| Case:

a) Ifthe object to which the privileges apply is a foreign-data wrapper or a foreign server, then the values
of OBJECT_CATALOG and OBJECT_NAME are the catalog name, and qualified identifier,
respectively, of the object to which the privilege applies and OBJECT_SCHEMA is the empty string.

b) Otherwise, the values of OBJECT _CATALOG, OBJECT_SCHEMA, and OBJECT_NAME are the
catalog name, unqualified schema name, and qualified identifier, respectively, of the object to which
the privilege applies.

2) |Augment Description 4)]

FOREIGN DATA | The object to which the privilege applies is a foreign-data wrapper.
WRAPPER

FOREIGN The object to which the privilege applies is a foreign server.
SERVER

402 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
25.14 USER_MAPPING_OPTIONS base table

25.14 USER_MAPPING_OPTIONS base table

Function

The USER_MAPPING_OPTIONS base table has one row for each option specified for each user mapping.
Definition

CREATE TABLE USER_MAPPING_OPTIONS (

AUTHORIZATION_IDENTIFIER INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPT ION_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
OPTION_VALUE INFORMAT ION_SCHEMA . SQL_CHARACTER_DATA,

CONSTRAINT USER_MAPPING_OPTIONS_PRIMARY_KEY
PRIMARY KEY (AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER CATALOG,
FOREIGN_SERVER_NAME, OPTION_NAME),
CONSTRAINT USER_MAPPING_OPTIONS_FOREIGN_KEY_ USER_MAPPINGS
FOREIGN KEY (AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER CATALOG,
FOREIGN_SERVER_NAME)
REFERENCES USER_MAPPINGS

Description

1) The values of AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER_CATALOG and FOR-
EIGN_SERVER_NAME are the authorization identifier, the catalog nhame and qualified identifier,
respectively, of the user mapping for which the option being described is specified.

2) The value of OPTION_NAME identifies the option being described.

3) The value of OPTION_VALUE is the value specified for the option being described. The value of
OPTION_VALUE is the null value if no value for the option being described was specified.

Definition Schema 403

IWD 9075-9:201?(E)
25.15 USER_MAPPINGS base table

25.15 USER_MAPPINGS base table

Function

The USER_MAPPINGS base table has one row for each user mapping.

Definition

CREATE TABLE USER_MAPPINGS (

AUTHORIZATION_IDENTIFIER INFORMAT ION_SCHEMA _SQL_IDENTIFIER,
FOREIGN_SERVER_CATALOG INFORMAT ION_SCHEMA.SQL_IDENTIFIER,
FOREIGN_SERVER_NAME INFORMAT ION_SCHEMA _SQL_IDENTIFIER,

CONSTRAINT USER_MAPPINGS_PRIMARY_KEY
PRIMARY KEY (AUTHORIZATION_IDENTIFIER, FOREIGN_SERVER CATALOG,
FOREIGN_SERVER_NAME),
CONSTRAINT USER_MAPPINGS_FOREIGN_KEY_FOREIGN_SERVERS
FOREIGN KEY (FOREIGN_SERVER_CATALOG, FOREIGN_SERVER NAME)
REFERENCES FOREIGN_SERVERS,

CONSTRAINT USER_MAPPINGS_FOREIGN_KEY_AUTHORIZATIONS
FOREIGN KEY (AUTHORIZATION_IDENTIFIER)
REFERENCES AUTHORIZATIONS

Description

1)

2)

The value of AUTHORIZATION_IDENTIFIER identifies the authorization identifier whose user mapping
for the foreign server identified by FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME
is being described.

The values of FOREIGN_SERVER_CATALOG and FOREIGN_SERVER_NAME are the catalog name
and qualified identifier, respectively, of the foreign server for which the user mapping is being described.

404 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
26.1 SQLSTATE

26 Status codes

This Clause modifies Clause 24, “Satus codes”, in |SO/IEC 9075-2.

26.1 SQLSTATE

This Subclause modifies Subclause 24.1, “SQLSTATE”, in ISO/IEC 9075-2.

|Insert this paragraph\ Some of the conditions that can occur during the execution of foreign-data wrapper
interface routines are SQL/MED-specific. The corresponding status codes are listed in Table 37, “SQLSTATE
class and subclass values”. Diagnostic information relating to FDW-specific conditions can arise only in a
foreign-data wrapper diagnostics area.

Table 37, “SQLSTATE class and subclass values™, modifies Table 33, “SQLSTATE class and subclass values”,
in[1S09075-2].

Table 37 — SQLSTATE class and subclass values

Category | Condition Class | Subcondition Subclass
All alternatives from |SO/IEC
9075-2
X CLI-specific condition HY invalid datalink value 093
X data exception 22 (no subclass) 000
invalid data specified for datalink | 017
null argument passed to datalink | 01A
constructor
datalink value exceeds maximum | 01D
length
X datalink exception HW (no subclass) 000
external file not linked 001
external file already linked 002
invalid write token 004
invalid datalink construction 005

Status codes 405

IWD 9075-9:201?(E)
26.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
invalid write permission for 006
update
referenced file does not exist 003
referenced file not valid 007

X FDW-specific condition HV (no subclass) 000
column name not found 005
dynamic parameter value needed | 002
function sequence error 010
[_nconsi stent descriptor informa- | 021
tion
invalid attribute value 024
invalid column name 007
invalid column number 008
invalid data type 004
invalid data type descriptors 006
invalid descriptor field identifier | 091
invalid handle 00B
invalid option index 0oC
invalid option name 00D
invalid string length or buffer 090
length
invalid string format 00A
invalid use of null pointer 009
[imit on number of handles 014
exceeded
memory allocation error 001
no schemas 00P

406 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

26.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
option name not found 00J
reply handle 00K
schema not found 00Q
table not found 00R
unable to create execution ooL
unable to create reply 00M
unable to establish connection OON

invalid foreign server specification | 0X (no subclass) 000
pass-through specific condition oYy (no subclass) 000
invalid cursor option 001
invalid cursor allocation 002

Status codes 407

IWD 9075-9:201?(E)

(Blank page)

408 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
27.1 Claims of conformance to SQL/MED

27 Conformance

27.1 Claims of conformance to SQL/MED
In addition to the requirements of [ISO9075-1], Clause 8, “Conformance”, a claim of conformance to this part
of ISO/IEC 9075 shall:
1) Claim conformance to at least one of:
— Feature M002, “Datalinks via SQL/CLI”
— Feature M0O03, “Datalinks via Embedded SQL”
— Feature M004, “Foreign data support”
— Feature M010, “Foreign-data wrapper support”

— Feature M030, “SQL-server foreign data support”

27.2 Additional conformance requirements for SQL/MED

Each claim of conformance to Feature M002, “Datalinks via SQL/CLI”, shall also claim conformance to at
least one of:

— Feature C001, “CLI routine invocation in Ada”

— Feature C002, “CLI routine invocation in C”

— Feature C003, “CLI routine invocation in COBOL ”

— Feature C004, “CLI routine invocation in Fortran”

— Feature C005, “CL1I routine invocation in MUMPS

— Feature C006, “CLI routine invocation in Pascal”

— Feature C007, “CLI routine invocation in PL/I”

Each claim of conformance to Feature M003, “Datalinks via Embedded SQL”, shall also claim conformance
to at least one of:

— Feature M011, “Datalinks via Ada”
— Feature M012, “Datalinks via C”
— Feature M013, “Datalinks via COBOL ”

— Feature M014, “Datalinks via Fortran”

Conformance 409

IWD 9075-9:201?(E)

27.2 Additional conformance requirements for SQL/MED
— Feature M015, “Datalinks via M ”

— Feature M016, “Datalinks via Pascal”

— Feature M017, “Datalinks via PL/I”

Each claim of conformance to Feature M010, “Foreign-data wrapper support”, shall also claim conformance
to at least one of:

— Feature M018, “Foreign-data wrapper interface routines in Ada”

— Feature M019, “Foreign-data wrapper interface routines in C”

— Feature M020, “Foreign-data wrapper interface routines in COBOL ”
— Feature M021, “Foreign-data wrapper interface routines in Fortran”
— Feature M022, “Foreign-data wrapper interface routines in MUMPS ”
— Feature M023, “Foreign-data wrapper interface routines in Pascal”
— Feature M024, “Foreign-data wrapper interface routines in PL/I”

Each claim of conformance to Feature M030, “SQL-server foreign data support”, shall also claim conformance
to at least one of:

— Feature M018, “Foreign-data wrapper interface routines in Ada”

— Feature M019, “Foreign-data wrapper interface routines in C”

— Feature M020, “Foreign-data wrapper interface routines in COBOL ”
— Feature M021, “Foreign-data wrapper interface routines in Fortran”
— Feature M022, “Foreign-data wrapper interface routines in MUMPS ”
— Feature M023, “Foreign-data wrapper interface routines in Pascal”
— Feature M024, “Foreign-data wrapper interface routines in PL/I”

Each claim of conformance to Feature M031, “Foreign-data wrapper general routines”, shall also claim confor-
mance to at least one of:

— Feature M010, “Foreign-data wrapper support”
— Feature M030, “SQL-server foreign data support”

A claim of support for Feature M030, “SQL-server foreign data support”, shall only be made by an implemen-
tation of an SQL-server or a foreign-data wrapper.

An SQL-server shall not claim support for Feature M004, “Foreign data support”, unless it also claims support
for Feature M030, “SQL-server foreign data support”.

A claim of support for Feature M010, “Foreign-data wrapper support” shall only be made by an implementation
of a foreign-data wrapper or an SQL-server.

410 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)
27.2 Additional conformance requirements for SQL/MED

Table 38 — Implied feature relationships of SQL/MED

Feature Feature Name Implied Implied Feature Name
ID Feature
ID

MO002 Datalinks via SQL/CLI Co001 CLI routine invocation in Ada
MO002 Datalinks via SQL/CLI M001 Datalinks
MO003 Datalinks via Embedded SQL M001 Datalinks
MO005 Foreign schema support MO004 Foreign data support
MO006 GetSQLString routine MO030 SQL-server foreign data support
MO007 TransmitRequest MO010 Foreign-data wrapper support
MO009 GetOpts and GetStatistics routinesGe- | M010 Foreign-data wrapper support

tOpts and GetStatistics routines
MO010 Foreign-data wrapper support MO031 Foreign-data wrapper general routines
M011 Datalinks via Ada MO003 Datalinks via Embedded SQL
M012 Datalinks via C MO003 Datalinks via Embedded SQL
MO013 Datalinks via COBOL MO003 Datalinks via Embedded SQL
M014 Datalinks via Fortran MO003 Datalinks via Embedded SQL
MO015 Datalinks via M MO003 Datalinks via Embedded SQL
MO016 Datalinks via Pascal MO003 Datalinks via Embedded SQL
M017 Datalinks via PL/I MO003 Datalinks via Embedded SQL
MO030 SQL-server foreign data support MO031 Foreign-data wrapper general routines

Conformance 411

IWD 9075-9:201?(E)

(Blank page)

412 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex A
(informative)

SQL Conformance Summary

This Annex modifies Annex A, ““SQL Conformance Summary”, in |SO/IEC 9075-2.
The contents of this Annex summarizes all Conformance Rules, ordered by Feature ID and by Subclause.
1) Specifications for Feature F391, “Long identifiers”:

a) Subclause 24.4, “FOREIGN_DATA_WRAPPER_OPTIONS view”:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_DATA_ WRAPPER_OPTIONS.

b) Subclause 24.5, “FOREIGN_DATA_WRAPPERS view”:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_DATA_ WRAPPERS.

c) Subclause 24.6, “FOREIGN_SERVER_OPTIONS view™:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_SERVER_OPTIONS.

d) Subclause 24.7, “FOREIGN_SERVERS view™:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_SERVERS.

e) Subclause 24.8, “FOREIGN_TABLE_OPTIONS view™:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_TABLE_OPTIONS.

f) Subclause 24.9, “FOREIGN_TABLES view”:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_TABLES.

g) Subclause 24.10, “ROUTINE_MAPPING_OPTIONS view”:

i) Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUTINE_MAPPING_OPTIONS.

h) Subclause 24.11, “ROUTINE_MAPPINGS view:

)] Without Feature F391, “Long identifiers”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUTINE_MAPPINGS.

i) Subclause 24.12, “USER_MAPPING_OPTIONS view:

SQL Conformance Summary 413

IWD 9075-9:201?(E)

i)

i)

Without Feature F391, “Long identifiers”, conforming SQL language shall not reference

INFORMATION_SCHEMA . USER_MAPPING_OPTIONS.
J) Subclause 24.13, “USER_MAPPINGS view”:

Without Feature F391, “Long identifiers”, conforming SQL language shall not reference

INFORMATION_SCHEMA . USER_MAPPINGS.
2) Specifications for Feature M001, “Datalinks”:

a) Subclause 6.1, “<data type>":

i)

type>.

Without Feature M001, “Datalinks”, conforming SQL language shall not contain a <datalink

b) Subclause 6.5, “<datalink value expression>"":

i)

Without Feature M001, “Datalinks”, conforming SQL language shall not contain a <datalink
value expression>.

¢) Subclause 6.6, “<datalink value function>"":

i)

Without Feature M001, “Datalinks”, conforming SQL language shall not contain a <datalink
value function>.

d) Subclause 24.1, “ATTRIBUTES view”:

i)

vi)

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_INTEGRITY.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_LINK_CONTROL.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_READ_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_RECOVERY.

Without Feature M0O01, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_UNLINK.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . ATTRIBUTES . DATALINK_WRITE_PERMISSION.

e) Subclause 24.3, “COLUMNS view”:

i)

Insert this CR

ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Insert this CR
ence INFORM

Without Feature M0O01, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . COLUMNS . DATALINK_INTEGRITY.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . COLUMNS . DATALINK_LINK_CONTROL.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . COLUMNS . DATALINK_READ_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ATION_SCHEMA . COLUMNS . DATALINK_RECOVERY.

414 Management of External Data (SQL/MED)

f)

v)

vi)

IWD 9075-9:201?(E)

Insert this CR |Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA . COLUMNS . DATALINK_UNLINK.

Insert this CR |Without Feature M001, “Datalinks”, conforming SQL language shall not refer-
ence INFORMATION_SCHEMA . COLUMNS . DATALINK_WRITE_PERMISSION.

Subclause 24.14, “Short name views”:

vi)

vii)

viii)

Xi)

xii)

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DATALINK_CONTROL.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_INTEGRITY.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_R_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_RECOVERY.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DL_W_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . ATTRIBUTES_S . DATALINK _UNLINK.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DATALINK_CONTROL.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_INTEGRITY.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_R_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_RECOVERY.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DL_W_PERMISSION.

Without Feature M001, “Datalinks”, conforming SQL language shall not reference INFORMA-
TION_SCHEMA . COLUMNS_S . DATALINK_ UNLINK.

3) Specifications for Feature M002, “Datalinks via SQL/CLI™:
a) Subclause 20.1, “BuildDataLink’:

b)

i)

Without Feature M002, “Datalinks via SQL/CLI”, conforming SQL language shall not contain
Bui ldDataLink().

Subclause 20.2, “GetDataLinkAttr”:

i)

Without Feature M002, “Datalinks via SQL/CLI”, conforming SQL language shall not contain
GetDataLinkAttr().

Subclause 20.3, “GetInfo™:

SQL Conformance Summary 415

IWD 9075-9:201?(E)

)] Without Feature M002, “Datalinks via SQL/CLI”, in conforming SQL language, the value of
InfoType shall not indicate MAXIMUM DATALINK LENGTH.

4) Specifications for Feature M003, “Datalinks via Embedded SQL":
a) Subclause 18.1, “<embedded SQL Ada program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain an <Ada DATALINK variable>.

b) Subclause 18.2, “<embedded SQL C program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <C DATALINK variable>.

c) Subclause 18.3, “<embedded SQL COBOL program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <COBOL DATALINK variable>.

d) Subclause 18.4, “<embedded SQL Fortran program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <Fortran DATALINK variable>.

e) Subclause 18.5, “<embedded SQL MUMPS program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <MUMPS DATALINK variable>.

f) Subclause 18.6, “<embedded SQL Pascal program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <Pascal DATALINK variable>.

g) Subclause 18.7, “<embedded SQL PL/I program>":

i) Without Feature M003, “Datalinks via Embedded SQL”, conforming SQL language shall not
contain a <PL/I DATALINK variable>.

5) Specifications for Feature M004, “Foreign data support”:
a) Subclause 11.15, “<foreign table definition>":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<foreign table definition>.

b) Subclause 11.16, “<alter foreign table statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <alter foreign table statement>.

c) Subclause 11.20, “<drop foreign table statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<drop foreign table statement>.

d) Subclause 12.1, “<foreign server definition>":

416 Management of External Data (SQL/MED)

€)

f)

9

h)

)

k)

P)

IWD 9075-9:201?(E)

)] Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<foreign server definition>.

Subclause 12.2, “<alter foreign server statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <alter foreign server statement>.

Subclause 12.3, “<drop foreign server statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<drop foreign server statement>.

Subclause 12.4, “<foreign-data wrapper definition>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<foreign-data wrapper definition>.

Subclause 12.5, “<alter foreign-data wrapper statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <alter foreign-data wrapper statement>.

Subclause 12.6, “<drop foreign-data wrapper statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<drop foreign-data wrapper statement>.

Subclause 12.7, “<import foreign schema statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <import foreign schema statement>.

Subclause 12.8, “<routine mapping definition>":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<routine mapping definition>.

Subclause 12.9, “<alter routine mapping statement>":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <alter routine mapping statement>.

Subclause 12.10, “<drop routine mapping statement>":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<drop routine mapping statement>.

Subclause 13.3, “<user mapping definition>":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<user mapping definition>.

Subclause 13.4, “<alter user mapping statement>":

)] Without Feature M004, “Foreign data support”, conforming SQL language shall not contain
an <alter user mapping statement>.

Subclause 13.5, “<drop user mapping statement>"":

SQL Conformance Summary 417

IWD 9075-9:201?(E)

)] Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<drop user mapping statement>.

g) Subclause 16.1, “<set passthrough statement>"":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not contain a
<set passthrough statement>.

r) Subclause 24.2, “COLUMN_OPTIONS view”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMN_OPTIONS.

s) Subclause 24.4, “FOREIGN_DATA_WRAPPER_OPTIONS view:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_DATA WRAPPER_OPTIONS.

t) Subclause 24.5, “FOREIGN_DATA_WRAPPERS view”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_DATA_ WRAPPERS.

u) Subclause 24.6, “FOREIGN_SERVER_OPTIONS view”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_SERVER_OPTIONS.

v) Subclause 24.7, “FOREIGN_SERVERS view”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_SERVERS.

w) Subclause 24.8, “FOREIGN_TABLE_OPTIONS view":

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_TABLE_OPTIONS.

X) Subclause 24.9, “FOREIGN_TABLES view:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_TABLES.

y) Subclause 24.10, “ROUTINE_MAPPING_OPTIONS view”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUTINE_MAPPING_OPTIONS.

z) Subclause 24.11, “ROUTINE_MAPPINGS view:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUTINE_MAPPINGS.

aa) Subclause 24.12, “USER_MAPPING_OPTIONS view”:

)] Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . USER_MAPPING_OPTIONS.

ab) Subclause 24.13, “USER_MAPPINGS view:

418 Management of External Data (SQL/MED)

6)

7)

8)

IWD 9075-9:201?(E)

)] Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . USER_MAPPINGS.

ac) Subclause 24.14, “Short name views”:

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ATTRIBUTES _S.

i) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . COLUMNS _S.

iii) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FDW_OPTIONS_S.

iv) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FD_WRAPPERS _S.

V) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FS_OPTIONS_S.

vi) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FT_OPTIONS_S.

vii) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_SERVERS S.

viii) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . FOREIGN_TABLES _S.

ix) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUT_MAP_OPTIONS_S.

X) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . ROUTINE_MAPPINGS_S.

xi) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . USER_MAP_OPTIONS _S.

xii) Without Feature M004, “Foreign data support”, conforming SQL language shall not reference
INFORMATION_SCHEMA . USER_MAPPINGS _S.

Specifications for Feature M005, “Foreign schema support”:
a) Subclause 12.7, “<import foreign schema statement>"":

i) Without Feature M0O5, “Foreign schema support”, conforming SQL language shall not specify
<import foreign schema statement>.

Specifications for Feature M006, “GetSQLString routine™:
a) Subclause 22.4.29, “GetSQLString”:

)] Without Feature M006, “GetSQLString routine”, a conforming foreign-data wrapper shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetSQLString.

Specifications for Feature M007, “TransmitRequest”:

SQL Conformance Summary 419

IWD 9075-9:201?(E)

a)

Subclause 22.3.35, “TransmitRequest”:

i) Without Feature M007, “TransmitRequest”, a conforming SQL-server shall not contain an
invocation of a <foreign-data wrapper interface routine> that contains a <foreign-data wrapper
interface routine name> that contains TransmitRequest.

9) Specifications for Feature M009, “GetOpts and GetStatistics routinesGetOpts and GetStatistics routines”:

a)

b)

Subclause 22.3.16, “GetOpts”:

i) Without Feature M0Q9, “GetOpts and GetStatistics routinesGetOpts and GetStatistics routines”,
a conforming SQL-server shall not contain an invocation of a <foreign-data wrapper interface
routine> that contains a <foreign-data wrapper interface routine name> that contains GetOpts.

Subclause 22.3.28, “GetStatistics”:

)] Without Feature M0Q9, “GetOpts and GetStatistics routinesGetOpts and GetStatistics routines”,
a conforming SQL-server shall not contain an invocation of a <foreign-data wrapper interface
routine> that contains a <foreign-data wrapper interface routine name> that contains GetStatis-
tics.

10) Specifications for Feature M010, “Foreign-data wrapper support”:

a)

b)

d)

e)

Subclause 22.3.1, “AdvancelnitRequest”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains AdvancelnitRequest.

Subclause 22.3.2, “AllocQueryContext™:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains AllocQueryContext.

Subclause 22.3.3, “AllocWrapperEnv”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains AllocWrapperEnv.

Subclause 22.3.4, “Close”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains Close.

Subclause 22.3.5, “ConnectServer”:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains ConnectServer.

Subclause 22.3.6, “FreeExecutionHandle”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains FreeExecutionHandle.

420 Management of External Data (SQL/MED)

9)

h)

)

k)

m)

P)

IWD 9075-9:201?(E)

Subclause 22.3.7, “FreeFSConnection”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains FreeFSConnection.

Subclause 22.3.8, “FreeQueryContext™:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains FreeQueryContext.

Subclause 22.3.9, “FreeReplyHandle”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains FreeReplyHandle.

Subclause 22.3.10, “FreeWrapperEnv”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains FreeWrapperEnv.

Subclause 22.3.11, “GetNextReply”:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetNextReply.

Subclause 22.3.12, “GetNumReplyBoolVE”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetNumReplyBoolVE.

Subclause 22.3.13, “GetNumReplyOrderBy”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetNumReplyOrderBy.

Subclause 22.3.14, “GetNumReplySelectElems™:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetNumReplySelectElems.

Subclause 22.3.15, “GetNumReplyTableRefs”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetNumReplyTableRefs.

Subclause 22.3.17, “GetReplyBoolVE”:

SQL Conformance Summary 421

IWD 9075-9:201?(E)

q)

Y

y)

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyBoolVE.

Subclause 22.3.18, “GetReplyCardinality”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyCardinality.

Subclause 22.3.19, “GetReplyDistinct™:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyDistinct.

Subclause 22.3.20, “GetReplyExecCost”:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyExecCost.

Subclause 22.3.21, “GetReplyFirstCost™:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyFirstCost.

Subclause 22.3.22, “GetReplyOrderElem™:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyOrderElem.

Subclause 22.3.23, “GetReplyReExecCost”:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyReExecCost.

Subclause 22.3.24, “GetReplySelectElem”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplySelectElem.

Subclause 22.3.25, “GetReplyTableRef”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetReplyTableRef.

Subclause 22.3.26, “GetSPDHandle™:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetSPDHandle.

422 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

z) Subclause 22.3.27, “GetSRDHandle”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetSRDHandle.

aa) Subclause 22.3.29, “GetWPDHandle”:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetWPDHandle.

ab) Subclause 22.3.30, “GetWRDHandle”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains GetWRDHandle.

ac) Subclause 22.3.31, “InitRequest”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains InitRequest.

ad) Subclause 22.3.32, “Iterate”™:

)] Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains Iterate.

ae) Subclause 22.3.33, “Open”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains Open.

af) Subclause 22.3.34, “ReOpen”:

i) Without Feature M010, “Foreign-data wrapper support”, a conforming SQL-server shall not
contain an invocation of a <foreign-data wrapper interface routine> that contains a <foreign-
data wrapper interface routine name> that contains ReOpen.

11) Specifications for Feature M011, “Datalinks via Ada™:
a) Subclause 18.1, “<embedded SQL Ada program>":

i) Without Feature M011, “Datalinks via Ada”, conforming SQL language shall not contain an
<Ada DATALINK variable>.

12) Specifications for Feature M012, “Datalinks via C”:
a) Subclause 18.2, “<embedded SQL C program>""

i) Without Feature M012, “Datalinks via C”, conforming SQL language shall not contain a <C
DATALINK variable>.

13) Specifications for Feature M013, “Datalinks via COBOL ™

SQL Conformance Summary 423

IWD 9075-9:201?(E)

a) Subclause 18.3, “<embedded SQL COBOL program>":

i) Without Feature M013, “Datalinks via COBOL ", conforming SQL language shall not contain
a <COBOL DATALINK variable>.

14) Specifications for Feature M014, “Datalinks via Fortran”:
a) Subclause 18.4, “<embedded SQL Fortran program>":

i) Without Feature M014, “Datalinks via Fortran”, conforming SQL language shall not contain
a <Fortran DATALINK variable>.

15) Specifications for Feature M015, “Datalinks via M
a) Subclause 18.5, “<embedded SQL MUMPS program>":

)] Without Feature M015, “Datalinks via M ”, conforming SQL language shall not contain a
<MUMPS DATALINK variable>.

16) Specifications for Feature M016, “Datalinks via Pascal’”:
a) Subclause 18.6, “<embedded SQL Pascal program>":

i) Without Feature M016, “Datalinks via Pascal”, conforming SQL language shall not contain a
<Pascal DATALINK variable>.

17) Specifications for Feature M017, “Datalinks via PL/I"":
a) Subclause 18.7, “<embedded SQL PL/I program>":

i) Without Feature M017, “Datalinks via PL/I””, conforming SQL language shall not contain a
<PL/I DATALINK variable>.

18) Specifications for Feature M018, “Foreign-data wrapper interface routines in Ada”:
a) Subclause 22.1, “<foreign-data wrapper interface routine>":

)] Without Feature M018, “Foreign-data wrapper interface routines in Ada”, a conforming foreign-
data wrapper shall not contain an invocation of a <foreign-data wrapper interface routine>
written in Ada.

i) Without Feature M018, “Foreign-data wrapper interface routines in Ada”, a conforming
SQLserver shall not contain an invocation of a <foreign-data wrapper interface routine> written
in Ada.

19) Specifications for Feature M019, “Foreign-data wrapper interface routines in C”:
a) Subclause 22.1, “<foreign-data wrapper interface routine>":

i) Without Feature M019, “Foreign-data wrapper interface routines in C”, a conforming foreign-
data wrapper shall not contain an invocation of a <foreign-data wrapper interface routine>
written in C.

i) Without Feature M019, “Foreign-data wrapper interface routines in C”, a conforming SQLserver
shall not contain an invocation of a <foreign-data wrapper interface routine> written in C.

20) Specifications for Feature M020, “Foreign-data wrapper interface routines in COBOL ™

a) Subclause 22.1, “<foreign-data wrapper interface routine>":

424 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Without Feature M020, “Foreign-data wrapper interface routines in COBOL ”, a conforming
foreign-data wrapper shall not contain an invocation of a <foreign-data wrapper interface rou-
tine> written in COBOL.

Without Feature M020, “Foreign-data wrapper interface routines in COBOL ”, a conforming
SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine>
written in COBOL.

21) Specifications for Feature M021, “Foreign-data wrapper interface routines in Fortran:

a) Subclause 22.1, “<foreign-data wrapper interface routine>":

i)

Without Feature M021, “Foreign-data wrapper interface routines in Fortran”, a conforming
foreign-data wrapper shall not contain an invocation of a <foreign-data wrapper interface rou-
tine> written in Fortran.

Without Feature M021, “Foreign-data wrapper interface routines in Fortran”, a conforming
SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine>
written in Fortran.

22) Specifications for Feature M022, “Foreign-data wrapper interface routines in MUMPS

a) Subclause 22.1, “<foreign-data wrapper interface routine>":

i)

Without Feature M022, “Foreign-data wrapper interface routines in MUMPS ”, a conforming
foreign-data wrapper shall not contain an invocation of a <foreign-data wrapper interface rou-
tine> written in M.

Without Feature M022, “Foreign-data wrapper interface routines in MUMPS ”, a conforming
SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine>
written in M.

23) Specifications for Feature M023, “Foreign-data wrapper interface routines in Pascal”:

a) Subclause 22.1, “<foreign-data wrapper interface routine>":

i)

Without Feature M023, “Foreign-data wrapper interface routines in Pascal”, a conforming
foreign-data wrapper shall not contain an invocation of a <foreign-data wrapper interface rou-
tine> written in Pascal.

Without Feature M023, “Foreign-data wrapper interface routines in Pascal”, a conforming
SQL-server shall not contain an invocation of a <foreign-data wrapper interface routine>
written in Pascal.

24) Specifications for Feature M024, “Foreign-data wrapper interface routines in PL/I”:

a) Subclause 22.1, “<foreign-data wrapper interface routine>":

i)

Without Feature M024, “Foreign-data wrapper interface routines in PL/I”, a conforming foreign-
data wrapper shall not contain an invocation of a <foreign-data wrapper interface routine>
written in PL/I.

Without Feature M024, “Foreign-data wrapper interface routines in PL/I”, a conforming
SQLserver shall not contain an invocation of a <foreign-data wrapper interface routine> written
in PL/I.

25) Specifications for Feature M030, “SQL-server foreign data support”:

SQL Conformance Summary 425

IWD 9075-9:201?(E)

a)

b)

d)

e)

f)

9

h)

)

Subclause 22.4.1, “AllocDescriptor”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains AllocDescriptor.

Subclause 22.4.2, “FreeDescriptor’:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains FreeDescriptor.

Subclause 22.4.3, “GetAuthorizationld”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetAuthorizationld.

Subclause 22.4.4, “GetBoolVE™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetBoolVE.

Subclause 22.4.5, “GetDescriptor”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetDescriptor.

Subclause 22.4.6, “GetDistinct™;

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetDistinct.

Subclause 22.4.7, “GetNumBoolVE”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumBooIVE.

Subclause 22.4.8, “GetNumChildren™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumcChildren.

Subclause 22.4.9, “GetNumOrderByElems”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumOrderByElems.

Subclause 22.4.10, “GetNumRoutMapOpts™:

426 Management of External Data (SQL/MED)

K)

P)

q)

IWD 9075-9:201?(E)

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumRoutMapOpts.

Subclause 22.4.11, “GetNumSelectElems™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumSelectElems.

Subclause 22.4.12, “GetNumServerOpts”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumServerOpts.

Subclause 22.4.13, “GetNumTableColOpts”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumTableColOpts.

Subclause 22.4.14, “GetNumTableOpts™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumTableOpts.

Subclause 22.4.15, “GetNumTableRefElems”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumTableRefElems.

Subclause 22.4.16, “GetNumUserOpts™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumUserOpts.

Subclause 22.4.17, “GetNumWrapperOpts™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetNumWrapperOpts.

Subclause 22.4.18, “GetOrderByElem™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetOrderByElem.

Subclause 22.4.19, “GetRoutMapOpt™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetRoutMapOpt.

SQL Conformance Summary 427

IWD 9075-9:201?(E)

t) Subclause 22.4.20, “GetRoutMapOptName”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetRoutMapOptName.

u) Subclause 22.4.21, “GetRoutineMapping’:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetRoutineMapping.

v) Subclause 22.4.22, “GetSelectElem”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetSelectElem.

w) Subclause 22.4.23, “GetSelectElemType”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetSelectElemType.

X) Subclause 22.4.24, “GetServerName”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetServerName.

y) Subclause 22.4.25, “GetServerOpt”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetServerOpt.

z) Subclause 22.4.26, “GetServerOptByName”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetServerOptByName.

aa) Subclause 22.4.27, “GetServerType”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetServerType.

ab) Subclause 22.4.28, “GetServer\ersion™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetServer\ersion.

ac) Subclause 22.4.30, “GetTableColOpt”:

428 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableColOpt.

ad) Subclause 22.4.31, “GetTableColOptByName”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableColOptByName.

ae) Subclause 22.4.32, “GetTableOpt™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableOpt.

af) Subclause 22.4.33, “GetTableOptByName”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableOptByName.

ag) Subclause 22.4.34, “GetTableRefElem”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableRefElem.

ah) Subclause 22.4.35, “GetTableRefElemType”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableRefElemType.

ai) Subclause 22.4.36, “GetTableRefTableName™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableRefTableName.

aj) Subclause 22.4.37, “GetTableServerName”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTableServerName.

ak) Subclause 22.4.38, “GetTRDHandle™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetTRDHandle.

al) Subclause 22.4.39, “GetUserOpt”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetUserOpt.

SQL Conformance Summary 429

IWD 9075-9:201?(E)

am) Subclause 22.4.40, “GetUserOptByName”:

an)

ao)

ap)

aq)

ar)

as)

at)

au)

av)

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetUserOptByName.

Subclause 22.4.41, “GetValExprColName™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetValExprColName.

Subclause 22.4.42, “GetValueExpDesc™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetValueExpDesc.

Subclause 22.4.43, “GetValueExpKind”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetValueExpKind.

Subclause 22.4.44, “GetValueExpName”:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetValueExpName.

Subclause 22.4.45, “GetValueExpTable™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetValueExpTable.

Subclause 22.4.46, “GetVEChild”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetVEChild.

Subclause 22.4.47, “GetWrapperLibraryName™:

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetWrapperLibraryName.

Subclause 22.4.48, “GetWrapperName™:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetWrapperName.

Subclause 22.4.49, “GetWrapperOpt”:

430 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

)] Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetWrapperOpt.

aw) Subclause 22.4.50, “GetWrapperOptByName”:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetWrapperOptByName.

ax) Subclause 22.4.51, “SetDescriptor’:

i) Without Feature M030, “SQL-server foreign data support”, a conforming foreign-data wrapper
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains SetDescriptor.

26) Specifications for Feature M031, “Foreign-data wrapper general routines”:
a) Subclause 22.5.1, “GetDiagnostics”:

i) Without Feature M031, “Foreign-data wrapper general routines”, a conforming foreign-data
wrapper shall not contain an invocation of a <foreign-data wrapper interface routine> that
contains a <foreign-data wrapper interface routine name> that contains AllocQueryContext.

i) Without Feature M031, “Foreign-data wrapper general routines”, a conforming SQL-server
shall not contain an invocation of a <foreign-data wrapper interface routine> that contains a
<foreign-data wrapper interface routine name> that contains GetDiagnostics.

SQL Conformance Summary 431

IWD 9075-9:201?(E)

(Blank page)

432 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex B
(informative)

Implementation-defined elements

This Annex modifies Annex B, ““‘Implementation-defined elements”, in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as implemen-
tation-defined.

1)

2)

3)

4)

5)

6)

Subclause 4.2, “Foreign servers”:

a) The possible values of server type and server version, and their meanings, are implementation-defined.
Subclause 4.6, “Generic options”:

a) Both the option name and the option value of a generic option are implementation-defined.
Subclause 4.7, “Capabilities and options information”:

a) The manner in which an external DTD is made available to the SQL-server is implementation-
dependent.

Subclause 4.8, “Datalinks™:
a) The time at which a valid access token ceases to be valid is implementation-defined.
b) The datalink character set is implementation-defined.

¢) The implementation-defined maximum datalink length determines the amount of space, in octets, that
is allocated for:

— A host variable of data type DATALINK.
— An argument of declared type DATALINK to an invocation of an external routine.
— The value returned by an invocation of an external function whose result type is DATALINK.

The maximum datalink length constrains the values of expressions whose declared type is DATALINK
such that every such value can be assigned to a host variable, substituted for a parameter to an external
routine, or returned by an invocation of an external function.

Subclause 4.17.1, “Handles”:

a) The validity of a handle in a compilation unit other than the one in which the identified resource was
allocated is implementation-defined.

Subclause 4.17.5, “Foreign-data wrapper diagnostics areas”:

a) Ifthe routine's return code indicates No data found, then no status record is generated corresponding
to SQLSTATE value '02000' but there may be status records generated corresponding to SQLSTATE
value '02nnn’, where 'nnn' is an implementation-defined subclass value.

Implementation-defined elements 433

IWD 9075-9:201?(E)

7) Subclause 5.2, “Names and identifiers”:

a)

Equivalence of two <option name>s is determined using an implementation-defined collation that is
sensitive to case.

8) Subclause 6.4, “<string value function>":

a)

b)

c)

d)

e)

f)

9)

h)

If <url complete expression> is specified, then the data type of the result is a variable-length character
string with an implementation-defined maximal length.

If <url path expression> is specified, then the data type of the result is a variable-length character
string with an implementation-defined maximal length.

If <url path only expression> is specified, then the data type of the result is a variable-length character
string with an implementation-defined maximal length.

If <url scheme expression> is specified, then the data type of the result is a variable-length character
string with an implementation-defined maximal length.

If <url server expression> is specified, then the data type of the result is a variable-length character
string with an implementation-defined maximal length.

If <url complete for write expression> is specified, then the data type of the result is a variable-length
character string with an implementation-defined maximal length.

If <url complete only expression> is specified, then the data type of the result is a variable-length
character string with an implementation-defined maximal length.

If <url path for write expression> is specified, then the data type of the result is a variable-length
character string with an implementation-defined maximal length.

9) Subclause 6.6, “<datalink value function>":

a)
b)
c)

The format of DLOC may be implementation-defined.
The scheme of DL, the host of DL, and the path of DL may be implementation-defined.

If TIVisequal to 1 (one) and if the write token included in DLOC does not conform to implementation-
defined requirements, then an exception condition is raised: datalink exception — invalid write token.

10) Subclause 11.15, “<foreign table definition>":

a)

b)

c)

If <basic column definition list> is specified, then the nullability characteristic and <default option>
of each column specified by <basic column definition> is implementation-defined.

If <basic column definition list> is not specified, then column descriptors included in a foreign table
descriptor are implementation-defined.

Additional privileges, if any, necessary to execute <foreign table definition> are implementation-
defined.

11) Subclause 11.16, “<alter foreign table statement>"":

a)

If <alter generic options> is specified, then any effect on the foreign table descriptor, apart from its
generic options descriptor, is implementation-defined.

12) Subclause 11.17, “<add basic column definition>":

434 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

a) The nullability characteristic and <default option> included in the column descriptor specified by
<basic column definition> is implementation-defined.

13) Subclause 12.1, “<foreign server definition>":
a) The permissible Format and values for <server type> and <server version> are implementation-defined.

b) Additional privileges, if any, necessary to execute <foreign server definition> are implementation-
defined.

14) Subclause 12.4, “<foreign-data wrapper definition>":
a) The privileges necessary to execute <foreign-data wrapper definition> are implementation-defined.
15) Subclause 13.3, “<user mapping definition>":

a) Additional privileges, if any, necessary to execute <user mapping definition> are implementation-
defined.

16) Subclause 13.4, “<alter user mapping statement>"":

a) The privileges necessary to execute <alter user mapping statement> are implementation-defined.
17) Subclause 13.5, “<drop user mapping statement>"":

a) The privileges necessary to execute <drop user mapping statement> are implementation-defined.
18) Subclause 12.8, “<routine mapping definition>":

a) Additional privileges, if any, necessary to execute <routine mapping definition> are implementation-
defined.

19) Subclause 12.9, “<alter routine mapping statement>"":

a) The privileges necessary to execute <alter routine mapping statement> are implementation-defined.
20) Subclause 12.10, “<drop routine mapping statement>"":

a) The privileges necessary to execute <drop routine mapping statement> are implementation-defined.
21) Subclause 15.3, “Effect of replacing rows in base tables”:

a) If the Construction Indication of DLCV2 is either NEWCOPY or PREVIOUSCOPY, and if the write
permission option included in the descriptor of DLC is ADMIN REQUIRING TOKEN FOR UPDATE,
and if the Write Token of DLCV2 is not valid according to implementation-defined rules, then an
exception condition is raised: datalink exception — invalid write token.

22) Subclause 17.4, “<describe statement>"":

a) If TYPE indicates DATALINK, then LENGTH is set to the length of maximum length in characters
of the character string; OCTET_LENGTH is set to the maximum possible length in octets of the
character string; CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME are set to the <character set name> of the character string's character set; and the
<collation name> of the character string's collation. If the subject <language clause> specifies C, then
the lengths specified in LENGTH and OCTET_LENGTH do not include the implementation-defined
null character that terminates a C character string.

23) Subclause 20.1, “BuildDataLink”:

Implementation-defined elements 435

IWD 9075-9:201?(E)

24)

25)

26)

27)

28)

29)

30)

31)

a) The maximum length of a variable length character string is implementation-defined.
b) The maximum length of a datalink is implementation-defined.

Subclause 20.2, “GetDataLinkAttr”:

a) The maximum length of a datalink is implementation-defined.

Subclause 21.1, “Description of foreign-data wrapper item descriptor areas”:

a) Let IDA be an item descriptor area in a wrapper parameter descriptor. One condition that allows DA
to be valid is if TYPE indicates an implementation-defined data type.

b) One condition that allows a foreign-data wrapper item descriptor area in a foreign-data wrapper
descriptor area that is not a wrapper row descriptor to be consistent is if TYPE indicates an implemen-
tation-defined data type.

c) LetIDA be an item descriptor area in a server parameter descriptor. One condition that allows IDA to
be valid is if TYPE indicates an implementation-defined data type.

d) One condition that allows a foreign-data wrapper item descriptor area in a server row descriptor to be
valid is if TYPE indicates an implementation-defined data type.

Subclause 21.6, “Implicit FETCH USING clause™:

a) If the result is a zero-length character string, then it is implementation-defined whether or not an
exception condition is raised: data exception — zero-length character string.

Subclause 22.1, “<foreign-data wrapper interface routine>":
a) Itis implementation-defined which of the invocation of WP or WF is supported.
Subclause 22.2, “<foreign-data wrapper interface routine> invocation”:

a) If the value of any input argument provided by CP falls outside the set of allowed values of the data
type of the parameter, or if the value of any output argument resulting from the execution of the
<foreign-data wrapper interface routine> falls outside the set of values supported by CP for that
parameter, then the effect is implementation-defined.

b) If RNdid not execute successfully, then one or more exception conditions may be raised as determined
by implementation-defined rules.

Subclause 22.3.2, “AllocQueryContext”:

a) Ifthe resources to manage a query context cannot be allocated for foreign-data wrapper implementation-
defined reasons, then an implementation-defined exception condition is raised.

Subclause 22.3.3, “AllocWrapperEnv”:
a) The maximum number of foreign-data wrapper environments is implementation-defined.

b) If the resources to manage a foreign-data wrapper environment cannot be allocated for implementation-
defined reasons, then an implementation-defined exception condition is raised.

Subclause 22.3.5, “ConnectServer”:

a) The maximum number of FS-connections is implementation-defined.

436 Management of External Data (SQL/MED)

b)

IWD 9075-9:201?(E)

If the resources to manage an FS-connection cannot be allocated for implementation-defined reasons,
then an implementation-defined exception condition is raised.

32) Subclause 22.3.16, “GetOpts™:

a)

b)

The CDATA values of the SQLMEDOptionName attribute and the PCDATA text of the SQLMED-
GenericOption tag are implementation-defined.

The way in which the foreign-data wrapper knows the URI to specify in the XML document is
implementation-defined.

33) Subclause 22.4.19, “GetRoutMapOpt™:

a)

The maximum length of a variable-length character string is implementation-defined.

34) Subclause 22.4.20, “GetRoutMapOptName”:

35)

36)

37)

a)

The maximum length of a variable-length character string is implementation-defined.

Subclause 22.3.28, “GetStatistics™:

a)

b)

The CDATA values of the SQLMEDStatisticName attribute and the PCDATA text of the
SQLMEDStatistics tag are implementation-defined.

The way in which the foreign-data wrapper knows the URI to specify in the XML document is
implementation-defined.

Subclause 22.3.31, “InitRequest™:

a)
b)

c)
d)

The maximum number of FDW-replies is implementation-defined.

If the resources to manage an FDW-reply cannot be allocated for implementation-defined reasons,
then an implementation-defined exception condition is raised.

The maximum number of FDW-executions is implementation-defined.

If the resources to manage an FDW-execution cannot be allocated for implementation-defined reasons,
then an implementation-defined exception condition is raised.

Subclause 22.3.32, “Iterate”:

a)

If the resources to manage an FDW-data cannot be allocated for implementation-defined reasons, then
an implementation-defined exception condition is raised.

38) Subclause 22.3.35, “TransmitRequest”:

a)

The maximum number of FDW-executions is implementation-defined.

39) Subclause 22.4.1, “AllocDescriptor”:

a)

The maximum number of foreign-data descriptor areas is implementation-defined.

40) Subclause 22.4.5, “GetDescriptor”:

a)

If TYPE is 'HEADER', then header information from the descriptor area D is retrieved; if Fl indicates
an implementation-defined descriptor header field, then the value retrieved is the value of the imple-
mentation-defined descriptor header field identified by FI.

Implementation-defined elements 437

IWD 9075-9:201?(E)

b)

If TYPE is 'ITEM', then item information from the descriptor area D is retrieved; if FI indicates an
implementation-defined descriptor item field, then the value retrieved is the value of the implementation-
defined descriptor item field of IDA identified by FI.

41) Subclause 22.4.12, “GetNumServerOpts”:

a)

The maximum length of a variable-length character string is implementation-defined.

42) Subclause 22.4.24, “GetServerName”:

a)

The maximum length of a variable-length character string is implementation-defined.

43) Subclause 22.4.25, “GetServerOpt™:

a)

The maximum length of a variable-length character string is implementation-defined.

44) Subclause 22.4.26, “GetServerOptByName™:

a)

The maximum length of a variable-length character string is implementation-defined.

45) Subclause 22.4.27, “GetServerType™:

a)

The maximum length of a variable-length character string is implementation-defined.

46) Subclause 22.4.36, “GetTableRefTableName”:

a)

The maximum length of a variable-length character string is implementation-defined.

47) Subclause 22.4.41, “GetValExprColName™:

a)

The maximum length of a variable-length character string is implementation-defined.

48) Subclause 22.4.44, “GetValueExpName™:

a)

The maximum length of a variable-length character string is implementation-defined.

49) Subclause 22.4.51, “SetDescriptor”:

a)

b)

e)

If FI indicates TYPE and V indicates NUMERIC or DECIMAL, then the SCALE field of IDA is set
to 0 (zero) and the PRECISION field of IDA is set to the implementation-defined default value for
the precision of NUMERIC or DECIMAL data types, respectively.

If Fl indicates TYPE and V indicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of
IDAis set to O (zero) and the PRECISION field of IDA is set to the implementation-defined value for
the precision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

If FI indicates TYPE and V indicates FLOAT, then the PRECISION field of IDA is set to the imple-
mentation-defined default value for the precision of the FLOAT data type.

If FI indicates TYPE and V indicates REAL or DOUBLE PRECISION, then the PRECISION field
of IDA is set to the implementation-defined value for the precision of the REAL or DOUBLE PRECI-
SION data types, respectively.

If FI indicates TYPE and V indicates an implementation-defined data type, then an implementation-
defined set of fields of IDA are set to implementation-defined default values.

50) Subclause 22.5.1, “GetDiagnostics™:

438 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

a) If TYPE is 'HEADER' and DI indicates an implementation-defined diagnostics header field, then the
value retrieved is the value of the implementation-defined diagnostics header field.

b) If TYPEis 'STATUS' and DI indicates an implementation-defined diagnostics header field, then the
value retrieved is the value of the implementation-defined diagnostics header field.

¢) IfTYPEis'STATUS' and DI indicates NATIVE_CODE, then the value retrieved is the implementation-
defined native error code corresponding to the status condition.

d) If TYPEis'STATUS and DI indicates MESSAGE_TEXT, then the value retrieved is an implementa-
tion-defined character string.

e) If TYPE s 'STATUS' and DI indicates CLASS_ORIGIN, then the value retrieved shall be an imple-
mentation-defined character string other than 'ISO 9075' for any implementation-defined class value.

f) IfTYPE s 'STATUS' and DI indicates SUBCLASS_ORIGIN, then the value retrieved shall be an
implementation-defined character string other than 'ISO 9075’ for any implementation-defined subclass
value.

51) Table 3, “Fields used in foreign-data wrapper diagnostics areas”:

a) The maximum lengths of foreign-data wrapper diagnostics area fields whose data types are CHARAC-
TER VARYING are implementation-defined.

b) SQL/MED supports implementation-defined header fields in foreign-data wrapper diagnostics areas.
52) Table 4, “Fields in foreign-data wrapper descriptor areas”:

a) The maximum lengths of foreign-data wrapper item descriptor fields whose data type is CHARACTER
VARYING are implementation-defined.

b) SQL/MED supports implementation-defined header fields and implementation-defined item fields in
row and parameter descriptor areas.

53) Table 29, “Codes used for foreign-data wrapper diagnostic fields™:

a) SQL/MED supports implementation-defined diagnostics header fields and implementation-defined
diagnostics status fields.

54) Table 30, “Codes used for foreign-data wrapper descriptor fields”:

a) SQL/MED supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

55) Table 32, “Ability to retrieve foreign-data wrapper descriptor fields”:

a) 'ID'means that it is implementation-defined whether or not the descriptor field identified in a given
row of this table is retrievable.

b) SQL/MED supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

56) Table 33, “Ability to set foreign-data wrapper descriptor fields”:
a) 'ID'means that it is implementation-defined whether or not the descriptor field is settable.

b) SQL/MED supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

Implementation-defined elements 439

IWD 9075-9:201?(E)

57) Table 34, “Foreign-data wrapper descriptor field default values”:
a) 'ID'means that the default value of the descriptor field in the identified row is implementation-defined.

b) SQL/MED supports implementation-defined descriptor header fields and implementation-defined
descriptor item fields.

440 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex C
(informative)

Implementation-dependent elements

This Annex modifies Annex C, ““I mplementati on-dependent elements™, in ISO/IEC 9075-2.

This Annex references those places where this part of ISO/IEC 9075 states explicitly that the actions of a con-
forming implementation are implementation-dependent.

1)

2)

3)

4)

5)

6)

7)

8)

Subclause 4.2, “Foreign servers”:

a) The manner in which the SQL-server interacts with a foreign-data wrapper to import information
about a foreign schema is implementation-dependent.

Subclause 4.8, “Datalinks™:
a) The Write Token of a datalink value is an implementation-dependent value.

b) The mechanism by which the datalinker enables integrity control, recovery, and access control for
external files is implementation-dependent.

c) The generation of the access token and the method of combining it with File Reference are implemen-
tation-dependent.

Subclause 4.17.1, “Handles”:

a) Itis foreign-data wrapper implementation-dependent whether a foreign-data wrapper uses the infor-
mation about the query context provided by the query context handle to re-use the previously evaluated
value expression.

Subclause 4.17.4, “Return codes”:

a) After the execution of a foreign-data wrapper interface routine, the values of all output arguments not
explicitly defined by this part of ISO/IEC 9075 are implementation-dependent.

Subclause 4.17.5, “Foreign-data wrapper diagnostics areas”:

a) If multiple status records are generated, then the order in which status records are placed in a diagnostics
area is implementation-dependent, with two exceptions.

Subclause 6.4, “<string value function>":

a) The generation of the access token and the method of combining it with File Reference or the <hpath>
or <fpath> of a File Reference are implementation-dependent.

Subclause 6.6, “<datalink value function>":
a) The representation of the result of invoking a <datalink value constructor> is implementation-dependent.

Subclause 7.1, “<table reference>":

Implementation-dependent elements 441

IWD 9075-9:201?(E)

a)

b)
c)

In the <query specification> of the form “SELECT DistinctOrAll expy, expy, ..., expn FROM FTNq,
FTN,, ..., FTN,, WHERE BVE; AND BVE; AND ... AND BVEp”, n, m, and p are implementation-
dependent numeric values, and for all i, 1 (one) < i < n, exp; is an implementation-dependent <value
expression> that does not generally contain a <query expression>.

It is implementation-dependent whether the NextRep Iy () routine is invoked.

It is implementation-dependent whether GR 1)b)iv) through GR 1)b)xxxii) of Subclause 7.1, “<table
reference>”, are applied more than once.

9) Subclause 17.5, “<input using clause>":

a)

If <using arguments> is specified, then all fields, except DATA and DATA_POINTER, in the i-th
item descriptor area of SPD, that can be set according to Table 33, “Ability to set foreign-data wrapper
descriptor fields”, are set to implementation-dependent values.

10) Subclause 21.2, “Implicit foreign-data wrapper cursor’:

a)

The name of the cursor is implementation-dependent.

11) Subclause 21.3, “Implicit DESCRIBE INPUT USING clause”:

12)

13)

14)

a)

If D is not zero, then those fields whose values depend on a value of TYPE and fields that are not
applicable for a particular value of TYPE are set to implementation-dependent values.

Subclause 21.4, “Implicit DESCRIBE OUTPUT USING clause™:

a)

b)

If D is not zero and the column name is implementation-dependent, then NAME is set to the imple-
mentation-dependent name of the column and UNNAMED is set to 1 (one).

If the name of the field is implementation-dependent, then NAME is set to the implementation-
dependent name of the field and UNNAMED is set to 1 (one).

Subclause 21.6, “Implicit FETCH USING clause™:

a)

b)

If TDT is a locator type and SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the i-th bound target is set to an implementation-dependent four-octet
value that represents L.

If TYPE indicates ROW and TV is the null value, then the value of | P for IDA and that in all subordinate
descriptor areas of DA that are not subordinate to an item descriptor area whose TYPE indicates
ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, is set to the appropriate
'‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, in [1ISO9075-3], and
the value of the host variable addressed by DP and the values of D and of LP are implementation-
dependent.

If TYPE does not indicate ROW and TV is the null value, then the value of IP is set to the appropriate
'‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLI”, in [1SO9075-3], and
the value of the host variable addressed by DP and the values of D and of LP are implementation-
dependent.

Subclause 21.8, “Binary string retrieval”:

a)

If L is not greater than TL, then the first L octets of T are set to V and the values of the remaining octets
of T are implementation-dependent.

15) Subclause 22.2, “<foreign-data wrapper interface routine> invocation”:

442 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

a) If RNisaforeign-data wrapper interface wrapper routine, then the actions of invoking the SQL-server
in response to the failed execution of RN are implementation-dependent.

16) Subclause 22.3.2, “AllocQueryContext”:

a) If the foreign-data wrapper implementation-dependent maximum number of query contexts that can
be allocated at one time has already been reached, then an exception condition is raised: FDW-specific
condition — limit on number of handles exceeded.

17) Subclause 22.3.1, “AdvancelnitRequest”:

a) The reply handle and the execution handle that are returned by this routine are chosen in a foreign-
data wrapper implementation-dependent way.

18) Subclause 22.3.3, “AllocWrapperEnv”:

a) Itisimplementation-dependent what Al locWrapperEnv () makes of the values of WrapperName
WN and WrapperLibraryName WL.

19) Subclause 22.3.5, “ConnectServer”:

a) Itis implementation-dependent what use the foreign-data wrapper makes of the values of Authoriza-
tionID UN, ServerName SN, ServerType ST, and Server\Version SV.

20) Subclause 22.3.32, “Iterate”:

a) If an exception condition is raised during the derivation of any target value, then the values of all the
bound targets are implementation-dependent and CR remains positioned on the current row.

21) Subclause 22.4.51, “SetDescriptor”:

a) If Fl indicates TYPE, then all fields of IDA other than those prescribed are set to implementation-
dependent values.

b) If Fl indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime
type>, then all the fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to
implementation-dependent values.

¢) If an exception condition is raised, then the field of IDA indicated by FI is set to an implementation-
dependent value.

Implementation-dependent elements 443

IWD 9075-9:201?(E)

(Blank page)

444 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex D
(informative)

Deprecated features

This Annex modifies Annex D, “Deprecated features”, in ISO/IEC 9075-2.

It is intended that the following features will be removed at a later date from a revised version of this part of
ISO/IEC 9075:

None.

Deprecated features 445

IWD 9075-9:201?(E)

(Blank page)

446 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex E
(informative)

Incompatibilities with 1ISO/IEC 9075:2008

This Annex modifies Annex E, “Incompatibilities with 1SO/IEC 9075:2008, in 1SO/IEC 9075-2.

This edition of this part of ISO/IEC 9075 introduces some incompatibilities with the earlier version of Database
Language SQL as specified in ISO/IEC 9075:2008.

Except as specified in this Annex, features and capabilities of Database Language SQL are compatible with
ISO/IEC 9075-9:2008.

None.

Incompatibilities with ISO/IEC 9075:2008 447

IWD 9075-9:201?(E)

(Blank page)

448 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex F
(informative)

SQL feature taxonomy

This Annex modifies Annex F, ““SQL feature taxonomy”’, in | SO/IEC 9075-2.
This Annex describes a taxonomy of features defined in this part of ISO/IEC 9075.

Table 39, “Feature taxonomy for optional features”, contains a taxonomy of the features of the SQL language
not in Core SQL that are specified in this part of ISO/IEC 9075.

In this table, the first column contains a counter that may be used to quickly locate rows of the table; these
values otherwise have no use and are not stable — that is, they are subject to change in future editions of, or
even Technical Corrigenda to, ISO/IEC 9075 without notice.

The “Feature ID” column of this table specifies the formal identification of each feature and each subfeature
contained in the table.

The “Feature Name” column of this table contains a brief description of the feature or subfeature associated
with the Feature ID value.

Table 39, “Feature taxonomy for optional features”, does not provide definitions of the features; the definition
of those features is found in the Conformance Rules that are further summarized in Annex A, “SQL Conformance
Summary”.

Table 39 — Feature taxonomy for optional features

Feature Feature Name
ID
1 MO001 Datalinks
2 M002 Datalinks via SQL/CLI
3 MO003 Datalinks via Embedded SQL
4 MO004 Foreign data support
5 MO005 Foreign schema support
6 MO006 GetSQLString routine
7 MO007 TransmitRequest
8 MO009 GetOpts and GetStatistics routines

SQL feature taxonomy 449

IWD 9075-9:201?(E)

Feature Feature Name
ID
9 MO010 Foreign data wrapper support
10 | MO11 Datalinks via Ada
11 | M012 Datalinks via C
12 | M013 Datalinks via COBOL
13 | M014 Datalinks via Fortran
14 | M015 Datalinks via M
15 | M016 Datalinks via Pascal
16 | M017 Datalinks via PL/I
17 | M018 Foreign-data wrapper interface routines in Ada
18 | M019 Foreign-data wrapper interface routines in C
19 | M020 Foreign-data wrapper interface routines in COBOL
20 | M021 Foreign-data wrapper interface routines in Fortran
21 | M022 Foreign-data wrapper interface routines in MUMPS
22 | M023 Foreign-data wrapper interface routines in Pascal
23 | M024 Foreign-data wrapper interface routines in PL/I
24 | M030 SQL-server foreign data support
25 | M031 Foreign data wrapper general routines

450 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Annex G
(informative)

Defect reports not addressed in this edition of this part of ISO/IEC 9075

Each entry in this Annex describes a reported defect in the previous edition of this part of ISO/IEC 9075 that
remains in this edition.

None.

Defect reports not addressed in this edition of this part of ISO/IEC 9075 451

IWD 9075-9:201?(E)

(Blank page)

452 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

H.1 C Header File SQLCLI.H

Annex H
(informative)

Typical header files

This Annex modifies Annex H, “Typical header files”, in 1ISO/IEC 9075-3.

H.1 C Header File SQLCLI.H

This Subclause modifies Subclause H.1, “C header file SQLCLI.H”, in ISO/IEC 9075-3.

|Add the following manifest constants|

/* APl declaration data types */
typedef unsigned char SQLDATALINK;
/* datalink attributes */
#define SQL_ATTR_DL_URL_COMPLETE
#define SQL_ATTR_DL_URL_PATH
#define SQL_ATTR_DL_URL_PATH_ONLY
#define SQL_ATTR_DL_URL_SCHEME
#define SQL_ATTR_DL_URL_SERVER
/* SQL data type codes */
#define SQL_DATALINK 70
/* GetFunctions values to identify CLI routines */
#define SQL_API_SQLBUILDDATALINK 1029
#define SQL_API_SQLGETDATALINKATTR 1034
/* Information requested by Getlnfo() */
#define SQL_MAXIMUM_DATALINK_LENGTH 20004
/* Function prototypes */
SQLRETURN SQLBuildDatalLink(SQLHSTMT StatementHandle,
SQLCHAR *DatalLocation, SQLINTEGER DatalLocationLength,
SQLCHAR *DatalLink, SQLINTEGER DatalLinkLength,
SQLINTEGER *StringLength);
SQLRETURN SQLGetDatalLinkAttr(SQLHSTMT StatementHandle,
SQLSMALLINT Attribute,
SQLCHAR *DatalLink, SQLINTEGER DatalLinkLength,
SQLPOINTER Value, SQLINTEGER BufferLength,
SQLINTEGER *StringLength);

~No ok w

H.2 COBOL Library Item SQLCLI

This Subclause modifies Subclause H.2, “COBOL library item SQLCLI”, in ISO/IEC 9075-3.

|Add the following definitions]|

Typical header files 453

IWD 9075-9:201?(E)
H.2 COBOL Library Item SQLCLI

* DATALINK ATTRIBUTES

01 SQL-ATTR-DL-URL-COMPLETE PIC S9(4) BINARY
01 SQL-ATTR-DL-URL-PATH PIC S9(4) BINARY
01 SQL-ATTR-DL-URL-PATH-ONLY PIC S9(4) BINARY
01 SQL-ATTR-DL-URL-SCHEME PIC S9(4) BINARY
01 SQL-ATTR-DL-URL-SERVER PIC S9(4) BINARY
* SQL DATA TYPE CODES

01 SQL-DATALINK PIC S9(4) BINARY
* SQLRGETFUNCTIONS VALUES TO IDENTIFY CLI ROUTINES

01 SQL-API-SQLBUILDDATALINK PIC S9(4) BINARY
01 SQL-API-SQLGETDATALINKATTR PIC S9(4) BINARY
* INFORMATION REQUESTED BY SQLRGETINFO

01 SQL-MAXIMUM-DATALINK-LENGTH PIC S9(4) BINARY

454 Management of External Data (SQL/MED)

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

VALUE
VALUE

VALUE

~N~No ok~ w

1S
1S
1S
1S
1S
1S 70.
IS 1029.
IS 1034.
1S 20004.

IWD 9075-9:201?(E)

Annex |
(informative)

SQL/MED model

This Annex presents annotated diagrams that illustrate the more important concepts of the model of SQL/MED,
including the relationships between the SQL-server, foreign-data wrappers, and foreign servers.

This Annex describes the components and interfaces along with representative information flows that are
involved in the Management of External Data.

Figure 1, “SQL/MED interfaces”, shows the interfaces and components depicting an environment consisting
of an SQL-client and SQL-server, with multiple foreign-data wrappers. Each foreign-data wrapper in turn, is
associated with one or more foreign servers. The foreign server interfaces with foreign tables to enable data
transfer from an external source.

Figure 1 — SQL/MED interfaces
[

SERVERa

SERVERb

The various components shown in Figure 1, “SQL/MED interfaces”, are documented in Table 40, “Legend for
SQL/MED interfaces”.

Table 40 — Legend for SQL/MED interfaces

Notation Description

SQL CLIENT SQL Client that is involved in MED — interface to user

SQL SERVER SQL-server that is involved in MED — interface to foreign-data wrappers
MED Management of External Data 1SO 9075 SQL/MED Part 9

SQL/MED model 455

IWD 9075-9:201?(E)

Notation Description

FDWa Foreign-data wrapper — for interfacing with external data identified by compo-
nent set A

FDWb Foreign-data wrapper — for interfacing with external data identified by compo-

nent sets B and C

FOREIGN SERVERa

for interfacing with external data identified by component set A

FOREIGN SERVERD

Foreign Server — for interfacing with external data identified by component set
B

FOREIGN SERVERc

Foreign Server — for interfacing with external data identified by component set
C

FTal Foreign Tables 1 to n in component set A
FTbl Foreign Tables 1 to n in component set B
FTcl Foreign Tables 1 to n in component set C
- Information Flow via interfaces (generally bi-directional, in spite of the use of

single-headed arrows)

Diagram box/rectan-
gles

Components involved in Management of External Data

Figure 2, “SQL/MED information flow”, shows the information flows along with representative contents of

the information flows between the components involved in Management of External Data. An example SQL-
environment is shown, consisting of an SQL-client, an SQL-server, foreign-data wrapper, foreign server and

foreign tables. Also shown are the information flows from the information schema containing SQL-server

information, foreign-data wrapper descriptor information and foreign server descriptor information. Represen-

tative contents of each information flow are described.

Figure 2 — SQL/MED information flow

Information Schema

SOL Environment

456 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

The various components shown in Figure 2, “SQL/MED information flow”, are documented in Table 41,
“Legend for SQL/MED information flow”.

Table 41 — Legend for SQL/MED information flow

descriptor information

Notation Description Content
F1 SQL-client — SQL-server As defined in ISO/IEC 9075:2003
communication
F2 Request foreign-data wrapper | Foreign-data wrapper interface routines — SQL-server
information to foreign-data wrapper
F3 Control and get foreign server | Allocate resources
and foreign table information | De-allocate resources
Foreign server connection controls
Initiate and terminate execution of SQL statements at
foreign server
Foreign-data wrapper interface routines — foreign-data
wrapper to foreign server
F4 Receive foreign table data Foreign table data
F5 Receive foreign server and Foreign-data wrapper interface routines — Foreign
foreign table information server to foreign-data wrapper
F6 Return capabilities and foreign | Foreign-data wrapper capabilities
table schema information Foreign server capabilities
Foreign table schema elements
Options supported
Foreign-data wrapper interface routines — foreign-data
wrapper to SQL-server
F7 Receive SQL-server schema Information Schema tables
information Wrapper handle
Execution handle
Foreign Server handle
User handle
Connection handle
Table Reference handle
Value option handles
F8 Receive foreign-data wrapper | Foreign-data wrapper name

Authorization identifier
Language name

Generic options descriptor
Library name

SQL/MED model 457

IWD 9075-9:201?(E)

Notation Description Content
F9 Receive foreign server Foreign server name
descriptor information Authorization identifier
Foreign-data wrapper name
Generic options descriptor
Foreign server type
Foreign server version
Foreign table name
Foreign table column name
User mappings
F10 SQL-server — SQL-client As defined in ISO/IEC 9075:2003
communication

458 Management of External Data (SQL/MED)

IWD 9075-9:201?(E)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Conformance Rule, Table, or other descriptive text.

—A—
ADA « 393

ADD - 91, 92, 112

ADMIN « 12, 13, 14, 53, 54, 55, 154, 156, 389, 435

ALL-12,13, 25,53, 54,69, 117,122,127, 151, 153, 155,
156, 389

ALTER » 110, 114, 121, 126, 132, 139

AND -« 69, 370, 372, 373, 374, 375, 376, 377, 388, 389,
442

ANY « 199, 239, 240, 298, 358, 363

ARRAY « 167, 187, 203, 204, 205, 206, 211, 214, 216,
220, 221, 360, 442

AS 3,168, 172,181, 217, 219, 220, 370, 372, 373, 374,
375, 376, 377, 378, 379, 380, 381, 382, 383, 384

ASC « 313

ASENSITIVE « 207

ATTRIBUTES « 369, 414, 454

<Ada DATALINK variable> « 181, 182, 416, 423

<Ada derived type specification> « 181

abandoned + 136

access token ¢ 5, 12

<access token indication> ¢ 53

<add basic column definition>+ 110, 112, 434

allocated FDW-environment « 22, 247

allocated FDW-execution ¢ 291

allocated execution description « 282

allocated foreign server description « 68, 162

allocated foreign-data wrapper description « 68, 161

allocated foreign-data wrapper descriptor area * 294

allocated query context « 246

allocated reply description « 282

allocated routine mapping description ¢ 69

allocated user mapping description « 68, 162

<alter basic column action>« 114

<alter basic column definition>« 110, 114

<alter foreign server statement>« 8, 10, 19, 121, 146, 367,
417

<alter foreign table action>« 110

<alter foreign table statement>« 10, 19, 110, 111, 112,
146, 368, 416, 434

<alter foreign-data wrapper statement>+ 9, 10, 19, 126,
146, 367, 417

<alter generic option> « 91, 92
<alter generic option list> ¢ 91

<alter generic options>+91, 110, 114, 121, 126, 132, 139,
434

<alter operation> « 91, 92

<alter routine mapping statement>« 10, 19, 132, 146, 367,
417, 435

<alter user mapping statement>+« 9, 10, 19, 139, 146, 368,
417, 435

— B —
BIGINT » 190, 191, 204, 205, 206, 361, 438
BINARY + 190, 191, 204, 205, 206, 221, 361, 454
BLOCKED « 12, 13, 49, 53, 54, 55, 156, 389
BOOLEAN « 204, 206

BOTH « 158, 307, 316, 324, 329, 331, 332, 335, 344, 356,
359

BY « 102, 454

<basic column definition>« 107, 108, 112, 129, 434, 435
<basic column definition list> ¢ 107, 108, 434

bound column « 218, 284

bound target « 218, 284

—C —
C « 240, 242, 393, 435
<C DATALINK variable> « 183, 416, 423
<C derived variable> « 183
Feature C001, “CLI routine invocation in Ada” « 409
Feature C002, “CLlI routine invocation in C" * 409

Index 459

IWD 9075-9:201?(E)

Feature C003, “CLI routine invocation in COBOL " » 409
Feature C004, “CLI routine invocation in Fortran” « 409
Feature C005, “CLI routine invocation in MUMPS " « 409
Feature C006, “CLI routine invocation in Pascal” « 409
Feature C007, “CLI routine invocation in PL/I" « 409
CARDINALITY « 211, 214

CASCADE » 94, 115, 116, 117, 122, 127, 136

CAST » 168, 172, 217, 219, 220

CATALOG_NAME -« 370, 372, 373, 374, 375, 376, 377
CHAR - 181, 187

CHARACTER - 185, 188, 190, 197, 199, 204, 205, 206,
216, 219, 220, 239, 240, 242, 263, 264, 276, 291, 296,
299, 307, 314, 316, 321, 322, 324, 326, 327, 328, 329,
331, 333, 335, 339, 340, 342, 344, 346, 349, 352, 353,
354, 356, 361, 365, 439

CHARACTER_SET_CATALOG « 71, 72, 73, 210, 213,
216, 218, 219, 281, 286, 287, 288, 359, 360, 361, 383,
435

CHARACTER_SET_NAME « 71, 72, 73, 210, 214, 216,
218, 219, 281, 286, 287, 288, 359, 360, 361, 383, 435

CHARACTER_SET_SCHEMA 71, 72,73, 210, 214, 216,
218, 219, 281, 286, 287, 288, 359, 360, 361, 383, 435

CHECK -« 389, 393, 397, 401
CLASS_ORIGIN « 365, 439

<CLI routine> « 189

CLI-specific condition « 197, 199, 405

COBOL « 44, 239, 241, 393, 425

<COBOL DATALINK variable> « 184, 416, 424
<COBOL derived type specification> « 184
COLLATION_CATALOG - 210, 214, 383
COLLATION_NAME -« 210, 214, 383
COLLATION_SCHEMA -« 210, 214, 383
COLUMN » 112,114, 115

COLUMN_NAME - 24, 25, 346, 370, 382, 383, 387

CONSTRAINT » 387, 389, 392, 393, 394, 395, 396, 397,
398, 399, 401, 403, 404

CONTROL 11, 12, 13, 49, 53, 54, 55, 151, 153, 155
CONVERT -« 220
CORRESPONDING « 115

COUNT « 44, 71, 72, 164, 165, 166, 170, 209, 212, 215,
218, 281, 286, 288, 298, 358, 360

CREATE » 102, 107, 119, 124, 130, 137, 370, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384,
387, 392, 393, 394, 395, 396, 397, 398, 399, 403, 404

CURRENT_CATALOG - 207
CURRENT_DEFAULT_TRANSFORM_GROUP - 207
CURRENT_PATH « 207

CURRENT_ROLE -« 207

CURRENT_SCHEMA « 207

460 Management of External Data (SQL/MED)

CURRENT_TRANSFORM_GROUP_FOR_TYPE - 207,
208, 211, 214

CURRENT_USER - 137, 207, 370, 372, 373, 374, 375,
376, 377

<column generic options> « 107, 108, 112, 129
column name not found « 308, 330, 331, 406
<column option list> « 95

<commercial at> e 76, 77

<common value expression> « 58

conforming SQL/MED-implementation « 6
consistent « 204

constituent « 16

created by * 8

— D—
DATA - 119, 124, 126, 127, 135, 167, 168, 169, 171, 204,
205, 209, 213, 216, 219, 220, 359, 361, 402, 442, 454

DATALINK 5, 6, 7, 11, 12, 14, 15, 50, 53, 54, 57, 63, 64,
79, 80, 81, 82, 98, 99, 151, 153, 155, 159, 165, 190, 191,
201, 204, 205, 206, 211, 214, 388, 390, 400, 416, 433,
435, 454

DATALINK-ordered « 7
DATE » 362

DATETIME_INTERVAL_CODE » 71, 72, 73, 210, 214,
216, 218, 281, 286, 287, 288, 360, 361, 362, 443

DATETIME_INTERVAL_PRECISION « 71, 73, 210, 214,
216, 218, 281, 286, 287, 288, 360, 361, 362

DATETIME_INTERVAL_PRECISON « 360

DAY » 362

DB - 11, 12, 13, 49, 53, 54, 55, 154, 156, 389, 390
DECIMAL - 204, 205, 206, 361, 438

DEFAULT -« 190, 204, 215, 284

DEFERRED - 190

DEFINED -« 190, 191, 204, 205, 206, 210, 214, 390
DEGREE -« 204, 205, 206, 211, 214, 360

DELETE » 12, 13, 54, 55, 99, 151, 155, 389
DESCRIBE « 190

DISTINCT - 14, 25, 69, 300

DLNEWCOPY « 12, 13, 15, 50, 64, 65
DLPREVIOUSCOPY -« 12, 13, 15, 16, 50, 64, 65, 66
DLURLCOMPLETE - 50, 59
DLURLCOMPLETEONLY « 50, 59
DLURLCOMPLETEWRITE -« 50, 59

DLURLPATH « 50, 59

DLURLPATHONLY - 50, 59

DLURLPATHWRITE « 50, 59

DLURLSCHEME - 50, 59

DLURLSERVER - 50, 59

DLVALUE - 15, 50, 64, 65

DOUBLE « 190, 191, 204, 205, 206, 361, 438

DROP 91, 92, 94, 104, 115, 116, 117, 122, 127, 133,
136, 140

DYNAMIC_FUNCTION - 209, 212

DYNAMIC_FUNCTION_CODE - 209, 212

data exception « 64, 65, 220, 405, 436

<data location> « 64

datalink « 5

datalink character sets 11

<datalink control definition> « 53, 54, 56, 95, 100, 103,
105, 143

datalink data type descriptor * 12

datalink exception « 65, 151, 153, 155, 156, 405, 434, 435

<datalink file control option> « 53, 54, 153, 156

<datalink type>« 3, 7, 53, 54, 55, 181, 183, 184, 185, 186,
187, 188, 414

<datalink value constructor>« 12, 15, 64, 66, 441

datalink value exceeds maximum length « 65, 405

<datalink value expression> « 58, 59, 60, 63, 414

<datalink value function> « 63, 64, 66, 414, 441

datalinker 5, 11

decomposition mode 29

dependent privilege descriptors still exist » 136

<digits>* 76

<dollar sign>+ 76, 77

<domain label> ¢ 75

<drop basic column definition>« 110, 115, 116

<drop foreign server statement> « 8, 19, 122, 123, 136,
146, 368, 417

<drop foreign table statement>« 19, 94, 117, 118, 136,
146, 368, 416

<drop foreign-data wrapper statement>« 9, 19, 127, 146,
368, 417

<drop routine mapping statement>+ 10, 19, 104, 122, 133,
146, 368, 417, 435

<drop user mapping statement>« 9, 19, 122, 140, 146,
368, 418, 435

dynamic SQL error « 166, 167, 168, 170, 171, 172, 215,
218, 298, 358, 360

dynamic parameter value needed * 406

—E —
ELEMENT - 264, 276
EXCEPT « 15, 128, 129, 401
EXECUTE « 215, 289
EXISTS « 401
<escape>-° 76
<exclamation point>« 76, 77
external data ¢ 5
external file already linked « 153, 155, 405
external file not linked ¢ 151, 155, 405

IWD 9075-9:201?(E)

<extra> e+ 76

—F —

Feature F391, “Long identifiers” « 372, 373, 374, 375, 376,
377, 378, 379, 380, 381, 382, 413, 414

FDW-specific condition « 42, 44,72, 73, 74,128, 129, 222,
223, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255,
256, 257, 258, 259, 260, 261, 262, 265, 266, 267, 268,
269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280,
281, 282, 284, 286, 287, 288, 289, 290, 291, 294, 295,
296, 297, 298, 300, 301, 302, 303, 304, 305, 306, 307,
308, 309, 310, 311, 312, 313, 314, 316, 317, 318, 319,
320, 321, 322, 324, 325, 326, 327, 328, 329, 330, 331,
332, 333, 335, 337, 338, 339, 340, 341, 342, 344, 345,
346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 357,
358, 359, 361, 363, 364, 365, 406, 443

FDW-specific exception « 263

FETCH « 218

FILE » 11, 12, 13, 49, 53, 54, 75, 151, 153, 155

FLOAT » 204, 205, 206, 361, 438

FOR « 12, 13, 14, 53, 55, 102, 122, 130, 137, 140, 154,
156, 389, 435

FOREIGN « 94, 107, 110, 117, 119, 124, 126, 127, 128,
135, 136, 387, 392, 393, 394, 395, 396, 397, 398, 399,
401, 402, 403, 404

FORTRAN -« 393

FROM « 22, 68, 116, 117, 122, 127, 128, 158, 307, 316,
324, 329, 331, 332, 335, 344, 356, 359, 370, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384,
397, 401, 402, 442

FS 12, 13, 49, 53, 54, 55, 375, 389

FULL « 102

FUNCTION « 102

<Fortran DATALINK variable> « 185, 416, 424

<Fortran derived type specification> « 185

<file> « 62, 65, 76

<file url>« 61, 62, 65, 75, 76

<foreign schema name> « 128

foreign server 5, 7

<foreign server definition>+ 7, 8, 10, 19, 31, 119, 120,
146, 368, 417, 435

foreign server descriptor « 7

<foreign server name>+7, 21,51, 52,107, 108, 119, 121,
122,128, 130, 135, 136, 137, 139, 140, 158, 321, 353

foreign server request « 6

foreign server session ¢ 23

foreign table « 6

<foreign table definition> « 8, 10, 18, 93, 107, 108, 109,
129, 146, 368, 416, 434

foreign-data wrapper ¢ 5, 7

<foreign-data wrapper definition>« 9, 10, 19, 30, 124, 125,
146, 368, 417, 435

Index 461

IWD 9075-9:201?(E)

foreign-data wrapper descriptor ¢ 9

foreign-data wrapper interface SQL-server routine « 23
foreign-data wrapper interface function « 23, 239
foreign-data wrapper interface general routine « 23
foreign-data wrapper interface procedure « 23, 239

<foreign-data wrapper interface routine> « 237, 239, 240,
241, 242, 243, 245, 246, 248, 249, 251, 253, 254, 255,
256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 267,
268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279,
283, 285, 289, 290, 293, 294, 295, 296, 297, 299, 300,
301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312,
313, 315, 317, 318, 319, 320, 321, 323, 325, 326, 327,
328, 330, 332, 334, 336, 337, 338, 339, 340, 341, 343,
345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 357,
362, 366, 419, 420, 421, 422, 423, 424, 425, 426, 427,
428, 429, 430, 431, 436, 442

<foreign-data wrapper interface routine generic> ¢ 237,
240

<foreign-data wrapper interface routine name>« 237, 239,
240, 242, 245, 246, 248, 249, 251, 253, 254, 255, 256,
257, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268,
269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 283,
285, 289, 290, 293, 294, 295, 296, 297, 299, 300, 301,
302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 313,
315, 317, 318, 319, 320, 321, 323, 325, 326, 327, 328,
330, 332, 334, 336, 337, 338, 339, 340, 341, 343, 345,
346, 347, 348, 349, 350, 351, 352, 353, 355, 357, 362,
366, 419, 420, 421, 422, 423, 426, 427, 428, 429, 430,
431

<foreign-data wrapper interface routine prefix> « 237, 240

foreign-data wrapper interface wrapper routine ¢ 23

<foreign-data wrapper name> « 9, 51, 52, 119, 124, 126,
127, 135

<foreign-data wrapper parameter data type> « 239, 242
<foreign-data wrapper parameter declaration> ¢ 239, 242
<foreign-data wrapper parameter list> « 237, 239
<foreign-data wrapper parameter mode> « 239, 240
<foreign-data wrapper parameter name> « 239
<foreign-data wrapper returns clause> « 237, 239
<fpath>« 61, 62, 65, 76, 441

<fsegment>+ 76

<fsegment character> « 76, 77

function sequence error « 249, 254, 255, 257, 284, 286,
406

functional dependency « 18

— G —
GO - 124

GRANT « 370, 372, 373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385

<generic option> « 89
<generic option list> « 89

462 Management of External Data (SQL/MED)

<generic options> « 10, 89, 90, 107, 119, 120, 124, 130,
137

generic options descriptor ¢ 10

—H —
HOLD » 207
HOUR -« 362
handle « 21
<host> « 62, 65, 75, 76
host data type column « 204
<host name>« 75
<host number> « 75
<host port>« 75
<hpath> ¢ 61, 62, 65, 75, 76, 441
<hsegment> « 76
<hsegment character> « 76
<http> * 62, 65, 75
<http url> ¢ 61, 62, 65, 75

IMPORT « 50, 128

IN « 197, 199, 239, 244, 246, 247, 249, 250, 252, 254,
255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 266,
267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278,
279, 280, 284, 286, 290, 291, 294, 295, 296, 297, 298,
300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 311
312, 313, 314, 316, 318, 319, 320, 321, 322, 324, 326,
327, 328, 329, 331, 333, 335, 337, 338, 339, 340, 341
342, 344, 346, 347, 348, 349, 350, 351, 352, 353, 354,
356, 358, 363, 370, 372, 373, 374, 375, 376, 377, 378,
379, 380, 389, 393, 397

INDICATOR « 167, 204, 209, 213, 215, 219, 359
INOUT - 239, 240
INSERT - 400

INTEGER » 21, 190, 191, 197, 199, 204, 205, 206, 239,
240, 244, 246, 247, 249, 250, 252, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268,
269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280,
284, 286, 290, 291, 294, 295, 296, 297, 298, 300, 301,
302, 303, 304, 305, 306, 307, 309, 310, 311, 312, 313,
314, 316, 318, 319, 320, 321, 322, 324, 326, 327, 328,
329, 331, 333, 335, 337, 338, 339, 340, 341, 342, 344,
346, 347, 348, 349, 350, 351, 352, 353, 354, 356, 358,
361, 363, 438

INTEGRITY » 13, 49, 53, 54, 151, 153, 155, 156
INTERSECT » 15

INTERVAL -« 210, 214, 361, 362

INTO » 128

IS« 3,181, 183, 184, 185, 186, 187, 188, 388, 389, 454
immediate constituent « 16

<import foreign schema statement> « 8, 18, 128, 129, 368,
417,419

<import qualifications> ¢ 128, 129
inconsistent descriptor information « 361, 406
input parameter « 239

insufficient item descriptor areas * 164, 165
<integrity control option> ¢ 6, 53

invalid LEVEL value « 360

invalid SQL descriptor name « 164

invalid attribute identifier » 199

invalid attribute value » 364, 406

invalid catalog name « 359

invalid character set name ¢ 360

invalid column name « 307, 329, 331, 406
invalid column number « 406

invalid condition number « 364

invalid cursor allocation » 176, 177, 407
invalid cursor option « 175, 407

invalid cursor state « 249

invalid data specified for datalink « 65, 405
invalid data type * 361, 406

invalid data type descriptors 72, 73, 74, 287, 288, 289,
406

invalid datalink construction « 153, 405

invalid datalink value « 197, 199, 405

invalid descriptor count « 167, 171, 215, 218

invalid descriptor field identifier « 298, 358, 406

invalid descriptor index « 298, 358

invalid foreign server specification « 158, 407

invalid handle « 42, 243, 244, 246, 247, 250, 252, 254,
255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 266,
267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278,
279, 280, 286, 290, 291, 295, 296, 297, 300, 301, 302,
303, 304, 305, 306, 307, 309, 310, 311, 312, 313, 314,
316, 318, 319, 320, 321, 322, 324, 326, 327, 328, 329,
331, 333, 335, 337, 338, 339, 340, 341, 342, 344, 346,
347, 348, 349, 350, 351, 352, 353, 354, 356, 363, 364,
406

invalid handle « 42

invalid option index * 265, 270, 272, 273, 297, 313, 314,
319, 322, 330, 333, 337, 342, 351, 354, 406

invalid option name « 316, 324, 332, 335, 344, 356, 406

invalid parameter value 64

invalid schema name « 359

invalid string format « 328, 406

invalid string length or buffer length « 199, 222, 223, 307,
316, 324, 329, 331, 332, 335, 344, 356, 359, 365, 406

invalid use of null pointer « 44, 406

invalid write permission for update « 156, 406

invalid write token ¢ 65, 156, 405, 434, 435

IWD 9075-9:201?(E)

— K —

KEY 387, 392, 393, 394, 395, 396, 397, 398, 399, 403,
404

KEY_MEMBER » 209, 210, 213

KEY_TYPE « 209, 212

— L —
LARGE - 190, 191, 204, 205, 206, 220, 221, 361

LENGTH « 71, 72, 73, 165, 190, 201, 210, 211, 213, 214,
216, 218, 281, 286, 287, 288, 360, 361, 400, 416, 435,
454

LEVEL » 167, 171, 203, 204, 205, 209, 213, 215, 216, 218,
219, 284, 360

LIBRARY « 49, 124

LIMIT « 49, 128, 129

LINK « 11, 12, 13, 49, 53, 54, 55, 151, 153, 155

LOCATOR « 167, 190, 191, 204, 205, 206, 216, 220, 221,
360, 442

<label tail> « 75

<letter or digit>* 75

<library name> « 124, 126

<library name specification> « 124, 126

limit on number of handles exceeded » 246, 247, 251, 281,
282, 291, 294, 406, 443

link control « 6

link control options ¢ 12
linked « 11

<local schema name> « 128

— M —

Feature M001, “Datalinks” « 55, 63, 66, 369, 371, 385,
414, 415

Feature M002, “Datalinks via SQL/CLI" » 198, 200, 201,
409, 415, 416

Feature M003, “Datalinks via Embedded SQL"+ 182, 183,
184, 185, 186, 187, 188, 409, 416

Feature M004, “Foreign data support”« 109, 111, 118,
120, 121, 123, 125, 126, 127, 129, 131, 132, 133, 138,
139, 140, 158, 370, 372, 373, 374, 375, 376, 377, 378,
379, 380, 381, 385, 386, 409, 410, 416, 417, 418, 419

Feature M0O05, “Foreign schema support”« 129, 419

Feature M006, “GetSQLString routine” « 328, 419

Feature M007, “TransmitRequest” « 293, 419, 420

Feature M009, “GetOpts and GetStatistics routinesGetOpts
and GetStatistics routines” « 264, 277, 420

Feature M010, “Foreign-data wrapper support” s 245, 246,
248, 249, 251, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 265, 266, 267, 268, 269, 270, 271, 272, 273,
274, 275, 278, 279, 283, 285, 289, 290, 409, 410, 420,
421, 422, 423

Index 463

IWD 9075-9:201?(E)

Feature M011, “Datalinks via Ada” « 182, 409, 423
Feature M012, “Datalinks via C” » 183, 409, 423

Feature M013, “Datalinks via COBOL "« 184, 409, 423,
424

Feature M014, “Datalinks via Fortran” « 185, 409, 424
Feature M015, “Datalinks via M "« 186, 410, 424
Feature M016, “Datalinks via Pascal” » 187, 410, 424
Feature M017, “Datalinks via PL/I" » 188, 410, 424

Feature M018, “Foreign-data wrapper interface routines
in Ada” » 241, 410, 424

Feature M019, “Foreign-data wrapper interface routines
in C"« 241, 410, 424

Feature M020, “Foreign-data wrapper interface routines
in COBOL "+ 241, 410, 424, 425

Feature M021, “Foreign-data wrapper interface routines
in Fortran™” » 241, 410, 425

Feature M022, “Foreign-data wrapper interface routines
in MUMPS "« 241, 410, 425

Feature M023, “Foreign-data wrapper interface routines
in Pascal” » 241, 410, 425

Feature M024, “Foreign-data wrapper interface routines
in PL/I" « 241, 410, 425

Feature M030, “SQL-server foreign data support” « 294,
295, 296, 297, 299, 300, 301, 302, 303, 304, 305, 306,
308, 309, 310, 311, 312, 313, 315, 317, 318, 319, 320,
321, 323, 325, 326, 327, 330, 332, 334, 336, 337, 338,
339, 340, 341, 343, 345, 346, 347, 348, 349, 350, 351,
352, 353, 355, 357, 362, 409, 410, 425, 426, 427, 428,
429, 430, 431

Feature M031, “Foreign-data wrapper general routines” «
366, 410, 431

MAP « 102

MAPPING - 49, 104, 122, 130, 132, 133, 137, 139, 140
MED - 237

MESSAGE_LENGTH « 365
MESSAGE_OCTET_LENGTH « 365

MESSAGE_TEXT « 365, 439

MINUTE » 362

MORE -« 364

MULTISET « 167, 203, 204, 205, 206, 216, 220, 221, 360,
442

MUMPS « 393

<MUMPS DATALINK variable> « 186, 416, 424
<MUMPS derived type specification> « 186
maximum datalink length « 15, 433

memory allocation error « 246, 247, 251, 282, 291, 294,
359, 406

— N—
NAME « 209, 210, 213, 442
NATURAL « 115

464 Management of External Data (SQL/MED)

NO 12, 13, 53, 54, 55, 207, 389

NONE « 12, 13, 14, 55, 389

NOT « 6, 12, 13, 14, 53, 55, 154, 156, 389, 393, 395, 397,
399, 401

NULL « 6, 190, 204, 205, 216, 220, 388, 389, 393, 395,
397, 399, 442

NULLABLE - 209, 210, 213

NUMBER e« 364

NUMERIC « 204, 205, 361, 438

<new version> e+ 121

no data « 42, 43, 243, 263, 265, 270, 272, 273, 276, 285,
297, 298, 313, 314, 319, 322, 330, 333, 337, 342, 351,
354, 364

no schemas « 128, 406

no subclass « 405, 406, 407

non-SQL-aware foreign server « 8
non-pointer-supporting languages ¢ 44

<non-reserved word> ¢ 49

null argument passed to datalink constructor 64, 405
null pointer « 44

—0—
OBJECT -« 190, 191, 204, 205, 206, 220, 221, 361

OCTET » 210, 214

OCTET_LENGTH « 71, 72, 73, 165, 190, 204, 209, 210,
211, 213, 214, 216, 219, 281, 286, 287, 288, 359, 360,
435

OF « 187

OFF » 21, 49, 157

ON « 13, 14, 54, 55, 116, 117, 122, 127, 370, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384,
385

ONLY « 67, 200, 454

OPEN » 215, 289

OPTION - 370, 372, 373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385

OPTIONS » 89, 91

OR « 370, 372, 373, 374, 375, 388, 389, 390

ORDER - 102

ORDERING « 102

OUT « 197, 199, 239, 244, 246, 247, 250, 258, 259, 260,
261, 262, 263, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276, 278, 279, 280, 291, 294, 296, 297,
298, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310,
311, 312, 313, 314, 316, 318, 319, 320, 321, 322, 324,
326, 327, 328, 329, 331, 333, 335, 337, 338, 339, 340,
341, 342, 344, 346, 347, 348, 349, 350, 351, 352, 353,
354, 356, 363

<object name> ¢ 135

opened FDW-execution ¢ 289

operative data type correspondence table « 72, 203, 240,
287, 289

<option name> « 51, 52, 89, 91, 92, 434

option name not found « 317, 325, 332, 335, 345, 357, 407
<option value> ¢ 89, 91, 92

output parameter ¢ 239

owned by ¢ 8

—P—
PARAMETER « 24, 25

PARAMETER_MODE « 209, 360
PARAMETER_ORDINAL_POSITION * 209, 360
PARAMETER_SPECIFIC_CATALOG « 209, 360
PARAMETER_SPECIFIC_NAME « 209, 360
PARAMETER_SPECIFIC_SCHEMA « 209, 360
PASCAL » 393

PASSTHROUGH - 22, 49, 157, 218, 252, 282, 285, 286,
292

PATH » 200, 454

PERMISSION - 13, 49, 53, 54, 55, 153, 156
<PL/I DATALINK variable> « 188, 416, 424
<PL/I derived type specification> « 188

PLI * 393

PRECISION » 71, 72, 73, 190, 191, 204, 205, 206, 210,
214, 215, 216, 218, 219, 281, 285, 286, 287, 288, 360,
361, 362, 438

PRIMARY « 387, 392, 393, 394, 395, 396, 397, 398, 399,
403, 404

PRIVILEGES « 117, 122, 127

PUBLIC « 9, 68, 137, 139, 140, 162, 370, 372, 373, 374,
375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385

<Pascal DATALINK variable> « 187, 416, 424
<Pascal derived type specification> « 187
pass-through mode « 29

pass-through specific condition « 175, 176, 177, 407
<passthrough specification> « 157

point in time recovery « 13

pointer-supporting languages ¢ 44

<port>e+ 75, 76

<predefined type> « 3, 53, 181

—R—
READ « 13, 53, 54, 55, 153, 156

REAL » 190, 191, 204, 205, 206, 361, 438
RECOVERY » 13, 49, 53, 54, 55

REF « 190, 191, 204, 205, 206, 210, 214

REFERENCES » 387, 392, 393, 394, 395, 396, 397, 398,
399, 403, 404

REQUIRING « 12, 13, 14, 49, 53, 55, 154, 156, 389, 435

IWD 9075-9:201?(E)

RESTORE « 12, 13, 49, 54, 55, 99, 151, 155, 389

RESTRICT 94, 115, 117, 122, 127

RETURN » 207

RETURNED_CARDINALITY « 209, 221, 359

RETURNS « 197, 199, 239, 244, 246, 247, 249, 250, 252,
254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265,
266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
278, 279, 280, 284, 286, 290, 291, 294, 295, 296, 297,
298, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310,
311, 312, 313, 314, 316, 318, 319, 320, 321, 322, 324,
326, 327, 328, 329, 331, 333, 335, 337, 338, 339, 340,
341, 342, 344, 346, 347, 348, 349, 350, 351, 352, 353,
354, 356, 358, 363

REVOKE « 116, 117, 122, 127

ROUTINE « 104, 116, 117, 122, 130, 132, 133

ROW 16, 71, 73, 167, 203, 204, 205, 206, 211, 214, 215,
216, 220, 287, 288, 360, 442

<read permission option> ¢ 6, 53

read token ¢ 5, 12

read-only « 20

<recovery option>* 6, 53

referenced file does not exist « 153, 155, 406

referenced file not valid « 156, 406

reply handle « 407

<reserved word> ¢ 50

restricted data type attribute violation » 168, 171, 172

routine mapping * 6

<routine mapping definition>« 9, 10, 19, 130, 131, 146,
368, 417, 435

<routine mapping name> « 51, 52, 130, 132, 133

—S—
SCALE 71, 72, 73, 204, 205, 206, 210, 214, 215, 216,

218, 219, 281, 285, 286, 287, 288, 360, 361, 438
SCHEMA » 128, 218

SCOPE_CATALOG » 71, 72, 73, 210, 214, 216, 218, 219,
281, 286, 287, 288, 360, 361, 383

SCOPE_NAME 71, 72,73, 210, 214, 216, 218, 219, 281,
286, 287, 288, 360, 361, 383

SCOPE_SCHEMA - 71, 72, 73, 210, 214, 216, 218, 219,
281, 286, 287, 288, 360, 361, 383

SCROLL « 207
SECOND -« 362

SELECT « 22, 68, 109, 112, 115, 116, 370, 372, 373, 374,
375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385,
397, 401, 402, 442

SELECTIVE « 12, 13, 49, 53, 54, 153, 155, 156, 389

SERVER -« 49, 107, 119, 121, 122, 128, 130, 135, 136,
137, 139, 140, 200, 263, 363, 402, 454

SESSION_USER « 207
SET » 91, 92, 157

Index 465

IWD 9075-9:201?(E)

SMALLINT « 190, 191, 197, 199, 204, 205, 206, 239, 240,
244,246, 247, 249, 250, 252, 254, 255, 256, 257, 258,
259, 260, 261, 262, 263, 265, 266, 267, 268, 269, 270,
271,272, 273, 274, 275, 276, 278, 279, 280, 284, 286,
290, 291, 294, 295, 296, 297, 298, 300, 301, 302, 303,
304, 305, 306, 307, 309, 310, 311, 312, 313, 314, 316,
318, 319, 320, 321, 322, 324, 326, 327, 328, 329, 331,
333, 335, 337, 338, 339, 340, 341, 342, 344, 346, 347,
348, 349, 350, 351, 352, 353, 354, 356, 358, 361, 363,
438

SPECIFIC » 116, 117

SPECIFIC_NAME - 384, 399

SQL « 3,181, 183, 184, 185, 186, 187, 188
SQL data type column « 204

<SQL schema definition statement> « 146
<SQL schema manipulation statement> « 146
<SQL session statement> ¢ 146
SQL-aware foreign server « 8
SQL-mediated « 12

SQL-mediated datalink » 12
SQL/MED-implementation « 6

SQLSTATE » 42, 365, 433
SUBCLASS_ORIGIN « 365, 439

SYSTEM ¢ 109, 116, 117, 120, 122, 124, 127
SYSTEM_USER « 207

<safe>+ 76

<schema element> ¢ 93

schema not found « 128, 407

scheme « 65

<server type>+ 119, 120, 435

<server version>« 119, 120, 121, 435

<set passthrough statement>+ 19, 21, 146, 157, 158, 161,
368, 418

<specific or generic authorization identifier> « 137, 139,
140

string data, right truncation « 222, 223, 359
<string value function> « 59, 60
successful completion « 243

—T—

TABLE » 94, 107, 110, 116, 117, 136, 370, 372, 373, 374,
375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385,
387, 390, 392, 393, 394, 395, 396, 397, 398, 399, 403,
404

TABLE_NAME - 24, 339, 370, 376, 377, 382, 383, 387,
397

TIME « 362
TIMESTAMP « 362

TO 128, 129, 362, 370, 372, 373, 374, 375, 376, 377,
378, 379, 380, 381, 382, 383, 384, 385, 454

TOKEN « 12, 13, 14, 49, 53, 55, 154, 156, 389, 435

466 Management of External Data (SQL/MED)

TOP_LEVEL_COUNT « 69, 204, 205, 209, 212, 284
TRIGGER » 115

TRIM « 158, 307, 316, 324, 329, 331, 332, 335, 344, 356,
359

TYPE 3, 71,72, 73,119, 159, 165, 167, 181, 183, 184,
185, 186, 187, 188, 190, 191, 204, 205, 206, 209, 210,
211, 213, 214, 215, 216, 218, 219, 220, 221, 281, 284,
285, 286, 287, 288, 358, 360, 361, 362, 364, 390, 435,
436, 437, 438, 442, 443, 454

<table generic options>+ 107, 108, 129
<table name list> « 128, 129

table not found ¢ 129, 407

<token indication> « 64

<top label> « 75

—U—
UNION - 15, 376, 377, 402

UNIQUE » 399

UNLINK « 13, 14, 49, 54, 55

UNNAMED » 209, 210, 213, 442

UPDATE - 12, 13, 14, 53, 55, 154, 156, 389, 435
UPPER + 240

USAGE - 108, 119, 120, 124, 130, 135, 136, 137, 158,
184

USER 122, 137, 139, 140, 363

USER_DEFINED_TYPE_CATALOG « 71, 72, 73, 210,
214, 216, 218, 219, 281, 286, 287, 288, 360

USER_DEFINED_TYPE_NAME « 71, 72, 73, 210, 214,
216, 218, 219, 281, 286, 287, 288, 360, 361

USER_DEFINED_TYPE_SCHEMA-71,72,73, 210, 214,
216, 219, 281, 286, 287, 288, 360, 361

USING « 190, 215, 218, 220

<uchar>+ 76, 77

unable to create execution « 282, 407

unable to create reply * 282, 291, 407

unable to establish connection « 251, 407

<unlink option> « 6, 53, 54

unlinked « 12

<unqualified foreign server name> « 51

<unqualified foreign-data wrapper name> « 51
<unreserved> ¢ 76

<url>e« 75, 77

<url complete expression> ¢ 15, 59, 60, 434

<url complete for write expression> « 15, 59, 60, 434
<url complete only expression> « 15, 59, 60, 61, 434
<url path expression> ¢ 15, 59, 60, 61, 434

<url path for write expression> « 15, 59, 60, 61, 434
<url path only expression> « 15, 59, 60, 61, 434

<url scheme expression> ¢ 15, 59, 60, 62, 434

<url server expression> « 15, 59, 60, 62, 434

user mapping * 6
<user mapping definition>« 9, 10, 19, 31, 137, 138, 146,
368, 417, 435

using clause does not match dynamic parameter
specifications * 166, 167, 215

using clause does not match target specifications « 170,
171, 218

—V —
VALUE » 454

VALUES + 454
VARCHAR - 3, 181

VARYING - 190, 204, 205, 206, 219, 220, 221, 240, 263,
276, 291, 299, 328, 361, 365, 439

VERSION - 49, 119, 121

VIEW « 370, 372, 373, 374, 375, 376, 377, 378, 379, 380,
381, 382, 383, 384

Valid XML document « 5
valid » 12, 204

— W —
WHERE « 69, 370, 372, 373, 374, 375, 376, 377, 378, 379
380, 381, 397, 401, 442

WITH « 102, 362, 370, 372, 373, 374, 375, 376, 377, 378,
379, 380, 381, 382, 383, 384, 385

WITHOUT -« 207

WRAPPER -« 49, 119, 124, 126, 127, 135, 263, 364, 402
WRITE » 13, 53, 54, 55, 153, 156

warning « 42, 43, 164, 165, 222, 223, 243, 359

<write permission option> ¢ 6, 53

write token ¢ 5, 12

— X —
XML * 6
XML document ¢ 5
XML document type declaration « 5

—Y—
YES - 12, 13, 49, 54, 55, 389
N

ZONE « 362
zero-length character string « 220, 436

IWD 9075-9:201?(E)

Index 467

IWD 9075-9:201?(E)

(Blank page)

468 Management of External Data (SQL/MED)

Editor's Notes for IWD 9075-9:201?(E)
Introduction

Editor's Notes

Some possible problem and language opportunities have been observed with the specifications contained in this document.
Further contributions to this list are welcome. Deletions from the list (resulting from change proposals that correct the
problems or from research indicating that the problems do not, in fact, exist) are even more welcome.

Because of the dynamic nature of this list (problems being removed because they are solved, new problems being added),
each problem or opportunity has been assigned a "fixed" number. These numbers do not change from draft to draft.

Editor's Notes (Introduction) Notes-1

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

Possible Problems: Major Technical

MED-000| The following Possible Problem has been noted:
Severity: major technical

Reference:

Note At: None.

Source: Your humble Editor.
Possible Problem:

In the body of the Working Draft, there occasionally appears a point that requires particular attention,
highlighted thus:

** Editor's Note (number 5) **

Text of the problem.

Solution:
None provided with comment.

MED-073| The following Possible Problem has been noted:
Severity: major technical

Reference: P09, SQL/MED, Subclause 7.1, “<table reference>"
Note At: General Rule 1)a)ii) (Editor's Note number 2)

Source: WG3:LCY-025 = DM32.2-2009-00093R3

Possible Problem:

The General Rules of Subclause 7.1, “<table reference>", have not been adapted to the advent of system-
versioned tables in Foundation. It would be helpful if there was some way to immunize these rules against
changes in the modified rules in Foundation.

Solution:
None provided with comment.

The following Possible Problem has been noted:
Severity: major technical
Reference: P09, SQL/MED, Subclause 21.2, “Implicit foreign-data wrapper cursor”
Note At: General Rule 4)a)iii) (Editor's Note number 4)
Source: WG3:LCY-025 = DM32.2-2009-00093R3
Possible Problem:

WG3:LCY-025 took no action on the instance of general containment in Subclause 21.2, “Implicit foreign-
data wrapper cursor”, General Rule 4)a)iii). This rule is related to SQL/Foundation Subclause 6.32,
“<datetime value function>", General Rule 3), and Subclause 15.1, “Effect of opening a cursor”, General

Notes—2 Editor’s Notes for Management of External Data (SQL/MED)

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

Rule 5)a)ii), which also contain unaddressed instances of general containment. When those rules are
addressed, this one should be as well.

Solution:
None provided with comment.

MED-075| The following Possible Problem has been noted:
Severity: major technical

Reference: P09, SQL/MED, Clause 18, “Embedded SQL”
Note At: None.

Source: WG3:KOA-030 = DM32.2-2011-00098

Possible Problem:

The semantics of data link variables in the embedded languages (<Ada datalink variable>, etc.) is not
specified. The <host parameter data type> of these variables is not clear (is it <datalink type>? is it
VARCHAR?) If these function like SQL TYPE IS UDT AS PT, where UDT is a <path-resolved user-
defined type name> and PT is a <predefined type>, then the answer would be VARCHAR. But in that
case, there are no rules specifying how the contents of the character string in the host program relates to
a data link.

Solution:
None provided with comment.

Editor's Notes (Possible Problems) Notes—3

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

Possible Problems: Minor Technical

MED-067| The following Possible Problem has been noted:
Severity: minor technical

Reference: P09, SQL/MED, Subclause 24.10, “ROUTINE_MAPPING _OPTIONS view”
Note At: None.

Source: DCOR/2004, WG3-P09-003

Possible Problem:

The View ROUTINE_MAPPING_OPTIONS has no privilege check and no restriction to the actual cat-
alog.

Solution:
None provided with comment.

MED-068| The following Possible Problem has been noted:
Severity: minor technical

Reference: P09, SQL/MED, Subclause 24.11, “ROUTINE_MAPPINGS view”
Note At: None.

Source: DCOR/2004, WG3-P09-004

Possible Problem:

The View ROUTINE_MAPPINGS has no privilege check and no restriction to the actual catalog.

Solution:
None provided with comment.

MED-069| The following Possible Problem has been noted:
Severity: minor technical

Reference: P09, SQL/MED, Subclause 24.12, “USER_MAPPING_OPTIONS view”
Note At: None.
Source: DCOR/2004, WG3-P09-005
Possible Problem:
The View USER_MAPPING_OPTIONS has no privilege check and no restriction to the actual catalog.

Solution:
None provided with comment.

MED-070]| The following Possible Problem has been noted:
Severity: minor technical

Reference: P09, SQL/MED, Subclause 24.13, “USER_MAPPINGS view”

Notes—4 Editor's Notes for Management of External Data (SQL/MED)

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

Note At: None.
Source: DCOR/2004, WG3-P09-006
Possible Problem:

The View USER_MAPPINGS has no privilege check and no restriction to the actual catalog.

Solution:
None provided with comment.

MED-071| The following Possible Problem has been noted:
Severity: minor technical

Reference: P09, SQL/MED, Subclause 25.2, “DATA_TYPE_DESCRIPTOR base table”
Note At: None.

Source: DCOR/2004, WG3-P09-008

Possible Problem:

The Constraint DATA_TYPE_DESCRIPTOR_DATA_TYPE_CHECK_COMBINATIONS of the table
DATA_TYPE_DESCRIPTOR is out of synch with its definition in Part 11 (Schemata).

Solution:
None provided with comment.

Editor's Notes (Possible Problems) Notes-5

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

Possible Problems: Major Editorial

The following Possible Problem has been noted:
Severity: major editorial
Reference: P09, SQL/MED, No specific location
Note At: None.
Source: FCD1/2002, DEU-P09-980
Possible Problem:

A look at Clause 4, “Concepts”, and associated Subclauses seems to suggest that many columns defined
in Clause 25, “Definition Schema”, that are presently optional (meaning that a value of null is permitted)
should be mandatory. Thus, a careful examination of all column definitions is required, and some of them
may require NOT NULL constraints to be added.

Solution:
None provided with comment.

MED-065| The following Possible Problem has been noted:
Severity: major editorial

Reference: P09, SQL/MED, Subclause 6.2, “<cast specification>"
Note At: Subclause 6.2, “<cast specification>”, SR 2)

Source: FCD1/2002, USA-P09-041

Possible Problem:

The table in SR 2) is an inappropriate way to add new data types to the casting table in ISO/IEC 9075-2.
A different approach would be preferable to avoid problems caused by adding data types in multiple
incremental parts (e.g., DATALINK in SQL/MED and XML in SQL/XML).

A better approach would be to use a new SR 2) that says something like "Add a new rightmost column
to the table following SR 6) in ISO/IEC 9075-2", followed by a table that looks something like this:

<data type>

SD of <data type> of TD
<value expression> DL

EN N

AN N

RW M

Then another new SR would be specified, something like this: "Add a new row at the end of the table
following SR 6) in ISO/IEC 9075-2"

<data type>
SD of <data type> of TD
<value expression>

Notes—6 Editor's Notes for Management of External Data (SQL/MED)

Editor's Notes for IWD 9075-9:201?(E)
Possible Problems

EN AN VC FC D T TS ¥YM DT BO UDT CL BL RT CT RW DL
DL N N N N N N N N N N N N N N N N Y

This approach has the advantage of correctly inserting a column and a row, rather than replacing the entire
table.

However, it leaves the disadvantage that insertion of a column and a row by SQL/MED and another by
SQL/XML causes two cells of the table to be unspecified...the cell concerning casting of the data type
added by SQL/MED to and from the data type added by SQL/XML.

That disadvantage might be resolved by adding (e.g., in Foundation) a statement that such "unspecified
cells" are implicitly filled with "N", so that no such casting is supported.

Solution:
None provided with comment.

Editor's Notes (Possible Problems) Notes—7

